

Bremen: July 2005

This talk reports on a long-term collaborative project to verify the Birch and Swinnerton-Dyer conjecture for specific elliptic curves. **Step 1 is done.**

Collaborators: Grigor Grigorov, Andrei Jorza, Stefan Patrikis, Corina Tarnita-Patrascu (and Stephen Donnelly, Michael Stoll).

Thanks: John Cremona, Noam Elkies, Ralph Greenberg, Barry Mazur, Robert Pollack, Nick Ramsey, and Tony Scholl.

Manin Constant Assumption

For the rest of this talk I will officially assume that the Manin constant of every elliptic curve of conductor \leq 1000 is 1. It's not completely clear to me that Cremona has verified this, though it seems very likely.

Main Theorem

Suppose *E* is a non-CM elliptic curve of conductor ≤ 1000 and rank ≤ 1 and *p* is a prime that does not divide any Tamagawa number of *E* and that *E* has no *p*-isogeny. Then the *p*-part of the full BSD conjectural formula is true for *E*.

Once upon a time...

Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these – Birch 1965 relations, which must lie very deep."

Birch and Swinnerton-Dyer (Utrecht, 2000)

The *L*-Function

Theorem (Wiles et al., Hecke) The following function extends to a holomorphic function on the whole complex plane:

$$L^*(E,s) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} \right)$$

Here $a_p = p + 1 - \#E(\mathbb{F}_p)$ for all $p \nmid \Delta_E$. Note that formally,

$$L^*(E,1) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-1} + p \cdot p^{-2}} \right) = \prod_{p \nmid \Delta} \left(\frac{p}{p - a_p + 1} \right) = \prod_{p \nmid \Delta} \frac{p}{N_p}$$

Standard extension to L(E,s) at bad primes.

Real Graph of the *L*-Series of $y^2 + y = x^3 - x$

9

More Graphs of Elliptic Curve L-functions

Absolute Value of *L*-series on Complex Plane for $y^2 + y = x^3 - x$

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let *E* be any elliptic curve over \mathbb{Q} . The order of vanishing of L(E,s) as s = 1 equals the rank of $E(\mathbb{Q})$.

The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing $\operatorname{ord}_{s=1} L(E,s)$ is ≤ 1 , then the BSD rank conjecture is true for E.

Refined BSD Conjectural Formula

$$\frac{L^{(r)}(E,1)}{r!} = \frac{\Omega_E \cdot \operatorname{Reg}_E \cdot \prod_{p|N} c_p}{\#E(\mathbb{Q})^2_{tor}} \cdot \#\operatorname{III}(E)$$

- $#E(\mathbb{Q})_{tor}$ order of **torsion**
- *c*_{*p*} Tamagawa numbers
- Ω_E real volume = $\int_{E(\mathbb{R})} \omega_E$
- Reg_E regulator of E
- $\operatorname{III}(E) = \operatorname{Ker}\left(\operatorname{H}^{1}(\mathbb{Q}, E) \to \bigoplus_{v} \operatorname{H}^{1}(\mathbb{Q}_{v}, E)\right)$
 - Shafarevich-Tate group

The Shafarevich-Tate Group

$$\mathrm{III}(E) = \mathrm{Ker}\left(\mathrm{H}^{1}(\mathbb{Q}, E) \to \bigoplus_{v} \mathrm{H}^{1}(\mathbb{Q}_{v}, E)\right)$$

The elements of III(E) correspond to (classes of) genus one curves X with Jacobian E that have a point over each p-adic field and \mathbb{R} . E.g., the curve $3x^3 + 4y^3 + 5z^3 = 0$ is in $III(x^3 + y^3 + 60z^3 = 0)$.

Computing III(E) in practice is challenging! It took decades until the first example was computed (by Karl Rubin).

John Cremona's Book

Main **Theorem**

Suppose *E* is a non-CM elliptic curve of conductor ≤ 1000 and rank ≤ 1 and *p* is a prime that does not divide any Tamagawa number of *E* and that *E* has no *p*-isogeny. Then the *p*-part of the full BSD conjectural formula is true for *E*.

The rest of this talk is about the proof.

Tools

• SAGE: I did much of this computation using

SAGE: System for Algebra and Geometry Computation http://modular.fas.harvard.edu/sage

which is a new computer algebra system that incorporates mwrank, PARI, etc., under one hood.

• MAGMA: I used MAGMA for some 3 and 4-descents.

BSD Conjecture at p

Conjecture 1 (BSD(E,p)). Let (E,p) denote a pair consisting of an elliptic curve E over \mathbb{Q} and a prime p. The BSD conjecture at p(denoted BSD(E,p)) is the BSD conjecture, but with the weaker claim that $\operatorname{ord}_p(\#\operatorname{III}(E)[p^{\infty}]) = \operatorname{ord}_p\left(\frac{L^{(r)}(E,1) \cdot (\#E(\mathbb{Q})_{\operatorname{tor}})^2}{r! \cdot \Omega_E \cdot \operatorname{Reg}_E \cdot \prod_p c_p}\right)$.

Tate: The truth of BSD(E, p) is invariant under isogeny.

Computational Evidence for BSD

All of the quantities in the BSD conjecture, **except** for $\#III(E/\mathbb{Q})$, have been computed by Cremona for conductor \leq 70000.

- Cremona (Ch. 4, pg. 106): In Cremona's book, exactly four optimal curves with conjecturally nontrivial III(E): 571A, 681B, 960D, 960N
- Cremona verified BSD(E, 2) for all curves in his book, except 571A, 960D, and 960N.

Victor Kolyvagin

Kolyvagin: When $r_{an} \leq 1$, get computable multiple of #III(E).

Let K be a quadratic imaginary field in which all primes dividing the conductor of E split. Let $y_K \in E(K)$ be the corresponding **Heegner point**.

Theorem 2 (Kolyvagin). Suppose E is a non-CM elliptic curve and p is an odd prime such that $\overline{\rho}_{E,p}$ is surjective and E(K) has rank 1. Then

 $\operatorname{ord}_p(\#\operatorname{III}(E/K)) \leq 2 \cdot \operatorname{ord}_p([E(K) : \mathbb{Z}y_K]).$

Victor Kolyvagin

Kato

Kato: When $r_{an} = 0$, get bound on #III(E).

Theorem 3 (Kato). Let E be an optimal elliptic curve over \mathbb{Q} of conductor N, and let p be a prime such that $p \nmid 6N$ and $\overline{\rho}_{E,p}$ is surjective. If $L(E, 1) \neq 0$, then $\mathrm{III}(E)$ is finite and

$$\operatorname{ord}_p(\#\operatorname{III}(E)) \leq \operatorname{ord}_p\left(\frac{L(E,1)}{\Omega_E}\right).$$

This theorem follows from the existence of an "optimal" Kato Euler system...

The Four Nontrivial III's

Conclusion: BSD for the curves in Cremona's book is the assertion that III(E) is *trivial* for all but the following four optimal elliptic curves with conductor at most 1000:

Curve	<i>a</i> -invariants	$\operatorname{III}(E)_?$
571A	[0,-1,1,-929,-105954]	4
681B	[1,1,0,-1154,-15345]	9
960D	[0,-1,0,-900,-10098]	4
960N	[0,1,0,-20,-42]	4

We can deal with these four curves...

Divisor of Order

- 1. Using a 2-descent we see that $4 \mid \# III(E)$ for 571A, 960D, 960N.
- 2. For E = 681B: Using visibility (or a 3-descent) we see that $9 \mid \# III(E)$.

Multiple of Order

- 1. For E = 681B, the mod 3 representation is surjective, and 3 || $[E(K) : y_K]$ for $K = \mathbb{Q}(\sqrt{-8})$, so Kolyvagin's theorem implies that #III(E) = 9, as required.
- 2. Kolyvagin's theorem and computation $\implies \# III(E) = 4^{?}$ for 571A, 960D, 960N.
- 3. Using MAGMA's FourDescent command, we compute $Sel^{(4)}(E/\mathbb{Q})$ for 571A, 960D, 960N and deduce that #III(E) = 4.

The Eighteen Optimal Curves of Rank > 1

There are 18 curves with conductor \leq 1000 and rank > 1 (all have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C, 707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E perhaps **nobody** currently knows how to show that III(E) is finite, let alone trivial. (But p-adic L-functions, Iwasawa theory, Schneider's theorem, etc., would give a finite interesting list of p for a given curve.)

Summary

- There are 2463 optimal curves of conductor at most 1000.
- Of these, 18 have rank 2, which leaves 2445 curves.
- Of these, 2441 have conjecturally trivial III.
- Of these, 44 have CM.

We prove BSD(E, p) for the remaining 2397 curves at primes p that do not divide Tamagawa numbers and for which $\overline{\rho}_{E,p}$ is irreducible.

Determining $\operatorname{im}(\overline{\rho}_{E,p}) \subset \operatorname{Aut}(E[p])$

Theorem 4 (Cojocaru, Kani, and Serre). If E is a non-CM elliptic curve of conductor N, and

$$p \ge 1 + \frac{4\sqrt{6}}{3} \cdot N \cdot \prod_{\text{prime } \ell \mid N} \left(1 + \frac{1}{\ell}\right)^{1/2},$$

then $\overline{\rho}_{E,p}$ is surjective.

Proposition 5 (–, et al.). Let *E* be an elliptic curve over \mathbb{Q} of conductor *N* and let $p \ge 5$ be a prime. For each prime $\ell \nmid p \cdot N$ with $a_{\ell} \not\equiv 0 \pmod{p}$, let

$$s(\ell) = \left(\frac{a_{\ell}^2 - 4\ell}{p}\right) \in \{0, -1, +1\},$$

where the symbol $(\frac{\cdot}{\cdot})$ is the Legendre symbol. If -1 and +1 both occur as values of $s(\ell)$, then $\overline{\rho}_{E,p}$ is surjective. If $s(\ell) \in \{0,1\}$ for all ℓ , then $\operatorname{im}(\overline{\rho}_{E,p})$ is contained in a Borel subgroup (i.e., reducible), and if $s(\ell) \in \{0,-1\}$ for all ℓ , then $\operatorname{im}(\overline{\rho}_{E,p})$ is a nonsplit torus.

This + division polynomials \implies efficient algorithm to compute image. (Tables now available online.)

Generalizations of Kolyvagin's Theorem Theorem 6 (Cha). If $p \nmid D_K$, $p^2 \nmid N$, and $\overline{\rho}_{E,p}$ is irreducible, then

 $\operatorname{ord}_p(\#\operatorname{III}(E/K)) \leq 2 \cdot \operatorname{ord}_p([E(K) : \mathbb{Z}y_K]).$

Example 7. Let *E* be the elliptic curve 608B, which has rank 0. Then BSD(E,5) is true for *E* by Cha's theorem, but not Kato's since $\overline{\rho}_{E,5}$ irreducible but not surjective.

The following theorem began with Stoll and Donnelly, and was essential in proving our main theorem.

Theorem 8 (–). Suppose E is a non-CM elliptic curve over \mathbb{Q} . Suppose K is a quadratic imaginary field that satisfies the Heegner hypothesis and p is an odd prime such that $p \nmid \#E'(K)_{tor}$ for any curve E' that is \mathbb{Q} -isogenous to E. Then

 $\operatorname{ord}_p(\#\operatorname{III}(E)) \leq 2 \operatorname{ord}_p([E(K) : \mathbb{Z}y_K]),$

unless disc(K) is divisible by exactly one prime ℓ , in which case the conclusion is only valid if $p \neq \ell$.

Computing Indexes of Heegner Point

Use the Gross-Zagier formula to compute $h(y_K)$ from special values of *L*-functions (very fast).

When E(K) can be computed, (e.g., if $E(\mathbb{Q})$ known, or using 4-descent), we obtain the index using properties of heights.

If E(K) too difficult to compute, can sometimes use the Cremona-Prickett-Siksek bound to quickly bound $[E(K) : \mathbb{Z}y_K]$.

Example 9. Let *E* be 546E and $K = \mathbb{Q}(\sqrt{-311})$. Let *F* be the quadratic twist of *E* by -311. We have

 $h(y_K) \sim 7315.20688,$

CPS bound for F is B = 13.0825747. Search for points on F of naive logarithmic height ≤ 18 , and find no points, so

 $[E(K): \mathbb{Z}y_K] < \sqrt{7320/(2 \cdot (18 - 13.0825747))} \sim 27.28171 < 28.$

Major Obstruction: Tamagawa Numbers

Serious Issue: The Gross-Zagier formula and the BSD conjecture together imply that if an odd prime p divides a Tamagawa number, then $p \mid [E(K) : \mathbb{Z}y_K]$.

• If E has $r_{an} = 0$, and $p \ge 5$, and $\rho_{E,p}$ is surjective, then Kato's theorem (and Mazur, Rubin, et al.) imply that

 $\operatorname{ord}_p(\#\operatorname{III}(E)) \leq \operatorname{ord}_p(L(E,1)/\Omega_E),$

so squareness of #III(E) frequently helps.

• In many cases with $r_{an} = 1$, there is a big Tamagawa number there are 91 optimal curves up to conductor 1000 with Tamagawa number divisible by a prime $p \ge 7$.

Conclusion

Throw in exlicit 3 and 4-descents to deal with a handful of reluctant cases. Everything works out so that *all* our techniques are just enough to complete the proof. If Cremona's book were larger, this might not have been the case.

Please see

http://modular.fas.harvard.edu/papers/bsdalg/

for the finished write-up.

Next Step: Write a Paper with Me!!

- 1. [CM] Verify the BSD conjecture for CM curves up to some conductor. About half of rank 0 and half of rank 1. Very extensive theory here, beginning with Rubin—should be relative "easy", especially for rank 0.
- 2. [Manin] Rigorously verify that c = 1 for curves up to conductor 70000.
- 3. [Extend] Consider curves of conductor > 1000. Have to verify nontriviality of big III(E)'s; use visibility and Grigor Grigorov's thesis.
- 4. [**Big Rank**] Verify BSD at all primes $p \leq 100$ for some curve of rank 2.
- 5. **[Isogenies**] Verify the BSD conjecture at primes p that are the degree of an isogeny from E. Mazur's "Eisenstein descent" does prime level case; but then p = 2. Perhaps direct p-descent is doable, or use congruences...
- 6. [Tamagawa] Verify the BSD conjecture at primes *p* that divide a Tamagawa number. Prove a refinement of Kolyvagin's theorem and/or develop *p*-adic methods.
- 7. [Abelian Varieties] Verify the full BSD conjecture for modular Jacobians $J_0(N)$, for $N \le 100$.