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This talk reports on a long-term collaborative

project to verify the Birch and Swinnerton-Dyer

conjecture for specific elliptic curves.

Step 1 is done.

Collaborators: Grigor Grigorov, Andrei Jorza, Stefan Patrikis,

Corina Tarnita-Patrascu (and Stephen Donnelly, Michael Stoll).

Thanks: John Cremona, Noam Elkies, Ralph Greenberg, Barry

Mazur, Robert Pollack, Nick Ramsey, and Tony Scholl.
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Manin Constant Assumption

For the rest of this talk I will officially assume that the Manin

constant of every elliptic curve of conductor ≤ 1000 is 1. It’s not

completely clear to me that Cremona has verified this, though it

seems very likely.
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Main Theorem

Suppose E is a non-CM elliptic curve of conductor ≤ 1000 and

rank ≤ 1 and p is a prime that does not divide any Tamagawa

number of E and that E has no p-isogeny. Then the p-part of

the full BSD conjectural formula is true for E.
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Once upon a time...
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Conjectures Proliferated

“The subject of this lecture is rather a special one. I want to de-

scribe some computations undertaken by myself and Swinnerton-

Dyer on EDSAC, by which we have calculated the zeta-functions

of certain elliptic curves. As a result of these computations we

have found an analogue for an elliptic curve of the Tamagawa

number of an algebraic group; and conjectures have proliferated.

[...] though the associated theory is both abstract and technically

complicated, the objects about which I intend to talk are usually

simply defined and often machine computable; experimentally

we have detected certain relations between different in-

variants, but we have been unable to approach proofs of these

relations, which must lie very deep.” – Birch 1965

6



Birch and Swinnerton-Dyer (Utrecht, 2000)
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The L-Function

Theorem (Wiles et al., Hecke) The following function extends

to a holomorphic function on the whole complex plane:

L∗(E, s) =
∏

p-∆







1

1 − ap · p−s + p · p−2s





 .

Here ap = p + 1 − #E(Fp) for all p - ∆E. Note that formally,

L∗(E,1) =
∏

p-∆

(

1

1 − ap · p−1 + p · p−2

)

=
∏

p-∆

(

p

p − ap + 1

)

=
∏

p-∆

p

Np

Standard extension to L(E, s) at bad primes.
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Real Graph of the L-Series of y2+y = x3−x
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More Graphs of Elliptic Curve L-functions
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Absolute Value of L-series on Complex

Plane for y2 + y = x3 − x
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The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over Q. The order of

vanishing of L(E, s) as s = 1 equals the rank of E(Q).
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The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing ords=1 L(E, s) is ≤ 1, then

the BSD rank conjecture is true for E.
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Refined BSD Conjectural Formula

L(r)(E,1)

r!
=

ΩE · RegE ·∏

p|N cp

#E(Q)2tor
· #X(E)

• #E(Q)tor – order of torsion

• cp – Tamagawa numbers

• ΩE – real volume =
∫

E(R) ωE

• RegE – regulator of E

• X(E) = Ker
(

H1(Q, E) → ⊕

v H1(Qv, E)
)

– Shafarevich-Tate group
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The Shafarevich-Tate Group

X(E) = Ker

(

H1(Q, E) →
⊕

v
H1(Qv, E)

)

The elements of X(E) correspond to (classes of) genus one

curves X with Jacobian E that have a point over each p-adic

field and R. E.g., the curve 3x3 + 4y3 + 5z3 = 0 is in X(x3 +

y3 + 60z3 = 0).

Computing X(E) in practice is challenging! It took decades

until the first example was computed (by Karl Rubin).
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John Cremona’s Book
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Main Theorem

Suppose E is a non-CM elliptic curve of conductor ≤ 1000 and

rank ≤ 1 and p is a prime that does not divide any Tamagawa

number of E and that E has no p-isogeny. Then the p-part of

the full BSD conjectural formula is true for E.

The rest of this talk is about the proof.
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Tools

• SAGE: I did much of this computation using

SAGE: System for Algebra and Geometry Computation

http://modular.fas.harvard.edu/sage

which is a new computer algebra system that incorporates

mwrank, PARI, etc., under one hood.

• MAGMA: I used MAGMA for some 3 and 4-descents.
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BSD Conjecture at p

Conjecture 1 (BSD(E, p)).Let (E, p) denote a pair consisting of

an elliptic curve E over Q and a prime p. The BSD conjecture at p

(denoted BSD(E, p)) is the BSD conjecture, but with the weaker

claim that ordp(#X(E)[p∞]) = ordp





L(r)(E,1) · (#E(Q)tor)
2

r! · ΩE · RegE ·∏p cp



 .

Tate: The truth of BSD(E, p) is invariant under isogeny.
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Computational Evidence for BSD

All of the quantities in the BSD conjecture, except for #X(E/Q),

have been computed by Cremona for conductor ≤ 70000.

• Cremona (Ch. 4, pg. 106): In Cremona’s book, exactly

four optimal curves with conjecturally nontrivial X(E): 571A,

681B, 960D, 960N

• Cremona verified BSD(E,2) for all curves in his book, except

571A, 960D, and 960N.
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Victor Kolyvagin

Kolyvagin: When ran ≤ 1, get computable multiple of #X(E).

Let K be a quadratic imaginary field in which all primes dividing

the conductor of E split. Let yK ∈ E(K) be the corresponding

Heegner point.

Theorem 2 (Kolyvagin). Suppose E is a non-CM elliptic curve

and p is an odd prime such that ρE,p is surjective and E(K) has

rank 1. Then

ordp(#X(E/K)) ≤ 2 · ordp([E(K) : ZyK]).
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Victor Kolyvagin
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Kato

Kato: When ran = 0, get bound on #X(E).

Theorem 3 (Kato). Let E be an optimal elliptic curve over Q

of conductor N , and let p be a prime such that p - 6N and ρE,p

is surjective. If L(E,1) 6= 0, then X(E) is finite and

ordp(#X(E)) ≤ ordp

(

L(E,1)

ΩE

)

.

This theorem follows from the existence of an “optimal” Kato

Euler system...
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The Four Nontrivial X’s

Conclusion: BSD for the curves in Cremona’s book is the as-

sertion that X(E) is trivial for all but the following four optimal

elliptic curves with conductor at most 1000:

Curve a-invariants X(E)?
571A [0,-1,1,-929,-105954] 4
681B [1,1,0,-1154,-15345] 9
960D [0,-1,0,-900,-10098] 4
960N [0,1,0,-20,-42] 4

We can deal with these four curves...
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Divisor of Order

1. Using a 2-descent we see that 4 | #X(E) for 571A, 960D,

960N.

2. For E = 681B: Using visibility (or a 3-descent) we see that

9 | #X(E).
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Multiple of Order

1. For E = 681B, the mod 3 representation is surjective, and

3 || [E(K) : yK] for K = Q(
√
−8), so Kolyvagin’s theorem

implies that #X(E) = 9, as required.

2. Kolyvagin’s theorem and computation =⇒ #X(E) = 4?

for 571A, 960D, 960N.

3. Using MAGMA’s FourDescent command, we compute Sel(4)(E/Q)

for 571A, 960D, 960N and deduce that #X(E) = 4.
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The Eighteen Optimal Curves of Rank > 1

There are 18 curves with conductor ≤ 1000 and rank > 1 (all

have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C,

707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E perhaps nobody currently knows how to show that

X(E) is finite, let alone trivial. (But p-adic L-functions, Iwasawa

theory, Schneider’s theorem, etc., would give a finite interesting

list of p for a given curve.)
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Summary

• There are 2463 optimal curves of conductor at most 1000.

• Of these, 18 have rank 2, which leaves 2445 curves.

• Of these, 2441 have conjecturally trivial X.

• Of these, 44 have CM.

We prove BSD(E, p) for the remaining 2397 curves at primes p

that do not divide Tamagawa numbers and for which ρE,p is

irreducible.
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Determining im(ρE,p) ⊂ Aut(E[p])

Theorem 4 (Cojocaru, Kani, and Serre). If E is a non-CM elliptic curve
of conductor N , and

p ≥ 1 +
4
√

6

3
· N ·

∏

prime `|N

(

1 +
1

`

)1/2

,

then ρE,p is surjective.

Proposition 5 (–, et al.). Let E be an elliptic curve over Q of conductor N
and let p ≥ 5 be a prime. For each prime ` - p · N with a` 6≡ 0 (mod p), let

s(`) =

(

a2
` − 4`

p

)

∈ {0,−1,+1},

where the symbol
( ·
·
)

is the Legendre symbol. If −1 and +1 both occur as

values of s(`), then ρE,p is surjective. If s(`) ∈ {0,1} for all `, then im(ρE,p) is
contained in a Borel subgroup (i.e., reducible), and if s(`) ∈ {0,−1} for all `,
then im(ρE,p) is a nonsplit torus.

This + division polynomials =⇒ efficient algorithm to compute
image. (Tables now available online.)
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Generalizations of Kolyvagin’s Theorem
Theorem 6 (Cha). If p - DK, p2 - N , and ρE,p is irreducible, then

ordp(#X(E/K)) ≤ 2 · ordp([E(K) : ZyK]).

Example 7. Let E be the elliptic curve 608B, which has rank 0.

Then BSD(E,5) is true for E by Cha’s theorem, but not Kato’s

since ρE,5 irreducible but not surjective.

The following theorem began with Stoll and Donnelly, and was

essential in proving our main theorem.

Theorem 8 (–). Suppose E is a non-CM elliptic curve over Q.

Suppose K is a quadratic imaginary field that satisfies the Heeg-

ner hypothesis and p is an odd prime such that p - #E′(K)tor for

any curve E′ that is Q-isogenous to E. Then

ordp(#X(E)) ≤ 2ordp([E(K) : ZyK]),

unless disc(K) is divisible by exactly one prime `, in which case

the conclusion is only valid if p 6= `.
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Computing Indexes of Heegner Point

Use the Gross-Zagier formula to compute h(yK) from special

values of L-functions (very fast).

When E(K) can be computed, (e.g., if E(Q) known, or using

4-descent), we obtain the index using properties of heights.

If E(K) too difficult to compute, can sometimes use the Cremona-

Prickett-Siksek bound to quickly bound [E(K) : ZyK].

Example 9. Let E be 546E and K = Q(
√
−311). Let F be the quadratic

twist of E by −311. We have

h(yK) ∼ 7315.20688,

CPS bound for F is B = 13.0825747. Search for points on F of naive
logarithmic height ≤ 18, and find no points, so

[E(K) : ZyK] <
√

7320/(2 · (18 − 13.0825747)) ∼ 27.28171 < 28.
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Major Obstruction: Tamagawa Numbers

Serious Issue: The Gross-Zagier formula and the BSD conjec-

ture together imply that if an odd prime p divides a Tamagawa

number, then p | [E(K) : ZyK].

• If E has ran = 0, and p ≥ 5, and ρE,p is surjective, then

Kato’s theorem (and Mazur, Rubin, et al.) imply that

ordp(#X(E)) ≤ ordp(L(E,1)/ΩE),

so squareness of #X(E) frequently helps.

• In many cases with ran = 1, there is a big Tamagawa number—

there are 91 optimal curves up to conductor 1000 with Tam-

agawa number divisible by a prime p ≥ 7.
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Conclusion

Throw in exlicit 3 and 4-descents to deal with a handful of re-

luctant cases. Everything works out so that all our techniques

are just enough to complete the proof. If Cremona’s book were

larger, this might not have been the case.

Please see

http://modular.fas.harvard.edu/papers/bsdalg/

for the finished write-up.
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Next Step: Write a Paper with Me!!

1. [CM] Verify the BSD conjecture for CM curves up to some conductor.
About half of rank 0 and half of rank 1. Very extensive theory here,
beginning with Rubin—should be relative “easy”, especially for rank 0.

2. [Manin] Rigorously verify that c = 1 for curves up to conductor 70000.

3. [Extend] Consider curves of conductor > 1000. Have to verify nontrivi-
ality of big X(E)’s; use visibility and Grigor Grigorov’s thesis.

4. [Big Rank] Verify BSD at all primes p ≤ 100 for some curve of rank 2.

5. [Isogenies] Verify the BSD conjecture at primes p that are the degree of
an isogeny from E. Mazur’s “Eisenstein descent” does prime level case;
but then p = 2. Perhaps direct p-descent is doable, or use congruences...

6. [Tamagawa] Verify the BSD conjecture at primes p that divide a Tama-
gawa number. Prove a refinement of Kolyvagin’s theorem and/or develop
p-adic methods.

7. [Abelian Varieties] Verify the full BSD conjecture for modular Jacobians
J0(N), for N ≤ 100.
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