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Abstract. Let E be an elliptic curve defined over Q. The aim of this paper is to make it possible

to compute Heegner L-functions and anticyclotomic Λ-adic regulators of E, which were studied by

Mazur-Rubin and Howard.
We generalize results of Cohen and Watkins, which enable us to compute Heegner points of

non-fundamental discriminant. We then prove a relationship between the denominator of a point

of E defined over a number field and the leading coefficient of the minimal polynomial of its x-
coordinate. Using this, we recast earlier work of Mazur, Stein, and Tate, which then allows us to

produce effective algorithms to compute p-adic heights of points of E defined over number fields.
These methods make it possible for us to give the first explicit examples of Heegner L-functions

and anticyclotomic Λ-adic regulators.

1. Introduction

Let E/Q be an elliptic curve defined over the rationals, p an odd rational prime of good ordinary
reduction, andK/Q an imaginary quadratic extension satisfying the Heegner hypothesis. We consider
the anticyclotomic Zp-extension K∞/K. Denote by Kn ⊆ K∞ the intermediate extension of degree
pn over K. Following Mazur and Rubin [11] we define the anticyclotomic universal norm module

U = lim
←−
n

E(Kn)⊗ Zp,

where the transition maps are the trace maps. Note that U is a module over Λ = Zp[Gal(K∞/K)].
The complex conjugation τ ∈ Gal(K∞/Q) acts on U and on Gal(K∞/K): τστ−1 = σ−1 for every
σ ∈ Gal(K∞/K). We now consider the Λ-module U (τ) where U (τ) is equal to U as an abelian group
but σ · u := τστ−1(u) for all σ ∈ Gal(K∞/K). Then we have the cyclotomic p-adic height pairing

h : U ⊗Λ U (τ) → Γcycl ⊗Zp Λ⊗Zp Qp,

where Γcycl denotes the Galois group of the cyclotomic Zp-extension Kcycl
∞ /K. Under the assumptions

that the elliptic curve E/Q has ordinary non-anomalous reduction at p and that p does not divide the
product of the Tamagawa numbers, we have that the p-adic height pairing takes values in Γcycl⊗Zp Λ.
By work of Cornut [4] and Vatsal [17] we know that U is free of rank one over Λ. This implies that the
image of the cyclotomic p-adic height pairing is generated by an element R ∈ Γcycl⊗Zp Λ, the Λ-adic
regulator of E. Our main motivation for this paper was to compute examples of the Λ-adic regulator
of E. In order to do this we use Heegner points under conditions which ensure that Heegner points
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give rise to the full module of universal norms, then compute modulo powers of p the coefficients of
the Heegner L-function, which in this case is equal to the Λ-adic regulator of E (see Section 3).

To explicitly compute coefficients of Heegner L-functions, one needs to compute p-adic heights of
Heegner points of non-fundamental discriminant defined over ring class fields. We begin by giving a
rigorous construction of these Heegner points (see Section 2), generalizing various results of Watkins
[18] and Cohen [3, §8.6]. This allows us to give algorithms that construct Heegner points in E(Kn), as
well as the full set of conjugates under the action of the Galois group Gal(Kn/K); see Section 4. Then,
since these Heegner points are defined over number fields, we discuss how to adapt the techniques
of Mazur, Stein, and Tate [12] to this situation. In particular, [12] gives an algorithm to compute
the cyclotomic p-adic height of a rational point P ∈ E(Q) on an elliptic curve E defined over Q, in
terms of two functions: (1) the p-adic sigma function associated to E and (2) the denominator of
P . They also give similar formulas to handle the case when E and the point P are defined over a
number field.

We discuss effective methods to compute p-adic heights, following [12], when E is defined over Q
but the point P is defined over a number field F . In particular, since our elliptic curve is defined
over Q, no generalization of their p-adic sigma function algorithm is needed. However, obtaining a
fast generalization of the denominator algorithm is more subtle, especially when the class number of
F is not one; see Sections 5 and 6. The naive generalization of the denominator algorithm involves
the factorization of several ideals in the ring of integers OF which becomes infeasible as the degree
of the number field grows. In Section 7 we present an alternative approach which merely involves
knowing the minimal polynomial of the x-coordinate of P . Then in Section 8, we build on these
improvements and discuss the computation of p-adic height pairings of Galois conjugates of Heegner
points. With these algorithms in hand, in Section 9 we provide the first explicit examples of Heegner
L-functions and hence Λ-adic regulators.

Remark 1.1. We do not give explicit bounds on the necessary precision of our numerical computa-
tions, so we do not obtain “provably correct” computational results. Instead, we apply consistency
checks on the results, which suggest that they are very likely correct. “Highly likely” results are
sufficient for our main goal, which is to numerically investigate a question of Mazur and Rubin about
Λ-adic regulators to clarify what should be conjectured and proved via theoretical methods.

2. Heegner points and binary quadratic forms

In this section, we generalize various aspects of Watkins [18], and Cohen [3, §8.6] to nonfunda-
mental discriminant. Because these basic facts are crucial to the rest of this paper, we give precise
statements with well-defined notation and proofs, instead of leaving the details to the reader.

Let τ be a quadratic irrational in the complex upper half plane H. Let

fτ = (A,B,C)←→ Ax2 +Bxy + Cy2

be the associated integral primitive positive definitive binary quadratic form, so that Aτ2+Bτ+C = 0
with A > 0 and gcd(A,B,C) = 1. The discriminant ∆(τ) is ∆(fτ ) = B2 − 4AC, which is negative.
We do not assume that ∆(τ) is a fundamental discriminant.

2.1. Heegner points. A Heegner point of level N and discriminant D is a quadratic irrational in
the upper half plane such that ∆(τ) = D = ∆(Nτ). Let HDN be the set of Heegner points of level
N and discriminant D. We will assume the Heegner Hypothesis: the primes dividing N split in
Q(
√
D)/Q.

Proposition 2.1. Let τ ∈ H be a quadratic irrational with fτ = (A,B,C) of discriminant D. Then
τ ∈ HDN if and only if N | A and gcd(A/N,B,CN) = 1.
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Proof. First note that τ = −B+
√
D

2A , so Nτ = −NB+N
√
D

2A .

( =⇒ ) Suppose τ ∈ HDN , so ∆(τ) = ∆(Nτ). Writing fNτ = (A′, B′, C ′), we have Nτ =
−B′+

√
D

2A′ = −NB+N
√
D

2A ; equating real and imaginary parts yields A = NA′ and B = B′, so

C = B2−D
4A = (B′)2−D

4NA′ = C ′/N . Then gcd(A′, B′, C ′) = 1, which holds by definition, is equiva-
lent to gcd(A/N,B,CN) = 1.

( ⇐= ) Let A′ = A/N , B′ = B and C ′ = NC. Under our hypothesis, A′, B′, C ′ ∈ Z, A′ is positive,
gcd(A′, B′, C ′) = 1, and we have (A/N)(Nτ)2 +B(Nτ) + (CN) = 0, hence fNτ = (A′, B′, C ′). Thus
∆(Nτ) = (B′)2 − 4A′C ′ = B2 − 4(A/N)(NC) = ∆(τ), so τ ∈ HDN . �

Proposition 2.2. The set HDN is non-empty if and only if D is a square modulo 4N .

Proof. Assuming that HDN is non-empty we let fτ = (A,B,C) correspond to some τ ∈ HDN . By
Proposition 2.1, we have N | A, so D = B2 − 4N(A/N)C is a square modulo 4N .

If D is a square modulo 4N , we have that D = B2 − 4NC for some B,C ∈ Z. Consider the
binary quadratic form (N,B,C). Observe that since gcd(D,N) = 1 we have that gcd(N,B,C) =
gcd(1, B,CN) = 1. Then by Proposition 2.1 we know that the quadratic irrational of the upper half
plane τ that corresponds to (N,B,C) is an element of HDN . Hence HDN is non-empty.

�

Lemma 2.3. Let γ ∈ M2(Z) be a matrix of nonzero determinant and fτ = (A,B,C) for some

τ ∈ H. If m =
(

A B/2
B/2 C

)
is the matrix that corresponds to the quadratic form fτ , then γtmγ is a

positive integer multiple n of the matrix that corresponds to fγ−1(τ), where γt denotes the transpose
of γ. Moreover, n can only be divisible by primes that divide det(γ).

Proof. Let v =

(
γ−1(τ)

1

)
. Then γv =

(
x
y

)
with x/y = γ(γ−1(τ)) = τ ∈ H (so τ 6=∞). Then

vt(γtmγ)v = (γv)tm(γv) = (x, y)m

(
x
y

)
= y2(τ, 1)m

(
τ
1

)
= 0.

Consequently, we have that fγ−1(τ) = (A′/n,B′/n,C ′/n) where

(2.1)

(
A′ B′/2
B′/2 C ′

)
= γt

(
A B/2
B/2 C

)
γ

and n = gcd(A′, B′, C ′) since both fτ and fγ−1(τ) are positive definite binary quadratic forms. In
particular, n is a positive integer.

Suppose a prime ` divides n = gcd(A′, B′, C ′). If ` is odd, then viewing (2.1) modulo ` we find

0 ≡ γtmγ (mod `),

where γ (resp. m) equals γ (resp. m) modulo `. Then, since gcd(A,B,C) = 1 implies that m 6= 0,
we deduce that ` | det(γ).

If ` = 2 - det(γ), then since 2 divides B′ we have that

det

(
A′ B′/2
B′/2 C ′

)
= det(γ)2(AC −B2/4) ∈ Z

and hence (AC − B2/4) ∈ Z2, which then implies that 2 divides B. Consequently, the matrices in
(2.1) lie in M2(Z). By the argument used for odd primes, we see that 22 cannot divide B′. Hence
viewing (2.1) modulo 2 we have(

0 1
1 0

)
≡ γt

(
A B/2
B/2 C

)
γ (mod 2),
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which implies that (
A B/2
B/2 C

)
≡ γ−1t

(
0 1
1 0

)
γ−1 =

(
0 1
1 0

)
(mod 2),

which is false, since gcd(A,B,C) = 1. This completes the proof of the lemma.
�

Lemma 2.4. The set HDN is closed under the action of Γ0(N).

Proof. Suppose γ−1 ∈ Γ0(N) and τ ∈ HDN with fτ = (A,B,C). Let τ ′ = γ−1(τ). Writing fτ ′ =
(A′, B′, C ′), Lemma 2.3 (using that det(γ) = 1) implies that(

A′ B′/2
B′/2 C ′

)
= γt

(
A B/2
B/2 C

)
γ,

so ∆(τ ′) = ∆(τ) = D (since ∆ < 0), again because det(γ) = 1. Observe that since γ−1 ∈ Γ0(N) we
have that

Nτ ′ = Nγ−1(τ) = γ−1
0 (Nτ)

for some γ0 ∈ SL2(Z). Hence the same argument applied to Nτ implies that ∆(Nτ ′) = ∆(Nτ) = D,
so τ ′ ∈ HDN . �

The above lemma allows us to consider the set Γ0(N)\HDN , which we analyze further in Section
2.3.

2.2. Classes of ideals and binary quadratic forms. Let K be an imaginary quadratic field and
c a positive integer. Let Oc = Z+ cOK be the order of conductor c in OK , the ring of integers of K.
The discriminant of Oc is D = c2DK where DK is the discriminant of OK . We identify fractional
ideal classes in Oc with equivalence classes of primitive positive definite binary quadratic forms of
discriminant D via the following inverse bijections (see [2, Theorem 5.2.8]):

{classes of prim. pos. def. bin. quadratic forms of disc. D} ←→ {fractional ideal classes in Oc}

ΨFI(A,B,C) = AZ +
−B +

√
D

2
Z,

and

ΨIF (a) =
N (xω1 − yω2)

N (a)
,

where N denotes the norm map of K/Q, a = Zω1 + Zω2, and {ω1, ω2} are ordered so that

ω2σ(ω1)− ω1σ(ω2)√
D

> 0,

with σ denoting the generator of Gal(K/Q).

2.3. Action of Atkin-Lehner involutions and the class group. For each positive integer q | N
with gcd(q,N/q) = 1, define an Atkin-Lehner matrix as follows: fix any choice u, v ∈ Z such that
wq =

( uq v
N q

)
has determinant q. Then wq induces a well-defined involution Wq(τ) = uqτ+v

Nτ+q of

Γ0(N)\H. The involutions Wq commute and act via a group W isomorphic to Fν2 , where ν is the
number of prime divisors of N .

Lemma 2.5. The set Γ0(N)\HDN is closed under the action of Wq.
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Proof. Let τ ∈ HDN and fτ = (A,B,C). As in Lemma 2.3 we have

wtq

(
A B/2
B/2 C

)
wq =

(
Aq2u2 +BNqu+ CN2 (2Aquv +Bq2u+BNv + 2CNq)/2

∗ Av2 +Bqv + Cq2

)
,

where this matrix is a multiple of the matrix that corresponds to fw−1
q (τ). Since q | N | A, we see

that q divides each entry of the right hand matrix above (or 2 times the upper right entry). Since wtq
and wq both have determinant q, it follows that ∆(w−1

q (τ)) | ∆(τ). Applying Lemma 2.4, we have

∆(w−1
q (τ)) = ∆(wq(τ)), since Wq is an involution of Γ0(N)\H and Γ0(N) preserves ∆. Applying

the above argument with τ replaced by wq(τ) implies that ∆(τ) | ∆(wq(τ)). Thus ∆(wq(τ)) = ∆(τ).
It remains to show that ∆(Nwq(τ)) = ∆(wq(τ)).

Observe that Nw−1
q (τ) = σ−1

q (Nτ) where σq =
(
uq Nv
1 q

)
. As above, we have that

σtq

(
A/N B/2
B/2 CN

)
σq =

(
(A/N)q2u2 +Bqu+ CN (2Aquv +Bq2u+BNv + 2CNq)/2

∗ ANv2 +BqNv + CNq2

)
is a multiple of the matrix that corresponds to fNw−1

q (τ). Since det(σq) = q and q divides all the

entries of the above matrix (or 2 times the upper right entry), it follows that ∆(Nw−1
q (τ)) | ∆(Nτ)

which just as above implies that ∆(Nτ) | ∆(Nwq(τ)). Observing that Nwq(τ) = (q−1σq)(Nτ), we
deduce that

(qσ−1
q )t

(
A/N B/2
B/2 CN

)
(qσ−1

q ) =

(
(A/N)q2 −Bq + CN (−2Aqv +Bq2u+BNv − 2CNuq)/2

∗ ANv2 −BuqNv + CNu2q2

)
is a multiple of the matrix that corresponds to fNwq(τ). Since det(qσ−1

q ) = q and q divides each
entry of the above matrix we have that ∆(Nwq(τ)) | ∆(Nτ). It then follows that

∆(Nwq(τ)) = ∆(Nτ) = ∆(τ) = ∆(wq(τ)).

This proves that wq(τ) ∈ HDN . �

Remark 2.6. Observe that in the above proof we have shown that the matrix of fw−1
q (τ) equals

q−1wtq

(
A B/2
B/2 C

)
wq.

By the above lemma we have that W acts on Γ0(N)\HDN . We will now define the action of the
ideal class group Cl(Oc) on Γ0(N)\HDN . Let τ ∈ HDN , fτ = (A,B,C), and a ∈ Cl(Oc). Then we
define a · τ ∈ Γ0(N)\HDN as follows:

(1) First, consider the following class of primitive positive definite binary quadratic forms of
discriminant D:

ΨIF (ΨFI(fτ )a−1).

(2) Since we are assuming the Heegner Hypothesis, we have that gcd(N,D) = 1 and consequently
the class ΨIF (ΨFI(fτ )a−1) contains an element (A′, B′, C ′) such that gcd(C ′, N) = 1 and
B′ ≡ B (mod 2N). It follows that A′C ′ ≡ AC (mod N) which implies that N |A′. Moreover,
if (A′′, B′′, C ′′) ∈ ΨIF (ΨFI(fτ )a−1) satisfies the conditions gcd(C ′′, N) = 1 and B′′ ≡ B
(mod 2N) then(

A′′ B′′/2
B′′/2 C ′′

)
= γt

(
A′ B′/2
B′/2 C ′

)
γ for some γ ∈ Γ0(N).

(3) Set fa·τ = (A′, B′, C ′) ∈ ΨIF (ΨFI(fτ )a−1). By the above we know that a · τ is a uniquely
determined element of Γ0(N)\HDN .
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We will now verify that the above choices define a group action of Cl(Oc) on Γ0(N)\HDN . Let
a, b ∈ Cl(Oc). Observe that since ΨFI and ΨIF are inverses of one another we have the following

fa·(b·τ) ∈ ΨIF (ΨFI(fb·τ )a−1) = ΨIF

(
ΨFI

(
ΨIF (ΨFI(fτ )b−1)

)
a−1
)

=

= ΨIF

((
ΨFI(fτ )b−1

)
a−1
)

= ΨIF

(
ΨFI(fτ )b−1a−1

)
=

= ΨIF

(
ΨFI(fτ )(ab))−1

)
.

Then by (2) above it follows that a · (b · τ) = (ab) · τ ∈ Γ0(N)\HDN .

Lemma 2.7. The actions of W and Cl(Oc) on Γ0(N)\HDN commute.

Proof. Let τ ∈ HDN , fτ = (A,B,C), and q a positive integer such that q|N and gcd(q,N/q) = 1. As
in Lemma 2.5 we fix u, v ∈ Z such that uq − vN/q = 1 and set wq =

( uq v
N q

)
. In addition, we now

consider the matrix mq :=
(

1 −v
−N/q uq

)
∈ SL2(Z). Observe that

mt
qw

t
q

(
A B/2
B/2 C

)
wqmq = q

(
A/q B/2
B/2 Cq

)
.

Using Remark 2.6, we deduce that fw−1
q (τ) is equivalent to (A/q,B,Cq).

Let us now set IB,q := qZ + −B+
√
D

2 Z. Notice that IB,q is an ideal of Oc. Moreover, since

D = B2 − 4AC and gcd(B, q) = 1 we have

ΨFI(fw−1
q (τ))IB,q =

(
A/qZ +

−B +
√
D

2
Z

)(
qZ +

−B +
√
D

2
Z

)
(2.2)

= AZ + q
−B +

√
D

2
Z +A/q

−B +
√
D

2
Z +

(
AC +B

−B +
√
D

2

)
Z

= AZ + q
−B +

√
D

2
Z +A/q

−B +
√
D

2
Z +B

−B +
√
D

2
Z

= AZ +
−B +

√
D

2
Z

= ΨFI(fτ ).

Now let a ∈ Cl(Oc). We want to show that a ·Wq(τ) = Wq(a · τ) which, by our definition of the
action of Cl(Oc) on Γ0(N)\HDN , is equivalent to showing that

ΨFI(fWq(a·τ)) = ΨFI(fWq(τ))a
−1,

where fWq(τ) denotes the equivalence class of fwq(τ) and hence contains fw−1
q (τ) .

Using (2.2) and the commutativity of Cl(Oc) we get

ΨFI(fWq(τ))a
−1 = ΨFI(fτ )I−1

B,qa
−1 = (ΨFI(fτ )a−1)I−1

B,q = ΨFI(fa·τ )I−1
B,q = ΨFI(fWq(a·τ)).

This completes the proof of the lemma. �

Consider the group G = W ×Cl(Oc). The above lemma implies that we have a well-defined action
of G on Γ0(N)\HDN . We will now define the action of G on another set.

Let S(D,N) be the set of square roots modulo 2N of D mod 4N , i.e.,

S(D,N) = {b ∈ Z/2NZ : b2 ≡ D (mod 4N)}.
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Lemma 2.8. Let b ∈ S(D,N). For every positive integer q|N such that gcd(q,N/q) = 1 there exists
bq ∈ S(D,N) such that

bq ≡ b (mod 2N/q) and bq ≡ −b (mod 2q).

Proof. Since gcd(2q, 2N/q) = 2 and b ≡ −b (mod 2) we know that there exists bq ∈ Z/2NZ satisfying
the above two conditions and it follows that

b2q ≡ b2 (mod 4N/q) and b2q ≡ b2 (mod 4q).

Hence bq ∈ S(D,N). �

Then for every integer q > 1 such that q|N and gcd(q,N/q) = 1 the involution Wq acts on S(D,N)
as follows:

Wq · b = bq.

This defines the action of the group W on S(D,N).
We now define the action of W on the set S(D,N)×Cl(Oc). Let q be a positive integer dividing

N such that gcd(q,N) = 1 and (b, J) ∈ S(D,N)× Cl(Oc). Then we set

Wq · (b, J) = (bq, JI
−1
b,q ),

where Ib,q = qZ+ −b+
√
D

2 Z ∈ Cl(Oc), as in Lemma 2.7. In order to verify that this is a group action
we show that Wq · (Wq · (b, J)) = (b, J). Since

Wq · (Wq · (b, J)) = Wq(bq, JI
−1
b,q ) = (b, JI−1

b,q I
−1
bq,q

),

it suffices to show that (qZ + −b+
√
D

2 Z)(qZ +
−bq+

√
D

2 Z) is a principal ideal of Oc.
By Lemma 2.8 we have that bq ≡ −b (mod 2q) and hence qZ+

−bq+
√
D

2 Z = qZ+ b+
√
D

2 Z. Observe
that (

qZ +
−b+

√
D

2
Z

)(
qZ +

b+
√
D

2
Z

)
= gcd

(
q2, qb,

b2 −D
4

)
Z + q

−b+
√
D

2
Z.

Since (D,N) = 1, q|N and b2 ≡ D (mod 4N), it follows that 4q | (b2 −D) and (b, q) = 1. Conse-
quently, gcd(q2, qb, (b2 −D)/4) = q. Finally, since b and D have the same parity, it follows that(

qZ +
−b+

√
D

2
Z

)(
qZ +

b+
√
D

2
Z

)
= q

(
Z +

D +
√
D

2
Z

)
= qOc.

We finally define the action of Cl(Oc) on the set S(D,N)×Cl(Oc) as follows. Let I ∈ Cl(Oc) and
(b, J) ∈ S(D,N)× Cl(Oc). We set

I · (b, J) = (b, JI−1).

Since Cl(Oc) is commutative, the actions of W and Cl(Oc) on S(D,N) × Cl(Oc) commute. Hence
the group G = W × Cl(Oc) acts on S(D,N)× Cl(Oc).

Lemma 2.9. The action of G on S(D,N)× Cl(Oc) is simply transitive.

Proof. Since (D,N) = 1, the only element of W that acts trivially on an element b of S(D,N) is the
identity. It is then clear that G acts simply on S(D,N)× Cl(Oc).

Observe that our assumption that all primes dividing N split in Q(
√
D)/Q implies that for every

odd prime divisor p of N the equation b2 ≡ D (mod pnp) has two solutions; here np = ordp(N).
Finally, since D is a discriminant, b2 ≡ D (mod 2n2+2) has a solution. Moreover,

i) if N is odd then b2 ≡ D (mod 4) has a unique solution b ∈ Z/2Z; and
ii) if N is even then b2 ≡ D (mod 2n2+2) has exactly two solutions b ∈ Z/2n2+1Z.
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This proves that the order of G equals the cardinality of the set S(D,N)× Cl(Oc). Then since the
stabilizer of b ∈ S(D,N) is trivial it follows that the action of G on S(D,N) × Cl(Oc) is simply
transitive. �

Define a map Φ : Γ0(N)\HDN → S(D,N)× Cl(Oc) by

[τ ] ∈ Γ0(N)\HDN −→ (B (mod 2N),ΨFI(fτ )).

where fτ = (A,B,C). Observe that Φ is well-defined since

i) fτ is a primitive positive definite quadratic form of discriminant D; and
ii) B2 − 4AC = D and N |A implies that B ∈ S(D,N).

Theorem 2.10. The map Φ : Γ0(N)\HDN → S(D,N)× Cl(Oc) is an isomorphism of G-sets.

Proof. We start by showing that Φ is injective. Let τ, τ ′ ∈ HDN and assume that Φ(τ) = Φ(τ ′). It
follows that ΨFI(fτ ) = ΨFI(fτ ′) which, by Theorem 5.2.8 of [2], implies that fτ = (A,B,C) and
fτ ′ = (A′, B′, C ′) lie in the same equivalence class under the action of SL(2,Z) and hence

B′ = 2Aab+B(ad+ bc) + 2Ccd, where

(
a b
c d

)
∈ SL(2,Z).

Observe that since ad− bc = 1 we have that

2Aab+B(ad+ bc) + 2Ccd = 2Aab+B + 2Bbc+ 2Ccd.

The assumption that Φ(τ) = Φ(τ ′) also implies that B ≡ B′ (mod 2N) and consequently

Aab+Bbc+ Ccd ≡ 0 (mod N).

Since τ, τ ′ ∈ HDN , by Proposition 2.1, we know that N |A and N |A′ = (Aa2 +Bac+ Cc2). Hence

c(Bb+ Cd) ≡ 0 (mod N) and c(Ba+ Cc) ≡ 0 (mod N).

If N - c then there exists p a prime divisor of N dividing both Bb+ Cd and Ba+ Cc. This implies
that p divides C = a(Bb+Cd)− b(Ba+Cc), which in turn implies that p divides Ba and Bb. Since
(a, b) = 1, it follows that p divides B which in turns contradicts the assumption that (N,D) = 1.
Consequently (

a b
c d

)
∈ Γ0(N),

which proves that Φ is injective.
We will now show that Φ is a G-map. Let τ ∈ Γ0(N)\HDN , a ∈ Cl(Oc), and Wq ∈ W . Let us

start by verifying that Φ is a W -map. By Lemma 2.5 we know that fWq(τ)) = fw−1
q (τ) = (A′, B′, C ′)

where

B′ = 2Auv +Bqu+B(N/q)v + 2CN ≡

{
B(N/q)v −Bqu = −B (mod 2q)

Bqu−B(N/q)v = B (mod 2N/q)

since qu−N/qv = 1. This together with (2.2) imply that

Φ(Wq(τ)) = (B′ (mod 2N),ΨFI(fWq(τ))) = (Bq,ΨFI(fτ )I−1
B,q) = Wq · Φ(τ).

In order to see that Φ is a Cl(Oc)-map recall that we have defined a·τ such that fa·τ = (A′, B′, C ′) ∈
ΨIF (ΨFI(fτ )a−1) and B′ ≡ B (mod 2N). It follows that

Φ(a · τ) = (B (mod 2N),ΨFI(fτ )a−1) = a · (B (mod 2N),ΨFI(fτ )).

It then follows that Φ is a G-map.
Finally since by Lemma 2.9 we know that G acts transitively on the codomain of Φ, it follows

that Φ is surjective, and this concludes the proof. �
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Corollary 2.11. The G-action on Γ0(N)\HDN is simply transitive.

Proof. This follows immediately by Theorem 2.10 and Lemma 2.9. �

3. Heegner points and universal norms

Let us now consider an elliptic curve E/Q, an imaginary quadratic field K, and an odd prime p
such that

i) the discriminant of K, DK ≤ −5,
ii) every prime dividing the conductor N of E/Q splits in K/Q,
iii) p satisfies the relevant condition of (3.5) and does not divide NDKhK

∏
`|N c`, where hK

denotes the class number of K and c` the Tamagawa number of E at the prime `.

We will now consider a Heegner point xpn of level N and discriminant p2nDK . By Gross [7, §1.4]
we know that xpn ∈ X0(N)(K[pn]), where K[pn] is the ring class field of K of conductor pn, and the
Galois group Gal(K[pn]/K) ' Cl(Opn) acts on xpn as follows:

(3.1) a · xpn = x
Artin(a)
pn for all a ∈ Cl(Opn).

Using a fixed choice of minimal modular parametrization π : X0(N)→ E, we define

ypn = π(xpn) ∈ E(K[pn]).

We will refer to yn as a Heegner point of conductor pn.
The anticyclotomic Zp-extension K∞ of K lies inside K[p∞] := ∪nK[pn]. Denote by Kn the

subfield of K∞ such that Gal(Kn/K) ' Z/pnZ. We know that under our assumption that p - hK
we have that Kn ⊆ K[pn+1]. More precisely,

a) K0 = K,
b) for all n ≥ 1 Kn ⊆ K[pn+1] and Kn 6⊆ K[pn],

c) Gal(K[pn+1]/Kn) ' Gal(K[p]/K) and its order equals
(
p−

(
DK
p

))
hK , where

(
DK
p

)
denotes

the Legendre symbol.

Then the Heegner points defined over the anticylotomic Zp-extension are

z0 = trK[1]/K(yp0) and zn = trK[pn+1]/Kn(ypn+1) for all n ≥ 1.

We will now list some properties of Heegner points:

• By the work of Gross-Zagier [6], we know that z0 is not torsion if and only if the analytic
rank of E/K, i.e., the order of vanishing of the L-function L(E/K, s) of E/K equals 1.

• The complex conjugation τ ∈ Gal(K∞/Q) acts on the Heegner points zn and by [8, Proposi-
tion 5.3], we know that zτn + εσ(zn) ∈ E(Q)tors for some σ ∈ Gal(Kn/K) where ε is the sign
of the functional equation of E/Q.

• By [6, §3.1, §3.3] (see also [10, Lemma 4.2]), the Heegner point zn lies, up to translation by a
rational torsion point of E, in the connected component of E(Kwn) at all primes wn of Kn

that divide the conductor N (here Kwn denotes the completion of Kn at wn).
• The points zn are related to one another as n varies. In [13, §3.3, Lemma 2], Perrin-Riou

proves that

trK[pn+2]/K[pn+1](xpn+2) = apxpn+1 − xpn for n ≥ 0,

trK[p1]/K[p0](xp1) = bpxp0 ,

where ap = p+ 1−#E(Fp) and

bp =

{
ap if p is inert,

ap − σ − σ′ for σ, σ′ ∈ Gal(K[1]/K) if p splits.
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Since Gal(K[pn+1]/Kn) ' Gal(K[p]/K) for every n ≥ 0, it follows that

trKn+2/Kn+1
(zn+2) = apzn+1 − zn for n ≥ 1;(3.2)

trK2/K1
(z2) =

{
apz1 − apz0 if p is inert,

apz1 − (ap − 2)z0 if p splits;
(3.3)

trK1/K(z1) =

{(
(ap − 1)(ap + 1)− p

)
z0 if p is inert,(

(ap − 1)2 − p
)
z0 if p splits.

(3.4)

We can now see that for every n ≥ 0, we have that trKn+1/Kn(zn+1) = unzn for some unit in
un ∈ Zp[Gal(K∞/K)] under the following conditions:

(3.5)

{
p does not divide (ap − 1)ap(ap + 1) if p is inert,

p does not divide (ap − 1)ap if p splits.

More precisely, if the above conditions hold, then we have

u0 =

{
(ap − 1)(ap + 1)− p if p is inert,

(ap − 1)2 − p if p splits;

u1 =

{
ap − apu−1

0 trK1/K if p is inert,

ap − (ap − 2)u−1
0 trK1/K if p splits;

un = ap − u−1
n−1 trKn/Kn−1

for n ≥ 2.

Throughout the paper we assume that the conditions (3.5) hold and hence E has good ordinary
non-anomalous reduction at p. Following Mazur and Rubin [11] we consider the anticyclotomic
universal norm module

U = lim
←−
n

E(Kn)⊗ Zp,

where the transition maps are the trace maps. Then the cyclotomic p-adic height pairing

h : U ⊗Λ Uτ → Γcycl ⊗Zp Λ⊗Zp Qp
is τ -Hermitian, i.e.

h(u⊗ v) = h(u⊗ v)τ = h(τu⊗ τv),

for all universal norms u, v ∈ U . Observe that since p is a prime of ordinary non-anomalous reduction
which does not divide the product of the Tamagawa numbers, the cyclotomic p-adic height pairing
takes values in Γcycl ⊗Zp Λ. We know that U is free of rank one over Λ = Zp[Gal(K∞/K)]. This

implies that the image of the cyclotomic p-adic height pairing is generated by the Λ-adic regulator1

R ∈ Γcycl ⊗Zp Λ. We would like to compute R, and to do so we use Heegner points.
Our assumption of the conditions (3.5) implies that Heegner points give rise to the Heegner

submodule H ⊆ U . In particular, the points

c0 = z0 and cn =

(
n−1∏
i=0

ui

)−1

zn for n ≥ 1

are trace compatible and correspond to an element c ∈ U . Mazur and Rubin define the Heegner
L-function

L := h(c⊗ cτ ) ∈ Γcycl ⊗Zp Λ.

One can easily see that L = R char(U/H)2.

1Note that this definition of the Λ-adic regulator differs slightly from that of Howard [9].
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We would like to compute the Λ-adic regulator R of E in cases when it is non-trivial. In order to
do this, we put ourselves in a situation where char(U/H) is trivial and L is non-trivial by assuming
that

• the analytic rank of E/K equals 1,
• the Heegner point z0 is not divisible by p,
• p divides the p-adic height of z0.

The first two conditions imply that char(U/H) is trivial and the third ensures that L is not a unit.
We now identify Λ with Zp[[T ]] by sending a topological generator of Gal(K∞/K) to T + 1. Then

since

L = lim
←−
n

∑
σ∈Gal(Kn/K)

〈cn, σcn〉Knσ,

where 〈 , 〉
Kn

denotes the cyclotomic p-adic height pairing over the field Kn, we see that the coeffi-
cients of the Heegner L-function, under the above identification, are b0 = 〈c0, c0〉K0

and

bk ≡
∑

k≤i<pn

(
i

k

)
〈cn, σicn〉Kn (mod pn) for k ≥ 1.

We will now proceed to describe algorithms to compute Heegner points and p-adic heights which
will then in turn allow us to compute the above p-adic height pairings and hence the coefficients of
Heegner L-functions.

4. Algorithm for the Heegner point construction

In this section we will give the algorithm that we use to construct the Heegner points zn =
trK[pn+1]/Kn(ypn+1) whose p-adic heights we wish to compute. Note that the assumption that our
prime p does not divide hK is used in the following algorithm.

For convenience, we point out the relevant tower of fields:

K[p∞]

... K∞

(p±
1)h
k

...
...

K[p3] K3

K[p2]

p

K2

p

(p±
1)h
k

K[p]

p

K1

p

(p±
1)h
k

K = K0

(p±1)hk p

Q

2
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Observe that if we fix b0 ∈ S(p2(n+1)DK , N) then Theorem 2.10 implies that there exists a Heegner
point xpn+1 of level N and discriminant p2(n+1)DK such that Φ(xpn+1) = (b0,Opn+1). Our aim is to
compute

zn = trK[pn+1]/Kn(ypn+1) =
∑

σ∈Gal(K[pn+1]/Kn)

π(σ(xpn+1)).

Since the order of Gal(K[pn+1]/Kn) equals
(
p−

(
DK
p

))
hK and Gal(K[pn+1]/Kn) is the maxi-

mal subgroup of Gal(K[pn+1]/K) of order prime to p (this is where we use the assumption that
gcd(hK , p) = 1) and Gal(K[pn+1]/K) ' Cl(Opn+1), using (3.1) we have that

zn =
∑

a∈Cl(Opn+1 ), p-ord(a)

π(a · xpn+1)

and the sum has
(
p−

(
DK
p

))
hK terms. By Theorem 2.10 we know that

Φ(a · xpn+1) = a · Φ(xpn+1) = (b0, a
−1).

Hence we have that

zn =
∑

a∈Cl(Opn+1 ), p-ord(a)

π(Ψ−1(b0, a)).

We know that the Heegner point τ ∈ X0(N) of level N and discriminant p2(n+1)DK corresponds
to a class (under the action of Γ0(N)) of binary quadratic forms fτ = Ax2 +Bxy + Cy2 such that

(i) A,B,C ∈ Z, A > 0, N |A,
(ii) gcd(A,B,C) = gcd(A/N,B,CN) = 1,

(iii) B2 − 4AC = p2(n+1)DK .

Since τ = Ψ−1(b0, a) ∈ X0(N) we have the following additional conditions:

(iv) B ≡ b0 (mod 2N),
(v) ΨIF (a) = fτ .

Finally since ΨIF is a group isomorphism [2, Theorem 5.2.4 and Theorem 5.2.8] the set

{Ψ−1(b0, a)|a ∈ Cl(Opn+1), p - ord(a)}

corresponds to the set of τ ∈ X0(N) such that fτ satisfies conditions (i)-(iv) listed above and
p - ord(fτ ).

Algorithm 4.1 (Computing Heegner points zn ∈ E(Kn)).

(1) Fix b0 ∈ S(p2(n+1)DK , N).

(2) Create a set Qb0 of
(
p−

(
DK
p

))
hK binary quadratic forms (A,B,C) that satisfy conditions

(i)-(iv) listed above, p does not divide the order of the equivalence class (under the action
of SL2(Z)) of binary quadratic forms [(A,B,C)], and any two binary quadratic forms in
Qb0 give rise to distinct equivalence classes. Let τf ∈ X0(N) be the Heegner point that
corresponds to the form f = Ax2 +Bxy + Cy2.

(3) Compute zn =
∑
f π(τf ) ∈ E(C) for f ∈ Qb0 , with sufficient numerical precision to satisfy

the natural consistency checks of the following step.
(4) Using lattice basis reduction (LLL), as explained in [14, §2.5] and implemented as the

algebraic_dependency command in [15] (which relies on the algdep command in [16]), al-
gebraically reconstruct the x-coordinate of zn ∈ E(C) and one of two possible y-coordinates.
Make sure that zn is defined over a Galois dihedral extension of degree 2pn that is ramified
exactly at p and the primes dividing the discriminant of K.
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We will also need to know the set of conjugates of the Heegner point zn ∈ E(Kn):

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)}.

Since Gal(K[pn+1]/K) ' Cl(Opn+1) is of order
(
p−

(
DK
p

))
hKp

n and hK is prime to p, an element

a0 ∈ Cl(Opn+1) of order pn corresponds to a generator of Gal(Kn/K). Hence

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)} =

 ∑
f∈Qb0

π(ai0 · τf ) | 0 ≤ i ≤ pn − 1

 ,

where b0 is a fixed element of S(p2(n+1)DK , N) and Qb0 is defined as in Step 2 of Algorithm 4.1.
Observe that if τ = Ψ−1(b0, a) for some a ∈ Cl(Opn+1) then ai0 · τ = Ψ−1(b0, aa

−1
0 ) and

ΨIF (aa−1
0 ) = ΨIF (a)ΨIF (a0)−1 = fτΨIF (a0)−1.

Hence we have that

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)} =

 ∑
f∈fi0Qb0

π(τf ) | 0 ≤ i ≤ pn − 1

 ,

where

i) f0 is a primitive positive definite binary quadratic form of discriminant p2(n+1)DK such that
ord[f0] = pn,

ii) f i0Qb0 is a set of
(
p−

(
DK
p

))
hK binary quadratic forms (A,B,C) which satisfy conditions

(i)-(iv) listed above and [(A,B,C)] = [f i0f ] for f ∈ Qb0 .

Algorithm 4.2 (Computing the conjugates of the Heegner point zn ∈ E(Kn) as elements of E(C)).

(1) Fix b0 ∈ S(p2(n+1)DK , N) and create a list of equivalence classes of binary quadratic forms
Qb0 as in Step 2 of Algorithm 4.1.

(2) Find f0 a primitive positive definite binary quadratic form of discriminant p2(n+1)DK such
that ord[f0] = pn.

(3) For each i ∈ {0, . . . , p− 1} compute the set f i0Qb0 .
(4) Compute

∑
f∈fi0Qb0

π(τf ) ∈ E(C) for i ∈ {0, . . . , pn − 1} and record this pn-tuple of points

of E(C).

5. Computation of p-adic heights: the class number 1 case

In this section, we begin by using [12] to produce an algorithm to compute p-adic heights in the
most basic set up: the case when the relevant number field has class number 1. We then use this
algorithm as well as (4.1) to compute p-adic heights of Heegner points z1 ∈ E(K1) in examples when
the fields K1 have class number 1.

5.1. An algorithm for computing p-adic heights. Let F be a number field and consider a
non-torsion point P ∈ E(F ). When the point P is defined over the fraction field of a principal ideal
domain O, then P can be written in the form ( ad2 ,

b
d3 ), where a, b, d ∈ O and gcd(a, d) = gcd(b, d) = 1.

In particular, for any place v of F we have that

resv(P ) :=

(
av(P )

dv(P )2
,
bv(P )

dv(P )3

)
∈ E(Fv),

where Fv denotes the completion of F at a place v, resv : E(F )→ E(Fv) is the natural localization
map, av(P ), bv(P ), dv(P ) ∈ OFv and gcd(av(P ), dv(P )) = gcd(bv(P ), dv(P )) = 1.
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If the point P ∈ E(F ) reduces

• to the identity in E(k℘) for all primes ℘ | p, where k℘ is the residue field of F at ℘, and
• to a non-singular point at all primes of bad reduction,

then we have the following formula (see Mazur-Stein-Tate [12]) for computing the cyclotomic p-adic
height of P :

(5.1) hp,F (P ) =
1

p
·

∑
℘|p

logp(NF℘/Qp(σ℘(P )))−
∑
v-p

ordv(dv(P )) · logp(#kv)

 ,

where σ℘ is the p-adic sigma function at the prime ℘ and kv is the residue field of F at v. Note that
this assumes that we are working with a minimal model of E/F .

Suppose now that F has class number 1. Then since OF is a principal ideal domain, there is a
global choice of denominator d(P ) and the above formula (5.1) simplifies to the following:

(5.2) hp,F (P ) =
1

p
· logp

∏
℘|p

NF℘/Qp

(
σ℘(P )

d(P )

) .

Note that our point P does not necessarily satisfy the two conditions listed above; in order to
use the above formulas we compute the height of mP , where m ∈ Z is such that mP does reduce
appropriately. Then we use that the height pairing is a quadratic form to recover the height of P .

We now need to compute the denominator d(mP ) of mP . We start by computing the denominator
d(P ) of P . If α is an algebraic number an integer denominator of α is some positive integer d such
that dα is an algebraic integer. Naturally d is not unique, since any positive multiple of d is also an
integer denominator of α. The notion of integer denominator is computationally useful and easy to
compute, since we represent algebraic numbers in terms of a power basis.

Algorithm 5.1 (Denominator d(P ) of P ∈ E(F ) with F of class number 1).

(1) Input P = (x, y), where P ∈ E(F ).

(2) Read off an integer denominator d := d(x) of x, and consider the ideal (x) = (d·x)
(d) , where

(d · x) and (d) denote OF -ideals.

(3) Simplify (x) = (d·x)
(d) by canceling common prime ideals in the numerator and denominator

ideals.
(4) What is left in the factored denominator ideal is a perfect square of prime ideals in OF , and

the square root of this ideal is generated by the desired denominator d(P ).

One could repeat the above process for mP ∈ E(F ), but this may be infeasible due to the
numerical explosion in the coordinates of mP . Instead, we make use of m-division polynomials to
write d(mP ) in terms of d(P ). Using Proposition 1 of [19], we easily deduce the following:

Proposition 5.2. Let F be a number field of class number one, fm the m-th division polynomial
of an elliptic curve E/F , and P ∈ E(F ) a non-torsion point that reduces to a non-singular point in
E(kv) for every bad reduction prime v. Then the denominators d(P ), d(mP ) ∈ OF are related as
follows:

d(mP ) = fm(P )d(P )m
2

.

Proof. By Proposition 1 of [19] we know that

d(mP ) = ufm(P )d(P )m
2

,

where u ∈ F is a unit in the completion of F at every finite prime. Since F has class number 1 it
follows that u is a unit in OF . Then as d(mP ) is only defined up to units the result follows. �



p-ADIC HEIGHTS OF HEEGNER POINTS AND ANTICYCLOTOMIC Λ-ADIC REGULATORS 15

Algorithm 5.3 (Height hp,F (P ) of a non-torsion point P ∈ E(F ) with F of class number 1).

(1) Find the smallest positive integer mo such that moP ∈ E(F ) reduces to a non-singular point
in E(kv) for every bad reduction prime v.

(2) Find a positive integer m such that mmoP reduces to the identity O ∈ E(k℘) for all ℘ | p.
(3) Compute moP and mmoP .
(4) Compute d(moP ) as in Algorithm 5.1.
(5) Compute σ℘(t), the ℘-adic sigma function, for each ℘ | p as in [12].

(6) Let tmmo = −x(mmoP )
y(mmoP ) . Evaluate σ℘(tmmo) ∈ F℘ for each ℘ | p. Then combining (5.2) and

Proposition 5.2 we compute

(5.3) hp,F (P ) =
1

m2m2
op

logp

∏
℘|p

NF℘/Qp

(
σ℘(tmmo)

fm(moP )d(moP )m2

) .

Remark 5.4. Observe that mo divides the product of the Tamagawa numbers and m can be taken
to be the least common multiple of #E(k℘) for ℘ | p. However in practice, one wants m to be as
small as possible, in order to reduce numerical explosion in the coordinates. In the case when P = zn,
by §3.1 and §3.3 of [6] (see also Lemma 4.2 of [10]), the Heegner point zn lies, up to translation by a
rational torsion point of E, in the connected component of E at every bad reduction prime v. Hence
in the case of Heegner points, if E(Q)tors is trivial then we know that m0 = 1 and m can be taken
to be the product over ℘ | p of the orders of P in E(k℘).

5.2. Examples. We illustrate these algorithms by computing explicit examples2. Throughout this
paper we refer to elliptic curves by a version of their Cremona labels [5]; see Table 9.1 for the
equations of the specific curves we use.

Example 5.5. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K = Q(
√
−2). Note that

E/K has rank 1 and the three conditions listed at the beginning of Section 3 hold. In addition, p is
inert in K and it does not divide (ap − 1)ap(ap + 1) = −24.

Using Sage we compute the Heegner point z0 ∈ E(K) and its 5-adic height:

h5,K(z0) = 5 + 3 · 52 + 53 + 54 + 2 · 55 + 57 +O(58).

Hence this is an example where we are interested in computing the coefficients of the Heegner L-
function (see §9).

We will now use Algorithm 4.1 to construct the Heegner point z1. We fix b0 = 4 ∈ S(54 · (−8), 57).
Since hK = 1 and 5 is inert, we create a list of 6 equivalence classes of binary quadratic forms of
order prime to 5 which satisfy conditions (i)− (iv) of Section 4:

f1 = 57x2 + 4xy + 22y2 ord(f1) = 6

f2 = 114x2 + 4xy + 11y2 ord(f2) = 3

f3 = 627x2 + 4xy + 2y2 ord(f3) = 2

f4 = 627x2 + 1030xy + 425y2 ord(f4) = 6

f5 = 1254x2 + 4xy + y2 ord(f5) = 1

f6 = 1254x2 + 2284xy + 1041y2 ord(f6) = 3.

2We emphasize again that all computational results in this paper assume that certain non-exact, non-proven
numerical computation of points gave correct answers; see Remark 1.1.
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Then we compute

z1 =

6∑
i=1

π(τfi) ∈ E(C).

Numerically3, we have that

z1 ≈ (1.09134357351891,−0.919649689611060).

Using LLL, we find4 that the best degree 5 relation satisfied by the x-coordinate of the numerical
approximation to z1 above is

18034072681x5−126430131580x4+352783410220x3−489834319200x2+338504989540x−93144838864.

We will now assume that the above polynomial is the minimal polynomial of x(z1), which is highly
likely due to consistency checks described in the last step of the Algorithm 4.1. The point z1 is
defined over

K1 := Q(b),

where b is a root of

x10 − 10x8 − 20x7 + 165x6 − 12x5 − 760x3 + 2220x2 + 5280x+ 7744.

Observe that K1 has class number 1 and hence we can use Algorithm 5.3 to compute the 5-adic
height of z1. Explicitly, we will compute with z1 with coordinates

x(z1) =
96698852571685

2145672615243325696
b
9
+

2472249905907

195061146840302336
b
8
+

916693155514421

2145672615243325696
b
7
+

1348520950997779

2145672615243325696
b
6 −

82344497086595

12191321677518896
b
5

+
2627122040194919

536418153810831424
b
4 −

452199105143745

48765286710075584
b
3
+

4317002771457621

536418153810831424
b
2
+

2050725777454935

67052269226353928
b +

3711967683469209

3047830419379724
,

y(z1) =
10673542578700487

6548739117582760250944
b
9
+

21559110337008787

595339919780250931904
b
8
+

599772438356441033

6548739117582760250944
b
7 −

3521252836571400333

6548739117582760250944
b
6

−
145353099505283479

74417489972531366488
b
5
+

6974718395834626805

1637184779395690062736
b
4
+

3525327915265535447

148834979945062732976
b
3 −

38028829109043109079

1637184779395690062736
b
2

−
23719086146860375069

204648097424461257842
b −

9830025310349811566

9302186246566420811
.

Since E has trivial rational torsion we have that mo = 1. Then observing that 5 = ℘5 in K1, the
Heegner point z1 reduces to (4, 1) ∈ E(F5), and 3z1 = O ∈ E(F5), we set m = 3.

Using Algorithm 5.1 we find that

d(z1) =
170066107

18679674112
b9 − 46616573

1698152192
b83 −

3760482603

18679674112
b7 +

11188479427

18679674112
b6 +

263947335

106134512
b5

− 40187214425

4669918528
b4 − 1074830385

424538048
b3 +

67626028101

4669918528
b2 +

15616668599

583739816
b− 738093651

26533628
.

Recall that ℘ denotes the unique prime of K1 above p = 5. Observe that since E is defined over
Q we have that σ℘(t) = σ5(t) ∈ Z5[[t]]. We now compute the 5-adic sigma function

σ5(t) = t+O(59)t2 +
(
1 + 2 · 5 + 2 · 53 + 4 · 55 + 4 · 56 +O(58)

)
t3

+
(
3 + 2 · 5 + 2 · 52 + 2 · 53 + 2 · 54 + 2 · 55 + 2 · 56 +O(57)

)
t4

+
(
1 + 4 · 5 + 3 · 53 + 4 · 54 +O(56)

)
t5 +

(
1 + 3 · 5 + 3 · 53 +O(55)

)
t6

+
(
52 + 53 +O(54)

)
t7 +

(
3 + 4 · 5 + 3 · 52 +O(53)

)
t8

+
(
2 + 2 · 5 +O(52)

)
t9 + (1 +O(5)) t10 +O(t11).

3In our actual calculation, we used 2000 bits of precision.
4This is only “likely” to be the best since LLL is not guaranteed to give the best answer; we will suppress mention

of this issue in future computations.
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Finally substituting the appropriate parameters into (5.3), we find that

h5,K1
(z1) = 2 + 2 · 5 + 2 · 52 + 54 + 4 · 55 + 4 · 56 + 3 · 57 +O(58).

Example 5.6. Let E/Q be the rank 1 elliptic curve “331a1”, p = 7 and K = Q(
√
−2). Note that

E/K has analytic rank 1 and the three conditions listed at the beginning of Section 3 hold. In
addition, p is inert in K and since ap = 2, it does not divide (ap − 1)ap(ap + 1).

Using Sage we compute the Heegner point z0 ∈ E(K) and its 7-adic height:

h7,K(z0) = 6 · 7 + 3 · 72 + 4 · 73 + 74 + 2 · 75 + 2 · 76 + 4 · 77 +O(78).

Hence this is an example where we are interested in computing the coefficients of the Heegner
L-function (see §9).

We will now use Algorithm 4.1 to construct the Heegner point z1. We fix b0 = 68 ∈ S(74·(−8), 331).
Since hK = 1 and 7 is inert, we create a list of 8 equivalence classes of binary quadratic forms of
order prime to 7 which satisfy conditions (i)− (iv) of Section 4:

f1 = 2979x2 + 68xy + 2y2 ord(f1) = 2

f2 = 5958x2 + 68xy + y2 ord(f2) = 1

f3 = 6289x2 + 10660xy + 4518y2 ord(f3) = 8

f4 = 10923x2 + 4040xy + 374y2 ord(f4) = 8

f5 = 12578x2 + 10660xy + 2259y2 ord(f5) = 8

f6 = 16881x2 + 29858xy + 13203y2 ord(f6) = 4

f7 = 21846x2 + 4040xy + 187y2 ord(f7) = 8

f8 = 33762x2 + 63620xy + 29971y2 ord(f8) = 4.

Then we compute

z1 =

8∑
i=1

π(τfi) ∈ E(C).

Numerically, we have that

z1 ≈ (0.953040743753736 + 0.149314525423730i,−1.03916093218186 + 0.166961454708477i).

Using LLL, we find that the best degree 7 relation satisfied by the x-coordinate of the numerical
approximation to z1 above is

137055595508378273856728767063301336043556x7 + 596400144777929555460022572186960841860053x6

+ 1810417652054320827722646814632973689994472x5 − 8593849332676259977112316110699537972757338x4

+ 28093154618300326259424538181331551820030248x3 − 77319296186977659143886465795685907296431411x2

+ 90160340025867158950653527254476177483636556x− 35314126413780822409769414311471457690609476

We will now assume that the above polynomial is the minimal polynomial of x(z1), which is highly
likely due to consistency checks described in the last step of the Algorithm 4.1. The point z1 is
defined over K1 := Q(b), where b is a root of

x14 − 56x12 + 966x10 − 1792x8 − 95991x6 + 1237992x4 − 6135808x2 + 10913792.
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Observe that K1 has class number 1 and hence we can use Algorithm 5.3 to compute the 7-adic
height of z1. Explicitly, we will compute with z1 with coordinates

x(z1) = −
58516973910965663042311672687893770303376348863

87920483845715129869232222013359063892185847283481600
b
13

+
23594411864903976701588663849997717669145433891

43960241922857564934616111006679531946092923641740800
b
12

+
400686531670094881623316357193054286071124341829

10990060480714391233654027751669882986523230910435200
b
11 −

91204401538345262050725214018446895621736620703

5495030240357195616827013875834941493261615455217600
b
10

−
24772371213377713816512426467657514751630267769957

43960241922857564934616111006679531946092923641740800
b
9 −

3005611673686799446861940560611227284439359085951

21980120961428782467308055503339765973046461820870400
b
8

−
6407396515475987120351584608121532635987273587887

5495030240357195616827013875834941493261615455217600
b
7
+

4610824733492073145986026393190681654410877230121

686878780044649452103376734479367686657701931902200
b
6

+
7055542259485711973296737972449284714417477891852569

87920483845715129869232222013359063892185847283481600
b
5 −

134513241817604087303676280501157818044550476069333

43960241922857564934616111006679531946092923641740800
b
4

−
6290375521847452476451572056404509401638942807073481

10990060480714391233654027751669882986523230910435200
b
3 −

1253354489099549885261242667031145632503897919685483

5495030240357195616827013875834941493261615455217600
b
2

+
12898688284496392643622955437049580463984459736827

9409298356776019891827078554511886118598656601400
b +

8584327322466104945098370055799830401314498062761

4704649178388009945913539277255943059299328300700

y(z1) =
7149240844372912483938159051891878651775483023015679836677135461999

13019624121345682534455491748165756363619865269444686720780432020831498240
b
13

−
2637021771882752446090507220840916008541593100088257534363589107865

650981206067284126722774587408287818180993263472234336039021601041574912
b
12

−
58589282362281570798187060093143715016683352884349163227457047711239

1627453015168210316806936468520719545452483158680585840097554002603937280
b
11

+
73154294220457714531111990593570240459277124175077046301857498715599

406863253792052579201734117130179886363120789670146460024388500650984320
b
10

+
4869573468555592909958040089761857791336194183672390732953082620976957

6509812060672841267227745874082878181809932634722343360390216010415749120
b
9

−
2395388512240055512437015744236102125312469308463822191846600386638727

1627453015168210316806936468520719545452483158680585840097554002603937280
b
8

−
440738748559383365594514004954449400051488941835062892621659869740107

203431626896026289600867058565089943181560394835073230012194250325492160
b
7

−
5413171345929286878786006625519233101948398795064381379479016614400907

203431626896026289600867058565089943181560394835073230012194250325492160
b
6

−
1196750459273142727789550898022320061263702333906685370935138543012085689

13019624121345682534455491748165756363619865269444686720780432020831498240
b
5

+
912927598070131077113220186681974976164849223524929023726848851184164059

3254906030336420633613872937041439090904966317361171680195108005207874560
b
4

+
1437803753416794010893664925160466136102772137128473726021695979340870361

1627453015168210316806936468520719545452483158680585840097554002603937280
b
3

−
353849008197962603519548324871335153229078310277076633751840267504188331

406863253792052579201734117130179886363120789670146460024388500650984320
b
2

−
3556549292151123075940905696038241322258449445028025199169255755658683

1393367307507029380827856565514314679325756129007350890494481166612960
b

+
77435799891243719155843270351204420477372727673885031488292679378249

348341826876757345206964141378578669831439032251837722623620291653240
.

Note that the computation up to this step takes about 140 seconds on a 2.6Ghz Intel Xeon processor.
Since E has trivial rational torsion we have mo = 1. Then observing that 7 = ℘7 in K1, the

Heegner point z1 reduces to (0, 2) ∈ E(F7), and 3z1 = O ∈ E(F7), we set m = 3.
Using Algorithm 5.1 we find that

d(z1) =
9320095137052778705014609

10263920537600
b
13 −

8115282909632063749363823

2565980134400
b
12 −

54100029800785550836577397

1282990067200
b
11

+
54493855110163287593544319

320747516800
b
10

+
1264824388774232318857578451

5131960268800
b
9 −

1341364742431056265444970077

1282990067200
b
8

+
826738116288954612024672783

320747516800
b
7 −

396706442190566940868021183

40093439600
b
6 −

548677508767077141885985952167

10263920537600
b
5

+
555332843510658557093059967609

2565980134400
b
4
+

403285222795351699117822466383

1282990067200
b
3 −

414485789897487899507789710641

320747516800
b
2

−
49354594932569887428687049753

80186879200
b +

700586184718030225484617527

274612600
.
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Recall that ℘ denotes the unique prime of K1 above p = 7. Since E is defined over Q we have
that σ℘(t) = σ7(t) ∈ Z7[[t]]. We now compute the 7-adic sigma function

σ7(t) = t+
(
4 + 3 · 7 + 3 · 72 + 3 · 73 + 3 · 74 + 3 · 75 + 3 · 76 + 3 · 77 + 3 · 78 +O(79)

)
t2

+
(
3 + 6 · 7 + 2 · 72 + 5 · 74 + 3 · 75 + 4 · 76 + 3 · 77 +O(78)

)
t3

+
(
6 + 6 · 72 + 5 · 73 + 5 · 74 + 3 · 75 + 76 +O(77)

)
t4 +

(
2 + 2 · 7 + 72 + 73 + 5 · 74 + 6 · 75 +O(76)

)
t5

+
(
5 + 3 · 7 + 6 · 72 + 73 +O(75)

)
t6 +

(
3 + 6 · 7 + 3 · 72 +O(74)

)
t7 +

(
4 + 2 · 72 +O(73)

)
t8

+
(
6 + 7 +O(72)

)
t9 + (2 +O(7)) t10 +O(t11).

Finally, substituting the appropriate parameters into (5.3) we find that

h7,K1
(z1) = 4 + 3 · 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 + 2 · 77 +O(78).

6. Computation of p-adic heights: general case

6.1. Algorithms. We will now describe an algorithm to compute the p-adic height of a non-torsion
point P ∈ E(F ), where F is a number field. We will assume, only for notational clarity, that F/Q
is a Galois extension but we impose no restrictions on the class number of F .

If P reduces to a non-singular point at all primes of bad reduction and m is an integer such that
mP reduces to the identity in E(k℘) for all primes ℘ | p, then we can use the formula (5.1) to
compute the p-adic height of mP as follows:

hp,F (mP ) =
1

p
·

∑
℘|p

logp(NF℘/Qp(σ℘(mP )))−
∑
v-p

ordv(dv(mP )) · logp(#kv)

 .

By Proposition 1 of [19], since P reduces to a non-singular point at all primes of bad reduction, we
know that

dv(mP ) = resv(fm(P ))dv(P )m
2

.

Hence we have

hp,F (mP ) =
1

p
·

∑
℘|p

logp(NF℘/Qp(σ℘(mP )))−
∑
v-p

ordv(fm(P )dv(P )m
2

) · logp(#kv)


=

1

p
·

logp
∏
℘|p

(
NF℘/Qp(σ℘(mP )))/NF℘/Qp(fm(P )

)
−m2

∑
v-p

ordv(dv(P )) · logp(#kv)


=

1

p
·

logp
∏
℘|p

(
NF℘/Qp(σ℘(mP )))/NF℘/Qp(fm(P )

)
−m2 logp(D(P ))

 ,

where D(P ) :=
∏
v-p(#kv)

ordv(dv(P )) can be computed by the following algorithm.

Algorithm 6.1 (D(P ) for P ∈ E(F )).

(1) Let D ∈ Z be an integer denominator of x(P ). Then factor D into rational primes:
D = pr0`r11 · · · `k

rk where the primes `i are all distinct from p.

(2) For each `i above, factor `iOF =
∏fi
j=1 λ

si
i,j . Observe that since F/Q is Galois the exponent

si depends only on i.
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(3) For each λi,j , we compute vλi,j (D · x(P )). If risi > vλi,j (D · x(P )), then we know that
risi − vλi,j (D · x(P )) must be even. We set

mi,j =

{
risi−vλi,j (D·x(P ))

2 if risi > vλi,j (D · x(P )),

0 otherwise.

Since mi,j = ordλi,j dλi,j (P ) and #kλi,j = `
[F :Q]/(fi·si)
i , we compute

D(P ) =

k∏
i=1

fi∏
j=1

`
mi,j ·[F :Q]/(fi·si)
i .

We can now describe the algorithm for computing the p-adic height of P .

Algorithm 6.2 (The p-adic height hp,F (P ) of P ∈ E(F )).

(1) Find the smallest positive integer mo such that moP reduces to a non-singular point at all
primes of bad reduction.

(2) Find a positive integer m such that mmoP reduces to the identity in E(k℘) for all primes
℘ | p.

(3) Compute moP and mmoP .
(4) Compute D(moP ) as in Algorithm 6.1.
(5) Compute σ℘(t) for each ℘ | p.
(6) Let tmmo = −x(mmoP )

y(mmoP ) . Evaluate σ℘(tmmo) ∈ F℘ for each ℘ | p.
(7) Compute hp,F (mmoP ) as follows:

hp,F (P ) =
1

m2m2
op
·

logp
∏
℘|p

(
NF℘/Qp (σ℘(tmmo)) /NF℘/Qp (fm(moP ))

)
−m2 logp (D(moP ))

 .

6.2. Examples. We now give examples to illustrate the algorithms of this section.

Example 6.3. Let E be the elliptic curve “57a1”, p = 5, and K = Q(
√
−14). Note that K has

class number hK = 4, that E/K has analytic rank 1 and the three conditions listed at the beginning
of Section 3 hold. Moreover, the prime p = 5 splits in K/Q and it does not divide (ap − 1)ap since
ap = −3. We compute the Heegner point z0 ∈ E(K) and its 5-adic height:

h5,K(z0) = 5 + 3 · 52 + 53 + 54 + 2 · 55 + 57 +O(58).

Using Algorithm 4.1, we find that Heegner point z1 has the following numerical coordinates:

(0.649281815494878 + 0.730235331103786i,−1.54792819990164 + 0.894427675896415i)

and x(z1) has minimal polynomial

528126361x5 − 1204116445x4 + 172671870x3 + 1926267530x2 − 2409168275x+ 1066099823.

Making this polynomial monic and taking the compositum with K = Q(
√
−14) yields

x(z1) =
16282333

1992135746048
b
9 −

122237657

3984271492096
b
8 −

314403157

498033936512
b
7
+

4752477831

1992135746048
b
6
+

54694163

4446731576
b
5

−
46894130863

996067873024
b
4
+

22141536649

124508484128
b
3 −

47631155337

71147705216
b
2 −

7805940803

17786926304
b +

256310331

79405921

y(z1) =
891443463539

52321453234204672
b
9 −

162265125943

6540181654275584
b
8 −

34181434543565

26160726617102336
b
7
+

6275525342097

3270090827137792
b
6
+

46754847864491

1868623329793024
b
5

−
61952459298857

1635045413568896
b
4
+

2470785238769109

6540181654275584
b
3 −

59992556017783

116788958112064
b
2 −

54005898107995

58394479056032
b +

212461799073

260689638643
,

as elements of

K1 = Q[b]/(b10 − 80b8 + 1720b6 + 17600b4 − 139760b2 + 229376),
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which has class number 20.
We will now use Algorithm 6.2 to compute the p-adic height of z1. Since E(Q)tors is trivial we

have that mo = 1. In order to determine m, we start by observing that 5 = ℘5
1℘

5
2 in K1 and hence

k℘i = F5. Then since z1 reduces to (2, 3) ∈ E(F5) which has order 9, we set m = 9. We then
compute 9z1 ∈ E(K1).

In order to compute D(z1) we begin by taking an integral denominator D of x(z1):

D = 79405921 = 72 · 192 · 672

The rational prime divisors of D factor in K1 as follows:

`1 = 7 =

5∏
j=1

λ2
1,j f1 = 5, s1 = 2,

`2 = 19 =

10∏
j=1

λ2,j f2 = 10, s2 = 1,

`3 = 67 =

5∏
j=1

λ3,j f3 = 5, s3 = 1.

We then compute

mi,j =


1 for (i, j) = (1, 1), (1, 2), (3, 1)

4 for (i, j) = (1, 3)

0 otherwise

which gives

D(z1) =

k∏
i=1

fi∏
j=1

`
mi,j ·[F :Q]/(fi·si)
i = 7 · 7 · 74 · 672 = 76 · 672 = 528126361.

Recall that ℘1 and ℘2 denote the two primes of K1 above p = 5. Let K℘i be the completion of
K1 at ℘i. We now need to compute σ℘1

(t) and σ℘2
(t). Since E is defined over Q we have that

σ℘1
(t) = σ℘2

(t) = σ5(t) ∈ Z5[[t]].

We now evaluate σ5(t9) ∈ K℘1
, σ5(t9) ∈ K℘2

, and find that

NK℘1/Q5
(σ5(t9)) = NK℘2/Q5

(σ5(t9)) = 1960712391 · 5 +O(515).

We then compute

NK℘1/Q5
(f9(z1)) = NK℘2/Q5

(f9(z1)) = −1872036088 · 5 +O(515).

Finally, putting this all together yields

hp,K1
(z1) =

1

5 · 92
(2 logp(NK℘1

/Q5
(σ5(t9))− 2 logp(NK℘1

/Q5
f9(z1))− 92 logp(D(z1)))

=
1

5 · 92
(2 logp(1960712391 +O(515))− 2 logp(−1872036088 · 5 +O(515))− 92 logp(528126361))

= 3 + 2 · 5 + 52 + 4 · 55 + 2 · 56 +O(57).
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Remark 6.4. Observe that D(z1), the most difficult part of the height computation of z1, is nu-
merically equal to the leading coefficient of the minimal polynomial of x(z1). We will explore this
connection in Section 7.

Example 6.5. We revisit Example 5.6: let E be “331a1”, p = 7, and K = Q(
√
−2). As the class

number of K1 equals 1, one can find a global choice of denominator and thus use formula (5.2) as
was done earlier. For clarity, we also illustrate how one would compute with the “long” formula (5.1)
following Algorithm 6.2.

We know that mo = 1, m = 3, and we have already computed mz1 ∈ E(K1). We now use
Algorithm 6.1 to compute D(z1). We find that x(z1) has an integer denominator

D = 87920483845715129869232222013359063892185847283481600,

which factors as

D = 210 · 52 · 29 · 73 · 113 · 419 · 26472 · 2070792 · 3311412 · 10198012.

The rational prime divisors of D factor in OK1
as follows:

`1 = 2 =

7∏
j=1

λ2
1,j f1 = 7, s1 = 2,

`2 = 5 =

7∏
j=1

λ2,j f2 = 7, s2 = 1,

`3 = 29 =

7∏
j=1

λ3,j f3 = 7, s3 = 1,

`5 = 73 =

14∏
j=1

λ5,j f5 = 14, s5 = 1,

`6 = 113 =

14∏
j=1

λ6,j f6 = 14, s6 = 1,

`7 = 419 =

7∏
j=1

λ7,j f7 = 7, s7 = 1,

`8 = 2647 =

7∏
j=1

λ8,j f8 = 7, s8 = 1,

`9 = 207079 =

7∏
j=1

λ9,j f9 = 7, s9 = 1,

`10 = 331141 =

7∏
j=1

λ10,j f10 = 7, s10 = 1,

`11 = 1019801 =

14∏
j=1

λ11,j f11 = 14, s11 = 1.
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We then compute

mi,j =


1 for (i, j) = (8, 1), (9, 1), (10, 1), (11, 1), (11, 2)

2 for (i, j) = (1, 1)

0 otherwise

which gives

D(z1) =

k∏
i=1

fi∏
j=1

`
mi,j ·[F :Q]/(fi·si)
i

= 22 · 26472 · 2070792 · 3311412 · 10198012 = 137055595508378273856728767063301336043556,

which is equal to the leading coefficient of the minimal polynomial of x(z1); see Example 5.6.
Recall that there is a unique prime ℘ of K1 above p = 7 and K℘ denotes the completion of K1 at

℘. We compute σ℘(t) = σ7(t) as before and evaluate σ7(t3) ∈ K℘. Then we have

NK℘/Q7
(σ(t3)) = 4 · 72 + 4 · 73 + 3 · 74 + 2 · 75 + 2 · 76 + 4 · 77 + 6 · 78 + 5 · 79 +O(710),

NK℘/Q7
(f3(z1)) = 4 · 72 + 6 · 73 + 2 · 74 + 3 · 76 + 4 · 77 + 6 · 78 + 79 +O(710).

Finally, we compute

h7,K1
(z1) =

1

7 · 32

(
log7

(
NK℘/Q7

(σ(t3))

NK℘/Q7
(f3(z1))

)
− 32 log7(D(z1))

)
= 4 + 3 · 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 + 2 · 77 +O(78).

Remark 6.6. As a double check on our implementation of the height algorithms, one can compute

hp,F (P )− hp,F (nP )
n2 for several n ∈ N and verify that the result is p-adically small. We have completed

this check for n = 2 in all the examples that appear in this article.

7. Improvements

We have previously observed that the leading coefficient of the minimal polynomial of x(z1)
equals D(z1). In this section we analyze the relation between D(P ) and the leading coefficient of
the minimal polynomial of x(P ) for a point P ∈ E(F ) where F/Q is a Galois extension. We then
prove the observed equality in the case of Heegner points zn ∈ E(Kn) under the assumption that
E(Q)tors = O. We conclude the section by giving a few more algorithmic improvements to the
computation of p-adic heights of Heegner points under the assumption that E(Q) has trivial torsion.

We begin with a result that vastly simplifies the computation of a denominator of a point, allowing
us to bypass factorization of ideals in OF . In view of the following proposition all that remains in
the denominator computation is the evaluation of a division polynomial.

Proposition 7.1. Let F/Q be a Galois extension, P ∈ E(F ), bnx
n + · · · + b0 = 0 the minimal

polynomial of x(P ) over Z, and b a positive integer prime to p such that bn = pmb. Then D(P )2 =
b[F :Q]/n.

Proof. Since by definition b and D(P ) are positive integers prime to p we will prove that D(P )2 =
b[F :Q]/n by analyzing the valuation of b and D(P ) at every rational prime ` 6= p.

The valuation of D(P ) at primes ` which do not divide b is trivial since resλ x(zn) is then integral
over Z` for every prime λ ⊂ F above `.

We know that the norm NF/Q(x(P )) = (bn/b0)[F :Q]/n. Observe that D = bn is an integer denom-
inator of x(zn). As before we consider the set of rational primes `i dividing bn and distinct from the
prime p, i.e. the set of rational prime divisors of b. Then as before we denote by λi,j the primes of
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F which divide `i. We know that resλi,j x(P ) = ai,j/d
2
i,j where either ai,j or di,j is a unit. Observe

that D(P ) =
∏
i,j NFλi,j /Q`i (di,j) where Fλi,j is the localization of F at λi,j and

NF/Q(x(P )) = cpr
∏
i,j

NKλi,j /Q`i (resλi,j x(P ))

where r ∈ Z and c is an integer with trivial valuation at the primes `i.
We start by assuming that `i does not divide gcd(bn, b0). Then if the valuation at λi0,j0 of x(P )

is negative then the valuation at λi0,j of x(P ) is not positive for any j (since otherwise `i0 would
divide b0 when it already must divide bn). Hence, since

(bn/b0)[F :Q]/n = cpr
∏
i,j

NKλi,j /Q`i (resλi,j x(P )),

if gcd(bn, b0) is prime to `i then ord`i(D(P ))2 = ord`i(b)
[F :Q]/n.

We will now consider the valuations of D(P ) and b at primes which divide gcd(bn, b0) and D(P ).
Let `i be a rational prime factor of D(P ) dividing gcd(bn, b0) and λi,1 a prime of F dividing `i. We
know that

(7.1) b−[F :Q]/n
n (bnx

pn + · · ·+ b0)[F :Q]/n =
∏

σ∈Gal(F/Q)

(x− σ(x(P ))).

Set eσ to be the valuation of x(P ) at σ(λi,1). Viewing the right hand side of the equation (7.1)
over the completion of F at λi,1 we have that∏

σ∈Gal(F/Q)

(x− σ(x(P ))) =
∏

σ∈Gal(F/Q)

(x− uσπeσ−1 )

where π is a uniformizer of λi,1 and uσ are units. In addition, since the greatest common divisor of

the coefficients of bnx
n+ · · ·+ b0 is trivial, the same holds for (bnx

n+ · · ·+ b0)[F :Q]/n. It then follows
that the valuation at `i of b−[F :Q]/n equals the sum of the negative eσ.

Moreover, since resλi,j x(P ) = ai,j/d
2
i,j , the valuation at `i of D(P )2 also equals∑
σ∈Gal(F/Q), eσ<0

eσ.

Hence the valuations at `i of b[F :Q]/n and D(P )2 are equal. This concludes the proof of the proposi-
tion. �

Corollary 7.2. Let E/Q be an elliptic curve with trivial rational torsion. Then the prime to p
component of the leading coefficient of the minimal polynomial of x(zn) over the ring of integers Z
equals D(zn).

Proof. Consider the action of complex conjugation τ ∈ Gal(Kn/Q) on the Heegner point zn ∈ E(Kn).
Since E(Q)tors = O and the order of Gal(Kn/K) is odd, we know that there exist σ ∈ Gal(Kn/K)
such that (σzn)τ = −ε(σzn); see the listed properties of Heegner points in Section 3. This implies

that x(zn) ∈ K〈τ〉n Observe that [K
〈τ〉
n : Q] = pn and K

〈τ〉
n = Q(x(σ(zn))). Hence the degree of the

minimal polynomial x(zn) over Z equals pn. Then by Proposition 7.1 we have that

D(zn)2 = b(2p
n)/pn = b2

where b denotes the prime to p component of the leading coefficient of the minimal polynomial of
x(zn) over the ring of integers Z. Since D(zn) and b are positive integers, we have that D(zn) = b. �
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From the point of view of studying p-adic heights of Heegner points, we can further simplify our
methods. Note that as an intermediate step, we take a Heegner point with complex coordinates,
reconstruct the coordinates as elements of a number field, only to care about p-adic information at
the end of the day. Indeed, since we construct the point and then input its restriction into a p-adic
power series (the p-adic sigma function), using the two algorithms in tandem shows us that this step
is not actually necessary: one can make do with the coordinates of the Heegner point as elements
of an extension of Qp and bypass the exact arithmetic. So given our setup, we can simplify the
computation of p-adic heights by making the following observations.

We know that x(σzn) is defined over a degree pn extension of Q for some σ ∈ Gal(Kn/K). We
assume that this holds for σ = id since otherwise we replace zn by σzn and compute its p-adic height
which is equal to that of zn. The computational difficulty in getting the x(zn) and y(zn) as elements
of a number field lies in getting an “optimized” representation of the degree 2pn extension of Q.

If the Heegner point zn ∈ E(Kn) has both coordinates in a degree pn subfield, then the compu-
tation is much simpler. (Note that this holds for some conjugate of zn if the sign of the functional
equation of E/Q equals −1 and E has trivial rational torsion.) Indeed, to compute the p-adic height
of the Heegner point, we do not actually need to know the point (in particular, its y-coordinate)
algebraically. We merely need to compute its y-coordinate to some p-adic approximation (which can
be done cheaply with a Newton iteration), as the end goal is to input this into a power series with
p-adic coefficients.

To summarize, in order to compute p-adic heights of Heegner points we use the following modified
versions of Algorithm 6.2:

Algorithm 7.3 (The p-adic height hp,Kn(P ) of a Heegner point zn ∈ E(Kn)). Assume that

a) E(Q)tors = O, and
b) the analytic rank of E/Q equals 1.

It follows that mo = 1.

(1) Compute x(zn) ∈ R using Algorithm 4.1. (If the x-coordinate of the first zn is not real then
we use an element of Gal(Kn/K) to find a conjugate that is. This is the zn that we want.)
Save the leading coefficient D(zn) of the minimal polynomial h(x) of x(zn) over Z.

(2) Set Ln := K
〈τ〉
n . We know that zn ∈ E(Ln) and Ln is totally ramified at p.

We p-adically construct respn zn ∈ E(Lpn) where pn is the unique prime of Ln above p
and Lpn is the completion of Ln at pn(the x-coordinate is trivial, and the y-coordinate is
determined via Newton iteration). Observe that while we need to choose the sign of the
y-coordinate, this choice is irrelevant in the end since the sigma function is known to be odd.

(3) Compute m so that mzn reduces to the identity in E(k℘) at all primes ℘ of Ln above p
(here k℘ denotes the residue field of Ln at ℘). Use it to compute respn(mzn) ∈ E(Lpn),

fm(x(zn)), tm = −x(respn (mzn))
y(respn (mzn)) ∈ Lpn .

(4) Recover hp,Kn(zn) = 1
p·m2

(
logp

(
NLpn/Qp

(
σp(tm)

fm(x(zn))

)2
)
−m2 logp(D(zn))

)
.

Algorithm 7.4 (The p-adic height hp,Kn(zn) of a Heegner point zn ∈ E(Kn)). Assume that

a) E(Q)tors = O,
b) the analytic rank of E/Q equals 0, and
c) p splits in K/Q.

It follows that mo = 1.

(1) Compute x(zn) ∈ R using Algorithm 4.1. (If the x-coordinate of the first zn is not real then
we use an element of Gal(Kn/K) to find a conjugate that is. This is the zn that we want.)
Save the leading coefficient D(zn) of the minimal polynomial h(x) of x(zn) over Z.
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(2) We know that x(zn) ∈ Ln and Ln = K
〈τ〉
n is totally ramified at p. Let pn be the unique

prime of Ln above p and Lpn the completion of Ln at pn. Since p splits in K/Q we know
that there are two primes ℘n, ℘′n of Kn that divide pn. Hence, K℘n = K℘′n = Lpn and
res℘n zn, res℘′n zn ∈ E(Lpn). Since zτn = −zn it follows that res℘′n zn = − res℘n zn.

We p-adically construct res℘n zn ∈ E(Lpn). Observe that while we need to choose the
sign of the y-coordinate, this choice is irrelevant in the end since res℘′n zn = − res℘n zn and
the sigma function is odd.

(3) Compute m. Use it to compute res℘n(mzn) ∈ E(Lpn), fm(x(zn)), tm = −x(res℘n (mzn))
y(res℘n (mzn)) ∈

Lpn .
(4) Recover

hp,Kn(zn) =
1

p ·m2

(
logp

(
−NLpn/Qp

(
σp(tm)

fm(x(zn))

)2
)
−m2 logp(D(zn))

)

=
1

p ·m2

(
logp

(
NLpn/Qp

(
σp(tm)

fm(x(zn))

)2
)
−m2 logp(D(zn))

)
.

Algorithm 7.5 (The p-adic height hp,Kn(zn) of a Heegner point zn ∈ E(Kn)). Assume that

a) E(Q)tors = O,
b) the analytic rank of E/Q equals 0, and
c) p is inert in K/Q.

It follows that mo = 1.

(1) Compute x(zn) ∈ R using Algorithm 4.1. (If the x-coordinate of the first zn is not real then
we use an element of Gal(Kn/K) to find a conjugate that is. This is the zn that we want.)
Save the leading coefficient D(zn) of the minimal polynomial h(x) of x(zn) over Z.

(2) We know that x(zn) ∈ Ln. As before Ln = K
〈τ〉
n is totally ramified at p, pn is the unique

prime of Ln above p, and Lpn the completion of Ln at pn. Since p is inert in K/Q there is
a unique prime ℘n of Kn above p and K℘n = Lpn [

√
DK ].

We p-adically construct res℘n zn ∈ E(Lpn [
√
DK ]). Observe that while we need to choose

the sign of the y-coordinate, this choice is irrelevant since the sigma function is odd.
(3) Compute m. Use it to compute res℘n(mzn) ∈ E(Lpn [

√
DK ]), fm(x(zn)) ∈ Lpn , and tm =

−x(res℘n (mzn))
y(res℘n (mzn)) ∈ Lpn [

√
DK ].

(4) Recover

hp,Kn(zn) =
1

p ·m2

(
logp

(
NK℘n/Qp (σp(tm))

NLpn/Qp (fm(x(zn)))
2

)
−m2 logp(D(zn))

)
.

8. Computing p-adic height pairings of Heegner points

In this section, we give an algorithm to compute the p-adic height pairing 〈zn, σzn〉Kn for σ ∈
Gal(Kn/K) and then illustrate it in an example. Recall that ε denotes the sign of the functional
equation of E/Q. Then since hp,Kn (σzn) = hp,Kn (zn) for every σ ∈ Gal(Kn/K), we have that

〈zn, σzn〉Kn = hp,Kn (zn − εσzn)− hp,Kn (zn)− hp,Kn (−εσzn)

= hp,Kn (zn − εσzn)− 2hp,Kn (zn).

It remains to discuss the auxiliary computation of hp,Kn (zn − εσzn).
We will assume that E has trivial rational torsion which implies that there exist a Heegner point

zn ∈ Kn such that zτn = −εzn. It then follows that

(σzn − εσ−1zn)τ = −εσ−1zn + σzn.
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and hence (σzn − εσ−1zn) ∈ E(Ln) for every σ ∈ Gal(Kn/K), where Ln = K
〈τ〉
n . This allows us

to use Algorithm 7.3 (simply replacing zn by (σzn − εσ−1zn)) in order to compute the height of
(σzn − εσ−1zn) even if the analytic rank of E is not assumed to be 1. Observe that the assumption
that E has trivial rational torsion implies that both σzn and σ−1zn reduce to non-singular points at
all bad primes, hence so does (σzn − εσ−1zn) and we have mo = 1 in its p-adic height computation.

Algorithm 8.1 (The pairings 〈zn, σzn〉 for all σ ∈ Gal(Kn/K)).
Assume that E(Q)tors = O and zτn = −εzn.

(1) Depending on the analytic rank of E/Q and the behavior of p in K/Q we use the appropriate
algorithm of §7 to compute hp,Kn(zn).

(2) Use Algorithm 4.2 to compute of the conjugates of zn as points in E(C). This fixes an
ordering of the conjugates of zn.

(3) Shift the pn-tuple of the conjugates of zn so that it starts with zn by checking that the
x-coordinate of the first entry of this pn-tuple is real. We then have

(zn, σ0zn, . . . , σ
pn−1
0 zn) ∈ E(C)p

n

where σ0 ∈ Gal(Kn/K) is an element of order pn that is now fixed.

(4) We can then compute σj0zn − εσ
pn−j
0 zn ∈ E(C) for any j ∈ {1, . . . , (pn − 1)/2}.

(5) Since we know that σj0zn − εσ
−j
0 zn ∈ E(Ln) we use Algorithm 7.3 to compute hp,Kn(σj0zn −

εσ−j0 zn).
(6) This gives

〈σj0zn, σ
−j
0 zn〉Kn = hp,Kn(σj0zn − εσ

−j
0 zn)− 2hp,Kn(zn).

(7) Since 〈zn, σ2j
0 zn〉Kn = 〈σj0zn, σ

−j
0 zn〉Kn and pi is odd, this gives us all pairings 〈zn, σj0zn〉.

Example 8.2. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K = Q(
√
−2), as in

Example 5.5. Let z1 ∈ E(K1) denote the Heegner point that is fixed by complex conjuagtion τ
(since in this case ε = −1). Hence z1 ∈ E(L1). We will now use the above algorithm to compute
〈z1, σz1〉K1

for all σ ∈ Gal(K1/K).
We have already computed the 5-adic height of z1:

h5,K1
(z1) = 2 + 2 · 5 + 2 · 52 + 54 + 4 · 55 + 4 · 56 + 3 · 57 +O(58).

We now compute the 5-tuple of the conjugates of z1 as points in E(C) and ensure that our 5-tuple
starts with zn. So we have

(zn, σzn, σ
2zn, σ

3zn, σ
4zn) ∈ E(C)5

where σ ∈ Gal(K1/K) denotes the element of order 5 that is now fixed.
Since ε = −1 we proceed to compute

σz1 + σ4z1 ≈ (1.28240225474401− 0.182500350994469i,−0.761690770112933 + 0.117006496908598i)

+ (1.28240225474401 + 0.182500350994469i,−0.761690770112933− 0.117006496908598i)

≈ (−1.15375650323736,−1.80020432012303),

σ2z1 + σ3z1 ≈ (1.67723875767367− 0.0866463691344989i,−1.39041234698688 + 0.149731706982934i)

+ (1.67723875767367 + 0.0866463691344989i,−1.39041234698688− 0.149731706982934i)

≈ (0.631776964264686,−1.41622745195929),

and then use Algorithm 7.3 to compute the 5-adic heights of these points.
We compute the minimal polynomial of the x coordinate σz1 + σ4z1:

575045004169216x
5
+ 1883069884256000x

4
+ 2633285660453540x

3
+ 2747042174769680x

2
+ 2325461580346885x + 909442872123731,
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which gives
D(σz1 + σ4z1) = 575045004169216.

Since the point (σz1 + σ4z1) has order 3 in E(F5), we have that m = 3 and

h5,K1
(σz1 + σ4z1) =

1

5 · 32

(
log5

(
NLp1/Q5

(
σp(−)

f3(x(−))

)2
)
− 32 log5(D(σz1 + σ4z1))

)
= 1 + 5 + 52 + 2 · 53 + 54 + 4 · 57 + 58 + 59 +O(510).

Repeating the computation for σ2z1 + σ3z1, we first compute the minimal polynomial of the
x-coordinate of (σ2z1 + σ3z1):

258022025068096x
5
+ 852975284094800x

4
+ 587418614311065x

3 − 166184992922095x
2
+ 75604423293285x − 291423856921639,

which gives
D(σ2z1 + σ3z1) = 258022025068096.

As the point σ2z1 + σ3z1 has again order 3 in E(F5), we have m = 3 and

h5,K1
(σ2z1 + σ3z1) =

1

5 · 32

(
log5

(
NLp1/Q5

(
σp(−)

f3(x(−))

)2
)
− 32 log5(D(σ3z1 + σ2z1))

)
= 4 · 53 + 3 · 54 + 2 · 55 + 3 · 56 + 2 · 57 + 2 · 58 + 3 · 59 +O(510).

To finish the computation, we note that

〈z1, z1〉K1
= 2h5,K1

(z1)

〈z1, σz1〉K1
= 〈σ2z1, σ

3z1〉K1

= h5,K1
(σ2z1 + σ3z1)− 2h5,K1

(z1)

= 1 + 3 · 53 + 54 + 4 · 55 + 3 · 56 + 4 · 57 + 2 · 58 + 4 · 59 +O(510)

〈z1, σ
2z1〉K1

= 〈z1, σ
3z1〉K1

〈z1, σ
3z1〉K1

= 〈σz1, σ
4z1〉K1

= h5,K1(σ4z1 + σz1)− 2h5,K1(z1)

= 2 + 5 + 52 + 53 + 4 · 54 + 55 + 57 + 2 · 58 + 2 · 59 +O(510)

〈z1, σ
4z1〉K1

= 〈z1, σz1〉K1
.

Note that as a numerical check, we can compute the sum of these pairings to obtain the following

〈z1, z1〉K1
+〈z1, σz1〉K1

+ · · ·+〈z1, σ
4z1〉K1

= 4+3 ·5+2 ·52 +2 ·55 +4 ·56 +2 ·57 +58 +2 ·59 +O(510).

Then using (3.2) gives us that
trK1/K(z1) = 3z0,

and since z0 ∈ E(Q), Sage tells us that

〈z0, z0〉Q = 5 + 3 · 52 + 53 + 54 + 2 · 55 + 57 + 2 · 58 +O(510).

This lets us see, numerically, that

〈trK1/K(z1), trK1/K(z1)〉
K1

= 5〈z1, trK1/K(z1)〉
K1

= 3 · 52 + 2 · 53 + 4 · 54 + 3 · 55 + 3 · 57 + 4 · 58 + 4 · 59 +O(510)

= [K1 : Q]〈3z0, 3z0〉Q,
which also tests consistency with the existing Sage implementation of p-adic heights of rational points
on elliptic curves.
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9. Λ-adic regulators

In this section we compute coefficients of Λ-adic regulators of several elliptic curves E/Q. In all
these examples we have that c0 is not divisible by p in E(K) and the valuation of 〈c0, c0〉K0

is strictly
positive. Hence we know that the Heegner L-function L equals the Λ-adic regulator R up to a unit
and they are non-trivial.

Recall from Section 3 that the coefficients of the Heegner L-function are

b0 = 〈c0, c0〉K0
,

bk ≡
∑

k≤i<pn

(
i

k

)
〈cn, σicn〉Kn (mod pn) for k ≥ 1,

where c0 = z0, c1 = u−1
0 z1, and c2 = (u0u1)−1z2. Observe that since 〈cn, σicn〉 = 〈cnσp

n−icn〉, we
have

b1 ≡ 0 (mod pn) for all n,

and hence b1 = 0. Consequently, in order to get any further information about the Heegner L-
function we will need to compute b2 (mod pn) and perhaps additional coefficients also.

Example 9.1. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K = Q(
√
−2), as in

Examples 5.5 and 8.2. Using the computation of h5,K(z0) in Example 5.5, we compute

b0 = 〈c0, c0〉K0
= 2h5,K(c0) = 2h5,K(z0) = 2 · 5 + 52 + 3 · 53 + 2 · 54 + 4 · 55 + 2 · 57 +O(58).

In Example 8.2, we computed

〈z1, σz1〉K1
≡ 1 (mod 5)

〈z1, σ
2z1〉K1

≡ 2 (mod 5).

Since u0 = 3 we see that

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ
2z1〉K1

) (mod 5)

≡ 1 (mod 5).

Since b2 is a unit while b0 and b1 are not, it follows that the Heegner L-function L and hence R
equal the product of a unit and a distinguished polynomial of degree 2 in Z5[[T ]].

Example 9.2. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K = Q(
√
−14), as in

Example 6.3. We have

〈z1, σz1〉K1
= 2 · 5 + 3 · 52 + 4 · 53 + 3 · 54 + 2 · 55 +O(56)

〈z1, σ
2z1〉K1

= 2 + 5 + 2 · 52 + 3 · 53 + 54 + 2 · 55 +O(56).

Moreover, u0 = 11 and we see that

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ
2z1〉K1

) (mod 5)

≡ 3 (mod 5).

This implies that R is the product of a unit and a distinguished polynomial of degree 2 in Z5[[T ]].

Example 9.3. Let E/Q be the rank 1 elliptic curve “331a1”, p = 7, and K = Q(
√
−2). We compute

b0 = 〈c0, c0〉K0
= 5 · 7 + 2 · 73 + 3 · 74 + 4 · 75 + 4 · 76 + 77 +O(78).
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For σ ∈ Gal(K1/K) the element of order p fixed in Step 3 of Algorithm 8.1 we then find

〈z1, σz1〉K1
= 5 + 4 · 7 + 4 · 72 + 5 · 73 + 6 · 74 + 4 · 76 + 4 · 77 +O(78)

〈z1, σ
2z1〉K1

= 5 · 7 + 73 + 3 · 74 + 6 · 75 + 4 · 76 + 5 · 77 +O(78)

〈z1, σ
3z1〉K1

= 5 + 5 · 7 + 3 · 72 + 73 + 3 · 74 + 4 · 75 + 2 · 76 +O(78).

Moreover, since 7 is inert in K/Q and a7 = 2, we have u0 = −4 and

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ
2z1〉K1

+ 2〈z1, σ
3z1〉K1

) (mod 7)

≡ 1 (mod 7).

Hence, the Λ-adic regulator R is the product of a unit and a distinguished polynomial of degree 2
in Z7[[T ]].

In the following three examples we will have that p = 3, p splits in K/Q, and ap = −1. Conse-

quently, we find that u0 = 1, u−1
1 ≡ 5 + 6σ + 6σ2 (mod 9), and hence

〈c2, σic2〉K2
≡ 〈5z2 + 6σz2 + 6σ2z2, 5σ

iz2 + 6σi+1z2 + 6σi+2z2, 〉K2
(mod 9)

≡ 3〈z2, σ
i−2z2〉K2

+ 3〈z2, σ
i−1z2〉K2

+ 7〈z2, σ
iz2〉K2

+ 3〈z2, σ
i+1z2〉K2

+ 3〈z2, σ
i+2z2〉K2

(mod 9).

Example 9.4. Let E/Q be the rank 1 elliptic curve “203b1”, p = 3, and K = Q(
√
−5). We compute

3-adic heights and the 3-adic sigma function for elliptic curves over Q using the methods in [1]. We
find that the first coefficient of the Heegner L-function is

b0 = 〈c0, c0〉K0
= 2 · 32 + 33 + 2 · 34 + 35 + 2 · 36 + 2 · 37 +O(38).

Then for σ ∈ Gal(K1/K) the element of order p fixed in Step 3 of Algorithm 8.1 we compute

〈z1, z1〉K1
= 1 + 33 + 34 + 2 · 35 + 2 · 36 + 2 · 37 +O(38)

〈z1, σz1〉K1
= 1 + 3 + 2 · 32 + 33 + 35 + 36 + 37 +O(38)

〈z1, σ
2z1〉K1

= 〈z1, σz1〉K1
.

Note that this gives b2 ≡ u−2
0 〈z1, σz1〉K1

≡ 1 (mod 3).
In this example R is again the product of a unit and a distinguished polynomial of degree 2

in Z3[[T ]]. However, while in the previous examples b0 has valuation 1 which implies that R is
irreducible, in this case b0 has valuation 2 and the computed data does not imply thatR is irreducible
but it does show that R is squarefree.

Example 9.5. Let E/Q be the rank 1 elliptic curve “185b1”, p = 3, and K = Q(
√
−11). First, we

have

b0 = 〈c0, c0〉K0
= 3 + 32 + 33 + 2 · 34 + 35 + 37 +O(38).

For σ ∈ Gal(K1/K) the element of order p fixed in Step 3 of Algorithm 8.1 we have:

〈z1, z1〉K1
= 3 + 2 · 33 + 34 + 2 · 35 + 37 +O(38)

〈z1, σz1〉K1
= 2 · 32 + 2 · 33 + 34 + 2 · 35 + 2 · 36 + 2 · 37 +O(38)

〈z1, σ
2z1〉K1

= 〈z1, σz1〉K1
.
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So we see that we have b2 ≡ 0 (mod 3). Thus we now compute b3 (mod 9). For σ ∈ Gal(K2/K)
the element of order p2 fixed in Step 3 of Algorithm 8.1 we have:

〈z2, z2〉K2
= 2 + 3 + 2 · 32 + 33 + 2 · 36 +O(37)

〈z2, σz2〉K2
= 2 + 3 + 32 + 34 + 35 + 2 · 36 +O(37)

〈z2, σ
2z2〉K2

= 1 + 3 + 2 · 32 + 2 · 36 +O(37)

〈z2, σ
3z2〉K2

= 2 + 2 · 3 + 34 + 2 · 35 + 2 · 36 +O(37)

〈z2, σ
4z2〉K2

= 2 · 32 + 33 + 34 + 2 · 36 +O(37)

〈z2, σ
5z2〉K2

= 〈z2, σ
4z2〉K2

〈z2, σ
6z2〉K2

= 〈z2, σ
3z2〉K2

〈z2, σ
7z2〉K2

= 〈z2, σ
2z2〉K2

〈z2, σ
8z2〉K2

= 〈z2, σz2〉K2
.

Consequently, we find that

〈c2, σc2〉K2
≡ 2 (mod 9)

〈c2, σ2c2〉K2
≡ 1 (mod 9)

〈c2, σ3c2〉K2
≡ 2 (mod 9)

〈c2, σ4c2〉K2
≡ 6 (mod 9),

which gives b2 ≡ 3 (mod 9) and

b3 ≡ 2〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 3〈c2, σ3c2〉K2
+ 5〈c2, σ4c2〉K2

(mod 9)

≡ 3 (mod 9).

So, we must now compute b4 (mod 9). We find that

b4 ≡ 7〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 6〈c2, σ4c2〉K2

(mod 9)

≡ 7 (mod 9).

Hence R is the product of a unit and a distinguished polynomial of degree 4 in Z3[[T ]].

Example 9.6. Let E/Q be the rank 1 elliptic curve “325b1”, p = 3, and K = Q(
√
−14). First, we

have

b0 = 〈c0, c0〉K0
= 2 · 3 + 2 · 32 + 33 + 2 · 36 + 2 · 37 +O(38).

For σ ∈ Gal(K1/K) the element of order p fixed in Step 3 of Algorithm 8.1:

〈z1, z1〉K1
= 3 + 32 + 2 · 33 + 2 · 35 +O(38)

〈z1, σz1〉K1
= 2 · 3 + 33 + 34 + 2 · 36 + 2 · 37 +O(38)

〈z1, σ
2z1〉K1

= 〈z1, σz1〉.
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So we see that we have b2 ≡ 0 (mod 3). Thus we go to the next coefficient; for σ ∈ Gal(K2/K) the
element of order p2 fixed in Step 3 of Algorithm 8.1 we have:

〈z2, z2〉K2
= 1 + 3 + 33 + 36 + 2 · 37 +O(38)

〈z2, σz2〉K2
= 2 + 2 · 32 + 2 · 33 + 36 + 37 +O(38)

〈z2, σ
2z2〉K2

= 2 + 2 · 3 + 33 + 2 · 34 + 2 · 35 + 37 +O(38)

〈z2, σ
3z2〉K2

= 1 + 3 + 32 + 2 · 33 + 2 · 36 + 37 +O(38)

〈z2, σ
4z2〉K2

= 2 + 3 + 2 · 32 + 2 · 34 + 35 + 36 + 2 · 37 +O(38)

〈z2, σ
5z2〉K2

= 〈z2, σ
4z2〉K2

〈z2, σ
6z2〉K2

= 〈z2, σ
3z2〉K2

〈z2, σ
7z2〉K2

= 〈z2, σ
2z2〉K2

〈z2, σ
8z2〉K2

= 〈z2, σz2〉K2
.

Consequently, we find that

〈c2, σc2〉K2
≡ 5 (mod 9)

〈c2, σ2c2〉K2
≡ 2 (mod 9)

〈c2, σ3c2〉K2
≡ 7 (mod 9)

〈c2, σ4c2〉K2
≡ 8 (mod 9),

which gives b2 ≡ 6 (mod 9) and

b3 ≡ 2〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 3〈c2, σ3c2〉K2
+ 5〈c2, σ4c2〉K2

(mod 9)

≡ 6 (mod 9).

So we compute b4 (mod 9):

b4 ≡ 7〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 6〈c2, σ4c2〉K2

(mod 9)

≡ 6 (mod 9).

Then we find that

b5 ≡ 2〈c2, σc2〉K2
+ 3〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 〈c2, σ4c2〉K2

(mod 9)

≡ 3 (mod 9),

and finally

b6 ≡ 〈c2, σc2〉K2
+ 7〈c2, σ2c2〉K2

+ 〈c2, σ3c2〉K2
(mod 9)

≡ 8 (mod 9).

Hence, we have now found an example where the Λ-adic regulator R is the product of a unit and a
distinguished polynomial of degree 6 in Z3[[T ]].
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Appendix

Table 9.1. Elliptic Curves

Label Equation
57a1 y2 + y = x3 − x2 − 2x+ 2

158b1 y2 + xy = x3 + x2 − 3x+ 1
203b1 y2 + xy + y = x3 + x2 − 2
325b1 y2 + y = x3 − x2 − 3x+ 3
331a1 y2 + xy = x3 − 5x+ 4
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