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ALGORITHMS FOR CHOW-HEEGNER POINTS

VIA ITERATED INTEGRALS

HENRI DARMON, MICHAEL DAUB, SAM LICHTENSTEIN, AND VICTOR ROTGER

With an appendix by William Stein

Abstract. Let E/Q be an elliptic curve of conductor N and let f be the

weight 2 newform on Γ0(N) associated to it by modularity. Building on an
idea of S. Zhang, an article by Darmon, Rotger, and Sols describes the con-

struction of so-called Chow-Heegner points, PT,f ∈ E(Q̄), indexed by algebraic
correspondences T ⊂ X0(N) × X0(N). It also gives an analytic formula, de-
pending only on the image of T in cohomology under the complex cycle class
map, for calculating PT,f numerically via Chen’s theory of iterated integrals.
The present work describes an algorithm based on this formula for computing
the Chow-Heegner points to arbitrarily high complex accuracy, carries out the
computation for all elliptic curves of rank 1 and conductor N < 100 when the
cycles T arise from Hecke correspondences, and discusses several important
variants of the basic construction.

1. Introduction

Let E/Q be an elliptic curve of conductor N and let

f =
∑
n≥1

ane
2πinz ∈ S2(Γ0(N))

be the weight two newform associated to E by modularity. The proof of the Tate
conjecture for curves implies the existence of a nonconstantmodular parametrisation

(1.0.1) πE : X0(N) −→ E

defined over Q, together with a regular differential ω ∈ Ω1(E/Q) satisfying

(1.0.2) π∗
E(ω) = ωf := 2πif(z)dz.

The map πE plays a key role in the study of the Birch and Swinnerton-Dyer conjec-
ture (BSD). This conjecture predicts that, for any number fieldH, the rank of E(H)
is equal to the order of vanishing ran(E/H) of the L-series L(E/H , s) at s = 1; one
is thus led to seek strategies for constructing a nontorsion point P ∈ E(H) when
L(E/H , 1) = 0, or—better yet—a system of ran(E/H) independent such points.

WhenH is a ring class field of an imaginary quadratic fieldK, a fruitful approach
to this question is afforded by the theory of Heegner points attached toK. These are
the images under πE of points inX0(N)(K̄) attached to the moduli of elliptic curves
with complex multiplication by some order in K. For instance it is known, thanks
to the work of Gross–Zagier [GrZa] and its strengthening by Zhang [Zh] combined
with a mild generalisation [BD1] of the work of Kolyvagin that Heegner points
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attached to K can be made to generate all E(H) ⊗Q when ran(E/H) = [H : K],
at least when the discriminant of K is prime to N and L(E/K , s) has a simple zero
at s = 1.

Let
H∗ = {z ∈ C : Im(z) > 0} ∪P1(Q) = H ∪P1(Q)

denote the extended upper half-plane, topologized in the usual manner. The
Heegner points attached to K correspond precisely to the quadratic irrationalities
z ∈ H ∩ K under the usual identification of X0(N)(C) with Γ0(N)\H∗. Further-
more, after identifying E(C) with the quotient C/ΛE by the period lattice ΛE ⊂ C
attached to the regular differential ω of (1.0.2), the map πE can be computed
analytically from the formula

(1.0.3) πE(z) =

∫ z

i∞
ωf =

∞∑
n=1

an
n
e2πinz ∈ C/ΛE ,

where the integral is taken over the vertical line joining the cusp i∞ ∈ P1(Q) to z
(or any path in Γ0(N)\H∗ homotopic to it).

Equation (1.0.3) makes it possible to calculate Heegner points numerically on a
computer1, and leads to an efficient algorithm for calculating algebraic points on
elliptic curves which is presumably better than the more general-purpose method
of descent, at least in situations where it can be made to yield nontorsion points.
In addition, a careful study of (1.0.3) has guided attempts to unearth more general
analytic recipes for algebraic points on elliptic curves in settings falling outside the
scope of the theory of complex multiplication. To elaborate on this last point, let
us mention that:

• In [BD2] and [Gr], the complex upper half-plane H∗ is replaced by its
p-adic counterpart Hp := P1(Cp) − P1(Qp) regarded as a rigid analytic
variety, and the group Γ0(N) by the group of units in a Z[1/p]-order of
a totally definite quaternion algebra. Replacing the complex integrals of
(1.0.3) by Coleman’s p-adic path integrals leads to p-adic analytic formu-
lae for (and explicit calculations of) Heegner points arising from Shimura
curve parametrisations, thanks to the Cerednik-Drinfeld theory of p-adic
uniformisation of these curves.

• By mimicking the formulae for Shimura curve parametrisations involving
p-adic path integrals, the article [D1] was able to propose a p-adic con-
struction of points on elliptic curves—the so-called Stark-Heegner points—
conjecturally defined over abelian extensions of real quadratic fields. In
this setting, the global structure analogous to (1.0.1) is not currently known
to be available, and numerical verifications such as those carried out in [DP]
provide the best evidence at present for the conjectures of [D1].

• Let E/F be a modular elliptic curve over a totally real number field F .
By calculations similar to those of [D1], but replacing (1.0.3) by a formula
involving integrals of complex-analytic differential forms of higher order as-
sociated to Hilbert modular forms, [D2, Ch.VIII] proposes a purely complex
construction of Stark-Heegner points in E(C). These points are conjectured
to be defined over suitable abelian extensions of quadratic extensions K/F
which have exactly one nonreal archimedean place. In this complex setting

1For the important role of experiments in the early study of Heegner points see, for example,
[Bi], [BG].
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as well, numerical experiments such as those described in [DL] are the best
evidence so far for the algebraicity of the Stark-Heegner points.

• Complex Stark-Heegner points can be viewed as images of certain null-
homologous topological cycles on Hilbert modular varieties under a kind of
“Abel-Jacobi map”. In the hope of better understanding this construction,
the articles [BDP2] and [DRS] discuss “generalised modular parametrisa-
tions”

Π : CHr+1(V )0 −→ E

from the Chow group CHr+1(V )0 of null-homologous codimension r + 1
algebraic cycles on a (2r + 1)-dimensional variety V to the Mordell-Weil
group of an elliptic curve E, arising from suitable algebraic correspondences
Π ∈ CHr+1(V × E). In the setting of [BDP2], E is an elliptic curve with
complex multiplication, V the product of an (r + 1)-dimension Kuga-Sato
variety with Er, and the existence of Π relies on an ostensibly difficult
instance of the Hodge or Tate conjectures. Nonetheless, the global nature
of the points in the image of Π, for which the term “Chow-Heegner point”
was proposed in [BDP2], is better understood than in the setting of Stark-
Heegner points.

An even simpler instance of the Chow-Heegner point construction arises when V =
X0(N)3 is the triple product of a modular curve and Π ⊂ X0(N)3×E is the product
of a codimension 1 cycle T ⊂ X0(N)2 with the graph of the “classical” modular
parametrisation πE of equation (1.0.1). The resulting map,

ΠT : CH2(X0(N)3)0 −→ E,

is a natural generalisation of (1.0.1). In particular, the image PT,f := ΠT (ΔGKS)
of the Gross-Schoen modified diagonal cycle ΔGKS (as defined in Theorem 1 of
[DRS] for example) under ΠT is an interesting rational point on E whose rela-
tions with special values of L-functions [YZZ] and the pro-nilpotent fundamental
groups of modular curves [DRS] are well documented in the literature. The point
PT,f ∈ E(Q) shall be called the Chow-Heegner point attached to the cycle T and
the newform f . An alternate, somewhat simpler description of PT,f proceeds by
essentially intersecting T with the diagonal in X0(N) × X0(N) to obtain a class
in Pic(X0(N)), and hence (after a suitable modification to make it of degree 0) a
rational point PT of the Jacobian J0(N). The point PT,f is then just the image of
PT under πE . The definition of the points PT and PT,f is described more precisely
in §2.3 and §3.1 below.

The article [DRS] also gives a complex analytic formula for the point PT,f in
terms of K.-T. Chen’s iterated path integrals. In order to provide some motivation
for it, note that the homomorphism

π1(X0(N)(C);∞) −→ C defined by γ 	→
∫
γ

ωf

factors through the maximal abelian quotient H1(X0(N)(C),Z) of the fundamental
group of X0(N)(C). Chen observed that it is also possible to obtain nonabelian in-
formation about this fundamental group through integration. His theory of iterated
integrals gives rise to the functions

J : π1(X0(N)(C);∞) −→ C
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attached to an r-tuple of differentials, which does not need to factor through
H1(X0(N)(C),Z) but rather through the quotient of π1(X0(N)(C),Z) by the r-th
term in its lower central series. The algorithm for the computation of the Chow-
Heegner points PT,f described in this paper, in effect, replaces the integral appear-
ing in (1.0.3) by a sum of iterated integrals attached to pairs of modular forms.
These pairs depend only on the so-called Hodge cycle attached to T , namely, its
image

ξT ∈ H1,1
dR (X0(N)2) ∩H2

B(X0(N)2,Q)

under the cycle class map. While algebraic equations for the modular curve X0(N)
(and, a fortiori, for the cycle T itself) can be hard to calculate in practice, the
Hodge class ξT is amenable to numerical calculation using the explicit description
of the de Rham cohomology of modular curves in terms of weakly holomorphic
modular forms of weight two and their q-expansions. The algorithm for computing
the Hodge class ξT and the associated iterated integrals has been implemented in
a computer program using the free software package Sage [S+09], and makes the
Chow-Heegner points PT,f computable in practice for elliptic curves E of moderate
conductor.

As explained in the appendix, there are other, somewhat more direct approaches
to computing PT,f for specific cycles T arising from elliptic curve factors of J0(N).
The approach based on iterated integrals appears to be somewhat more general
and works for arbitrary Hodge cycles. In future work, we hope to extend our algo-
rithm to compute Chow-Heegner points associated to “exceptional” Hodge cycles on
products of Kuga-Sato varieties arising from CM forms. The rationality of Chow-
Heegner points computed in this manner would provide some indirect numerical
evidence for certain open cases of the Hodge conjecture, in the spirit of the study
carried out in [BDP2].

We close this introduction by mentioning that there also exist p-adic methods
for computing the points considered in this article, arising from [DR], where the
authors provide explicit formulas for the image of the cycle ΔGKS under the p-
adic syntomic Abel-Jacobi map, involving special values of Garrett-Hida p-adic
L-functions and “p-adic iterated integrals”. The reader is referred to [Dau13], [La],
and the forthcoming [DLR] for more details on the p-adic approach.

Plan of the paper. In §2 we recall necessary facts about iterated integrals and
related ingredients for our main algorithm. In §3 we specialize to the case of modular
curves, define the points PT,f precisely, and write down an explicit analytic formula
for them. In §4 we describe in detail an algorithm for evaluating this formula
numerically. The algorithm is illustrated with numerical examples in §5, which also
includes a table of triple Chow-Heegner points on rank one elliptic curves of small
conductor.

Source code. Our Sage implementation of the algorithm described in this paper
can be found at http://math.berkeley.edu/~mwdaub.

2. Preliminaries

2.1. De Rham cohomology. Let X be a smooth, complete algebraic curve of
genus g ≥ 2 over Q, and let Y = X \ {∞} be the complement of a single point in
X(Q). For a smooth variety V defined over Q (such as X or Y ) we denote by V an

the complex manifold V (C) with its analytic topology.

http://math.berkeley.edu/~mwdaub
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The de Rham cohomology H1
dR(X

an,C) is the cohomology of the de Rham com-
plex of smooth C-valued differential forms on Xan.

Since the Riemann surface Xan is algebraic and defined over Q, there is a canon-
ical isomorphism

H1
dR(X

an,C) = H1
dR(X/Q)⊗C.

Here,

H1
dR(X/Q) := H1(0 → OX → Ω1

X → 0)

is the algebraic de Rham cohomology of X/Q, defined as the hypercohomology of
the de Rham complex of sheaves of regular differential forms on X.

Because X is a curve, the group H1
dR(X/Q) has a particularly simple description

in terms of the space Ω1
II(X) of differentials of the second kind on X, defined as

Ω1
II(X) := rational 1-forms on X with vanishing residues at all points of X.

Observe that Ω1
II(X) = Ω1

II(Y ), by the residue formula. Thus there is a canonical
isomorphism

H1
dR(X/Q) = Ω1

II(Y )/dQ(Y ),

where Q(Y ) = Q(X) is the field of rational functions on Y (or on X). Using the
Riemann-Roch theorem, one sees that

Ω1
II(Y )/dQ(Y ) ∼= Ω1(Y )/dO(Y ).

So H1
dR(X/Q) can also be computed as the space of regular 1-forms on Y , modulo

exact forms. For computational purposes, the latter description is the most useful:
we will compute with classes in H1

dR(Y ) using rational 1-forms on X which are
regular away from the point ∞. These are amenable to computation via their
Laurent expansions about ∞.

Later on we shall make use of the symplectic Poincaré pairing

〈, 〉 : H1
dR(X

an,C)×H1
dR(X

an,C) → C,

defined by

〈ω, η〉 := 1

2πi

∫
X

ω ∧ η

for (the cohomology classes of) smooth C-valued 1-forms ω, η on Xan. If ω and η
are differentials of the second kind on X, regular away from the cusp ∞, then the
induced pairing on H1

dR(X/Q) can be computed as

〈ω, η〉 = res∞(Fω · η) = −res∞(ω · Fη),

where Fν denotes a local primitive of the differential ν at ∞.

2.2. Iterated integrals. We now turn to recalling the definition and basic prop-
erties of iterated integrals; see [Ch], [H1], [H2] for more details.

Fix a base point o ∈ Y an and denote by Γ := π1(Y
an; o) the fundamental group

of the Riemann surface Y an. We write I ⊂ Z[Γ] for the augmentation ideal of the
integral group ring of Γ. Recall that H1(X

an,Z) = H1(Y
an,Z) ∼= Γab, as can be

seen from the well-known presentation for the fundamental group of a Riemann
surface, and that this abelian group is naturally identified with I/I2.

Definition 2.2.1. The path space on Y based at o, denoted P(Y ; o), is the set of
piecewise-smooth paths

γ : [0, 1] −→ Y an, with γ(0) = o.
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Let

π : Ỹ → Y an, resp. π : X̃ → Xan,

denote the universal covering space of Y an (resp. Xan) corresponding to the base-

point o. The group Γ acts on Ỹ transitively and without fixed points, and the map
γ 	→ γ(1) identifies the quotient Ỹ /Γ with Y an.

Recall that a closed, C-valued smooth 1-form (resp. a meromorphic 1-form of the

second kind) η onXan admits a smooth (resp. meromorphic) primitive Fη : X̃ → C,
defined by the rule

Fη(γ) :=

∫ 1

0

γ∗η.

Definition 2.2.2. The basic iterated integral attached to an ordered n-tuple
(ω1, . . . , ωn) of smooth 1-forms on Y an is the function P(Y ; o) → C, denoted∫
ω1 · ω2 · . . . · ωn, defined by

γ 	→
∫
γ

ω1 · ω2 · . . . · ωn :=

∫
Δ

(γ∗ω1)(t1)(γ
∗ω2)(t2) · · · (γ∗ωn)(tn),

where Δ is the simplex in [0, 1]n defined by 0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1. The
integer n is called the length of this basic iterated integral.

Example 2.2.3. When n = 2, the basic iterated integral attached to ω and η can
be computed by the formula∫

γ

ω · η =

∫
γ

ωFη =

∫ 1

0

γ∗(ωFη).

In the expression in the middle, we abusively use the same notation ω for the
differential π∗ω on Ỹ . The 1-form ωFη is to be integrated along a lift of γ to Ỹ ,

which is unique once a lift of o to Ỹ is specified.

Definition 2.2.4. An iterated integral is a linear combination of basic iterated
integrals, viewed as a function on P(Y ; o). Its length is defined to be the maximum
of the lengths of its constituent basic iterated integrals. It is said to be homotopy
invariant if its value on any path γ depends only on the homotopy class of γ.

A homotopy-invariant iterated integral defines a C-valued function on Γ, and by
extending linearly, induces a homomorphism of abelian groups Z[Γ] → C. Observe
that a homotopy invariant iterated integral of length ≤ n vanishes on the (n+1)st
power In+1 of the augmentation ideal in Z[Γ], and hence gives rise to a well-defined
element of Hom(I/In+1,C). The natural map
(2.2.1)

{homotopy invariant iterated integrals of length ≤ n} −→ Hom(I/In+1,C)

is an isomorphism; see, for example, [H2].
We will be interested in numerically evaluating certain homotopy invariant it-

erated integrals on Y of length ≤ 2. Suppose ω and η are two differentials of the
second kind on X, regular on Y , representing cohomology classes ω, η ∈ H1

dR(X/Q)
in the manner of §2.1. The basic iterated integral

∫
ω ·η of length 2 is not generally

homotopy invariant. But when either ω or η is holomorphic on X — i.e., has no
pole at ∞ — a suitable modification of

∫
ω · η will be homotopy invariant, as we

now explain.
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Recall that a differential on a Riemann surface is said to have a logarithmic pole
at a point if its expansion in terms of a local parameter q at this point is of the form∑∞

n=0 anq
n dq

q . When ω is holomorphic at ∞, we let αω,η be a meromorphic 1-form

on X that is regular on Y and is such that the induced differential ωFη − αω,η on

X̃ has at worst a logarithmic pole at (any point lying over) ∞. This condition is

well-posed because the principal part of ωFη at x̃ ∈ X̃ depends only on the image
x of x̃; see [DRS, §2]. The form αω,η exists — and in fact can even be taken to be
algebraic and defined over Q — by Riemann-Roch. If ω is not holomorphic at ∞
but η is, then we define αω,η := −αη,ω .

Lemma 2.2.5. Let ω and η be as above, and assume that either ω or η is holomor-
phic at ∞. Then the iterated integral Jω,η :=

∫
ω · η − αω,η is homotopy-invariant.

Proof. The homotopy invariance of Jω,η follows from the fact that Jω,η(γ) =∫
γ
ωFη−αω,η, and the 1-form on X̃ in the integrand is holomorphic when restricted

to Ỹ .
�

Remark 2.2.6. Note that if ω and η are both holomorphic at ∞, then we can take
αω,η = 0.

Now consider an integral Hodge class ξ ∈ H1(Xan,Z)⊗H1(Xan,Z), a cohomol-
ogy class of type (1, 1) in H2(Xan ×Xan,Z) that lies in the Künneth component
H1(Xan,Z)⊗H1(Xan,Z). Since ξ is type (1, 1), we can choose a basis {ωi} such
that when we write ξ =

∑
ci,jωi ⊗ ωj , then either ωi or ωj is holomorphic at ∞

whenever ci,j �= 0. By the previous lemma, the iterated integral Jξ =
∑

cijJωi,ωj

is homotopy invariant

Lemma 2.2.7. Suppose that ξ is an integral Hodge class on X×X as above. Using
(2.2.1), identify Jξ with a homomorphism of abelian groups I/I3 → C. Then the
restriction of Jξ to I2/I3 is Z-valued and agrees with ξ viewed as an element of

H1(Xan,Z)⊗H1(Xan,Z) ∼= (H1(X
an,Z)⊗H1(X

an,Z))∨

= (I/I2 ⊗ I/I2)∨ = (I2/I3)∨.

(Here A∨ denotes Hom(A,Z), for any abelian group A.)

Proof. See the discussion at the beginning of §2 of [DRS], and loc. cit., Lemma
1.1(2). �

By Lemma 2.2.7, the map Jξ induces a homomorphism

Jξ : H1(X
an,Z) = I/I2 → C/Z.

The following observation, which is extended in Theorem 2.3.1 below to the
entire Jacobian of X, is key in our approach to calculating Chow-Heegner points.
Fix any holomorphic 1-form ρ ∈ H1,0(XC) ⊂ H1(Xan,C) corresponding to an
elliptic curve factor E of the Jacobian of X, and denote by Λ the period lattice

Λ :=

{∫
γ

ρ, γ ∈ H1(X
an,Z)

}
⊂ C

attached to ρ. The class γρ ∈ H1(X
an,C) that is Poincaré dual to ρ actually

belongs to H1(X
an,Z) ⊗ Λ. Consequently, Jξ(γρ) can be viewed as a well-defined

element of C/Λ, and hence of E(C).
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2.3. Chow-Heegner points. LetX1, X2 denote copies ofX, andX12 the diagonal
copy of X in X1 ×X2. We fix a choice of basepoint ∞ ∈ X and use it to identify
X1 and X2 with the curves X1 × {∞} and {∞} ×X2 respectively in X1 ×X2. To
a codimension one algebraic cycle Z ⊂ X × X = X1 × X2 (defined over Q) we
associate the divisor class

DZ = (Z ∩X12)− (Z ∩X1)− (Z ∩X2).

Define a corresponding degree-zero divisor class

PZ = DZ − deg(DZ)o ∈ Pic0(X).

(Recall that o ∈ X(Q) is a fixed base point which is different from the previously
chosen base point ∞.)

We now state the iterated integral formula from [DRS] for the image of PZ under
the Abel-Jacobi map

AJX : Pic0(X) → Ω1(Xan)∨/H1(X
an,Z).

Let εo be the projector on Pic(X ×X) defined by

εo(Z) = Z − i1∗π1∗Z − i2∗π2∗Z

where π1, π2 : X × X ⇒ X are the projections and i1, i2 : X ⇒ X × X are the
inclusions of “vertical and horizontal” copies of X over the basepoint o.

Let

cl(εo−) : Pic(X ×X) → H1(Xan,Z)⊗H1(Xan,Z)

denote the composition of the cycle class map and the projector εo. (The effect of
ε0 is to annihilate the H2⊗H0 and H0⊗H2 factors in the Künneth decomposition
of the second Betti cohomology group of X ×X.) Suppose cl(εoZ) is represented
by

∑
i,j ci,jωi ⊗ ωj , where ωi or ωj is holomorphic at ∞ whenever ci,j �= 0.

Theorem 2.3.1 ([DRS, Corollary 2.6]). The image

AJX(PZ) ∈ Ω1(Xan)∨/H1(X
an,Z)

is represented by the linear functional that maps ρ ∈ Ω1(Xan) to∑
i,j

ci,j

∫
γρ

(ωi · ωj − αωi,ωj
) + deg(DZ)

∫ ∞

o

ρ ∈ C,

where γρ ∈ H1(X
an,C) is Poincaré dual to ρ ∈ H1,0(Xan) ⊂ H1

dR(X
an,C). �

3. Chow-Heegner points on modular curves

We now specialize the discussion of the preceding section to the case of classical
modular curves X. We shall define certain rational points on an arbitrary ellip-
tic curve E/Q called Chow-Heegner points, such that the corresponding points of
E(C) ∼= C/ΛE can be computed using iterated path integrals via Theorem 2.3.1.
For more details on the theory of elliptic curves, an interested reader should con-
sult [Sil]. For modular curves and modular forms, [DS] is a good introductory text.
Another good resource is [Stn], which focuses more on the computational aspects,
including modular symbols.
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3.1. Definitions. Let N > 1 be an integer and X = X0(N) denote the canonical
model overQ of the classical modular curve of level N ; write J0(N) for the Jacobian
of X0(N). With this choice of X we place ourselves in the setup of §2, taking the
ground field F to be Q and the point ∞ ∈ X(Q) to be the usual cusp at infinity.
Thus Y := X0(N) − {∞}. (Note that Y differs from the usual open modular
curve Y0(N).) For the moment we do not specify the basepoint o ∈ Y an used for
topological constructions.

We write S2(Γ0(N)) for the space of cuspidal weight 2 modular forms for Γ0(N).
This space is canonically isomorphic to the vector space Ω1(Xan) of holomorphic
1-forms on X, via the map which associates to a modular form f : H∗ → C the 1-
form ωf = 2πif(z) d z on X. We recall that if f has Fourier expansion

∑
n≥1 anq

n,

then a Laurent expansion for ωf near ∞ is given by
∑

n≥1 anq
n d q

q .

Let E be an elliptic curve over Q of conductor NE dividing N . Its isogeny class
corresponds to a newform f ∈ S2(Γ0(NE)) with rational Fourier coefficients, which
gives rise to a modular parametrization πE : J0(NE) → E, a morphism of abelian
varieties defined over Q.

Up to replacing E by an isogenous elliptic curve (which is harmless for our
constructions), we can and will assume throughout that ker πE is connected. In
the literature this choice is often referred as the optimal elliptic curve. In this case,
assuming the Manin constant c = 1, the Néron lattice of E coincides with the period
lattice Λf of the differential ωf = 2πif(z)dz ∈ Ω1(X0(NE)

an) corresponding to f .
The map πE can be computed on complex points explicitly, using the Abel-Jacobi

isomorphism

AJX : J0(NE)(C) ∼= Ω1(X0(NE)
an)∨/H1(X0(NE)

an,Z),

the Weierstrass uniformization W : C/Λf
∼= E(C), and the analytic parametriza-

tion

πan
E : Ω1(X0(NE)

an)∨/H1(X0(NE)
an,Z) → C/Λf .

The map πan
E sends the coset of a functional on Ω1(X0(NE)

an) to the evaluation of
that functional at ωf . Thus for PC ∈ J0(NE)(C) we have

(3.1.1) πE(PC) = W (πan
E (AJX0(NE)(PC))) = W (AJX0(NE)(PC)(ωf )).

For each divisor d of N/NE there is a degeneracy map πd : X0(N) → X0(NE)
that induces by the Albanese universal property a morphism of abelian varieties
πd : J0(N) → J0(NE), which we denote with the same symbol. Put πd

E = πE · πd :
J0(N) → E for the composition of πd with πE . When d = 1, the map π1 is the
projection arising from the natural inclusion Γ0(N) ⊆ Γ0(NE) and we shall simply
write π1

E = πE ; it will be clear from the context whether the source of this map is
J0(N) or J0(NE).

Let T = Q[. . . , Tn, . . .]n≥1 be the Hecke algebra of level N , and let T0 denote
the subalgebra generated by Hecke operators Tn such that (n,N) = 1. Then

T0 �
∏
h

Kh ⊆ T �
∏
h

Lh

where h runs over Galois conjugacy classes of newforms of all levels M dividing N ,

Kh = Q({an(h)}n≥1)

is the number field generated by the Hecke eigenvalues of h, and, if Nh | N stands
for the level of h, the ring Lh is a commutative Artinian Kh-algebra of dimension
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[Lh : Kh] = σ(N/Nh), the number of factors of N/Nh (cf. [Ka], [RS, Ch. 14]). Let
End(Jac(X)) denote the ring of endomorphisms of Jac(X) which are defined over

Q. The endomorphism algebra End0(Jac(X)) := Q ⊗ End(Jac(X)) contains the
Hecke algebra T0 as its center and T as a maximal commutative subalgebra (and
End0(Jac(X)) � T � T0 when N is prime). More precisely,

End0(Jac(X)) = 〈T, {δd}d|σ(N/Nh)〉 �
∏
h

Mσ(N/Nh)(Kh),

is spanned by the Hecke operators in T and the degeneracy operators δd defined
e.g. in [Ka], and is isomorphic to the above product of matrix algebras.

Definition 3.1.1. For a divisor M of N and a newform g ∈ S2(Γ0(M)), denote by

Tg ∈ T0
∼=
∏
h

Kh

the idempotent with 1 in the Kg component and 0 elsewhere.

We shall also view Tg as an idempotent of T and of End0(Jac(X)) by the natural

inclusion, so that T[g] := Tg ·T = Lg and End0(Jac(X))[g] := Tg ·End0(Jac(X)) =
Mσ(N/M)(Kg).

There are natural isomorphisms

(3.1.2)
End(Jac(X))⊗Q

� Corr(X) := Pic(X ×X)⊗Q/(π∗
1Pic(X)⊗Q⊕ π∗

2Pic(X)⊗Q).

Under these identifications, an endomorphism T ∈ End0(Jac(X)) is associated
to a divisor class in Pic(X × X) ⊗ Q, which we also denote by the same symbol,
and is well-defined only up to horizontal and vertical divisors.

In §2.3 a point PT ∈ Pic0(X) = J0(N)(Q) was attached to a divisor T on X×X;
this point only depends on the class of T in Pic(X × X) ⊗ Q/(π∗

1Pic(X) ⊗ Q ⊕
π∗
2Pic(X)⊗Q). This construction gives rise to a map

Pic(X ×X)⊗Q → J0(N)(Q)⊗Q

T 	→ PT .

Note that both these divisor classes and the projector εo depend on the basepoint
o, so we must now specify a particular choice of o. In the following definition, we
fix the choice of basepoint o to be the cusp 0 ∈ X, which is distinct from ∞ because
N > 1.

Definition 3.1.2. For an operator T ∈ End0(Jac(X))[g] and a divisor d of N/NE ,
define the Chow-Heegner point

PT,f(d) = πd
E(PT ) ∈ E(Q)⊗Q.

When we take d = 1 we shall just write PT,f for PT,f(d) ; in addition, the Chow-
Heegner point associated with T = Tg and d = 1 shall be denoted Pg,f .

For any positive integer n, define Tg,n := Tg · Tn ∈ T as the product of Tg and
Tn, and define

Pg,f,n := PTg,n,f .

Note that Pg,f = Pg,f,1 and that Pg,f,n is a multiple of Pg,f if the eigenvalue
an(g) of Tn acting on the g-isotypic component is rational. Thus, the points Pg,f,n

for n > 1 are only of interest when g has irrational Fourier coefficients or is an
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oldform. For a general discussion of the notion of the Chow-Heegner point, of
which the construction above is a special case; see the introduction of [BDP2] and
[DRS].

Remark 3.1.3. To avoid the tensor products with Q in the definition of the above
Chow-Heegner points PT,f(d) , one must work with an actual algebraic cycle on
X × X, as opposed to T which is merely a Q-linear combination of such cycles.
Define the “denominator” dT of T ∈ T to be the smallest positive integer such that
dTT lies in the integral Hecke algebra TZ := Z[. . . , Tn, . . .]. Then dTPT,f(d) belongs
to E(Q); see also §4.7.

Put dg,n := dTg,n
. We shall regard dg,nPg,f,n as well-defined only modulo the

torsion subgroup E(Q)tor. One reason for this is that to obtain a computable
formula for Pg,f,n one can take the basepoint o to be any cusp other than ∞.
There being no distinguished choice, one is left with an ambiguity valued in the
image in E(Q) of the (torsion) cuspidal subgroup of J0(N); see (3.2.2) below and
the subsequent remarks.

Theorem 3.1.4 ([DRS, Theorem 3.7]). Assume that the local signs εp(g, g, f) of
Garrett’s triple product L-function L(g, g, f, s) are +1 at the primes p | N . Then
the module of points

P g,f := 〈PT,f(d) : T ∈ End0(Jac(X))[g], d | N
NE

〉 ⊆ E(Q)⊗Q

is nonzero (equivalently, there is a point
∑

d|N/NE
ndπ

d
E(dTPT ) ∈ E(Q) which is

nontorsion, for some T and integers nd) if and only if the following conditions hold:

i. L(f, 1) = 0,
ii. L′(f, 1) �= 0, and
iii. L(f ⊗ Sym2(σg), 2) �= 0 for all σ ∈ Gal (Q̄/Q).

3.2. Algorithms. The aim of this section is to explain how to explicitly compute
the slightly smaller submodule

PT[g],f := {PT,f : T ∈ T[g]} = 〈Pg,f,n : n ≥ 1〉 ⊆ P g,f

of the Mordell-Weil group E(Q)⊗Q of E. Although the methods generalize to the
computation of the full module of points P g,f , the computation of PT[g],f is simpler,
and often sufficient for the purpose of finding a nontorsion point when one exists
by Theorem 3.1.4. Indeed, the authors have not come across an example where
PT[g],f is torsion but the a priori larger P g,f is nontorsion. The interested reader

may consult [Ka] for details relevant to the eventual adaptations of our methods to
calculating P g,f in its entirety.

Theorem 2.3.1 gives rise to an explicit formula for a Chow-Heegner point Pg,f,n

in terms of iterated integrals. This formula is stated in terms of the components of
the cohomology class cl(εoTg,n) ∈ H1

dR(X/Q)⊗2 expressed as a sum of pure tensors.
In this section we find an explicit formula for cl(εoTg,n).

The action of the Hecke algebra T0 on modular forms extends to an action on
the de Rham cohomology of X. Under this action, we have

H1
dR(X/Q) ∼= H1

dR(X/Q)[g1]⊕ · · · ⊕H1
dR(X/Q)[gn],

indexed by Galois conjugacy classes of newforms of all levels M dividing N . Let
g ∈ S2(Γ0(M)) be a newform and suppose {ωg,1, . . . , ωg,2k} is a collection of dif-
ferentials of the second kind on X representing a basis for H1

dR(X/Q)[g]. Write
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Tnωg,i =
∑

j a
n
ijωg,j , and denote by An and B the matrices (anij)1≤i,j≤2k and

(〈ωg,i, ωg,j〉)1≤i,j≤2k, respectively, where 〈 , 〉 denotes the Poincaré pairing. Then
we have the following:

Lemma 3.2.1. cl(εoTg,n) =
∑

i,j c
n
ijωg,i ⊗ ωg,j , where (cnij)1≤i,j≤2k = −B−1An.

Proof. The projector εo acts on H2
dR(X×X) by annihilating the H0

dR(X)⊗H2
dR(X)

and H2
dR(X)⊗H0

dR(X) components of the Künneth decomposition, so we have

cl(εoTg,n) ∈ H1
dR(X)⊗H1

dR(X).

Note from the definition that Tg,n acts on H1
dR(X)[h] as Tn if h = g and 0 otherwise,

so cl(εoTg,n) is equal to the image of Tn under the identification:

End(H1
dR(X)[g]) � H1

dR(X)[g]∨ ⊗H1
dR(X)[g] � H1

dR(X)[g]⊗H1
dR(X)[g].

The first map is the canonical isomorphism of finite dimensional vector spaces,
and the second is induced from the inverse of the identification H1

dR(X)[g] �
H1

dR(X)[g]∨ via the map v 	→ (w 	→ 〈v, w〉). The remainder of the proof is a
straightforward exercise in linear algebra, and is left to the reader. �

Combining the previous results, we obtain the following formula for Pg,f,n. Let γf
be the Poincaré dual of ωf and let ωg,1, . . . , ωg,2k be differentials of the second kind
that give rise to a symplectic basis for the g-isotypic Q-subspace H1

dR(X/Q)[g].
That is, for 1 ≤ i ≤ k we have 〈ωg,i, ωg,i+k〉 = 1 and 〈ωg,i, ωg,j〉 = 0 for j �=
i+ k. Assume, moreover, that this basis is adapted to the Hodge filtration, in the
sense that the 1-forms ωg,1, . . . , ωg,k are regular at ∞. Since H0(X,Ω1(X/Q))[g] ⊂
H1

dR(X/Q)[g] is a maximal isotropic subspace with respect to the Poincaré pairing,
we can simply take any basis ωg,1, . . . , ωg,k for H0(X,Ω1(X/Q))[g] = S2(Γ0(N))[g]
and extend it to a symplectic basis of the sort desired. Write

(3.2.1) cl(εoTg,n) =

2k∑
i,j

cnijωg,i ⊗ ωg,j

where the coefficients can be computed as in Lemma 3.2.1. Since we chose the basis
to be symplectic, the matrix B is the standard symplectic matrix. Additionally,
because Tn preserves the holomorphic subspace of H1

dR(X/Q), then the computa-
tion of −B−1An shows that cnij = 0 when k + 1 ≤ i, j ≤ 2k. Thus, the Hodge class
in (3.2.1) is of the form discussed after Remark 2.2.6.

Combining (3.2.1) with (3.1.1) and Theorem 2.3.1, we obtain the following for-
mula for the point Pg,f,n:

(3.2.2) Pg,f,n = W

⎛
⎝ 2k∑

i,j

cnij

(∫
γf

ωg,i · ωg,j − αωg,i,ωg,j

)⎞⎠ .

Note that (3.2.2) omits the term deg(DTg,n
)
∫∞
o

ωf from the formula in The-
orem 2.3.1. This is justified by our choice of basepoint o, for it is well-known
(cf. e.g. [Man]) that the difference [∞] − [0] is a torsion point of J0(N)(Q). Since
Pg,f,n is defined as an element of E(Q)⊗Q, torsion can be disregarded.

We emphasize that by Lemmas 2.2.5 and 2.2.7, the right-hand side of (3.2.2)
depends only on the homology class

γf ∈ H1(Y
an,Z) = H1(X

an,Z)
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Poincaré dual to ωf . It can therefore be evaluated by lifting γf arbitrarily to an
element γ̃f ∈ π1(Y

an; o) and evaluating the length ≤ 2 homotopy invariant iterated
integral (3.2.2) on any loop in the homotopy class γ̃f .

Remark 3.2.2. When n = 1, formula (3.2.2) greatly simplifies. In the notation of
Lemma 3.2.1, A1 is the identity matrix and B is the standard symplectic matrix
by our choice of basis, and so if we write ηg,i for ωg,i+k, then

Pg,f = W

(
k∑

i=1

(∫
γf

ωg,i · ηg,i − ηg,i · ωg,i − 2αωg,i,ηg,i

))
.

Although Pg,f,n is defined relative to the choice of basepoint o as the cusp 0 on
Y , it will be convenient to compute it relative to a different choice of basepoint.

Lemma 3.2.3. The right-hand side of (3.2.2) is independent of the choice of o ∈
Y (Q).

Proof. Changing the basepoint from o to o′ amounts to conjugating the represen-
tative path γf for the homology class Poincaré dual to ωf by a path β from o to o′.
This manifestly does not affect the value of the integral of the meromorphic 1-form
αωg,i,ωg,j

. Thus the issue is whether we have an identity

(3.2.3)

∫
γf

ωg,i · ωg,j
?
=

∫
βγfβ−1

ωg,i · ωg,j .

But by [H1, Exer. 8], for any 1-forms ω, η, loop γ, and path β, we have

(3.2.4)

∫
βγβ−1

ω · η =

∫
γ

ω · η +

∣∣∣∣ ∫
γ
ω

∫
γ
η

∫
β
ω

∫
β
η

∣∣∣∣ .
In our situation, the determinants expressing the difference between the two sides
of (3.2.3) vanish. Indeed,

∫
γf

ωg,i = 〈ωf , ωg,i〉 = 0, since the decomposition into

isotypic components for the action of the Hecke algebra is orthogonal with respect
to the Poincaré pairing. �

4. Details of the algorithm

We now turn to the question of numerically evaluating formula (3.2.2) for a
Chow-Heegner point Pg,f,n ∈ E(Q) ⊗ Q for an elliptic curve E = Ef . We retain
all the notation from §§2 and 3. The following ingredients occur in (3.2.2):

1. The Poincaré dual γf ∈ H1(X,C) of ωf ∈ H1
dR(X

an,C).
2. A collection of rational differentials of the second kind ωg,1, . . . , ωg,2k on X,

regular away from ∞, whose images in H1
dR(X/Q) are a symplectic basis

for the g-isotypic component H1
dR(X/Q)[g]. This basis should be adapated

to the Hodge filtration on H1
dR(X/Q)[g] in the sense that ωg,1, . . . , ωg,k are

holomorphic everywhere on X, including the point ∞.
3. The coefficients cnij arising from the action of Tn on H1

dR(X) with respect
to the basis ωg,1, . . . , ωg,2k.

4. Meromorphic differentials αωg,i,ωg,j
onX, regular on Y , such that ωg,iFηg,j

−
αωg,i,ηg,j

has at worst a logarithmic pole at (any point lying over) ∞ for
1 ≤ i ≤ k.

These data must be “known” in a sufficiently concrete form to evaluate the iterated
integrals occurring in (3.2.2). It is also desirable to know:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2518 H. DARMON, M. DAUB, S. LICHTENSTEIN, AND V. ROTGER

5. The denominator dg,n of the projector onto the g-isotypic component of the
cohomology of X.

This last item will allow for the computation of a point in E(Q), as opposed to
one in E(Q) ⊗ Q. This section is devoted to methods of computing these five
ingredients.

4.1. Evaluating iterated integrals. Let J =
∫
ω · η − αω,η be a homotopy-

invariant iterated integral of length ≤ 2 on Y , expressed in terms of differentials
of the second kind on X, regular on Y . We seek to compute the right-hand side
of formula (3.2.2), which is a Q-linear combination of J(γ) for various choices of
J and (the homotopy class of) a path γ ∈ π1(Y ; o). As remarked earlier, (3.2.2)
actually depends only on the homology class γ0 of γ. This homology class be-
longs to H1(Y

an,Z) = H1(X
an,Z), which is the abelianization of the quotient

π1(X
an, o) = Γ̄0(N) of Γ0(N) by the smallest normal subgroup containing the

elliptic and parabolic elements.
To evaluate J(γ0) for γ0 ∈ H1(Y

an,Z), choose the basepoint o away from
the set S of elliptic points on Y0(N)an ⊂ Y an and lift γ0 arbitrarily to a path
γ̃ ∈ π1(Y0(N)an \ S, o). For each elliptic point x ∈ S, let ex = |StabΓ0(N)(x)/{±1}|
denote the index of x (which is either 2 or 3) and let γx be a sufficiently small coun-
terclockwise loop around x. WritingH for the normal subgroup of π1(Y0(N)an\S, o)
generated by {γex

x , x ∈ S}, there is a natural isomorphism Γ0(N) � π1(Y0(N)an −
S; o)/H.

We may regard then γ̃ as an element of Γ0(N); this causes no ambiguity because
H lies in the kernel of the natural projection H1(Y0(N)an − S,Z)
→ H1(Y0(N)an,Z) → H1(Y

an,Z). The path γ̃ can then also be viewed as a path
in H from τ0 to γτ0, where γ ∈ Γ0(N) is a lift of γ0.

Lemma 4.1.1. Suppose γ0 is Poincaré dual to ρ. As an element of C/Λρ, we have

J(γ0) =

∫ γτ0

τ0

ωFη − αω,η

where we conflate 1-forms on X with their pullbacks to H∗ = H ∪ {∞}. Moreover,
Fη has Laurent expansion about ∞ ∈ h∗ given by formally integrating the Laurent
expansion of η about the cusp ∞ ∈ X.

Proof. This follows from the preceding discussion, using the definition of iterated
integrals and the homotopy invariance of J . �

Given any differential form λ of the second kind on X, and any γ ∈ Γ0(N), let

I(λ; γ) :=

∫ γτ0

τ0

λ.

(As above, in the right-hand side of this expression λ is conflated with its pullback
to H∗.) By the residue formula, this expression is independent of the choice of path
on the upper half-plane H from τ0 to γτ0. The Γ0(N)-invariance of λ also shows
that this expression is independent of the choice of basepoint τ0 ∈ H, which justifies
suppressing τ0 from the notation.

If λ instead denotes a differential of the second kind on X̃ then the integral
above still makes sense but depends on both the basepoint o and the chosen lift
of o to τ0 ∈ H. We will primarily be interested in evaluating such integrals in
the context of (3.2.2), for which the choice of basepoint is ultimately irrelevant.
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(This is because the Poincaré dual of the homology class of γ is orthogonal to the
1-forms in the iterated integral giving rise to the path integral we seek to evaluate;
cf. Lemma 3.2.3.) However, as we are about to see, for the purposes of algorithmic
efficiency it is necessary to break up the path of integration into pieces that can
be computed relatively quickly. The integrals over these pieces may no longer
be basepoint-independent: when we express γ as a product of computationally-
amenable elements γ(j) ∈ Γ0(N), the corresponding homology classes may no longer
lie in (the Poincaré dual of) the orthogonal complement of H1

dR(X/Q)[g]. Thus for

a general meromorphic 1-form λ on X̃ and a general γ ∈ Γ0(N), we adopt the
notation

Iτ0(λ; γ) =

∫ γτ0

τ0

λ

to emphasize the dependence on the choice of basepoint.
By meromorphicity, for λ as above (defined on eitherX or X̃), the integral I(λ; γ)

or Iτ0(λ; γ) can be computed by integrating termwise a Laurent expansion for λ
using the fundamental theorem of calculus. Thus, in practice, one computes the
Laurent expansion for the primitive Fλ about ∞ ∈ X (or a choice of ∞̃ ∈ X̃ lying
over ∞), regarded as a function given by a convergent power series in q = e2πiτ on
h, and evaluates it at τ0 and τ ′0 = γτ0. The larger the imaginary parts of τ0 and τ ′0
are, the faster this series converges and the fewer coefficients of the Laurent series
of λ are necessary to approximate I(λ; γ) or Iτ0(λ; γ) to a given degree of accuracy.
Writing γ =

(
a b
c d

)
, it is well-known that the best compromise between Im(τ0) and

Im(τ ′0) is achieved when we choose τ0 = −d
c + 1

|c| i (cf., for example, [Cr, p. 35]).

This optimal basepoint for γ will be denoted τ∗γ .
With this remark in mind, we take the following approach to computing J(γ0)

as in the lemma above. First compute Laurent expansions for the differentials
ω, η, αω,η. Then find a “good” expression for the homology class γ0 ∈ H1(X

an,C),

writing it as a C-linear combination of classes γ
(j)
0 ∈ H1(X

an,Z) that lift to el-

ements γ(j) ∈ Γ0(N) with small lower-left entries cN . Finally, calculate approx-
imations to the integrals Iτ0(ωFη; γ

(j)) and I(αω,η; γ
(j)). The appropriate linear

combination of these integrals is an (approximate) representative for the coset
J(γ0) ∈ C/Λρ.)

To calculate I(αω,η; γ
(j)), one is free to change the basepoint from τ0 to the

optimal basepoint τ∗j := τ∗
γ(j) for γ(j), since αω,η is defined on X and not only on

X̃. The same is not true for ωFη. To evaluate Iτ0(ωFη; γ
(j)) we appeal to the

following lemma.

Lemma 4.1.2. Iτ0(ωFη; γ
(j)) = Iτ∗

j
(ωFη; γ

(j))− I(η; γ(j))
∫ τ∗

j

τ0
ω.

Observe that every term on the right-hand side can be computed using the
fundamental theorem of calculus, evaluating power series only at the points τ0 and
τ∗j . In particular, taking τ0 = i/N , each such evaluation converges at least as fast
as an evaluation at τ∗j , so this formula for the integral is “optimally efficient”.

Proof of Lemma 4.1.2. Since λ = ωFη is a holomorphic 1-form on H, its integral
along a closed contour vanishes. Thus

Iτ0(λ; γ
(j)) = Iτ∗

j
(λ; γ(j)) +

∫ τ∗
j

τ0

λ−
∫ γ(j)τ∗

j

γ(j)τ0

λ.
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To evaluate the second term on the right-hand side, we observe that ω comes from a
1-form on X, so it is Γ0(N)-invariant; it thus pulls back to itself along the fractional
linear transformation defined by γ(j). On the other hand,

I(η; γ(j)) =

∫
γ(j)

η = Fη(γ
(j)τ )− Fη(τ ), for all τ ∈ H.

Hence (γ(j))∗Fη = Fη + I(η; γ(j)). So (γ(j))∗λ = λ+ I(η; γ(j))ω, and we find∫ γ(j)τ∗
j

γ(j)τ0

λ =

∫ τ∗
j

τ0

(γ(j))∗λ =

∫ τ∗
j

τ0

λ+ I(η; γ(j))

∫ τ∗
j

τ0

ω,

which yields the lemma. �

Remark 4.1.3. We warn the reader that possibly Iτ0(ωFη; γ
(j)) �=

∫
γ(j) ω · η (re-

garding γ(j) as an element of π1(Y
an; o)). Indeed, the iterated integral attached to

ω · η need not even be homotopy invariant (!) so
∫
γ(j) ω · η is ill-defined. In particu-

lar, one cannot relate Iτ0(ωFη; γ
(j)) to Iτ∗

j
(ωFη; γ

(j)) using the change-of-basepoint

formula (3.2.4) for iterated integrals.

To efficiently evaluate the integrals in (3.2.2) using the method just explained,
it is therefore necessary to know:

a. Laurent expansions about ∞ for a symplectic basis ωg,1, . . . , ωg,2k of
H1

dR(X/Q)[g] and the forms αωg,i,ωg,j
;

b. the homology class γf as a C-linear combinationation of class γ
(j)
0 whose

lifts to Γ0(N) have small lower-left entries cN .

In the rest of this section we turn to the task of computing these data.

4.2. Calculating a symplectic basis for H1
dR(X/Q)[g]. The calculation of a

basis for the de Rham cohomology can be carried out by first writing down a
modular function u — that is, a rational function on X = X0(N) — which is
regular away from ∞. Such a function exists by Riemann-Roch and a q-expansion
for one such function can sometimes be computed explicitly using the Dedekind
eta-function, as explained in the next subsection.

Using a modular symbol algorithm, one can compute q-expansions for a basis
of S2(Γ0(N)) consisting of cusp forms with rational Fourier coefficients; cf. for
example [Stn]. Write ω1, . . . , ωt for the corresponding holomorphic 1-forms on X,
where for convenience we denote by t = dimC S2(Γ0(N)) the genus of X.

Define ηi = uωi, which is a differential of the second kind by the residue theo-
rem, and let B = {ω1, . . . , ωt, η1, . . . , ηt} ⊂ H1

dR(X/Q) be the corresponding set of
cohomology classes. A simple application of Riemann-Roch shows the following.

Lemma 4.2.1. The set B is basis for H1
dR(X/Q) whenever ∞ is not a Weierstrass

point on X and u has a pole of order t+ 1 (i.e., the smallest possible) at ∞.

Proof. Since ∞ is not a Weierstrass point on X, we may assume that ord∞(ωi) =
i − 1, and thus ord∞(ηi) = i − t − 2. For any differential of the second kind ω′,
we can find a linear combination of η1, . . . , ηt and dh for an appropriate rational
function h having the same principal part as ω′. Thus the difference is holomorphic,
and lies in the span of {ω1, . . . , ωt}. �
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Remark 4.2.2. By a result of Ogg [O], the cusp ∞ is not a Weierstrass point when
the level N is prime or, more generally, when N = pM for prime p and an integer
M ≥ 1 such that X0(M) has genus zero and p � M .

When ∞ is a Weierstrass point, there is a rational function with a single pole
at ∞ of order ≤ g(X). When u is taken to be such a function, then the set
B will never be a basis. Indeed, since ∞ is a Weierstrass point, there exists a
holomorphic differential form ω with order of vanishing ≥ g(X) at ∞. Then uω
is still holomorphic, and thus lies in the span of {ω1, . . . , ωt}. But uω is also in
the span of {η1, . . . , ηt} by definition of the ηi, giving rise to a linear dependence
relation. Hence, in order for B to be a basis, it is necessary for u to have a pole at
∞ of order greater than the order of vanishing at ∞ of any holomorphic differential.

This lemma is not strictly necessary for the computation, but rather serves to
guarantee its success in certain cases. Even if the hypotheses of the lemma do not
hold (for example, if ∞ is not a Weierstrass point but u has a pole of order > t+1),
the set B may still be a basis of H1

dR(X/Q), and almost always is at levels < 200.
Moreover, this can be checked easily in any particular example by computing the
matrix for the Poincaré pairing.

Given one basis B for H1
dR(X/Q) — for example, one computed as above —

it is then a matter of linear algebra to produce a better basis that is adapted
to the action of the Hecke algebra. Note that the usual formula for the action
of the Hecke algebra T0 on holomorphic modular forms in terms of q-expansions
extends to weakly holomorphic modular forms (i.e., meromorphic 1-forms on X
with possible poles only at the cusps), and preserves the subspace of differentials
regular on Y . In particular, one can compute the action of T0 on any 1-form
representing an element of H1

dR(X/Q). Using q-series for the elements of the basis
B, we can thus write down the matrix [Tp] ∈ Mat2t×2t(Q) that describes the action
of any Tp ∈ T0. After identifying H1

dR(X/Q) ≈ Q2t via the basis B, by finding
the eigenspaces of finitely many such matrices one can write down Q-bases for
each isotypic component of H1

dR(X/Q). As is shown in [Stn], the Hecke algebra
T0 is generated as a Z-module by Ti for 1 ≤ i ≤ m

6 − m−1
N , where m = [Γ(1) :

Γ0(N)]. This gives an upper bound on the number of matrices needed, although
in practice considerably fewer are necessary. Using these it is simple linear algebra
to produce the desired symplectic basis ωg,1, . . . , ωg,2k for each isotypic component
H1

dR(X/Q)[g]. Specifically, if hn(x) is the minimal polynomial for an(g), then
compute the intersection of the null spaces of hn(Tn) for different values of n until
the resulting space has the correct dimension.

4.3. Modular units and η-products. The preceding discussion raises the ques-
tion of how to compute the q-expansion about ∞ of a rational function u used to
write down an initial choice of basis B for H1

dR(X/Q).
Recall that a modular unit (for Γ0(N)) is a modular function u ∈ Q(X)× whose

associated divisor is supported on the cusps of X = X0(N). Denote by U the
multiplicative group of modular units.

Definition 4.3.1. The eta group Uη is the subgroup ofQ(X)× of rational functions
of the form

u(q) = λ
∏

0<d|N
η(qd)rd ,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2522 H. DARMON, M. DAUB, S. LICHTENSTEIN, AND V. ROTGER

where λ ∈ Q×, η(q) = q1/24
∏

n>0(1− qn) is the classical eta function and {rd}d|N
is a collection of integers satisfying the following conditions:

i.
∑

d|N rd = 0,

ii.
∏

d|N drd ∈ Q× is a square,

iii. (nd) := AN ·(rd) is a vector (indexed by divisors d of N) of integers divisible
by 24, where AN is the σ(N)×σ(N)-matrix whose entry indexed by (d, d′)

is N ·(d,d′)2

dd′(d′,N/d′) .

Work of Newman and Ligozat (cf., e.g., [G]) shows that such functions are indeed
modular units on X; that is, Uη ⊂ U . In fact more is true:

Proposition 4.3.2. Q⊗Z Uη = Q⊗Z U .

Proof. It easy to see that the set {a
d : d | N, a ∈ (Z/(d,N/d)Z)×} ⊂ P1(Q) is a

complete set of representatives of the cusps of X. If (d,N/d) = 1, we just take
a = 1.

The subspace Q ⊗ Uη ⊂ Q ⊗ U coincides with Q ⊗ U ′, where U ′ ⊂ U consists
of modular units that have the same valuation at any two cusps a/d, a′/d with the
same denominator; cf. [G, Prop. 2]. This implies the proposition in light of the
next lemma, since an element u ∈ U ⊂ Q(X) has the same valuation at any two
Galois-conjugate cusps. �
Lemma 4.3.3. Let d|N . Then the cusp 1/d is rational if and only if (d,N/d) = 1.
More generally, the Galois orbit of the cusp 1/d is Gal (Q̄/Q) · 1

d = {a
d : a ∈

(Z/(d,N/d)Z)×}.
Proof of the lemma. We prove the first statement using the results of [Stv, §1.3].
Namely, it is known that the cusps of X are rational over Q(ζN ), and the Galois
action of Gal (Q(ζN ))/Q) � (Z/NZ)× can be described explicitly as follows [Stv,
Thm. 1.3.1]: given b ∈ (Z/NZ)×, let τb be the automorphism of Q(ζN ) that sends
ζN 	→ ζbN . If a ∈ Z is chosen so that ab ≡ 1 (mod N) then τb sends the cusp 1

d to
1
ad = a

d . Hence the Galois orbit of 1
d is

{a
d : a ∈ (Z/NZ)×},

and it can be shown by an elementary argument that this set of cusps is equal to
the image of

{a
d | a ∈ (Z/(d,N/d)Z)×}

in Γ0(N)\P1(Q). �
By the Riemann-Roch theorem, there exist nonconstant rational functions on X

that are regular away from ∞. The proposition implies that an integer power of
such a function belongs to the subgroup Uη ⊂ U , which yields the following.

Corollary 4.3.4. There exists an eta product u ∈ Uη that is regular away from
∞. �

It is thus possible to compute the rational function u required in the computation
of a basis for H1

dR(X) as an eta product.
A practical approach to finding the vector (rd)d|N giving rise to the u we seek

is to apply a linear programming algorithm: one minimizes the pole order −nN

of u at ∞ subject to the criteria of Newman-Ligozat in Definition 4.3.1 and the
condition that the orders nd of u at other cusps are nonnegative.
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Remark 4.3.5. To determine the complexity of the algorithm described in this
paper (see §4.8), it is necessary to bound effectively (as a function of N) the order
of the pole at ∞ of the eta quotient u in Corollary 4.3.4. This can be done by
examining the proof of Corollary 4.3.4. By the Riemann-Roch theorem, there is a
nonconstant rational function w on X that is regular on Y and has a pole of order
≤ t = genus(X) at ∞. From the formula for genus(X) as a function on N , one can
thus extract the bound −ord∞(w) = O(N log logN); cf. for example [CWZ]. (We
adopt the convention that unless decorated with a subscript, an expression O(−)
denotes a bound with an absolute implied constant.) An examination of the proof
of [G, Prop. 2], which was invoked to show Proposition 4.3.2, actually gives the
more precise result that wμ belongs to Uη for an integer μ = O(detAN ). Combining
this with the explicit formula [G, Prop. 1] for detAN , one deduces the estimate
−ord∞(u) = O(N2σ0(N)+2), where σ0(N) denotes the number of positive divisors
of N .

4.4. Computing the Poincaré dual γf of ωf . Assume that {γ(j)} is a collection

of elements of Γ0(N) with small lower-left entries cN , whose homology classes γ
(j)
0

generate H1(X
an,Z). By a brute-force search it is straightforward to find such

elements γ(j) in practice. (For small N , often one only needs to take c no greater
than 2 or 3.)

For any m ∈ H1(X
an,C), write ηm for the Poincaré dual of c; conversely, for any

differential η of the second kind on X, let mη ∈ H1(X
an,C) denote the Poincaré

dual of its cohomology class. We normalize the Poincaré duality isomorphism so
that it is characterized by the property

(4.4.1) 〈ηm, η〉 =
∫
m

η.

The vector space H1(X
an,C) is also equipped with an intersection product,

which is related to the Poincaré pairing by the formula

(4.4.2) m ·mη =
1

2πi
〈ηm, η〉.

The homology of X also admits a natural action of the Hecke algebra, compatible
with the action on cohomology via Poincaré duality. For any normalized eigenform
f ∈ S2(Γ0(N)) and any m ∈ H1(X

an,C), write mf ∈ H1(X
an,C)[f ] for the

projection of m onto the f -isotypic component of homology. Similarly, for η ∈
H1

dR(X/Q) write ηf for its projection onto the f -isotypic component.
We can assume that via the method described above a symplectic basis

S = {ωf,1, . . . , ωf,
, ηf,1, . . . , ηf,
}

for H1
dR(X/Q)[f ] has already been computed, where 〈ωf,i, ηf,j〉 = δi,j .

Lemma 4.4.1. Fix γ1, γ2 ∈ Γ0(N) and let m1, m2 ∈ H1(X
an,Z) denote the cor-

responding homology classes on X. For any normalized eigenform f ∈ S2(Γ0(N)),
we have

mf
1 ·mf

2 =
1

2πi


∑
i=1

I(ωf,i;m1)I(ηf,i;m2)− I(ωf,i;m2)I(ηf,i;m1),

where ωf = 2πif(z)dz is the 1-form corresponding to f .
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Proof. Let ηk = ηmk
and write ηfk =

∑
c
(k)
i ωf,i +

∑
d
(k)
i ηf,i. Then we compute

mf
1 ·m

f
2 = 1

2πi 〈η
f
1 , η

f
2 〉 =

∑
i

1
2πi (c

(1)
i d

(2)
i − c

(2)
i d

(1)
i ) = 1

2πi

∑
i(I(ωf,i; γ1)I(ηf,i, γ2)−

I(ηf,i; γ1)I(ωf,i; γ2)). �

Using (4.4.1), (4.4.2), and Lemma 4.4.1, we can compute the Poincaré dual γf
of ωf . Let m1, . . . ,m2
 be modular symbols giving rise to a basis of H1(X

an,Z)[f ],
which can be computed using a modular symbols algorithm (cf. [Stn]). In partic-
ular, if f is new, then � = 1. Write A for the matrix (mi ·mj)1≤i,j≤2
, which can
be computed using Lemma 4.4.1, and let v be the column vector (mi · mωf

)2
i=1,
which can be computed using (4.4.2) in conjunction with (4.4.1). Then the vector
A−1v gives the coefficients expressing mωf

as a linear combination of m1, . . . ,m2
.
These coefficients can then easily be converted to an expression for γf as a linear

combination of {γ(j)
0 }.

4.5. Computing the adjustments
∫
γf

α. Write the homology class γf Poincaré

dual to ωf as

γf =
∑

βjγ
(j)
0

for βj ∈ C and homology classes γ
(j)
0 whose lifts γ(j) to Γ0(N) have small lower-left

entries cN . Let ω and η be differentials of the second kind, at least one of which is
regular at ∞. Using the methods described so far, we are already able to compute

zω,η :=
∑
j

βj

∫ γ(j)τ0

τ0

ωFη.

We stress that the value of zω,η depends on τ0 and the choices we made in repre-
senting γf . It is simply one part of the iterated integral Jω,η(γf ) =

∫
γf

ω · η−αω,η,

which is independent of these choices. In this section, we describe a method for
computing Jω,η(γf ) − zω,η. This amounts to computing the q-expansion of αω,η,
for then we have

Jω,η(γf )− zω,η = −
∑
j

βj

∫ γ(j)τ0

τ0

αω,η.

Recall that the defining property of αω,η is that its principal part at ∞ agrees

with that of ωFη on X̃, modulo dq/q; i.e., their difference has at worst logarithmic
poles. However, note that since

∫
γf

λ = 0 for exact 1-forms λ, we may replace αω,η

by any cohomologous 1-form. The cohomology class of αω,η is determined by the
data 〈λi, αω,η〉, where λ1, . . . , λ2t (for t the genus of X) form a basis of H1

dR(X/Q),
so it suffices to compute these values of the Poincaré pairing.

We can choose λ1, . . . , λt to be holomorphic. In this case, we can compute

〈λi, αω,η〉 = res∞(Fλi
· αω,η) = res∞̃(Fλi

· Fη · ω),
where the second equality holds because res∞(Fλi

· αω,η) depends only on

pp∞(αω,η) mod
d q

q
= pp∞̃(ωFη).

Lemma 4.5.1. Let λ1, . . . , λt ∈ H0(X,Ω1
X/Q) be a basis of regular 1-forms on X.

Then α ∈ H1
dR(X/Q) lies in the subspace H0(X,Ω1

X/Q) if and only if 〈λi, α〉 = 0

for all 1 ≤ i ≤ t.
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Proof. The subspace H0(X,Ω1
X/Q) ⊆ H1

dR(X) is isotropic for the Poincaré pairing

because the pairing can be computed using residues. For dimension reasons, it is
maximal isotropic, and the lemma follows. �

By the lemma, if 〈λi, α〉 = 〈λi, α
′〉 for i = 1, . . . , t, then α − α′ is cohomologous

to a regular 1-form. Since αω,η is only well-defined modulo H0(X,Ω1
X/Q), it follows

that we can choose 〈λi, αω,η〉 for i = t + 1, . . . , 2t arbitrarily. For convenience, we
choose 〈λi, αω,η〉 = 0 for i = t+1, . . . , 2t. Define the matrix B = (〈λi, λj〉)2ti,j=1 and
the vector

w = (〈λi, αω,η〉)2ti=1 = (res∞̃(Fλ1
Fηω), · · · , res∞̃(Fλt

Fηω),

t︷ ︸︸ ︷
0, . . . , 0).

It then follows by elementary linear algebra that the vector B−1w yields the coef-
ficients of an expression for αω,η as a linear combination of λ1, . . . , λ2t.

4.6. Computing the coefficients cij. Using the methods described so far, we
may compute all the integrals

∫
γf
(ω · η − αω,η) occurring in (3.2.2). The last

input needed to evaluate (3.2.2) is the set of coefficients cnij appearing in that
formula. Using Lemma 3.2.1, these coefficients can be computed using the matrix
An which expresses the right action of Tn on H1

dR(X/Q)[g] with respect to the
basis ωg,1, . . . , ωg,2k, and the matrix B = (〈ωg,i, ωg,j〉)1≤i,j≤2k, which by our choice
of basis is the standard symplectic matrix. In section 4.2, we gave a method for
computing An using the action of Tn on q-expansions. However, this only works if
gcd(n,N) = 1, so we must resort to other methods. We exploit the fact that the
action of Tn on H1(X

an,C)[g] is readily computable using modular symbols; see
[Stn] for details. Recall that we have a Hecke-equivariant duality

H1
dR(X

an,C)[g]×H1(X
an,C)[g] → C

given by the integration pairing 〈ω, λ〉 =
∫
γ
λ; here the Hecke-equivariance means

that 〈Tnω, α〉 = 〈ω, Tnα〉. Using modular symbols and the techniques of [Stn]
one can compute the matrix Bn of Tn acting on H1(X

an,C)[g] on the left, with
respect to a basis m1, . . . ,m2k. Write Q = (〈ωi,mj〉)2ki,j=1, which can be computed
efficiently via the method explained in §4.1 (using an appropriate basis {mj} derived
from the generators γ

(j)
0 forH1(X

an,Z) discussed above). Then it is straightforward
linear algebra to show that An = QBnQ

−1.

4.7. Computing the denominator dg,n. The final ingredient to be computed is
the denominator dg,n, or the smallest positive integer such that dg,nTg,n ∈ TZ. This
can be accomplished by computing a Z-basis for the (Z-finite free) Hecke algebra
TZ as a subring of M2t(Q), where t is the genus of X0(N), by identifying T with
an algebra of endomorphisms of the (2t)-dimensional Q-vector space of cuspidal
modular symbols of weight 2 and level N . As TZ is generated as an abelian group
by Ti for 1 ≤ i ≤ m

6 − m−1
N , where m = [Γ(1) : Γ0(N)], this is a finite computation.

Once TZ has been computed it is a simple matter to find the matrix representation
of Tg,n and compute the smallest dg,n such that dg,nTg,n ∈ TZ.

For more details on modular symbols and generating the Hecke algebra, see [Stn].
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4.8. Remarks on complexity. The complexity of the computations we have de-
scribed is primarily determined by the number nD of Fourier coefficients required
to compute Jω,α(γf ) to a given number D of digits of accuracy. In this subsection
we sketch a method for obtaining a bound on nD in terms of N .

4.8.1. Write the Fourier expansion of u as

u(τ ) =
∑

n≥−n0

cnq
n, q = e2πiτ , τ ∈ H.

Let the principal part of u at ∞ be

pp∞(u) =
∑

−n0≤−m≤0

dm
m

q−m, dm = mc−m.

In [BO], Bringmann and Ono prove an exact formula for the Fourier coefficients
of harmonic Maass forms, of which weakly holomorphic modular functions such
as u are examples. To avoid introducing unnecessary notation, we state only the
very special case of their result applicable to our situation. We remark that long
ago Rademacher used the circle method to prove a similar exact formula for the
coefficients of the j-function [R], and a modification of his argument would probably
yield a simpler and more direct proof of the special case we require. Using [BO,
Thm. 1.1], one can express the coefficients cn, n > 0 in terms of the coefficents dm,
the order-1 I-Bessel function I1(z), and the Kloosterman sum

K(−m,n, c) :=
∑

0<v<c
(v,c)=1

exp

(
2πi

c
(nv +mv̄)

)
,

where v̄ denotes the multiplicative inverse of v modulo c. Namely, loc. cit. yields
the formula
(4.8.1)

cn=2π
∑

−n0≤−m≤0

dm
∑
c>0

c≡0 (mod N)

(mn )1/2
K0(−m,n, c)

c
I1

(
4π
√
|mn|
c

)
, n>0.

By Remark 4.3.5, we have

(4.8.2) n0 = −ord∞(u) ≤ A1N
2σ0(N)+2,

where the constant A1 is absolute and σ0 denotes the divisor function. We can
trivially bound the numbers dm as follows. Let ξr(x) = re2πix for 0 < r < 1 and
set y = − 1

2π log r > 0. The Cauchy integral formula applied to the meromorphic
function U(q) =

∑
cnq

n of q in the unit disk gives

dm
m

=
1

2πi

∫
ξr

U(q)

qm+1
d q = e2πmy

∫ 1

0

u(x+ iy)e−2πinx dx.

Taking y = 1, say, we thus have

|dm| ≤ me2πm
∫ 1

0

|u(x+ i)| dx = me2πim
∫ 1

0

∏
d|N

|η(dx+ id)|rd dx,

where η is the Dedekind eta function and (rd)d|N is the vector giving rise to u. Recall
that η(z) is a nonvanishing holomorphic function on H, and satisfies |η(z + 1)| =
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|η(z)|. Thus there is an absolute upper bound B for max(|η(z)|, |η(z)|−1) on the
strip {1− ε ≤ Im(z) ≤ N + ε} ⊂ H. It follows that

|dm| ≤ me2πmB
∑

|rd|.

To control this quantity we must bound both B and
∑

|rd| in terms of N .
In regard to B, note that since η(z) is holomorphic on H∗, the upper bound for

|η(z)| on the strip of interest poses no problem; it is a constant independent of N .
To find a lower bound for |η(z)| on our strip, we can make use of the Euler formula

η(z) = eπiz/12

⎛
⎝1 +

∑
m≥1

q
3m2−m

2 + q
3m2+m

2

⎞
⎠ , q = e2πiz.

From this it is straightforward to deduce a bound |η(z)|−1 = O(eπN/12), for z in
the strip in question.

To handle
∑

|rd|, we recall some results from numerical analysis. Let A be
an invertible σ × σ matrix of real numbers. We denote by ||A||2 the quantity
supx∈Rσ,|x|=1 |Ax| and by ||A||max the maximum of the absolute values of the matrix

entries aij . A result in numerical linear algebra [Mal, Thm. 2.1] asserts that when
A has integer entries, one can control its so-called “condition number” and obtain
the estimate

||A−1||2 ≤ σ2+σ/2||A||σ−1
max .

We apply this result to the matrix AN from Definition 4.3.1 with σ = σ0(N).
By Newman and Ligozat’s result, the vector r = (rd)d|N and the vector n =
(24orda/d(u))d|N (where a/d is any cusp of X0(N) of denominator d) satisfy r =

A−1
N n. Moreover, since u has a pole of order n0 at infinity and no other poles, the

fact that ÷(u) has degree 0 implies |n| = O(n0

√
σ0(N)). Finally, the formula for

the entry of AN indexed by (d, d′) entails ||AN ||max ≤ N3. We thus have, using
(4.8.2), √∑

d|N
|rd| ≤

√∑
d|N

|rd|2 = |r| ≤ ||A−1
N ||2|n|

≤ σ0(N)
σ0(N)+5

2 n0N
3(σ0(N)−1) = O(N

11σ0(N)+1
2 ).

Consequently, for an absolute constant C we have

|dm| � me2πmeπN
∑

|rd|/12 ≤ me2πmeCN11σ0(N)+2

≤ n0e
2πn0eCN11σ0(N)+2

= O(n0 exp(2πN
2σ0(N)+2 + CN11σ0(N)+2)).

From this we deduce

(4.8.3) |dm| = O(n0 exp(A0N
11σ0(N)+2)),

for an absolute constant A0.
From (4.8.1) and (4.8.3), standard estimates for Kloosterman sums, and asymp-

totics for the I-Bessel function, one obtains by the method of [BrPh, §§5.1-5.2] the
estimate

cn = O(N5/4n
7/4
0 n−3/4 exp(A0N

11σ0(N)+2 +N−14π
√
nn0)).
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In light of (4.8.2) this yields

(4.8.4) cn = O(n−3/4 exp(A2N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1
√
n)),

for absolute constants A1, A2.

4.8.2. The coefficients cn determine the Fourier coefficients of the 1-forms occurring
in the formula (3.2.2) for Pg,f,n. Unfortunately the relationship is indirect, as the
construction of the 1-forms ωg,i and αωg,i,ωg,j

involves multiplying u against a
basis of cusp forms for Γ0(N) and then performing a lot of linear algebra. By the
Ramanujan-Petersson conjecture (which in this context is a theorem of Eichler [E]),

the cusp forms have nth coefficient of size Oδ(n
1
2+δ). It follows that nth Fourier

coefficient of an element of the basis B for H1
dR(X/Q) computed in §4.2 has size at

most

O(P (n) exp(A2N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1
√
n)),

for absolute constants A1, A2 and a universal polynomial P (n). To compute the
1-forms ωg,i and αωg,i,ωg,j

, linear algebra operations are performed on this basis,
which spans a vector space of dimension genus(X) = O(N log logN). It thus seems
likely that a careful analysis of the linear algebra operations performed would yield
a bound

(4.8.5) O(Q(n) exp(A3N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1
√
n)),

for the nth Fourier coefficient of any 1-form integrated in the course of computing
(3.2.2). Here A1, A3 are absolute constants and Q(X) is a universal polynomial
independent of N .

Suppose λ is such a 1-form (on X or X̃), and consider the problem of integrating
the pullback of λ to H∗ along a path from τ1 to τ2. By the method explained in
§4.1, we can assume that imτ1, imτ2 ≥ (c∗N · N)−1, where c∗N · N is the largest of

the lower left entries of the elements γ(j) ∈ Γ0(N) introduced at the beginning of
§4.4. Recall that these consisted of a collection of elements that span H1(X

an,Z)
and have lower left entries as small as possible. We do not know how to bound c∗N
in terms of N , although in practice it seems to be very small.

If the Laurent expansion for λ about ∞ (or a lift of ∞ to X̃) is λ =
∑

aλ(n)
d q
q ,

then setting τj = xj + iyj for j = 1, 2 (where yj ≥ (c∗NN)−1), we have∫ τ2

τ1

λ =
∑

n�−∞

aλ(n)

n
(e2πinx2e−2πny2 − e2πinx1e−2πny1).

Our problem is to determine nD such that the tails of these sums are bounded by
the requisite precision, say 10−D. It clearly suffices to take for nD any m such that

S(m) :=
∑
n≥m

n−1|aλ(n)|e−2πny ≤ 10−D.

Granting (4.8.5), we have

S(m) �
∑
n≥m

n−1Q(n) exp(A3N
11σ0(N)+2 + 4π

√
A1

N Nσ0(N)+1
√
n− 2πn

Nc∗N
).

For a suitable constant A4, we can assume

n−1Q(n) exp(
4π

√
A1

N
Nσ0(N)+1

√
n) ≤ exp(

A4

N
Nσ0(N)+1

√
n).
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Thus

S(m) � exp(A3N
11σ0(N)+2)

∑
n≥m

exp(
1

Nc∗N
(A4c

∗
NNσ0(N)+1

√
n− 2πn))

≤ exp(A3N
11σ0(N)+2)

∑
n≥m

e−n/Nc∗N = exp(A3N
11σ0(N)+2)

e−m/Nc∗N

1− e−1/Nc∗N
,

provided m is large enough that A4c
∗
NNσ0(N)+1

√
n − 2πn ≤ −n for n ≥ m. The

latter can be ensured by requiring m ≥ A5c
∗2
N N2σ0(N)+2 for an absolute constant

A5. It follows that, provided (4.8.5) holds, we have the following estimate for nD

in terms of D and N :

(4.8.6) nD = O(max{Nc∗N (D +N11σ0(N)+2), c∗2N N2σ0(N)+2}),

where the implied constant is absolute, as always.

5. Numerical examples

5.1. Example: 37a1. Take N = 37 in the setup of our algorithm. In this setting,
the space of regular differentials on X = X0(37) is spanned by ωf and ωg, which
are associated to elliptic curves over Q (labeled 37a1 and 37b1 in Cremona’s
database) of ranks 1 and 0, respectively. The elliptic curve 37a1 has minimal
Weierstrass equation given by

37a1 : y2 + y = x3 − x,

and its Mordell-Weil group is generated by the point (0, 0).
By computing the periods attached to ωf and ωg, it can be checked that the

classes of the matrices

γ1 =

(
2 −1
37 −18

)
, γ2 =

(
3 −1
37 −12

)
, γ3 =

(
5 2
37 15

)
, γ4 =

(
14 3
37 8

)

generate the rational homology of X. These are a “nice” basis for the homology
in the sense of the first paragraph of §4.4; that is, the lower left entries are exactly
37 (rather than 37c for |c| > 1), so the integral

∫ γiτ

τ
λ can be evaluated efficiently

for any meromorphic differential 1-form λ on X0(37) or its universal cover regular
away form ∞, by the method of §4.1.

To obtain differentials of the second kind representing classes in the de Rham
cohomology, we consider the elements of the form

η1 = u ·ωf , η2 = u ·ωg, u = η(q)2η(q37)−2 = q−3
∞∏
n=1

(1− qn)2(1− q37n)−2,

where η(q) is the Dedekind eta function. The modular function u is an example
of an eta product with its only pole at ∞, as considered in §4.3. It is not hard to
check directly (by calculating the Poincaré pairing on all pairs of elements) that the
classes of ωf , ωg, η1 and η2 generate the de Rham cohomology of X; alternatively,
one could apply Lemma 4.2.1.
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After computing the matrix M of the Hecke operator T2 acting on H1
dR(X0(37))

with respect to the basis ωf , ωg, η1, η2, and then determining the eigenspaces of M ,
one finds that

ηf =
1

4
(−37ωg + 4η1 − 8η2),

ηg =
1

4
(37ωf − 6η1 + 10η2)

are in the f and g isotypic components of the de Rham cohomology respectively.
In addition these linear combinations of 1-forms have been chosen so that {ωf , ηf}
and {ωg, ηg} form symplectic bases for the components with respect to the Poincaré
pairing.

When one computes the Poincaré dual γf of ωf as in §4.4, one finds (with our
normalization) that it is

γf =
1

2πi
(A ([γ2]− [γ3] + [γ4])−B (−[γ1] + 2[γ2])) .

Here

A ≈ (2.4513893 . . .)i, B ≈ 2.9934586 . . .

are certain linear combinations of the periods of f against a basis of H1(X)[f ]; see
§4.4 for a more exact description.

The method of §4.5 can be used to compute αωg ,ηg
. However, in this case, it

is easy to find αωg,ηg
by inspection. Working with principal parts, one finds that

pp∞(ωgFηg
) ≡ pp∞( 14 (η1 − η2)) mod dq

q . Thus we may take αωg,ηg
= 1

4 (η1 − η2).

Integrating this over γf yields the rational number
∫
γf

αωg,ηg
= − 1

2 (to many digits

of precision).
Since g is a rational newform, then by Remark 3.1.3, we can find all the points

Pg,f,n by only computing Pg,f . According to Remark 3.2.2, this amounts to com-
puting the complex number zg,f :=

∫
γf
(ωg · ηg − ηg · ωg − 2αωg,ηg

). The method in

§4.1, coupled with the previous paragraph, yields

zg,f = −0.4093610 . . .+ (1.2256946 . . .)i.

Let W be the Weierstrass uniformization of E. Then the point W (zg,f ) ∈ E(C)
does not necessarily lie in E(Q). This is because Tg is a rational combination of
cycles, and soW (zg,f ) is aQ-linear combination of points in E(Q). Thus, the image
of W (zg,f ) in E(C)⊗Q lies in the subspace E(Q)⊗Q. So in order to write Pg,f as
an element of this space, we must compute the “denominator” of Tg. As in §4.7, one
can compute using the first few Fourier coefficients of f and g that the idempotent
e = (0, 1) ∈ Q × Q � T (�) does not belong to TZ ⊂ T but 2e does. Here, the
identification (�) associates Tn ⊗ 1 ∈ T to (an(f), an(g)) ∈ Q ×Q. By definition,
Tg corresponds to e as an element of the Hecke algebra, so it’s denominator is 2.
Thus, we can write Pg,f = W (2zg,f ) ⊗ 1

2 ∈ E(Q) ⊗ Q. One finds that W (2zg,f )

agrees with the global point ( 1357841 : 28888
24389 : 1) to within 13 digits of accuracy using

350 Fourier coefficients, so we are led to conclude that

Pg,f =

(
1357

841
:
28888

24389
: 1

)
⊗ 1

2
= 12(0 : 0 : 1)⊗ 1

2
= 6(0 : 0 : 1) ∈ E(Q)⊗Q
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5.2. Example: 43a1. Let N = 43 and let E be the elliptic curve labeled 43a1
in Cremona’s database. The modular curve X = X0(43) has genus 3. There
are two isotypic components of H1

dR(X), one of dimension 2 corresponding to the
modular form f that parametrized E, and another of dimension 4 corresponding
to a newform g with Fourier coefficients in Q(

√
2), associated to an abelian surface

quotient of J0(43).
In this case, a linear programming algorithm identifies the eta quotient u that

is modular for Γ0(43) of weight 0, holomorphic away from the cusp ∞, and with
minimal pole order at ∞, as

u =
η(q)4

η(q43)4
= q−7−4q−6+2q−5+8q−4−5q−3−4q−2−10q−1+8+9q+14q3+O(q4).

Computing the residue pairing shows that for a basis of cusp forms with rational
Fourier coefficients, corresponding to holomorphic 1-forms ωf , ωg,1, ωg,2 on X, the
collection

ωf , ωg,1, ωg,2, uωf , uωg,1, uωg,2

forms a basis for H1
dR(X/Q). By finding the matrices of a few Hecke operators with

respect to this basis, one can as in the case N = 37 produce symplectic bases

ωf , ηf and ωg,1, ωg,2, ηg,1, ηg,2

for H1
dR(X)[f ] and H1

dR(X)[g] respectively.
We can compute the Poincaré dual γf and the iterated integrals∫
γf

(ωg,i · ωg,j − αωg,i,ωg,j
),

∫
γf

(ωg,i · ηg,j − αωg,i,ηg,j
),

∫
γf

(ηg,i · ωg,j − αηg,i,ωg,j
)

in the same manner as in the case N = 37 with one exception. One simply cannot
find αωg,i,ηg,j

by inspection. No linear combination of our chosen basis has the
same principal part as ωg,iFηg,j

, however some linear combination is cohomologous
to such a form. The techniques from §4.5 can be used to find such a form.

Each Tg,n gives rise to an element of End(H1
dR(X)[g]) ⊗ Q. The collection of

elements arising from Tg,n, n ≥ 1 generate a subspace of dimension 2, generated by
Tg,1 and Tg,2. Thus, we can effectively compute Pg,f,n for all n simply by computing
Pg,f and Pg,f,2. The formula for Pg,f is the one given in Remark 3.2.2, so we have

zg,f =

∫
γf

(ωg,1 · ηg,1 − ηg,1 · ωg,1 − 2αωg,1,ηg,1
+ωg,2 · ηg,2 − ηg,2 · ωg,2 − 2αωg,2,ηg,2

)

= −2.0768300 . . .+ (2.7263648 . . .)i

The Hecke algebra T can be identified with Q×Q(
√
2) via Tn⊗1 	→ (an(f), an(g)).

Under this identification, Tg,1 corresponds to e1 = (0, 1), and an examination of
the Fourier coefficients of f and g shows that e1 does not lie in the image of TZ,
but 2e1 does. So, we have

Pg,f = W (2zg,f )⊗
1

2
=

(
11

49
: −363

343
: 1

)
⊗ 1

2
∈ E(Q)⊗Q.
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Finding Pg,f,2 is a little more involved, as we must compute the matrix of T2

acting on ωg,1, ωg,2, ηg,1, ηg,2. Two methods for doing this were discussed in §4.2 and
§4.6, and either shows that T2ωg,1 = 2ωg,2, T2ωg,2 = ωg,1, T2ηg,1 = − 97997

132319ωg,2 +

ηg,2 and T2ηg,2 = 97997
132319ωg,1 + 2ηg,1. So the matrix A2 is given by⎛

⎜⎜⎝
0 2 0 0
1 0 0 0
0 − 97997

132319 0 1
97997
132319 0 2 0

⎞
⎟⎟⎠ .

Combining this with Lemma 3.2.1 and remembering that αωg,i,ωg,j
= 0 by Remark

2.2.6, we find that

zg,f,2 = − 97997

132319

∫
γf

(ωg,1 · ωg,2 − ωg,2 · ωg,1)

+

∫
γf

(ωg,1 · ηg,2 − ηg,2 · ωg,1 − 2αωg,1,ηg,2
)

+ 2

∫
γf

(ωg,2 · ηg,1 − ηg,1 · ωg,2 − 2αωg,2,ηg,1
)

= 2.4055874 . . .− (1.0710898 . . .)i.

The cycle Tg,2 corresponds to the element e2 = (0,
√
2) in Q × Q(

√
2), which

belongs to TZ by inspection of the Fourier coefficients of f and g. By evaluating
the Weierstrass uniformisation on zg,f,s we find:

Pg,f,2 = W (zg,f,2)⊗ 1 = (−1 : 0 : 1)⊗ 1 ∈ E(Q)⊗Q.

5.3. Table. In Table 1 we report some Chow-Heegner points that lie on elliptic
curves overQ of rank 1 and conductor < 100. The Chow-Heegner points in question
were computed using a Sage [S+09] implementation of the algorithm described in
the body of the paper; the whole table required several days of CPU time.

The format of the table is as follows. We list the strong Weil curve E in each
isogeny class of rank 1. Let N be the conductor of the curve E in question, and
f ∈ S2(Γ0(N)) the newform corresponding to E. The first two columns of the table
list the label for E in Cremona’s database and a choice of generator for E(Q), using
the canonical minimal Weierstrass equation for E with invariants a1, a3 ∈ {0, 1}
and a2 ∈ {−1, 0, 1}.

The next column indicates a Galois orbit of normalized Hecke eigenforms g ∈
S2(Γ0(N)). The column gives the index of the orbit in question when the orbits are
ordered lexicographically by the sequence of traces of T1 and Tp for all primes p,
starting with index 0. In particular, the trace of T1 is equal to twice the dimension
of S2(N)[g], so the components are sorted first by dimension, and rational newforms
are always listed first. As a result, the f -isotypic component, which is omitted from
the table, is typically the index 0 component. In parentheses we give the integer
Ng|N such that g is associated to a newform of level Ng.

The fourth column gives an integer n ≥ 1 corresponding to a Hecke operator
Tn. The table includes [Kg : Q] · σ(N/Ng) values of n such that Tg · Tn form a
Q-basis for the direct factor Kg of T. The fifth column lists Pg,f,n as an element of
E(Q)⊗Z Q, in terms of the generator P in the second column. The sixth column
gives the denominator dg,n defined above.
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Table 1. Chow-Heegner points on curves of rank 1 and conductor
< 100

Curve

E = Ef

generator

P ∈ E(Q)
g (Ng) n Pg,f,n dg,n

37a1 (0,−1) 1 (37) 1 −6P 2

43a1 (0,−1) 1 (43) 1 4P 2
2 2P 1

53a1 (0,−1) 1 (53) 1 −2P 2

2 −8P 2
3 4P 2

57a1 (2, 1) 1 (57) 1 4
3
P 12

2 (57) 1 − 16
3
P 3

3 (19) 1 −4P 2

3 −4P 2

58a1 (0,−1) 1 (58) 1 4P 4
2 (29) 1 0 2

2 4P 2
3 4P 2
4 4P 2

61a1 (1,−1) 1 (61) 1 −2P 2
2 4P 2
3 −4P 1

65a1 (−1, 1) 1 (65) 1 P 2
2 P 2

2 (65) 1 P 2
2 3P 2

77a1 (2, 3) 1 (77) 1 12
5
P 20

2 (77) 1 − 4
3
P 6

3 (11) 1 4
3
P 6

7 44
3
P 6

4 (77) 1 − 12
5
P 10

2 −4P 2

79a1 (0, 0) 1 (79) 1 −4P 2
2 −4P 2
3 −4P 2
4 0 2

5 0 2

82a1 (0, 0) 1 (82) 1 0 4
3 2P 2

2 (41) 1 2P 2
2 0 2
3 2P 2
4 0 2
5 4P 2

6 2P 2

83a1 (0, 0) 1 (83) 1 0 2
2 2P 2
3 4P 2
4 −4P 2
5 −4P 1
7 0 2

Curve
E = Ef

generator
P ∈ E(Q)

g (Ng) n Pg,f,n dg,n

88a1 (2,−2) 1 (88) 1 0 16
3 0 16

2 (44) 1 0 8
2 8P 2

3 (11) 1 0 2
2 8P 2
4 16P 1
8 16P 1

89a1 (0,−1) 1 (89) 1 8
5
P 5

2 (89) 1 2
5
P 10

2 22
5
P 10

3 − 16
5
P 10

4 − 2
5
P 10

6 24
5
P 10

91a1 (0, 0) 1 (91) 1 2P 4
2 (91) 1 2P 4

2 −2P 2
3 (91) 1 4P 4

2 2P 2
3 6P 2

91b1 (−1, 3) 0 (91) 1 0 4
2 (91) 1 0 4

2 0 2
3 (91) 1 0 4

2 0 2
3 0 2

92b1 (1, 1) 1 (92) 1 0 2
2 (46) 1 0 15

2 0 5
3 (23) 1 0 20

2 0 5
3 0 4
4 0 6
6 0 1
8 0 5

99a1 (2, 0) 1 (99) 1 − 2
3
P 12

2 (99) 1 0 12

3 (99) 1 2
3
P 6

4 (33) 1 2
3
P 12

3 8
3
P 3

5 (11) 1 − 2
3
P 6

3 − 2
3
P 3

9 − 22
3
P 3
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5.4. Further observations. We conclude with a few remarks.

5.4.1. Table 1 includes several examples where the submodule PT[g],f ⊂ P g,f ⊂
E(Q)⊗Z Q vanishes; namely, this occurs when E has label 88a1 and g has index
1, for all g when E is labeled 91b1 or 92b1, and when E has label 99a1 and g has
index 2. This raises the question of whether such vanishing can be explained via
Theorem 3.1.4.

At primes p which exactly divide the level N , the local sign depends only on
E and can be computed easily from the Fourier expansion of f as εp(g, g, f) =
−ap(f) = 1.

Thus, for example, one can check that for the curve labeled 91b1 we have
ε7(g, g, f) = −a7(f) = −1 and ε13(g, g, f) = −a13(f) = −1. Hence Theorem
3.1.4 does not apply; nevertheless, in this case we expect the special value L(f ⊗
Sym2(g), 2) not to vanish—a claim which should be in principle numerically veri-
fiable by means of Dokchitser’s L-function calculator (cf. [S+09])—and nontorsion
points on E(Q) to arise as the Chow-Heegner points associated to the Shimura
curve of full level structure on the quaternion algebra of discriminant 91.

Similarly, one can explain the vanishing of PT[g],f on the elliptic curve 92b1

because the prime p = 23 exactly divides 92 and ε23(g, g, f) = −a23(f) = −1.
As for the examples in Table 1 of torsion Chow-Heegner points at levels 88 and

99, we have ε11(g, g, f) = −a11(f) = +1 in both cases, but the local sign at 2
(respectively, at 3) is somewhat more dificult to compute. The reader interested in
pursuing this computation will find it helpful to follow the recipe for that sign given
by Prasad in [Pr90], which can be approached numerically thanks to the work of
Loeffler and Weinstein [LoWe].

In the tables of Stein (see Section 6.3) there is an example of a torsion Chow-
Heegner point corresponding to two newforms of level 158. Since this level is square-
free, the hypotheses of Theorem 3.1.4 can be checked, and since the rank of the
corresponding elliptic curve (labeled 158b1) is exactly 1, it would appear that
L(f ⊗ Sym2(g), 2) = 0 in this example.

5.4.2. Examining Table 1, we see that in each example in which f and g are both
newforms of level N (such as when E has label 37a1, or some of the examples when
E has label 57a1, 77a1, 99a1, etc.) the index [E(Q) : Zdg,1Pf,g,1] is divisible by
4. See Section 6.5.3 for further discussion of this phenomenon.

5.4.3. Let E = Ef be the elliptic curve with Cremona label 99a1. As g runs
through the Galois orbits of eigenforms of level 99, let the corresponding newforms
of levels Ng|99 be

g
(1)
99 , g

(2)
99 , g

(3)
99 , g33, g11.

The newforms g
(1)
99 and g

(3)
99 are twists by the quadratic character of conductor 3 of,

respectively, g33 and g11. Table 1 shows that in E(Q)⊗Q we have

P
f,g

(1)
99 ,1

= −Pf,g33,1 = − 2
3P,

P
f,g

(3)
99 ,1

= −Pf,g11,1 = 2
3P,

where P = (2 : 0 : 1) ∈ E(Q) is a generator. These observations are consistent
with the expectation that not only the height (cf. Theorem 3.1.4) but even the
exact index [E(Q) : Zdg,nPg,f,n] can be extracted from L-values of the form L(f ⊗
Sym2 g, 2) which are invariant under quadratic twists of g.
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6. Appendix: Chow-Heegner points associated

to pairs of elliptic curves

by William Stein

In this appendix, we consider a special case of Chow-Heegner points that has a
simple concrete description due to S. Zhang. Given a pair E, F of nonisogenous
elliptic curves, and surjective morphisms ϕE : X0(N) → E and ϕF : X0(N) → F
of curves over Q, we associate a rational point P ∈ E(Q). We describe a numerical
approach to computing P , state some motivating results of Zhang et al. about the
height of P , and present a table of data.

6.1. Introduction. Consider a pair E,F of nonisogenous elliptic curves over Q
and fix surjective morphisms from X0(N) to each curve. We do not assume that
N is the conductor of either E or F , though N is necessarily a multiple of the
conductor.

X0(N)
ϕE

����
��
��
��
�

ϕF

���
��

��
��

��

E F

Let (ϕE)∗ : Div(X0(N)) → Div(E) and ϕ∗
F : Div(F ) → Div(X0(N)) be the push-

forward and pullback maps on divisors on algebraic curves. Let Q ∈ F (C) be any
point, and let

PϕE ,ϕF ,Q =
∑

(ϕE)∗ϕ
∗
F (Q) ∈ E(C),

where
∑

means the sum of the points in the divisor using the group law on E, i.e.,
given a divisor D =

∑
niPi ∈ Div(E), we have (

∑
D)−∞ ∼ D−deg(D)∞, which

uniquely determines
∑

D.

Proposition 6.1.1. The point PϕE ,ϕF ,Q does not depend on the choice of Q.

Proof. The composition (ϕE)∗ ◦ ϕ∗
F induces a homomorphism of elliptic curves

ψ : Pic0(F ) = Jac(F ) → Jac(E) = Pic0(E).

Our hypothesis that E and F are nonisogenous implies that ψ = 0. We denote by
[D] the linear equivalence class of a divisor in the Picard group. If Q′ ∈ F (C) is
another point, then under the above composition of maps,

[Q−Q′] 	→ [(ϕE)∗ϕ
∗
F (Q)− (ϕE)∗ϕ

∗
F (Q

′)] = [PQ − PQ′ ].

Thus the divisor PQ − PQ′ is linearly equivalent to 0. But F has genus 1, so there
is no rational function on F of degree 1, hence PQ = PQ′ , as claimed. �

We let PϕE ,ϕF
= PϕE ,ϕF ,Q ∈ E(C), for any choice of Q.

Corollary 6.1.2. We have PϕE ,ϕF
∈ E(Q).

Proof. Taking Q = O ∈ F (Q), we see that the divisor (ϕE)∗ ◦ ϕ∗
F (Q) is rational,

so its sum is also rational. �
In the rest of this appendix, we write PE,F = PϕE ,ϕF

when E and F are both
optimal curves of the same conductor N , and ϕE and ϕF are as in Section 6.5.

In Section 6.2 we discuss an example in which E and F both have conductor
37. Section 6.3 is about a formula of Yuan-Zhang-Zhang for the height of PE,F in
terms of the derivative of an L-function, in some cases. In Section 6.4, we discuss
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the connection between this appendix and the rest of the paper. The heart of the
appendix is Section 6.5, which describes our numerical approach to approximating
PE,F . Finally, Section 6.5.2 presents a table of points PE,F .

6.2. Example: N = 37. The smallest conductor curve of rank 1 is the curve E
with Cremona label 37a (see [Cre]). The paper [MSD74] discusses the modular
curve X0(37) in detail. It gives the affine equation y2 = −x6 − 9x4 − 11x2 + 37 for
X0(37), and describes how X0(37) is equipped with three independent involutions
w, T and S. The quotient of X0(37) by w is E, the quotient by T is an elliptic
curve F with F (Q) ≈ Z/3Z and Cremona label 37b, and the quotient by S is the
projective line P1.

X0(37)

ϕE

�����
���

���
�

ϕF

�� ����
���

���
��

E = X/w F = X/T P1 = X/S

The maps ϕE and ϕF have degree 2, by virtue of being induced by an involution.
As explained in [MSD74], the fiber over Q = 0 ∈ F (Q) contains 2 points:

(1) the cusp [∞] ∈ X0(37)(Q), and

(2) the noncuspidal affine rational point (−1,−4) = T (∞) ∈ X0(37)(Q).

We have ϕE([∞]) = 0 ∈ E(Q), and [MSD74, Prop. 3, pg. 30] implies that

ϕF ((−1,−4)) = (6, 14) = −6(0,−1),

where (0,−1) generates E(Q). We conclude that

PE,F = (6, 14) and [E(Q) : ZPE,F ] = 6.

On [MSD74, pg. 31], they remark: “It would be of utmost interest to link this index
to something else in the theory.”

This remark motivates our desire to compute more examples. Unfortunately, it
is very difficult to generalize the above approach directly, since it involves compu-
tations with X0(37) and its quotients that rely on explicit defining equations. Just
as there are multiple approaches to computing Heegner points, there are several
approaches to computing PE,F :

• a Gross-Zagier style formula for the height of PE,F (see Section 6.3),

• explicit evaluation of iterated integrals (see Section 6.4), and

• numerical approximation of the fiber in the upper half-plane over a point
on F using a polynomial approximation to ϕF (see Section 6.5).

This appendix is mainly about the last approach listed above.

6.3. The formula of Yuan-Zhang-Zhang. Consider a special case of the triple
product L-function of [GK92],

(6.3.1) L(E,F, F, s) = L(E, s) · L(E, Sym2(F ), s),

where E and F are elliptic curves of the same conductor N , and all L-functions are
normalized so that 1/2 is the center of the critical strip. The following theorem is
proved in [YZZ]:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHOW-HEEGNER POINTS ASSOCIATED TO PAIRS OF ELLIPTIC CURVES 2537

Theorem 6.3.1 (Yuan-Zhang-Zhang). Assume that the local root number of
L(E,F, F, s) at every prime of bad reduction is +1 and that the root number at

infinity is −1. Then ĥ(PE,F ) = (∗) · L′(E,F, F, 12 ), where (∗) is nonzero.

Remark 6.3.2. The above formula resembles the Gross-Zagier formula

ĥ(PK) = (∗) · (L(E/Q, s) · L(EK/Q, s))′|s= 1
2
,

where K is a quadratic imaginary field satisfying certain hypotheses.

If one could evaluate L′(E,F, F, 12 ), e.g., by applying the algorithm of [Dok04],
along with the factor (∗) in the theorem, this would yield an algorithm to com-
pute ±PE,F (mod E(Q)tor) when the root number hypothesis is satisfied. Unfor-
tunately, it appears that nobody has numerically evaluated the formula of Theo-
rem 6.3.1 in any interesting cases.

When E and F have the same squarefree conductor N , [GK92, §1] implies that
the local root number of L(E,F, F, s) at p is the same as the local root number of
E at p; computing the local root number when the level is not square free is more
complicated.

Proposition 6.3.3. Assume that E and F have the same squarefree conductor N ,
that the local root numbers of E at primes p | N are all +1 (equivalently, that we
have ap(E) = −1) and that ran(E/Q) = 1. Then L(E, Sym2 F, 12 ) �= 0 if and only

if ĥ(PE,F ) �= 0.

Proof. By hypothesis, we have L(E, 12 ) = 0 and L′(E, 12 ) �= 0. Theorem 6.3.1 and
the factorization (6.3.1) imply that

ĥ(PE,F ) = (∗) · L′(E,
1

2
) · L(E, Sym2 F,

1

2
),

from which the result follows. �
Section 6.5.2 contains numerous examples in which E has rank 1, F has rank 0,

and yet PE,F is a torsion point. The first example is when E is 91b and F is 91a.
Then PE,F = (1, 0) is a torsion point (of order 3). In this case, we cannot apply
Proposition 6.3.3 since ε7 = ε13 = −1 for E. Another example is when E is 99a
and F is 99c, where we have PE,F = 0, and ε3 = ε11 = +1, but Proposition 6.3.3
does not apply since the level is not square free. Fortunately, we found an example
with squarefree level 158 = 2 · 79: here E is 158b, F is 158d, we have PE,F = 0 and

ε2 = ε79 = +1, so Proposition 6.3.3 implies that L(E, Sym2 F, 12 ) = 0.

6.4. Iterated complex path integrals. The body of this paper contains a general
approach using iterated path integrals to compute certain Chow-Heegner points,
of which PE,F is a specific instance. Comparing our data (Section 6.5.2) with
theirs, we find that if E and F are optimal elliptic curves over Q of the same
conductor N ≤ 100, if e, f ∈ S2(Γ0(N)) are the corresponding newforms, and if
Pf,e,1 ∈ E(Q) ⊗Q Q is the associated Chow-Heegner point (as in the rest of this
paper), then 2PE,F = Pf,e,1. This is a consequence of [Dau13], Proposition 3.3.3.

6.5. A numerical approach to computing PE,F . The numerical approach to
computing P that we describe in this section uses relatively little abstract theory.
It is inspired by work of Delaunay (see [Del02]) on computing the fiber of the
map X0(389) → E over rational points on the rank 2 curve E of conductor 389.
We make no guarantee about how many digits of our approximation to PE,F are
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correct, instead viewing this as an algorithm to produce something that is useful
for experimental mathematics only.

Let h be the upper half-plane, and let Y0(N) = Γ0(N)\h ⊂ X0(N) be the affine
modular curve. Let E and F be nonisogenous optimal elliptic curve quotients of
X0(N), with modular parametrization maps ϕE and ϕF , and assume both Manin
constants are 1. Let ΛE and ΛF be the period lattices of E and F , so E ∼= C/ΛE

and F ∼= C/ΛF . Viewed as a map [τ ] 	→ C/ΛE , we have, using square brackets to
denote equivalence classes, such that

ϕE([τ ]) =

[ ∞∑
n=1

an
n
e2πinτ

]
,

and similarly for ϕF , where an = an(E) are the L-series coefficients of E (see
[Cr, §2.10], which uses the oppositive sign convention). For any positive integer B,
define the polynomial

ϕE,B =

B∑
n=1

an
n
Tn ∈ Q[T ],

and similarly for ϕF,B.
To approximate PE,F , we proceed as follows. First we make some choices, and

after making these choices we run the algorithm, which will either find a “probable”
numerical approximation to PE,F or fail.

• y ∈ R>0 – minimum imaginary part of points in fiber,

• d ∈ Z>0 – degree of the first approximation to ϕF in Step 1 below,

• r ∈ R 
=0 – real number specified to b bits of precision that defines Q ∈ C/Λ,

• b′ – bits of precision when dividing points into Γ0(N) orbits, and

• n – number of trials before we give up and output FAIL.

We compute PE,F,Q using an approach that will always fail if Q is a ramification
point. Our algorithm will also fail if any points in the fiber over Q are cusps. This
is why we do not allow r = 0. One can modify the algorithm to work when Q is an
unramified torsion point by using modular symbols and keeping track of images of
cusps.

To increase our confidence that we have computed the right point PE,F , we often
carry out the complete computation with more than one choice of r.

(1) Low precision roots: Compute all complex double precision roots of the
polynomial ϕF,d − r. One way to do this is to use “balanced QR reduction
of the companion matrix”, as implemented in GSL.2 Record the roots that
correspond to τ ∈ h with �(τ ) ≥ y.

(2) High precision roots: Compute B such that if �(τ ) ≥ y, then∣∣∣∣∣
∞∑

n=B+1

an(F )

n
τn

∣∣∣∣∣ < 2−b,

2GSL is the the GNU scientific library, which is part of Sage [S+09]. Rough timings of GSL
for this computation: it takes less than a half second for degree 500, about 5 seconds for degree
1000, about 45 seconds for degree 2000, and several minutes for degree 3000.
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where b is the number of bits of precision of r. Summing the tail end of the
series and using that |an| ≤ n (see [GJP+09, Lem. 2.9]), we find that

B =

⌈
log(2−(b+1) · (1− e−2πy1))

−2πy

⌉

works. Next, compute the polynomial ϕF,B ∈ Q[T ], and use Newton iter-
ation to refine all roots saved in Step 1 to roots α of f = ϕF,B − r ∈ R[T ]
such that |f(α)| < 2−b. Save those roots that correspond to τ ∈ h with
�(τ ) ≥ y.

(3) Γ0(N)-orbits: Divide the τ ’s from Step 2 into Γ0(N)-equivalence classes,
testing equivalence to the chosen bit precision b′ ≤ b, as explained in Sec-
tion 6.5.1. It is easy to efficiently compute the modular degree mF =
deg(ϕF ) (see [Wat02]). If we find mF distinct Γ0(N) classes of points, we
suspect that we have found the fiber over [r], so we map each element of the
fiber to E using ϕE and sum, then apply the elliptic exponential to obtain
PE,F to some precision, then output this approximation and terminate. If
we find more than mF distinct classes, there was an error in the choices
of precision in our computation, so we output FAIL (and suggest either
increasing b or decreasing b′).

(4) Try again: We did not find enough points in the fiber. Systematically
replace r by r +mΩF , for m = 1,−1, 2,−2, . . ., where ΩF is the least real
period of F , then try again going to Step 1 and including the new points
found. If upon trying n choices r +mΩF in a row we find no new points,
we output FAIL and terminate the algorithm.

6.5.1. Determining Γ0(N) equivalency. The field of meromorphic functions invari-
ant under Γ0(N) is generated by j(z) and j(Nz), so if two points z1 and z2 in the
upper half-plane are equivalent under Γ0(N), then z1 and z2 are equivalent under
SL2(Z) and Nz1 and Nz2 are also equivalent under SL2(Z). Because of singularities
in the affine curve defined by j(z) and j(Nz), the converse is not true: for example,
z1 = (−2+ i)/5 and z2 = (2+ i)/5 are equivalent under SL2(Z) as are 5z1 and 5z2,
but z1 and z2 are not equivalent under Γ0(5). This is why the algorithm we give
below must take into account singularities.

Suppose we are given arbitrary z1 and z2 in the upper half-plane. We first
find g1, g2 ∈ SL2(Z) such that wi = gi(zi) is the canonical representative for zi
in the standard fundamental domain for SL2(Z), as explained in [Cr, §2.14] but
using interval arithmetic to avoid rounding errors. If w1 �= w2, then z1 and z2 are
not equivalent under SL2(Z), so they cannot be equivalent under Γ0(N). Thus let
w = g1(z1) = g2(z2). The elements of PSL2(Z) that send z1 to z2 are the finitely
many elements g−1

2 Ag1, for A ∈ Stab(w), so we check whether any g−1
2 Ag1 is in

Γ0(N). The only elements of the standard fundamental domain for SL2(Z) with
nontrivial stabilizers are w = i, with stabilizer generated by S ∈ PSL2(Z) of order 2,
and w = e2πi/3 with stabilizer generated by ST , where T corresponds to z 	→ z+1.
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6.5.2. Data. We implemented the above algorithm in Sage [S+09]3. The columns of
Tables 2–5 are as follows. The columns labeled E and F contain Cremona labels for
elliptic curves, and those labeled rE and rF contain the corresponding ranks. The
column labeled E(Q) gives a choice of generators P1, P2, . . . for the Mordell-Weil
group, with rE points of infinite order listed first, then 0, 1 or 2 torsion points listed
with a subscript of their order. The column labeled PE,F contains a rational point
close to the numerically computed Chow-Heegner point, represented in terms of the
generators Pi from the column labeled E(Q), where P1 is the first generator, P2

the second, and so on. The columns labeled mE and mF give the modular degrees
of E and F . The column labeled ε’s contains the local root numbers of L(E, s)
at each bad prime. The notes column refers to the two notes below, which give
information about the input parameters needed to compute PE,F :

(1) We used y = 10−5 and d = 1500, which takes a few minutes.

(2) We used y = 1
2 · 10−5 and d = 3000, which takes over an hour.

We believe that the values of PE,F are “likely” to be correct, but we emphasize
again that they are not proven correct. In the table we give an exact point, but
the algorithm computes a numerical approximation P̃E,F to PE,F ∈ E(Q). We
find what we call PE,F in the table by running through several hundred low height

points in E(Q) and find the one closest to P̃E,F ; in all cases, the coordinates of the

point we list are within 10−5 of the coordinates of P̃E,F .
The table contains every pair E,F of nonisogenous optimal elliptic curves of the

same conductor N ≤ 184 with rE = 1, and most (but not all) with N ≤ 250. It
also contains a few additional miscellaneous examples, e.g., with rE = 0 and some
of larger conductor with rF = 2. Most rows took only a few seconds to compute,
though ones with mF large in some cases took much longer; the total CPU time
to compute the entire table was about 8 hours. Unless otherwise noted, we used
y = 10−4, d = 500, b′ = 20, and r = 0.1 with 53 bits of precision, as in Section 6.5.
We also repeated all computations with r = 0.2, and in every case got the same
result.

6.5.3. Discussion. In Tables 2–5 we always have 2 | [E(Q)/tor : ZPE,F ]. In may
be possible to prove this in some cases by using that when ran(E) = 1 then the
sign in the functional equation for L(E, s) is −1, so at least one nontrivial Atkin-
Lehner involution wq acts as +1 on E, which means that the map X0(N) → E
factors through X0(N) → X0(N)/wq. Also, there are four cases in which the index
[E(Q)/tor : ZPE,F ] is divisible by a prime � ≥ 5. They are (106b, 106c, � = 11),
(118a, 118d, � = 7), (121b, 121d, � = 7), and (158b, 158c, � = 7). These prime
divisors do not appear to have anything to do with the invariants of E and F ,
individually.

3See http://trac.sagemath.org/sage_trac/ticket/11975.

http://trac.sagemath.org/sage_trac/ticket/11975
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Table 2. Chow-Heegner points associated to pairs of elliptic
curves (part 1 of 4)

E εp’s rE E(Q) mE F rF mF PE,F Notes

37a + 1 (0,−1) 2 37b 0 2 −6P1

37b − 0 (8, 18)3 2 37a 1 2 P1

57a ++ 1 (2, 1) 4 57c 0 12 8P1

57a ++ 1 (2, 1) 4 57b 0 3 −8P1

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57a 1 4 0

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57c 0 12 0

57c −+ 0 (2, 4)5 12 57a 1 4 3P1

57c −+ 0 (2, 4)5 12 57b 0 3 P1

58a ++ 1 (0,−1) 4 58b 0 4 8P1

58b −+ 0 (−1, 2)5 4 58a 1 4 3P1

77a ++ 1 (2, 3) 4 77b 0 20 24P1 (1)

77a ++ 1 (2, 3) 4 77c 0 6 −4P1

89a + 1 (0,−1) 2 89b 0 5 4P1

91a ++ 1 (0, 0) 4 91b 1 4 4P1

91b −− 1 (−1, 3), (1, 0)3 4 91a 1 4 P2

92b −− 1 (1, 1) 6 92a 0 2 0

99a ++ 1 (2, 0), (−1, 0)2 4 99b 0 12 −4P1

99a ++ 1 (2, 0), (−1, 0)2 4 99c 0 12 0

99a ++ 1 (2, 0), (−1, 0)2 4 99d 0 6 2P1

102a + ++ 1 (2,−4), (0, 0)2 8 102b 0 16 −8P1 (1)

102a + ++ 1 (2,−4), (0, 0)2 8 102c 0 24 32P1

106b ++ 1 (2, 1) 8 106a 0 6 −4P1

106b ++ 1 (2, 1) 8 106c 0 48 −88P1

106b ++ 1 (2, 1) 8 106d 0 10 12P1

112a ++ 1 (0,−2), (−2, 0)2 8 112b 0 4 0

112a ++ 1 (0,−2), (−2, 0)2 8 112c 0 8 0

118a ++ 1 (0,−1) 4 118b 0 12 −8P1 (1)

118a ++ 1 (0,−1) 4 118c 0 6 4P1

118a ++ 1 (0,−1) 4 118d 0 38 −28P1

121b + 1 (4, 5) 4 121a 0 6 4P1

121b + 1 (4, 5) 4 121c 0 6 4P1

121b + 1 (4, 5) 4 121d 0 24 −28P1 (2)

123a −− 1 (−4, 1), (−1, 4)5 20 123b 1 4 0

123b ++ 1 (1, 0) 4 123a 1 20 4P1

124a −− 1 (−2, 1), (0, 1)3 6 124b 0 6 0

128a + 1 (0, 1), (−1, 0)2 4 128b 0 8 0

128a + 1 (0, 1), (−1, 0)2 4 128c 0 4 0

128a + 1 (0, 1), (−1, 0)2 4 128d 0 8 0

129a ++ 1 (1,−5) 8 129b 0 15 −8P1

130a +−− 1 (−6, 10), (−1, 10)6 24 130b 0 8 0

130a +−− 1 (−6, 10), (−1, 10)6 24 130c 0 80 0

135a ++ 1 (4,−8) 12 135b 0 36 0 (1)

136a −− 1 (−2, 2), (0, 0)2 8 136b 0 8 0

138a + ++ 1 (1,−2), (−2, 1)2 8 138b 0 16 −16P1 (1)

138a + ++ 1 (1,−2), (−2, 1)2 8 138c 0 8 −8P1

141a −− 1 (−3,−5) 28 141b 0 12 0

141a −− 1 (−3,−5) 28 141c 0 6 0

141a −− 1 (−3,−5) 28 141d 1 4 0
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Table 3. Chow-Heegner points associated to pairs of elliptic
curves (part 2 of 4)

E εp’s rE E(Q) mE F rF mF PE,F Notes

141a - - 1 (−3,−5) 28 141e 0 12 0

141d ++ 1 (0,−1) 4 141a 1 28 −12P1

141d ++ 1 (0,−1) 4 141b 0 12 4P1

141d ++ 1 (0,−1) 4 141c 0 6 4P1

141d ++ 1 (0,−1) 4 141e 0 12 4P1

142a - - 1 (1, 1) 36 142b 1 4 0

142a - - 1 (1, 1) 36 142c 0 9 0

142a −− 1 (1, 1) 36 142d 0 4 0

142a −− 1 (1, 1) 36 142e 0 324 0 (2)

142b ++ 1 (−1, 0) 4 142a 1 36 4P1 (1)

142b ++ 1 (−1, 0) 4 142c 0 9 −4P1

142b ++ 1 (−1, 0) 4 142d 0 4 4P1

142b ++ 1 (−1, 0) 4 142e 0 324 8P1 (2)

152a ++ 1 (−1,−2) 8 152b 0 8 0

153a ++ 1 (0, 1) 8 153b 1 16 8P1

153a ++ 1 (0, 1) 8 153c 0 8 8P1

153a ++ 1 (0, 1) 8 153d 0 24 0

153b −− 1 (5,−14) 16 153a 1 8 0

153b −− 1 (5,−14) 16 153d 0 24 0

154a + + + 1 (5, 3), (−6, 3)2 24 154b 0 24 −24P1

154a + + + 1 (5, 3), (−6, 3)2 24 154c 0 16 16P1

155a −− 1 (5/4, 31/8), (0, 2)5 20 155b 0 8 0

155a −− 1 (5/4, 31/8), (0, 2)5 20 155c 1 4 0

155c ++ 1 (1,−1) 4 155a 1 20 −12P1

155c ++ 1 (1,−1) 4 155b 0 8 4P1

156a −+− 1 (1, 1), (2, 0)2 12 156b 0 12 0 (1)

158a −− 1 (−1,−4) 32 158b 1 8 0

158a −− 1 (−1,−4) 32 158c 0 48 0 (1)

158a −− 1 (−1,−4) 32 158d 0 40 0

158a −− 1 (−1,−4) 32 158e 0 6 0

158b ++ 1 (0,−1) 8 158a 1 32 −8P1

158b ++ 1 (0,−1) 8 158c 0 48 −56P1 (1)

158b ++ 1 (0,−1) 8 158d 0 40 0

158b ++ 1 (0,−1) 8 158e 0 6 −8P1

160a ++ 1 (2,−2), (1, 0)2 8 160b 0 8 0

162a ++ 1 (−2, 4), (1, 1)3 12 162b 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162c 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170e 0 20 0

171b −− 1 (2,−5) 8 171a 0 12 0

171b −− 1 (2,−5) 8 171c 0 96 0 (1)

171b −− 1 (2,−5) 8 171d 0 32 0

175a −− 1 (2,−3) 8 175b 1 16 0 (1)

175a −− 1 (2,−3) 8 175c 0 40 0 (1)

175b ++ 1 (−3, 12) 16 175a 1 8 16P1

175b ++ 1 (−3, 12) 16 175c 0 40 16P1 (1)

176c −− 1 (1,−2) 8 176b 0 8 0 (1)
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Table 4. Chow-Heegner points associated to pairs of elliptic
curves (part 3 of 4)

E εp’s rE E(Q) mE F rF mF PE,F Notes

176c −− 1 (1,−2) 8 176a 0 16 0

176c −− 1 (1,−2) 8 176b 0 8 0 (1)

184a −− 1 (0, 1) 8 184c 0 12 0

184a −− 1 (0, 1) 8 184d 0 24 0

184b ++ 1 (2,−1) 8 184a 1 8 0

184b ++ 1 (2,−1) 8 184c 0 12 0

184b ++ 1 (2,−1) 8 184d 0 24 0

185a ++ 1 (4,−13) 48 185b 1 8 8P1

185a ++ 1 (4,−13) 48 185c 1 6 24P1

185b −− 1 (0, 2) 8 185c 1 6 0

185c ++ 1 (−5/4, 3/8), (−1, 0)2 6 185b 1 8 2P1

189a ++ 1 (−1,−2) 12 189b 1 12 −12P1

189a ++ 1 (−1,−2) 12 189c 0 12 12P1

189b −− 1 (−3, 9), (3, 0)3 12 189a 1 12 0

189b −− 1 (−3, 9), (3, 0)3 12 189c 0 12 0

190a −+− 1 (13,−47) 88 190b 1 8 0

190a −+− 1 (13,−47) 88 190c 0 24 0 (1)

190b + + + 1 (1, 2) 8 190c 0 24 16P1 (1)

192a ++ 1 (3, 2), (−1, 0)2 8 192b 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192c 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192d 0 8 0

196a −− 1 (0,−1) 6 196b 0 42 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198b 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198c 0 32 0

198a +−− 1 (−1,−4), (−4, 2)2 32 198d 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198e 0 160 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200c 0 24 0

200b −− 1 (−1, 1), (−2, 0)2 8 200d 0 40 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200e 0 24 0

201a ++ 1 (1,−2) 12 201b 1 12 4P1

201b −− 1 (−1, 2) 12 201a 1 12 0

201c ++ 1 (16,−7) 60 201a 1 12 −24P1

201c ++ 1 (16,−7) 60 201b 1 12 8P1

203b −− 1 (2,−5) 8 203a 0 48 0

203b −− 1 (2,−5) 8 203c 0 12 0

205a −− 1 (−1, 8), (2, 1)4 12 205b 0 16 0

205a −− 1 (−1, 8), (2, 1)4 12 205c 0 8 0

208a −− 1 (4,−8) 16 208c 0 12 0

208a −− 1 (4,−8) 16 208d 0 48 0 (1)

208b ++ 1 (4, 4) 16 208a 1 16 0 (1)

208b ++ 1 (4, 4) 16 208c 0 12 0

208b ++ 1 (4, 4) 16 208d 0 48 0 (1)

212a −− 1 (2, 2) 12 212b 0 21 0

214a −− 1 (0,−4) 28 214b 1 12 0 (1)

214a −− 1 (0,−4) 28 214d 0 12 0

214b ++ 1 (0, 0) 12 214a 1 28 −8P1 (1)

214b ++ 1 (0, 0) 12 214d 0 12 −4P1
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Table 5. Chow-Heegner points associated to pairs of elliptic
curves (part 4 of 4)

E εp’s rE E(Q) mE F rF mF PE,F Notes

214c ++ 1 (11, 10) 60 214a 1 28 −4P1 (1)

214c ++ 1 (11, 10) 60 214d 0 12 16P1

214c ++ 1 (11, 10) 60 214b 1 12 12P1 (1)

216a ++ 1 (−2,−6) 24 216b 0 24 0

219a ++ 1 (2,−1) 12 219c 1 60 −12P1 (1)

219a ++ 1 (2,−1) 12 219b 1 12 −4P1

216a ++ 1 (−2,−6) 24 216d 0 72 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219a 1 12 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219c 1 60 0 (1)

219c ++ 1 (−6, 7), (10,−5)2 60 219a 1 12 −12P1

219c ++ 1 (−6, 7), (10,−5)2 60 219b 1 12 4P1

220a −−+ 1 (−7, 11), (15, 55)6 36 220b 0 12 0

224a ++ 1 (1, 2), (0, 0)2 8 224b 0 8 0

225a ++ 1 (1, 1) 8 225b 0 40 0 (1)

225e −− 1 (−5, 22) 48 225a 1 8 0 (1)

225e −− 1 (−5, 22) 48 225b 0 40 0 (1)

228b −+− 1 (3, 6) 24 228a 0 18 0

232a ++ 1 (2,−4) 16 232b 0 16 0

234c + + + 1 (1,−2), (−2, 1)2 16 234b 0 48 0 (1)

234c + + + 1 (1,−2), (−2, 1)2 16 234e 0 20 0 (1)

235a −− 1 (−2, 3) 12 235c 0 18 0 (1)

236a −− 1 (1,−1) 6 236b 0 14 0

238a −−+ 1 (24, 100), (−8, 4)2 112 238b 1 8 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238c 0 16 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238d 0 16 0 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238a 1 112 12P1 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238c 0 16 −4P1 (1)

238b + + + 1 (1, 1), (0, 0)2 8 238d 0 16 4P1 (1)

240c + + + 1 (1, 2), (0, 0)2 16 240a 0 16 0

240c + + + 1 (1, 2), (0, 0)2 16 240d 0 16 0 (1)

243a + 1 (1, 0) 6 243b 0 9 0 (1)

245a −− 1 (7, 17) 48 245c 1 32 0

246d + + + 1 (3,−6), (4,−2)2 48 246a 0 84 24P1 (1)

446a ++ 1 (4,−6) 24 446d 2 88 0 (2)

446b −− 1 (5,−10) 56 446d 2 88 0 (2)

446d +− 2 - 88 446a 1 12 0 (1)

446d +− 2 - 88 446b 1 56 0 (1)

681a ++ 1 (4, 4) 32 681c 2 96 −24P1 (2)
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[G] J. Gonzàlez Rovira, Equations of hyperelliptic modular curves (English, with French
summary), Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 779–795. MR1150566
(93g:11064)

[Gr] M. Greenberg, Heegner Points and Rigid Analytic Modular Forms, ProQuest LLC,
Ann Arbor, MI, 2006. Thesis (Ph.D.)–McGill University (Canada). MR2710023

[GJP+09] G. Grigorov, A. Jorza, S. Patrikis, W. A. Stein, and C. Tarniţǎ, Computational ver-
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