
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MATHEMATICS OF COMPUTATION
Volume 85, Number 298, March 2016, Pages 983–1016
http://dx.doi.org/10.1090/mcom/3029

Article electronically published on August 12, 2015

A p-ADIC ANALOGUE OF THE CONJECTURE OF BIRCH AND

SWINNERTON-DYER FOR MODULAR ABELIAN VARIETIES

JENNIFER S. BALAKRISHNAN, J. STEFFEN MÜLLER, AND WILLIAM A. STEIN

Abstract. Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch
and Swinnerton-Dyer conjecture for elliptic curves. We provide a generaliza-
tion of their conjecture in the good ordinary case to higher dimensional modu-
lar abelian varieties over the rationals by constructing the p-adic L-function of
a modular abelian variety and showing that it satisfies the appropriate interpo-
lation property. This relies on a careful normalization of the p-adic L-function,
which we achieve by a comparison of periods. Our generalization agrees with
the conjecture of Mazur, Tate, and Teitelbaum in dimension 1 and the classi-
cal Birch and Swinnerton-Dyer conjecture formulated by Tate in rank 0. We
describe the theoretical techniques used to formulate the conjecture and give
numerical evidence supporting the conjecture in the case when the modular
abelian variety is of dimension 2.

1. Introduction

The Birch and Swinnerton-Dyer (BSD) conjecture gives a precise relationship
between several arithmetic invariants of an abelian variety A over a number field
K. As formulated by Tate [45], the conjecture states the following:

Conjecture 1.1 (BSD conjecture for abelian varieties). Let A be an abelian variety
of dimension g over a number field K, and let A∨ be its dual. Then the Mordell-
Weil rank r of A(K) is equal to the analytic rank ords=1 L(A, s) of A and

lim
s→1

(s− 1)−rL(A, s) =
ΩA · |X(A/K)| · Reg(A/K) ·

∏
v cv√

|DK |g · |A(K)tors| · |A∨(K)tors|
,

where DK is the absolute discriminant of K, ΩA is the real period, Reg(A/K) is
the regulator, cv is the Tamagawa number at a finite place v of K, X(A/K) the
Shafarevich-Tate group of A and A(K)tors is the torsion subgroup of A(K).

Note that this conjecture relies on two assumptions: that the Shafarevich-Tate
group X is finite and that the L-series can be analytically continued to s = 1. An
analytic continuation is known to exist for modular abelian varieties over Q, where
an abelian variety is said to be modular if it is a quotient of J1(N) for some level
N . In particular, for an elliptic curve E/Q of rank r, the BSD conjecture predicts:

Conjecture 1.2 (BSD conjecture for elliptic curves). Let E be an elliptic curve
over Q. Then the Mordell-Weil rank r of E(Q) is equal to the analytic rank of E
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and

lim
s→1

(s− 1)−rL(E, s) =
ΩE · |X(E/Q)| · Reg(E/Q) ·

∏
p cp

|E(Q)tors|2
.

In 1986, Mazur, Tate, and Teitelbaum [24] gave a p-adic analogue of this con-
jecture for an elliptic curve E over the rationals and a prime p of good ordinary or
multiplicative reduction. Much work has been done towards a proof of the conjec-
ture, and more is known about the p-adic conjecture than its classical counterpart.
We give a brief overview of the circle of ideas involved; see also the recent work of
Stein-Wuthrich [43]. For simplicity, we assume that p > 2.

Let ∞G denote the Galois group Gal(Q(μp∞)/Q), where Q(μp∞) is the cyclo-
tomic extension of Q obtained by adjoining all p-power roots of unity, let κ :

∞G → Z×
p denote the cyclotomic character and let γ be a topological genera-

tor of Γ = ∞G(p−1). For an elliptic curve E/Q and a prime p such that E has
good or multiplicative reduction at p, we denote the p-adic regulator, divided by
logp(κ(γ))

r, by Regγ(E/Q) and we let Lp(E, T ) denote the series expansion of the

p-adic L-function Lp(E, s) associated to E in T = κ(γ)s−1 − 1.

Conjecture 1.3 (p-adic BSD conjecture for elliptic curves). Let E be an ellip-
tic curve over Q and let p be a prime number such that E has good ordinary or
multiplicative reduction at p.

(i) The order of vanishing ordT (Lp(E, T )) of Lp(E, T ) at T = 0 is equal to the
rank r of E(Q) if E has good ordinary or nonsplit multiplicative reduction at
p. If E has split multiplicative reduction at p, then ordT (Lp(E, T )) = r + 1.

(ii) If E has good ordinary or nonsplit multiplicative reduction at p, then the
leading term L∗

p(E, 0) satisfies

(1.1) L∗
p(E, 0) = εp(E) ·

|X(E/Q)| · Regγ(E/Q) ·
∏

v cv

|E(Q)tors|2
,

where εp(E) = (1− α−1)b for a unit root α of x2 − apx+ p ∈ Qp[x] (with ap
the Hecke eigenvalue of the newform associated to E) and b is 2 if E has good
ordinary reduction at p and 1 if E has nonsplit multiplicative reduction at p.

If E has split multiplicative reduction at p, then

L∗
p(E, 0) =

Sp

logp(κ(γ))
·
|X(E/Q)| · Regγ(E/Q) ·

∏
v cv

|E(Q)tors|2
,

where Sp =
logp(qE)

ordp(qE) and qE is the Tate period of E over Qp.

For primes of supersingular reduction, the p-adic L-function and the p-adic reg-
ulator can also be defined, and a p-adic BSD conjecture has been formulated by
Bernardi and Perrin-Riou [5].

Much work has been done toward a proof of Conjecture 1.3, but since most of it
also applies to higher-dimensional modular abelian varieties, we defer a discussion
of the known results to the end of this introduction.

We note that in the case of elliptic curves, the classical BSD conjecture (Con-
jecture 1.2) shares many of the same arithmetic quantities with the p-adic BSD
conjecture (Conjecture 1.3); the main difference is that the regulator and L-series
are replaced with p-adic analogues. In particular, the conjectures are equivalent if
the rank is 0 and p has good ordinary or nonsplit multiplicative reduction. Conse-
quently, one might expect that a statement like Conjecture 1.1 could be formulated
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and studied for a modular abelian variety A/Q associated to a newform f ; this is
the goal of the present paper.

The main theoretical difficulty in formulating the conjecture was that, prior to
the present work, no construction of the p-adic L-function associated to a modular
abelian variety A/Q of dimension greater than 1 seemed to be known. Nevertheless,
one knows that by the general motivic framework outlined by Coates [10], a p-adic
L-series attached to A should interpolate the complex L-series L(A, s) at special
values, so it seems plausible that it could be defined, similarly to L(A, s), as the
product of p-adic L-functions Lp(f

σ, s) associated to the Galois conjugates fσ of
f .

However, there is no obvious canonical choice for Lp(f
σ, s), since picking a p-adic

L-function associated to fσ requires picking a Shimura period (see Theorem 2.2)
for each fσ, that is, a complex number Ω+

fσ such that L(fσ, 1)/Ω+
fσ is algebraic.

In the case of elliptic curves, this is not an issue, since we can choose Ω+
f to be the

real period Ω+
E of the associated elliptic curve E.

We show that there is a natural way to pick a set of Shimura periods, which allows
us to construct the p-adic L-function attached to A/Q. Indeed, an extension of
Conjecture 1.3 to modular abelian varieties should be equivalent to Conjecture 1.1 in
rank 0. Since the latter involves the real period Ω+

A associated to A, this equivalence

forces the product of the Shimura periods Ω+
fσ to equal Ω+

A. We show that we can

choose a set of Shimura periods with this property (see Theorem 2.4), which allows
us to normalize our p-adic L-function.

In this way we are able to explicitly construct, essentially generalizing the treat-
ment in [24], a p-adic L-function associated to A with the expected interpolation
property, in the case where p is a prime of good ordinary reduction (see (2.10) and
(2.11)). We keep the notation introduced prior to Conjecture 1.3 and extend it to
the case of modular abelian varieties. We also define the p-adic multiplier εp(A) as
follows: fix a prime ℘ | p of the number field Kf generated by the Hecke eigenvalues
of f and let ασ denote the unit root of x2−σ(ap)x+p ∈ (Kf )℘[x], where σ : Kf ↪→ C
is an embedding. For a Galois conjugate fσ of f define εp(f

σ) = (1− 1/(ασ))2 and
define εp(A) to be the product of the p-adic multipliers εp(f

σ) over all distinct
Galois conjugates of f .

We make the following p-adic BSD conjecture:

Conjecture 1.4. Let A/Q be a modular abelian variety associated to a newform
f and let p be a prime number such that A has good ordinary reduction at p. Then
the Mordell-Weil rank r of A equals ordT (Lp(A, T )) and

(1.2) L∗
p(A, 0) = εp(A) ·

|X(A/Q)| · Regγ(A/Q) ·
∏

v cv

|A(Q)tors| · |A∨(Q)tors|
,

where L∗
p(A, 0) is the leading coefficient of the p-adic L-series Lp(A, T ).

Note that the conjecture of Mazur-Tate-Teitelbaum in the good ordinary case
is a special case of Conjecture 1.4. Moreover, if the rank of A/Q is zero, then our
conjecture is equivalent to the classical BSD conjecture due to the interpolation
property

Lp(A, 0) = Lp(A, 1) = εp(A) · L(A, 1)

Ω+
A

.
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Most progress toward proving the Mazur-Tate-Teitelbaum conjecture uses Iwa-
sawa theory and many results remain valid in our setup. Unfortunately, Iwasawa-
theoretic results typically only assert equality up to a p-adic unit, whereas our
Conjecture 1.4 asserts full equality. We restrict to the good ordinary case from
now on, although most results have supersingular or multiplicative analogues. See
[43, §6,7] for a summary of such analogues in the elliptic curves case.

Let X(A/∞Q) denote the Pontryagin dual of the p-Selmer group of A and let Λ
be the completed group algebra Zp[[Γ]]. Using p-adic Hodge theory, Kato [18] has
shown that X(A/∞Q) is a torsion Λ-module. Hence we can associate a character-
istic series fA(T ) ∈ Zp[[T ]], well defined up to a factor in Zp[[T ]]

×, to X(A/∞Q).

Conjecture 1.5 (Main conjecture of Iwasawa theory for abelian varieties with
good ordinary reduction). There exists an element u(T ) ∈ Λ× such that

Lp(A, T ) = fA(T ) · u(T ).
If A = E is an elliptic curve, then the main conjecture is known to be a theorem

in many cases. If E has complex multiplication, then a proof is due to Rubin [35].
Many other cases have been proven, culminating in the work [40] of Skinner and
Urban. See [43, §7] for an overview. The following unconditional result is due to
Kato [18]:

Theorem 1.6 (Kato). Let A be an elliptic curve. There is an integer m ≥ 0 such
that fA(T ) divides pmLp(A, T ).

The following result of Perrin-Riou [31] and Schneider [37] relates fA(T ) to the
right-hand side of (1.2):

Theorem 1.7 (Perrin-Riou, Schneider). The order of vanishing ordT=0 fA(T ) is
greater than or equal to the rank r of A/Q. Equality holds if and only if the p-adic
height pairing on A is nondegenerate and the p-primary part X(A/Q)(p) of the
Shafarevich-Tate group of A is finite, in which case the leading coefficient of fA(T )
has the same valuation as

εp(A) ·
|X(A/Q)(p)| · Regγ(A/Q) ·

∏
v cv

|A(Q)tors| · |A∨(Q)tors|
.

See for instance [37, Theorem 2’], noting that we have ordp(εp(A)) = 2 ordp(Np),
where Np is the number of Fp-rational points on the reduction of A over Fp.

As a corollary of Theorem 1.6 and Theorem 1.7, we have that

(1.3) ordT=0 Lp(A, T ) ≥ ordT=0 fA(T ) ≥ r = rank(A(Q)),

if A is an elliptic curve, so one direction of the first part of Conjecture 1.3 (with (1.3)
suitably modified in the case of multiplicative reduction) is already known. More-
over, the second part of our Conjecture 1.4 is consistent with the Main Conjecture,
since the latter implies that the leading coefficients of the p-adic L-series and the
characteristic series have the same valuation. If Lp(E, 0) �= 0, then Conjecture 1.3,
part (ii) is also known up to a rational factor (see [18], [31], and also the exposition
in [43, §8]). The primes appearing in this factor can be determined explicitly using
[40]. In the good ordinary case a similar result also holds when the p-adic analytic
rank is 1, under an additional hypothesis; see [43, §9]. This follows from work of
Perrin-Riou [32] and Kato [18].

Historically speaking, numerical evidence played a crucial role in the formulation
of Conjecture 1.3 [24, §II.12]. Gathering evidence for Conjecture 1.4 would require
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two computations independent of the usual Birch and Swinnerton-Dyer conjecture:
the computation of p-adic regulators of A, as well as the computation of special
values of the p-adic L-function attached to A. We give algorithms to compute
these quantities and provide the first numerical verification for Conjecture 1.4 by
considering the modular abelian varieties of dimension 2 and rank 2 in [13] and the
Jacobian of a twist of X0(31) of rank 4.

Our aim is to give a self-contained discussion of the p-adic Birch and Swinnerton-
Dyer conjecture for modular abelian varieties. To that end, we discuss both the
theoretical and the algorithmic aspects of p-adic special values and p-adic regulators.
This paper is structured as follows: in §2, we give a construction of the p-adic L-
series attached to modular abelian varieties, making explicit certain aspects of [24].
This allows us to compute p-adic special values. In §3, we take a look at the p-adic
regulator attached to an abelian variety, focusing on the case when the abelian
variety is the Jacobian of a hyperelliptic curve. We begin by reviewing the work
of Coleman and Gross [12], which gives the p-adic height pairing on Jacobians of
curves in terms of local height pairings. We discuss the two types of local height
pairings which arise and give an algorithm to compute p-adic heights, which allows
us to compute p-adic regulators. In §4 and §5 we present the evidence for the
conjecture in dimension 2.

2. p-adic L-functions attached to modular abelian varieties

In this section, we construct the p-adic L-function attached to a newform f ∈
S2(Γ0(N)), making explicit a few aspects of [24, §I.10]. This depends on the choice
of a Shimura period as in Theorem 2.2. In order to pin down the p-adic L-function
we want, we relate the Shimura periods of f and its Galois conjugates to the real
period of the abelian variety Af attached to f . This leads to a definition of a
p-adic L-function for Af which satisfies the expected interpolation property (2.13).
Finally, we discuss how this p-adic L-function can be computed in practice.

2.1. Periods. Let N be a positive integer and let X0(N) be the modular curve of
level N . The Jacobian J0(N) of X0(N) is an abelian variety over Q of dimension
equal to the genus of X0(N), which is equipped with an action of the Hecke algebra
T. The space S := S2(Γ0(N)) of cusp forms of weight 2 on Γ0(N) is a module over
T. Let f(z) =

∑∞
n=1 ane

2πinz ∈ S be a newform, let Kf be the totally real number
field Q(. . . , an, . . .), and let If denote the annihilator AnnT(f) of f in T. Following
Shimura [38], we have that the quotient

Af = J0(N)/IfJ0(N)

is an abelian variety over Q of dimension g = [Kf : Q] which is equipped with a
faithful action of T/If . Moreover, Af is an optimal quotient of J0(N) in the sense
that the kernel of J0(N) → Af is connected. For ease of notation, we will drop the
subscript f and write A = Af .

Remark 2.1. We assume that f ∈ S2(Γ0(N)) for convenience, because we need
that Kf is totally real in order for Theorem 2.2 and Theorem 2.4 to hold precisely
as stated. However, in the case where Kf is a CM-field, Shimura [39] has proved
that a slightly modified version of Theorem 2.2 continues to hold. Using this,
one can prove a result that is analogous to Theorem 2.4 for arbitrary newforms
f ∈ S2(Γ1(N)).
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There is a complex-valued pairing 〈 , 〉 on S ×H1(X0(N),Z), given by integra-
tion:

〈h, γ〉 = 2πi

∫
γ

h(z)dz.

This pairing induces a natural T-module homomorphism

Φ : H1(X0(N),Z) → HomC(S,C),

called the period mapping.
Let Gf be the set of embeddings σ : Kf → C . If σ ∈ Gf , we let fσ denote

the conjugate of f by σ. We denote the complex vector space generated by the
Galois conjugates of f by Sf . Let Φf : H1(X0(N),Z) → HomC(Sf ,C) be given
by Φ composed with restriction to Sf . Then Φf (H1(X0(N),Z)) is a lattice in
HomC(Sf ,C) and we have an isomorphism

A(C) ∼= HomC(Sf ,C)/Φf (H1(X0(N),Z)).

A choice of basis B of Sf induces an isomorphism HomC(Sf ,C) ∼= Cg and B maps
via Φf to a lattice ΛB ⊂ Cg such that

A(C) ∼= Cg/ΛB.

For a basis B of Sf we let Λ+
B (resp. Λ−

B ) be the fixed points of ΛB under complex
conjugation (resp. under minus complex conjugation).

We define the real period Ω+
A (resp. the minus period Ω−

A) of A as follows: Let
ωA be the pullback of a generator of the global relative differential g-forms on the
Néron model A of A over Spec(Z) to A. We call ωA a Néron differential on A.
Then we define

Ω±
A :=

∫
A(C)±

|ωA|,

where A(C)± denotes the set of points of A(C) on which complex conjugation acts
as multiplication by ±1.

Let B be a Z-basis of the finitely generated free Z-module consisting of elements
of Sf with Fourier coefficients in Z. Then we have (see [1, §3.2])

Ω±
A = ρ · cA · vol(Λ±

B ),

where cA is the Manin constant of A, defined, for instance, in [1, §3.1] and ρ ∈ C is
ig if ± = − and 1 otherwise. It is known that cA is an integer and conjectured that
it is always 1 (cf. [1, §3.3]). There is no known algorithm to compute the Manin
constant in general, which complicates much of what we do below. The evidence
that cA = 1 is compelling, and we make the following:

Running Hypothesis: We assume for the rest of this paper that cA = 1.

Let H1(X0(N),Z)± denote the part of H1(X0(N),Z) fixed by complex conjuga-
tion (resp. minus complex conjugation). If w, z ∈ C, then we write w ∼ z if w and
z differ by a nonzero rational factor. We have that

Ω±
A ∼ ρ · vol

(
Λ̃B

±)
,

where Λ̃B
±

is the lattice Φf (H1(X0(N),Z)±), Φf is induced by the choice of basis
B as above, and the rational factor is the number of components of A(R) (resp.
A(C)−).
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We denote the complex L-series of f by

L(f, s) =
∑
n≥1

an
ns

.

If ψ is a Dirichlet character, we denote its Gauss sum by τ (ψ) and its conjugate
character by ψ̄. We also let fψ denote the newform f twisted by ψ and Kψ the
field generated over Q by the values of ψ.

Theorem 2.2 (Shimura, [39, Theorem 1]). For all σ ∈ Gf there exist Ω+
fσ ∈ R

and Ω−
fσ ∈ i · R such that the following properties are satisfied:

(i) We have

πi

Ω±
fσ

(∫ i∞

r

fσ(z)dz ±
∫ i∞

−r

fσ(z)dz

)
∈ Kf

for all r ∈ Q.
(ii) If ψ is a Dirichlet character, then

L(fψ̄, 1)

τ (ψ) · Ωsignψ
f

∈ Kf ·Kψ.

(iii) If ψ is a Dirichlet character, then

σ

(
L(fψ̄, 1)

τ (ψ) · Ωsign(ψ)
f

)
=

L(fσ
ψ̄σ , 1)

τ (ψσ) · Ωsign(ψσ)
fσ

.

We call a set {Ω±
fσ}σ∈Gf

as in Theorem 2.2 a set of Shimura periods for f .

Note that the conditions of Theorem 2.2 do not determine the sets {Ω±
fσ}σ∈Gf

.

Indeed, if {Ω±
fσ}σ∈Gf

satisfy the assertions of the theorem, then this also holds for

{σ(b) · Ω±
fσ}σ∈Gf

, where b ∈ K×
f .

According to Shimura [39, §2], the periods Ω±
fσ are related to a certain period

lattice, which gives us a way to compare them to the periods Ω±
A. To this end, let

B′ = (fσ)σ∈Gf
be a basis for the complex vector space Sf , consisting of the Galois

conjugates of f in some order. Following Shimura, we define an action of Kf on
Cg as follows: let a ∈ Kf act on Cg via the diagonal matrix diag((σi(a))i). Let
(ΛB′ ⊗Q)± be the set of elements of ΛB′ fixed by ± complex conjugation.

Lemma 2.3 (Shimura). (ΛB′ ⊗Q)± is a one-dimensional Kf -vector space.

Proof. This is precisely [39, §2, p. 215]. �

Theorem 2.4. Let {Ω±
fσ}σ∈Gf

be any choice of Shimura periods as in Theorem 2.2.
Then we have

Ω±
A ∼

∏
σ∈Gf

Ω±
fσ .

Proof. Fix a Z-basis B = (h1, . . . , hg) of the free Z-module consisting of elements
of Sf with Fourier coefficients in Z. Then there are b1, . . . , bg ∈ K = Kf such that

f =

g∑
i=1

bihi.
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If σ ∈ Gf , then

fσ =

g∑
i=1

σ(bi)hi

and hence we have

(2.1) 〈fσ, γ〉 =
g∑

i=1

σ(bi) · 〈hi, γ〉

for each γ ∈ H1(X0(N),Z).
Now fix some ordering σ1, . . . , σg of the elements of Gf and let B = (bij) be the

g × g-matrix with entries bij = σj(bi), and B′ the basis (fσi). We will compute
vol

(
Λ±
B′

)
in two different ways and the desired equality up to a rational number

will fall out.
First we express vol

(
Λ±
B′

)
in terms of Ω±

A. Note that (2.1) implies

(2.2) ρ · vol
(
Λ±
B′

)
∼ ρ · vol

(
Λ̃B′

±)
∼ ρ · | det(B)| · vol

(
Λ̃B

±)
∼ | det(B)| · Ω±

A.

Let Ω± ∈ Cg be the vector whose i-th entry is Ω±
fσi . Since det(B) �= 0, the

elements b1, . . . , bg of K form a basis for K over Q, so Lemma 2.3 implies that

(ΛB′ ⊗Q)± = KΩ±.

Thus a basis of (ΛB′ ⊗ Q)± as a Q-vector space is (bi · Ω±)i=1,...,g, where K acts
diagonally on Cg, as above. Hence

(2.3) ρ · vol
(
Λ±
B′

)
∼ | det(B)| ·

∏
σ

Ω±
fσ ,

since

(ΛB′ ⊗Q)± = (Λ±
B′)⊗Q.

The proof of the theorem now follows from (2.2) and (2.3). �

Remark 2.5. If L(f, 1) �= 0, then we can also argue as follows: We have

L(A, 1)∏
σ∈Gf

Ω+
fσ

∈ Q

by Theorem 2.2. But on the other hand, the quotient L(A,1)

Ω+
A

is a rational number

as well by [2, Theorem 4.5]. Hence we get
∏

σ∈Gf
Ω+

fσ ∼ Ω+
A.

Remark 2.6. In [46], Vatsal defines canonical Shimura periods associated to cusp-
forms. It would be interesting to determine whether his periods satisfy Theorem 2.4.

From now on, we fix some choice {Ω±
fσ}σ∈Gf

such that

(2.4)
∏

σ∈Gf

Ω±
fσ = Ω±

A.

If {Ψ±
fσ}σ∈Gf

is another set of Shimura periods satisfying (2.4), then there is a unit

b ∈ OKf
such that Ψ±

fσ = σ(b)Ω±
fσ for all σ ∈ Gf . For our intended applications,

this ambiguity is not serious; see Remark 2.10.
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In order to compute {Ω±
fσ}σ∈Gf

we can find a Dirichlet character ψ of sign ±
such that L(fψ, 1) �= 0 and use equation (11) of [39]. Alternatively, we can fix some
nonzero element γ ∈ H1(X0(N),Z)[If ]

± and define

Ω±
fσ = σ(b) · 〈fσ, γ〉,

for each σ ∈ Gf , where b ∈ Kf is chosen to make (2.4) hold. See [41, Ch. 10] for a
description of how to compute the integration pairing in practice.

As an application of Theorem 2.4, we can prove a relation between the real
and minus period of A and the corresponding periods of A twisted by a Dirichlet
character ψ.

Corollary 2.7. Let ψ be a Dirichlet character such that L(fψ, 1) �= 0. Then there
exists ηψ ∈ K∗

ψ such that

Ωsignψ
A ·

∏
σ∈Gf

τ (ψσ) = ηψ · Ω+
Aψ

.

In particular, if ψ takes values in Q, then there exists ηψ ∈ Q∗ such that

Ωsignψ
A · τ (ψ)g = ηψ · Ω+

Aψ
.

Proof. This follows from Theorem 2.4 and Theorem 2.2. �

Remark 2.8. If A is the Jacobian of a hyperelliptic curve of genus at most 2 and ψ
is a quadratic Dirichlet character such that ψ(N) �= 0, then one can show that the
statement of Corollary 2.7 holds without the assumption L(fψ, 1) �= 0 using quite
concrete arguments. For elliptic curves and quadratic ψ, Corollary 2.7 was already
used in [24, §II.11]. Note, however, that their claim that ηψ ∈ {1, 2} is incorrect;
see [30], where the correct value of ηψ is determined in all cases.

2.2. Modular symbols, measures, and the p-adic L-function of a newform.
In this subsection we define the p-adic L-function associated to f , following [24].
See also the treatment in [33]. The definitions for fσ, where σ ∈ Gf , are entirely
analogous.

Recall that we fixed a choice of Shimura periods Ω±
fσ above. The plus modular

symbol map associated to f is the map

[ ]+f : Q → Kf

r �→ [r]+f = − πi

Ω+
f

(∫ i∞

r

f(z)dz +

∫ i∞

−r

f(z)dz

)
and the minus modular symbol map associated to f is the map

[ ]−f : Q → Kf

r �→ [r]−f =
πi

Ω−
f

(∫ i∞

r

f(z)dz −
∫ i∞

−r

f(z)dz

)
.

Note that we have [0]+f = L(f,1)

Ω+
f

. More generally, if m is a positive integer and

ψ is a Dirichlet character modulo m, then [24, §I.8] implies

(2.5)
L(fψ̄, 1)

Ωsignψ
f

=
ψ(−1)

τ (ψ)

∑
u mod m

ψ(a) ·
[ u
m

]signψ

f
∈ Kf .
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Let p be a prime of good ordinary reduction for A. We fix, once and for all,
a prime ℘ of Kf lying above p. The modular symbol maps allow us to define
two measures on Z×

p which depend on the unit root of the polynomial h(x) :=

x2−apx+p ∈ (Kf )℘[x], where (Kf )℘ is the completion ofKf at ℘. The construction
of the p-adic L-function depends, in turn, on these measures. Since A is ordinary at
p, the polynomial h has a unique unit root α ∈ (Kf )℘, i.e., a root with ord℘(α) = 0.

Using the modular symbol maps [ ]±f , we define two measures μ±
f,α on Z×

p by

μ±
f,α(a+ pnZp) =

1

αn

[
a

pn

]±
f

− 1

αn+1

[
a

pn−1

]±
f

.

For a continuous character χ on Z×
p with values in Cp, we may integrate χ against

μf,α. Following [24, §I.13], we write x ∈ Z×
p as ω(x) · 〈x〉 where ω(x) is a (p− 1)-st

root of unity and 〈x〉 belongs to 1+pZp. The element ω is known as the Teichmüller
character.

We define the analytic p-adic L-function associated to f by

(2.6) Lp(f, s) =

∫
Z×
p

〈x〉s−1 dμ+
f,α(x) for all s ∈ Zp,

where by 〈x〉s−1 we mean expp((s− 1) · logp〈x〉) and expp and logp are the p-adic
exponential and logarithm, respectively. The function Lp(f, s) extends to a locally
analytic function in s on the disc defined by |s− 1| < 1, as in the first proposition
of [24, §I.13].

Let ∞G be the Galois group Gal(Q(μp∞)/Q). The cyclotomic character κ :

∞G → Z×
p induces an isomorphism from ∞G to Z×

p that sends a topological gener-

ator γ in ∞G(p−1) to a generator κ(γ) of 1 + pZ×
p . This identification allows us to

give a series expansion of the p-adic L-function in terms of T = κ(γ)s−1 − 1. That
is, we have

(2.7) Lp(f, T ) =

∫
Z×
p

(1 + T )
logp(〈x〉)
logp(κ(γ)) dμ+

f,α(x).

Now for each n ≥ 1, let Pn(f, T ) be the following polynomial:

(2.8) Pn(f, T ) =

p−1∑
a=1

⎛⎝pn−1−1∑
j=0

μ+
f,α

(
ω(a)(1 + p)j + pnZp

)
· (1 + T )j

⎞⎠ .

We have that (2.8) gives us a Riemann sum for the integral (2.7), by summing
over residue classes mod pn. In other words:

Proposition 2.9. We have that the p-adic limit of these polynomials is the p-adic
L-series:

lim
n→∞

Pn(f, T ) = Lp(f, T ).

This convergence is coefficient-by-coefficient, in the sense that if Pn(f, T ) =∑
j an,jT

j and Lp(f, T ) =
∑

j ajT
j , then

lim
n→∞

an,j = aj .
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Proof. This is a straightforward generalization of [43, Proposition 3.1]. The upper
bounds we obtain are the same as the upper bounds in the proof of [43, Propo-
sition 3.1], which enables us to compute the p-adic L-series to any desired preci-
sion. �

We define the p-adic multiplier εp(f) by

εp(f) =
(
1− α−1

)2
.

The p-adic L-series of f satisfies an interpolation property with respect to the
complex L-series of f [24, §I.14]:

(2.9) Lp(f, 0) = Lp(f, 1) =

∫
Z×
p

dμ+
f,α = εp(f) · [0]+f = εp(f) ·

L(f, 1)

Ω+
f

.

2.3. p-adic L-function associated to A. The p-adic L-series Lp(f, s) associated
to f that we constructed in the previous subsection depends on the Shimura periods
Ω+

fσ and on the prime ℘. In the present section we define a p-adic L-function
associated to the abelian variety A which is independent of the choices of the
Shimura periods (provided they satisfy (2.4)) and of ℘.

The abelian variety A has an associated complex L-series, given by

L(A, s) =
∏

σ∈Gf

L(fσ, s),

which can be extended analytically to the whole complex plane.
We define the p-adic L-function associated to A by

(2.10) Lp(A, s) =
∏

σ∈Gf

Lp(f
σ, s)

for s ∈ Zp.

Remark 2.10. Since we require our Shimura periods {Ω±
fσ}σ∈Gf

to satisfy (2.4),

the p-adic L-function Lp(A, s) does not depend on the choice of period for each fσ,
although the individual p-adic L-functions Lp(f

σ, s) do.

Furthermore, we define

(2.11) Lp(A, T ) =
∏

σ∈Gf

Lp(f
σ, T )

and the p-adic multiplier of A by

εp(A) =
∏

σ∈Gf

εp(f
σ).

For r ∈ Q we set

(2.12) [r]±A :=
∏

σ∈Gf

[r]±fσ .

The following result follows immediately from (2.9):

Corollary 2.11. Let {Ω±
fσ}σ∈Gf

be a set of Shimura periods satisfying (2.4). Then
we have

(2.13) Lp(A, 0) = Lp(A, 1) = εp(A) · [0]+A = εp(A) · L(A, 1)

Ω+
A

.
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2.4. Quadratic twists and normalization. Modular symbols can be computed
up to a rational multiple purely algebraically (cf. [41]) using (mostly sparse) linear
algebra over fields. Computing the exact modular symbol (not just up to a rational
factor) requires doing linear algebra over Z, which is much slower. In this section we
describe a method to determine the correct normalization of the modular symbol
map by using special values of quadratic twists, which is potentially much faster
than using linear algebra over Z.

In order to find the correct normalization, we use the fact that the p-adic L-
series associated to A interpolates the Hasse-Weil L-function L(A, s) associated to

A at special values. Algorithms for the computation of L(A,1)

Ω+
A

, L(A, 1) and Ω+
A are

discussed in [2,13,41]. So if L(A, 1) �= 0, then we can find the correct normalization

factor δ+ for Lp(A, T ) by computing [0]+A and comparing it to L(A,1)

Ω+
A

. Note that

the quotient L(A,1)

Ω+
A

can be computed purely algebraically as a certain lattice index,

without computing either of the real numbers L(A, 1) or Ω+
A.

In order to discuss the strategy for the case L(A, 1) = 0, we begin by considering
modular symbols associated to quadratic twists of f . Let D be a fundamental
discriminant of a quadratic number field such that gcd(pN,D) = 1 and let ψ denote

the Dirichlet character associated to Q(
√
D). We assume that L(fψ, 1) �= 0. Using

Corollary 2.7 we see that there exists ηψ ∈ K∗
f such that

Ω
sign(D)
A ·Dg/2 = ηψ · Ω+

Aψ
.

A computation analogous to [43, §3.7] yields

(2.14) [r]+Aψ
=

∏
σ∈Gf

[r]+fσ
ψ
=

sign(D)g

ηψ

∏
σ∈Gf

|D|−1∑
u=1

ψ(u) ·
[
r +

u

D

]sign(D)

fσ
.

Therefore we can compute the product of the plus modular symbols for fψ and its
conjugates in terms of modular symbols for f and its conjugates. The same holds
for the p-adic L-function of the twist Aψ of A by ψ.

Now suppose that Lp(A, 0) = 0 and we want to find the correct normalization
factor for [ ]+f . We can use that for a fundamental discriminant D with Dirichlet

character ψ, the modular symbols [ ]+f and [ ]
sign(D)
fψ

are related by (2.14). Hence

the same normalization factor δ+ will yield the correct value [r]+Aψ
for all D > 0

such that gcd(pN,D) = 1.
We can compute δ+ by finding a fundamental discriminant D > 0 such that

gcd(pN,D) = 1 and such that Aψ has analytic rank 0 over Q, where ψ is the

quadratic character associated to Q(
√
D), and comparing [0]+Aψ

to

ηψ · L(Aψ, 1)

Dg/2 · Ω+
A

.

An analogous approach can be used to find the correct normalization factor δ− for
the minus modular symbol. It follows from [9] that in both cases a fundamental
discriminant D as above always exists.

Remark 2.12. Suppose that A is the Jacobian of a hyperelliptic curve X/Q of genus
g given by the equation

y2 + h1(x)y = f1(x),
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which is minimal in the sense of [20]. Often it is not necessary to compute ΩsignD
Aψ

(or even Ω+
A) to compute ηψ. Let y2 + h2(x)y = f2(x) be a minimal equation for

Xψ, and consider the differentials ωi =
xidx

2y+h1(x)
on X and ω′

i =
xidx

2y+h2(x)
on Xψ.

It frequently happens that (ω1, . . . , ωg) is a basis of the integral 1-forms on A and
(ω′

1, . . . , ω
′
g) is also a basis for the integral 1-forms on Aψ. In that case we always

have ηψ ∈ {±1}; this follows from [13, §3.5]. It is easy to determine the sign using
a straightforward generalization of [19, §1.3]. More generally, a similar approach
can also be used to compute ηψ directly if we know how to express a basis for the
integral 1-forms in terms of ω1, . . . , ωg.

2.5. The algorithm. We implemented the following algorithm for the computa-
tion of the p-adic L-series of A in Sage [42].

Algorithm 2.13 (p-adic L-series).
Input: Good ordinary prime p, A modular abelian variety attached to newform f ,
precision n.
Output: nth approximation to the p-adic L-series Lp(A, T ).

(1) Fix a prime ℘ of the field Kf generated by the Hecke eigenvalues of f lying
above p and compute the unit root α of h(x) ∈ (Kf )℘[x].

(2) Find a fundamental discriminant D > 0 such that gcd(pN,D) = 1 and Aψ

has analytic rank 0 over Q, where ψ is the quadratic character associated
to Q(

√
D).

(3) Compute ηψ.
(4) For each σ ∈ Gf , define measures μ±

fσ,α.

(5) For each σ ∈ Gf , compute [0]+fσ
ψ
and set [0]+Aψ

=
∏

σ∈Gf
[0]+fσ

ψ
.

(6) Compute
L(Aψ,1)

Dg/2·Ω+
A

and deduce the normalization factor δ+ using (2.13).

(7) For each σ, compute Pn(f
σ, T ).

(8) Return δ+ ·
∏

σ Pn(f
σ, T ).

Remark 2.14. Note that Step (7) of Algorithm 2.13 is exponential in p; see the
following subsection for an alternative method.

2.6. Overconvergent modular symbols. Here we outline an alternative method
for Step (7) of Algorithm 2.13. This method is due to Pollack and Stevens [34] and
has running time polynomial in p and in the desired number of digits of precision.

The idea is to use Stevens’s overconvergent modular symbols; these are con-
structed using certain p-adic distributions, and they can be specialized to classical
modular symbols. More precisely, any classical modular eigensymbol can be lifted
uniquely to an overconvergent modular Hecke-eigensymbol, which can be approxi-
mated using finite data. Note that in order to do this, we first have to p-stabilize
the symbol to a symbol for Γ0(Np) which is an eigensymbol away from p.

The plus modular symbol we start with is only determined up to multiplication
by a scalar, so the corresponding overconvergent eigenlift is also only determined
up to multiplication by a scalar. Hence we cannot dispense with Steps (2), (3), (5)
and (6) of Algorithm 2.13.

Once this desired lift has been computed, writing down the p-adic L-series as-
sociated to the modular symbol and its quadratic twists by ψ for suitable D is
rather easy; cf. [34, §9]. Together with David Roe and Robert Pollack, we have
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implemented Algorithm 2.13 with Step (7) replaced by the algorithm from [34] in
Sage as well, building on an implementation due to Pollack.

3. The p-adic height pairing of Coleman-Gross and p-adic regulators

We now shift our attention to the remaining p-adic quantity appearing in Con-
jecture 1.4, the p-adic regulator. To discuss p-adic regulators, we begin, in this
section, by describing one construction of the global p-adic height pairing relevant
to our setting. We give an algorithm to compute the height pairing in the case
when the abelian variety A is the Jacobian of a hyperelliptic curve and show how
we use it to compute p-adic regulators.

Let A be an abelian variety defined over a number field K and let A∨ denote the
dual abelian variety to A. There are several definitions of p-adic height pairings
on abelian varieties in the literature. Schneider [36] and Mazur-Tate [23] were
the first to construct the p-adic height pairing on abelian varieties defined over
number fields. This was extended to motives by Nekovář [29]. There are also more
specialized definitions: in the case when dimA = 1, K = Q, and p is a prime of
good, ordinary reduction, Mazur, Stein, and Tate [22] gave an explicit formula for
the p-adic height which relies on an understanding of the p-adic sigma function.
When A is the Jacobian of a curve, Coleman and Gross [12] described the p-adic
height pairing on A as a sum of local height pairings. Note that in the range where
all of these constructions apply, they are known to be equivalent by the work of
Coleman [11] and Besser [6] (where the equivalence is possibly up to sign, e.g., in
the supersingular case). For all of these definitions, the p-adic height pairing is
known to be bilinear and, in the principally polarized case, symmetric.

Let p be a prime number such that A has good ordinary reduction at all primes
of K above p. We denote the p-adic height pairing by

h : A×A∨ −→ Qp

(P,Q) �→ h(P,Q).

Now we want to define the p-adic regulator with respect to h. In the literature, one
usually defines this quantity as the determinant of the height pairing matrix with
respect to a set of generators of the free part of A(K) and A∨(K), respectively.
This, however, is only well defined up to sign. Since in Iwasawa theory one is
typically only interested in results up to a p-adic unit, this is usually not a serious
problem, but in order to state Conjecture 1.4, we need a canonical well-defined p-
adic regulator. First note that if φ : A → A∨ is an isogeny and P1, . . . , Pr ∈ A(K)
map to a basis of A(K)/ tors, then

Regp,φ(A/K) := det
(
(h(Pi, φ(Pj)))i,j

)
does not depend on the choice of P1, . . . , Pr. Also recall that if c ∈ PicA/K is ample,

then the map φc : A → Pic0A/K
∼= A∨ which maps P ∈ A to t∗P (c)⊗ c−1, where tP

is the translation-by-P map, is an isogeny. We first prove an elementary lemma.

Lemma 3.1. Let V and W be finite-dimensional R-vector spaces equipped with
a nondegenerate R-bilinear pairing B : V × W → R. Let ψ, ψ′ : V ⇒ W be
isomorphisms such that the pullbacks b (resp. b′) of B along 1×ψ (resp. 1×ψ′) are
symmetric and positive-definite. Then ψ−1 ◦ψ′ ∈ GL(V ) has positive determinant.
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Proof. Setting θ := ψ−1 ◦ ψ′, we have that b′ is the pullback of b along 1 × θ.
Because b′ is symmetric, θ is self-adjoint with respect to b. The spectral theorem
implies that θ is diagonalizable over R. All eigenvalues are positive because b′ is
positive definite, which proves the lemma. �

Corollary 3.2. Let c, c′ ∈ PicA/K(K) be ample and symmetric and let φc, φc′ :
A ⇒ A∨ be the corresponding isogenies. Set m = [A∨(K)/ tors : φc(A(K)/ tors)]
and m′ = [A∨(K)/ tors : φc′(A(K)/ tors)]. Then we have

1

m
Regp,φc

(A/K) =
1

m′ Regp,φc′
(A/K).

Proof. It is clear that the claimed equality holds up to sign. Hence it suffices to
show that if P1, . . . , Pr ∈ A(K) (resp. Q1, . . . , Qr ∈ A∨(K)) map to generators of
A(K)/ tors (resp. A∨(K)/ tors)), and if

φc(Pi) =

r∑
j=1

mijQj and φc′(Pi) =

r∑
j=1

m′
ijQj ,

then the determinants of the matrices
(
(mij)1≤i,j≤r

)
and

((
m′

ij

)
1≤i,j≤r

)
have the

same sign. In other words, it suffices to show that ψ−1◦ψ′ has positive determinant,
where ψ (resp. ψ′) is φc (resp. φc′), extended to an isomorphism A(K) ⊗ R →
A∨(K)⊗R. But by the proof of [16, Theorem B.5.8], the pullback of the canonical
Néron-Tate height pairing A(K)× A∨(K) → R along 1× φc (resp. 1× φc′) is the
Néron-Tate height pairing A(K)×A(K) → R with respect to c (resp. c′). Therefore
we can apply Lemma 3.1 to ψ and ψ′ and the result follows.

�

Definition 3.3. Let A be an abelian variety defined over a number field K and
let A∨ denote its dual. Fix some ample and symmetric c ∈ PicA/K(K) and let
φc : A → A∨ denote the corresponding isogeny. The p-adic regulator of A, denoted
Regp(A/K), is defined by

Regp(A/K) :=
1

[A∨(K)/ tors : φc(A(K)/ tors)]
Regp,φc

(A/K).

The p-adic regulator is well defined by Lemma 3.2. It has been conjectured by
Schneider [36] that the p-adic height pairing is nondegenerate, but in contrast to
the classical case of Néron-Tate heights this is not known in general.

Among the aforementioned definitions of the p-adic height pairing, the Coleman-
Gross construction of the p-adic height pairing is fairly explicit in nature, and for
that reason, lends itself nicely to computation. Thus we take it as our working
definition of the p-adic height. We start by giving a brief overview of the work of
Coleman and Gross.

Suppose X/K is a curve defined over a number field K, with good reduction at
primes above p. To define the p-adic height pairing

h : Div0(X)×Div0(X) → Qp ,

where Div0(X) denotes the divisors on X of degree zero, one needs the following
data:

• A “global log”- a continuous idele class character � : A∗
K/K∗ → Qp .
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• For each v | p a choice of a subspace Wv ⊂ H1
dR((X × Kv)/Kv) comple-

mentary to the space of holomorphic forms.

We require that the local characters �v induced by �, for v | p, are ramified in the
sense that they do not vanish on the units in Kv. From � one deduces the following
data:

• For any place v � p we have �v(O∗
Kv

) = 0 for continuity reasons, which
implies that �v is completely determined by the number �v(πv), where πv

is any uniformizer in Kv.
• For any place v | p we can decompose �v as a composition

(3.1) O∗
Kv

	v ��

logv

���
��

��
��

�
Qp

Kv

tv
����������

where tv is a Qp-linear map. Since we assume that �v is ramified it is then
possible to extend logv to logv : K∗

v → Kv in such a way that the diagram
remains commutative.

We will later need to choose a branch of the p-adic logarithm, since the Coleman
integral of a form with residue depends on such a choice. We will fix this choice for
the computation of the local height pairing to be the one determined above.

Let us now describe the p-adic height pairing h(D,E) for a pair of degree zero
divisors D and E with disjoint support. The height pairing is a sum of local terms

h(D,E) =
∑
v

hv(D,E)

over all finite places v. The local terms depend only on the completion at v of K.
Thus, letKv be the completion ofK at a place v, with valuation ring O, uniformizer
πv and let kv = O/πvO be the residue field, with order q. Let C denote the curve
X over the local field Kv. We shall assume that C has a Kv-rational point and
that C has good reduction at πv.

Proposition 3.4. If char kv �= p, there exists a unique function 〈D,E〉 defined for
all D,E ∈ Div0(C) of disjoint support that is continuous, symmetric, bi-additive,
takes values in Qp, and satisfies

(3.2) 〈(f), E〉 = �v(f(E))

for f ∈ Kv(C)∗.

Proof. See [12, Prop 1.2]. �

We will discuss how to compute this function in practice in Section 3.1.

3.1. Computing p-adic heights away from p. We keep the notation of the
previous section, but assume, in addition, that X is hyperelliptic of genus g, given
by an equation y2 = f(x), where f ∈ OK [x] is separable. Let v be a fixed non-
archimedean place of K not dividing p.

The arithmetic geometry needed in the present section can be found in [21,
Chapters 8, 9]. We fix a proper regular model C of C = X ×K Kv over Spec(O)
with special fiber Cv. If D is a prime divisor on C, then we let D denote the Zariski
closure of D on C and we extend this to all of Div(C) by linearity. It was shown by
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Hriljac [17] that if D ∈ Div0(C), then there exists a vertical Q-divisor Φ(D) on C
such that the intersection multiplicity of D+Φ(D) with any irreducible component
of Cv is trivial.

If D,E ∈ Div0(C) have disjoint support, then according to [12, Prop. 1.2] the
local height pairing between D and E at v is given by

(3.3) hv(D,E) = �v(πv) · iv
(
D +Φ(D), E

)
,

where iv denotes the (rational-valued) intersection pairing on C. This does not
depend on the choice of Φ(D) or of C.

As in [26], the following steps are sufficient to compute the local p-adic height
pairing at v.

(1) Compute a desingularization C in the strong sense of the Zariski closure C
of C over Spec(O);

(2) Compute iv
(
D,E

)
;

(3) Compute iv
(
Φ(D), E

)
.

These steps are dealt with in detail and greater generality in [26]. For the conve-
nience of the reader, we provide a brief summary in the present case of hyperelliptic
curves.

Step (1) can be done using a desingularization algorithm implemented by Steve
Donnelly in Magma [8]. Recall that a desingularization C of the Zariski closure C of
C over Spec(O) in the strong sense is a proper regular model of C over Spec(O)
such that there exists a morphism ξ : C → C that is an isomorphism above regular
points of C. From now on we will assume that our model C is of this type, as this
property is needed in order for some of the other steps to work. See [26, §4.3] for
details.

For Step (2), we write our divisors D and E as differences of effective divisors

D = D1 −D2, E = E1 − E2.

By bilinearity of the intersection pairing it suffices to discuss the computation of
iv
(
D1, E1

)
.

For now we assume that the points on Cv where D1 and E1 intersect all lie on a
single affine piece Ca of C. Suppose that Ca = Spec(O[x1, . . . , xn]/J) for some ideal
J and that ID1

(resp. IE1
) represents D1 (resp. E1) on C. Then we have

(3.4) iv
(
D1, E1

)
= lengthOCa

v

((
O[x1, . . . , xn]/J + ID1

+ IE1

)
(πv)

)
.

The computation of the right-hand side of (3.4) can be reduced to (essentially) the
computation of Gröbner bases over Spec(O); cf. [26, Algorithm 1].

In order to find the representing ideals ID1
and IE1

the strategy is to first find

representing ideals for the Zariski closures of D1 and E1 on C and lift these to C
through the blow-up process. We can guarantee that the intersection of these clo-
sures has support only in one of the two standard affine pieces of C by decomposing
D1 and E1 into prime divisors over a finite extension M of Kv; in the present case
of hyperelliptic curves this is possible using factorisation of univariate polynomials
over M as described in [26, §5.3].

So it remains to discuss how to represent Zariski closures of prime divisors on C
on the affine piece

Ca = Spec
(
O[x, y]/(y2 − f(x))

)
.
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If D1 =
∑d

i=1(Pi) is reduced, then we can use a representing ideal

(a(x), y − b(x)),

where a(x) ∈ O[x] has roots x(P1), . . . , x(Pd) and does not vanish modulo πv and
b(x) ∈ O[x] does not vanish modulo πv and satisfies y(Pi) = b(x(Pi)) for i ∈
{1, . . . , d}. This is commonly referred to as Mumford representation; see [27, 3.19].
In particular, if D1 = (P1), where P1 ∈ C(Kv), then we can take the ideal

(x− x(P1), y − y(P1)).

The other case we have to consider is the case D1 = (P1) + (P−
1 ), where P1 is

defined over an extension of Kv of degree at most 2 and P−
1 is the image of P1

under the hyperelliptic involution. Then we can simply use the ideal

(x− x(P1)).

For Step (3) we refer to [26, §4.5]. In brief, we first compute the intersection
matrix M of Cv and its Moore-Penrose pseudoinverse M+. Suppose that the special
fiber Cv is given by

∑m
i=0 niΓi, where Γ0, . . . ,Γm are the irreducible components of

Cv. We also need the vectors s(D) and s(E) of intersection multiplicities, where

s(D) =
(
n0 · iv(D,Γ0), . . . , nm · iv(D,Γm)

)T
,

and s(E) is defined similarly. These can be computed using the techniques intro-
duced in Step (2) above. Then we have

iv(Φ(D), E) = −s(E)T ·M+ · s(D).

We have not discussed how we can compute a finite set U of places of K such
that we have hv(D,E) = 0 for all v /∈ U . This is discussed in [26, §4.2, §5.2]. Here
we only mention that it suffices to compute U containing all bad places (that is, all
places v such that ordv(2 · disc(f)) > 0) and all places v such that D and E have
nontrivial common support modulo πv. The latter can be computed as follows,
where D = D1 −D2 and E = E1 − E2 are as above.

We only discuss the computation of all v such that D1 and E1 have nontrivial
common support modulo πv. Let ID1

and IE1
denote representing ideals of the

Zariski closures of D1 and E1 on the affine piece

Spec(OK [x, y]/(y2 − f(x)))

of the Zariski closure of X over Spec(OK). We assume that OK is Euclidean; the
general case can be reduced to this situation using a straightforward trick discussed
in [26, §4.2]. If B is a Gröbner basis of the ideal

(y2 − f(x)) + ID1
+ IE1

,

overOK , then B contains a unique element q ∈ OK (cf. [26, Lemma 4.3]). Factoring
(q) yields a set of places containing all places such that D1 and E1 have nontrivial
common support on the reduction of the affine piece given by y2 = f(x). Repeating
this process for the other standard affine piece y2 = x2g−2f(1/x) yields all places
v such that D1 and E1 intersect nontrivially modulo πv.
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3.2. Computing p-adic heights above p. We now describe the local contribution
at a place v | p.

Definition 3.5. Let D,E ∈ Div0(C) have disjoint support. The local height
pairing at a place v | p is given by the Coleman integral

hv(D,E) := tv

(∫
E

ωD

)
,

where tv is the map determined by the decomposition of �v (see (3.1)), and ωD is
a differential associated to D.

We start by reviewing the construction of ωD. Let T (Kv) denote the subgroup
of differentials on C of the third kind. We are interested in a particular subgroup
of T (Kv) whose elements are the logarithmic differentials, i.e., those of the form df

f

for f ∈ Kv(C)∗. We denote this subgroup as Tl(Kv). Letting H1,0
dR (C/Kv) denote

the space of holomorphic differentials and A = Pic0(C), we have the short exact
sequence

0 −→ H1,0
dR (C/Kv) −→ T (Kv)/Tl(Kv) −→ A(Kv) −→ 0.

This sequence has a natural identification with theKv-rational points of an exact
sequence of commutative algebraic groups over Kv,

0 −→ H1,0
dR (C/Kv) −→ U −→ A −→ 0,

where U is the universal extension of A by a vector group and H1,0
dR (C/Kv) ∼= Gg

a.
Now as Kv is p-adic, we will make use of the fact that we have a logarithmic

homomorphism defined on an open subgroup of the points of any commutative
p-adic Lie group, G, to the points of its Lie algebra Lie(G). When G = U or
A, the open subgroup on which the logarithm converges has finite index, so the
homomorphism can be uniquely extended to the entire group. We denote this
extension as logU or logA, respectively. Since the logarithm is functorial and equal

to the identity on H1,0
dR (C/Kv), we have the following:

Proposition 3.6. There is a canonical homomorphism

Ψ : T (Kv)/Tl(Kv) −→ H1
dR(C/Kv)

which is the identity on differentials of the first kind and makes the following dia-
gram commute:

0 �� H1,0
dR (C/Kv) �� U(Kv)

Ψ=logU

��

�� A(Kv) ��

logA

��

0

0 �� H1,0
dR (C/Kv) �� H1

dR(C/Kv) �� H1(C,OC/Kv
) �� 0.

Note that the map Ψ takes a differential of the third kind on C to a differential
of the second kind modulo exact differentials, sending log differentials to 0. It
can be extended to a linear map from the Kv-vector space of all differentials on
C/Kv to H1

dR(C/Kv) by writing an arbitrary differential ν as a linear combination

ν =
∑

αiμi + γ, where μi is of the third kind, αi ∈ Kv, and γ is of the second kind
on C. We then define Ψ(ν) =

∑
αiΨ(μi) + [γ].

Now recall that we have at our disposal the complementary subspace W = Wv.
It allows us to isolate a canonical form ωD with residue divisor D as follows:
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Definition 3.7. Let D ∈ Div0(C). Then ωD is the unique form of the third kind
satisfying

res(ωD) = D, Ψ(ωD) ∈ W.

3.3. Computing the global p-adic height. Using the material in Sections 3.1
and 3.2, we may now give an algorithm to compute global p-adic heights on Jaco-
bians of hyperelliptic curves.

Algorithm 3.8 (Global p-adic height pairing).
Input:

• Genus g hyperelliptic curve X over Q of the form y2 = f(x), with f sepa-
rable, deg f = 2g + 1,

• Prime p of good ordinary reduction for X,
• Divisors D,E ∈ Div0(X) with disjoint support.

Output:

• Global p-adic height pairing h(D,E) =
∑

v hv(D,E)

Algorithm:

(1) Heights away from p
(a) Find relevant places. Compute the following set U of nonarchime-

dean places of K:

U = {v : v | 2 disc(f)} ∪ {v : supp(D mod v) ∩ supp(E mod v) �= ∅}.

(b) Local computations. For each v ∈ U go through the following steps.
(i) Regular models. Compute a desingularization C of the Zariski

closure of X ×K Kv over O = Ov in the strong sense.
(ii) Ideal representatives. Write D = D1−D2 and E = E1−E2,

where Di, Ej are effective and find representatives IDi
and IEj

of the Zariski closures Di, Ej of Di, Ej , respectively, on an affine
piece of C containing supp(D) ∩ supp(E).

(iii) Horizontal data. Compute iv(Di, Ej) for i, j ∈ {1, 2} us-
ing (3.4).

(iv) Vertical data. Compute the Moore-Penrose pseudoinverse M+

of the intersection matrix of the special fiber Cv =
∑m

i=0 niΓi and
for H ∈ {D,E}, the vectors

s(H) =
(
n0 · iv(H,Γ0), . . . , nm · iv(H,Γm)

)T
.

(v) Local height pairing. Let kv be the residue field at v and set

hv(D,E) =

⎛⎝s(E) ·M+ · s(D)T −
∑
i,j

iv(Di, Ej)

⎞⎠ · log(#kv).

(c) Global height pairing away from p. Compute
∑

v�p hv(D,E).

(2) Height above p
(a) From D to ωD. Choose ω a differential of the third kind with

Res(ω) = D and compute log(ω) = Ψ(ω) for ω. Using the decom-
position

H1
dR(C/Kv) � H1,0

dR (C/Kv)⊕W,
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write

log(ω) = η + log(ωD),

where η is holomorphic, and log(ωD) ∈ W . Now, using this holomor-
phic component η, we have

ωD := ω − η.

(b) Coleman integration
(i) . . . of a holomorphic differential. Compute

∫
E
η, as in [4].

(ii) . . . of a meromorphic differential. Let φ be a p-power lift of
Frobenius and set α := φ∗ω − pω. Write E =

∑
i Ei, where

Ei = (Ri)−(Si) for points Ri, Si on X. Then for βi a differential
with residue divisor Ei, we compute∫

E

ω =
∑
i

∫
Ei

ω

=
∑
i

1

1− p

(
Ψ(α) ∪Ψ(βi) +

∑
Res

(
α

∫
βi

)
−
∫ Si

φ(Si)

ω −
∫ φ(Ri)

Ri

ω

)
,

as described in [3].
(c) Height pairing above p. Subtract the integrals to recover the pairing

at p:

hp(D,E) =

∫
E

ωD =

∫
E

ω −
∫
E

η.

(3) Global p-adic height pairing. Return the sum of 1(c) and 2(c).

Remark 3.9. Note that our current implementation of Algorithm 3.8 further as-
sumes, in Step 2(b)(ii), that Ri, Si ∈ C(Qp).

3.4. Computing the p-adic regulator. In this section, we explain how we use
Algorithm 3.8, in practice, to compute the p-adic regulator of A/Q, where A is a
Jacobian surface associated to a curve X/Q of genus 2 and p is a prime such that
A has good ordinary reduction at p.

Suppose that P,Q ∈ A(Q) are distinct and that we want to compute the p-adic
height pairing of P and Q. If we can find representatives D1 = (P1) − (P2) and
D2 = (Q1) − (Q2) of P and Q, respectively, where P1, P2, Q1, Q2 ∈ X(Q) are all
distinct, then we can simply apply Algorithm 3.8 directly to compute hp(D1, D2).

However, in many situations, it is not possible to find representatives of P and
Q whose support consists of Q-rational points. We can still compute the p-adic
height pairing if we can find representatives D1, D2 ∈ Div0(X)(Q) of P and Q,
respectively, such that

D1 ×Q Qp = (P1) + (P2)− (R)− (R−),

D2 ×Q Qp = (Q1) + (Q2)− (S)− (S−),

where P1, P2, Q1, Q2, R, S ∈ C(Qp) are pairwise distinct. It is explained in Sec-
tion 3.1 how to find ideal representations of the positive and negative parts of D1

and D2, respectively, which is all we need to compute the local height pairings
away from p. The latter is very similar to the computation of canonical real-valued
height pairings on Jacobians of hyperelliptic curves as discussed in [26] and has
been implemented in Magma.
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If we want to compute the p-adic height pairing of P with itself, then we sim-
ply compute minus the p-adic height pairing of P with −P using the techniques
discussed above.

Remark 3.10. In principle this algorithm can be generalized immediately to hy-
perelliptic curves over Q of arbitrary genus, with minor subtleties if the genus is
odd and the degree is even. See the discussion in [26]. However, to find the p-
adic regulator precisely (and not only up to a rational square), we first need a set
of generators for A(Q)/A(Q)tors. Given generators of a finite index subgroup of
A(Q)/A(Q)tors, a general algorithm for this computation is presented by Stoll in
[44], but currently it is only feasible if the rank is zero or X has genus 2 (using
current work in progress due to Stoll this can be extended to genus 3). Hence we
can only hope to compute the p-adic regulator up to a rational square in general.

Remark 3.11. It is useful to note that in order to compute the p-adic regulator in the
genus 2 case, we need not work with generators of the free part of the Mordell-Weil
group itself. Indeed, if we have a set of points generating a subgroup G of finite
index, then we can easily compute the index of G by computing and comparing
the real-valued regulators of G and of A(Q)/A(Q)tors; see Remark 3.10. Since the
p-adic height is quadratic, it suffices to compute the p-adic regulator of G in order
to deduce the p-adic regulator. This helps in finding points with representatives of
the required form.

Remark 3.12. Suppose that X is hyperelliptic and defined over a number field K.
Then we can still compute the p-adic regulator exactly as above if all completions
Kv at places v | p satisfy Kv

∼= Qp.

Finally, following [43], we note that the p-adic regulator has a natural normaliza-
tion from Iwasawa theory, coming from the choice of topological generator γ. This
is done so that the global p-adic height depends only on the choice of isomorphism
Γ → Zp, instead of on the Zp-extension. This normalization is carried out by di-
viding h(Pi, Pj) by logp(κ(γ)), or, alternatively, since the p-adic regulator involves
a basis of dimension r, by taking

Regγ(A/Q) =
Regp(A/Q)

(logp(κ(γ)))
r
.

4. Evidence for rank 2 Jacobians of genus 2 curves

As we now have algorithms to compute the p-adic regulator and p-adic L-series,
we proceed to verify Conjecture 1.4 for specific abelian varieties, using BSD data
from [13, Table 2]. We take as our list of candidate modular abelian varieties A
those appearing in [13] of rank 2.

We were able to find generators represented by divisors whose support consists
only of Q-rational points for each of the rank 2 Jacobians taken from [13] except
for the one with level 167. Hence we used the easier first approach outlined in
Section 3.4 to compute the p-adic regulator for all Jacobians except for the one
associated to level 167.

In order to compute the special values L∗
p(A, 0), we used an implementation in

Sage of the algorithm outlined in Section 2.6. Previously, we had used Algorithm 3.8
obtaining fewer digits of precision. The results agreed up to the precision obtained
using the latter.
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Table 4.1 is taken from [13] and contains minimal models (in the sense of [19])
for each curve from [13] whose Jacobian variety has Mordell-Weil rank 2 over Q, as
well as the corresponding level N .

The data presented in this section proves the following:

Theorem 4.1. Assume that for the Jacobians of all curves in Table 4.1 the
Shafarevich-Tate group over Q is 2-torsion. Then Conjecture 1.4 is satisfied up to
the respective precision specified in the tables below for the Jacobians of all curves in
Table 4.1 at all good ordinary p < 100 satisfying the hypotheses of our algorithms.

Remark 4.2. The assertion that all Shafarevich-Tate groups are 2-torsion for these
abelian varieties follows from the classical conjecture of Birch and Swinnerton-Dyer
by [13].

For our algorithms, we take the integral models in [13, Table 1] and do a change
of coordinates to obtain the corresponding models of the form y2 = f(x). We record
both models in Table 4.1.

Table 4.1. Levels, integral models y2+h(x)y = g(x), simplified
models y2 = f(x)

N (g(x), h(x)) for integral model f(x) for y2 = f(x) model

67 (x5 − x, x3 + x + 1) x6 + 4x5 + 2x4 + 2x3 + x2 − 2x + 1
73 (−x5 − 2x3 + x, x3 + x2 + 1) x6 − 2x5 + x4 − 6x3 + 2x2 + 4x + 1
85 (x4 + x3 + 3x2 − 2x + 1, x3 + x2 + x) x6 + 2x5 + 7x4 + 6x3 + 13x2 − 8x + 4
93 (−2x5 + x4 + x3, x3 + x2 + 1) x6 − 6x5 + 5x4 + 6x3 + 2x2 + 1

103 (x5 + x4, x3 + x2 + 1) x6 + 6x5 + 5x4 + 2x3 + 2x2 + 1
107 (x4 − x2 − x − 1, x3 + x2 + 1) x6 + 2x5 + 5x4 + 2x3 − 2x2 − 4x − 3
115 (2x3 + x2 + x, x3 + x + 1) x6 + 2x4 + 10x3 + 5x2 + 6x + 1

125,A (x5 + 2x4 + 2x3 + x2 − x − 1, x3 + x + 1) x6 + 4x5 + 10x4 + 10x3 + 5x2 − 2x − 3
133,B (−x5 + x4 − 2x3 + 2x2 − 2x, x3 + x2 + 1) x6 − 2x5 + 5x4 − 6x3 + 10x2 − 8x + 1

147 (x5 + 2x4 + x3 + x2 + 1, x3 + x2 + x) x6 + 6x5 + 11x4 + 6x3 + 5x2 + 4
161 (x3 + 4x2 + 4x + 1, x3 + x + 1) x6 + 2x4 + 6x3 + 17x2 + 18x + 5
165 (x5 + 2x4 + 3x3 + x2 − 3x, x3 + x2 + x) x5 + 5x4 − 168x3 + 1584x2 − 10368x + 20736
167 (−x5 − x3 − x2 − 1, x3 + x + 1) x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x − 3
177 (x5 + x4 + x3, x3 + x2 + 1) x6 + 6x5 + 5x4 + 6x3 + 2x2 + 1
188 (x5 − x4 + x3 + x2 − 2x + 1, 0) x5 − x4 + x3 + x2 − 2x + 1
191 (−x3 + x2 + x, x3 + x + 1) x6 + 2x4 − 2x3 + 5x2 + 6x + 1

Let us recall what is known about computing the quantities appearing on the right
side of equation (1.2) which we have not addressed so far. As described in [13], the
order of the torsion subgroups and the Tamagawa numbers are computable. For the
Jacobians of the curves in Table 4.1, we list these values, taken from [13, Table 2],
in Table 4.2. While no general algorithm has yet been developed and implemented
to compute the order of the Shafarevich-Tate group X(A/Q) for the Jacobians
of each of the curves in Table 4.1, the conjectural order X? of the group is also
given, conditional on the classical BSD Conjecture 1.1 (and equal to the order of
X(A/Q)[2]).

Remark 4.3. There is a general approach to computing X(A/Q) for the rank 2 Ja-
cobians in Table 4.1, which is to use Heegner points and Kolyvagin’s Euler system to
give an explicit upper bound, then compute the remaining Selmer groups. It would
be an interesting project to systematically develop this approach, by generalizing
[15, 25] to this new setting.
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Table 4.2. BSD data for rank 2 Jacobians of genus 2 curves

N cv’s |A(Q)tors| X?
67 1 1 1
73 1 1 1
85 4,2 2 1
93 4,1 1 1
103 1 1 1
107 1 1 1
115 4,1 1 1

125,A 1 1 1
133,B 1,1 1 1
147 2,2 2 1
161 4,1 1 1
165 4,2,2 4 1
167 1 1 1
177 1,1 1 1
188 9,1 1 1
191 1 1 1

Table 4.3 below provides the local height pairings away from p for N �= 167.
The global generators for A(Q)/A(Q)tors that we used are given as divisor classes
[P −Q], [R − S], where P, Q, R, S ∈ X(Q). Points at infinity are denoted by ∞a,
where a is equal to y/x3 evaluated at ∞a. The heights list has three entries giving
the nontrivial local height pairings hv((P )− (Q), (R)− (S)), hv((P )− (Q), (−Q)−
(−P )) and hv((R)−(S), (−S)−(−R)) for v �= p. For two divisorsD and E, this data
is returned as a list of pairs [v, dv], where v is a prime and hv(D,E) = dv · logp(v).
Remark 4.4. The generators given for N = 125, A are actually generators for an
index 2 subgroup of A(Q)/A(Q)tors, since an actual set of generators for the full
group A(Q)/A(Q)tors whose support solely consisted of non-Weierstrass points was
not readily available. For N = 167, we had to use generators (of finite index sub-
groups) represented by divisors with pointwise Qp-rational support; see Section 3.4.

For the computation of the special values Lp(A, 0), we need the normalization
factor δ+, so we have to find a fundamental discriminant D > 0 such that for some
good ordinary p0 we have gcd(p0N,D) = 1 and the analytic rank of Aψ is zero,

where ψ is the quadratic character associated to Q(
√
D); see Subsection 2.4. The

real period Ω+
A for our Jacobians can be found in [13]; there it was computed using

the observation that (ω1, ω2) as in Remark 2.12 is a basis of integral 1-forms for all
abelian varieties we consider. It is not difficult to show that the corresponding fact
also holds for all Aψ and hence, using Remark 2.12, we found that ηψ = 1 in all 16
cases. We list, for each level, the quantities needed to find δ+ in Table 4.4.

For good measure, we also verified:

Proposition 4.5. The classical (and hence, for all primes p of good ordinary
reduction, the p-adic) Birch and Swinnerton-Dyer conjecture holds for all 16 twists
Aψ in Table 4.4 under the assumption that X(Aψ/Q) is 2-torsion.

Proof. See Table 4.4, noting that Xψ? is equal to |X(Aψ/Q)[2]|. �
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Table 4.3. Global generators and intersection data

N global generators for A(Q)/A(Q)tors heights [[v, hv]]
67 [(−1, 0)−∞−1], [(0,−1)−∞0] [ ], [ ], [ ]
73 [(−1,−2)−∞−1], [(0,−1)−∞0] [ ], [[3, 1]], [ ]
85 [(−1,−2)−∞−1], [(1,−4)−∞0] [[2,−1]], [[5, 1

2 ]], [[5,
1
2 ]]

93 [(−1,−2)−∞−1], [(1,−3)−∞0] [ ], [[3, 1
2 ]], [[3,

1
2 ]]

103 [(−1,−1)−∞−1], [(0,−1)−∞0] [ ], [ ], [ ]
107 [(−1,−1)−∞−1], [(1,−2)−∞0] [ ], [ ], [ ]
115 [(1,−4)−∞−1], [(−2, 2)−∞0] [[3,−1]], [[5, 1

2 ]], [[5,
1
2 ]]

125,A [(−1, 0)−∞−1], [(1,−4)−∞0] [[2,−1]], [ ], [[5, 1]]
133,B [(0,−1)−∞−1], [(1,−2)−∞0] [ ], [ ], [ ]
147 [(−1,−1)−∞−1], [(−3, 7)−∞0] [[2,−1]], [[3, 1

2 ]], [[7,
1
2 ]]

161 [(1,−5)−∞−1], [(
2
3 ,−3)−∞0] [ ], [[7, 1

2 ]], [[5, 1], [7,
1
2 ]]

165 [(−8,−528)− (0,−144)], [(8, 80)− (0, 144)] [[2, 2], [3,− 1
2 ]],

[[2,−2], [11, 1
2 ], [3,

3
2 ]],

[[2,−2], [5, 1
2 ], [3,

1
2 ]]

177 [(0, 0)−∞−1], [(− 2
3 ,−

7
27 )−∞0] [[3, 1]], [ ], [[3,−2], [17, 1]]

188 [(0, 1)−∞−1], [(−1,−1)− (2, 5)] [[2, 1]], [[2, 2
3 ]], [[2,

2
3 ], [5, 1]]

191 [(0,−1)−∞−1], [(−2, 10)−∞0] [ ], [ ], [[11, 1]]

Table 4.4. Rank zero twist data

N D ηψ p0 [0]+Aψ

ηψ·L(Aψ,1)

D·Ω+
A

δ+ cv(Aψ)
′s |Aψ(Q)tors| Xψ?

67 5 1 19 16 4 1/4 1,1 1 4
73 5 1 11 16 4 1/4 1,1 1 4
85 61 1 41 64 16 1/4 4,2,8 2 1
93 5 1 11 −16 4 −1/4 4,1,1 1 1
103 5 1 11 16 4 1/4 1,1 1 4
107 5 1 19 16 4 1/4 1,1 1 4
115 89 1 11 64 16 1/4 4,1,4 1 1

125,A 17 1 19 16 4 1/4 1,1 1 4
133,B 5 1 29 −16 4 −1/4 1,1,1 1 4
147 5 1 31 −16 4 −1/4 2,2,2 2 2
161 53 1 11 64 16 1/4 4,1,4 1 1
165 89 1 17 64 16 1/4 4,2,2,16 4 1
167 5 1 31 −16 4 −1/4 1,1 1 4
177 5 1 19 16 4 1/4 1,1,1 1 4
188 233 1 19 144 36 1/4 9,1,4 1 1
191 33 1 31 16 4 1/4 1,1 1 4

Remark 4.6. For the computation of the Tamagawa numbers we used [7, Theo-
rem 1.17]. Suppose that v | D, but that v does not divide the conductor of A.
Then the twisted curve Xψ has bad reduction at v, but acquires good reduction
over a quadratic extension. The classification of Namikawa and Ueno [28] shows
that in this case Xψ must have reduction type [I∗0−0−0] at v. Since the geometric
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component group of the Néron model is isomorphic to (Z/2Z)4 for this reduction
type, we always have cv(Aψ) | 16.

The tables below show the specific primes p and precision O(pn) for each level
N for which we have tested Conjecture 1.4.

Remark 4.7. A note on our models and choices of primes. Since our p-adic heights
algorithm requires that the curve be given by an odd degree model, for each curve
y2 = g(x), we consider those good ordinary primes p for which g(x) has a Qp-
rational zero and do another change of coordinates to obtain the odd model y2 =
f(x), with f(x) ∈ Qp[x]. We compute the p-adic regulators and p-adic L-values for
these primes.

4.1. N = 67. We have the following data:
p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

905422 +O(78) 4616447 +O(78) 953283 +O(78)
655636176 +O(138) 3718847 +O(138) 121846702 +O(138)
6411910349 +O(178) 490126740 +O(178) 2996208382 +O(178)
1955457580 +O(198) 205789013 +O(198) 6722090086 +O(198)
6490501114813+O(379) 1520740814200+O(378) 1763856795912+O(378)
119112862323467+O(419) 6899026979535+O(418) 604530321123+ O(418)
231768637543452+O(439) 11662319738050+O(438) 11664993765232+O(438)
258343847102710+O(479) 6617527122585+O(478) 21577206386081+O(478)
7291679100956850+O(599) 72703739307529+O(598) 77184936742982+O(598)
6048812062982476+O(619) 174305066216353+O(618) 133406272889885+O(618)
53277934412195075+O(739) 552479201354189+O(738) 460739420635942+O(738)
9278983589215557+O(799) 88027589402068+O(798) 801037408797804+O(798)
157708559779041510+O(839) 1578704504708054+O(838) 162512920516158+O(838)

4.2. N = 73. We have the following data:
p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

163731997 +O(118) 183868925 +O(118) 192773925 +O(118)
482988818 +O(138) 522787644 +O(138) 757562196 +O(138)
51174691892+ O(238) 46581832325 +O(238) 48224542827 +O(238)
553299007790+O(318) 440555494391+ O(318) 850258335981+O(318)
5421948177967+O(418) 5077531013725+O(418) 5384419950679+O(418)
38176784853304+O(598) 63020796753579+O(598) 113039802800992+O(598)
70602302343232+O(618) 139895606364222+O(618) 79733480381568+ O(618)
433639741922965+O(718) 576931954734067+O(718) 8989266238661+O(718)
589304115938460+O(838) 347866087087015+O(838) 720001059253854+O(838)
6769596692483671+O(978) 4269348271 +O(975) 3993521258998096+O(978)

4.3. N = 85. We have the following data:
p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

1015073423894+O(378) 167411116045+O(378) 1002150510104+O(378)
6819810980339+O(418) 7975900636623+O(418) 7153783865856+O(418)
8962714100713+O(538) 1069648287223+O(537) 44683460285079+O(538)

43568329449+O(616) 3136884016567+O(617) 72019680061615+O(618)
119416997911215+ O(738) 683019204724944+O(738) 32602153132641+O(738)
1942338381733272+O(898) 3482744225118281+ O(898) 1038134293650945+O(898)
5147606270477176+O(978) 2836855197 +O(975) 3784121167774074+O(978)
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4.4. N = 93. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

185741420 +O(118) 151839057 + O(118) 11051656 +O(118)
405483221 +O(138) 670790176 + O(138) 230057694 +O(138)
43885519955+O(238) 26161319539 +O(238) 47769373949 +O(238)
336788503314+O(298) 484038257980+O(298) 222828561623 +O(298)
1678741468628+O(378) 2569674002391+O(378) 1378603735422+O(378)
5324074002210+O(438) 8725984878581+O(438) 3160248767946+O(438)
16824305598488+O(478) 15669575995471+O(478) 8286455636222+O(478)
4960862919215+O(538) 49317038818954+O(538) 23178143892193+O(538)
143070222270789+ O(618) 92506965732666+O(618) 122923764909639+O(618)
279322082363042+ O(678) 74111413499770+O(678) 180555937022120+O(678)
430169136747961+ O(738) 471513912864315+O(738) 411163460552347+O(738)
1384453915387035+O(798) 1232301086171477+ O(798) 503819572894975+O(798)
2228621109604011+O(838) 1304530016876211+ O(838) 1071794429225898+O(838)
1081659147745931+O(898) 1330994142123689+ O(898) 1518075886594725+O(898)

4.5. N = 103. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

147377758 +O(118) 86486502 +O(118) 192773925 +O(118)
489193484 +O(138) 67428377 +O(138) 337691501 +O(138)
15204606664+ O(198) 10638300382 +O(198) 12173049603 +O(198)
66216995216+ O(238) 18109392006 +O(238) 45043095109 +O(238)
5372718408 +O(298) 76731347688 +O(298) 12536647436 +O(298)
6799091682040+O(418) 4391281006909+O(418) 5303120857798+O(418)
23467041445332+O(478) 5937816898560+O(478) 1847891549858+O(478)

9449958206985+O(538) 6585582284426+O(538) 47071170371848+ O(538)
55788681659810+O(598) 58416917952322+O(598) 134523844728309+O(598)
180708198470076+O(618) 86273076603078+O(618) 91320952633362+ O(618)
304798054862709+O(718) 23644536785282+O(718) 318837731560077+O(718)
651632900917334+O(738) 128186925484+ O(736) 86431680403618+ O(738)
1422073004111088+O(798) 162819364440040+O(798) 1353067258168647+O(798)
2204776989584744+O(838) 290525162365+ O(836) 1489257165084816+O(838)
3419478873681093+O(898) 13722104837501+O(897) 2011257469143583+O(898)
5187359554281130+O(978) 588713923936+ O(976) 291254315420391+O(978)

4.6. N = 107. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

100037184 +O(138) 381034778 +O(138) 725504508 +O(138)
5164824485 +O(178) 2251756830 +O(178) 6548185060 +O(178)
4948122310 +O(198) 410682533 +O(198) 11770828305+O(198)
2233155353996+O(378) 782254360600+ O(378) 499167048517+O(378)
7693933727093+O(418) 1126806110759+O(418) 941047246375+O(418)
1985728518871+O(438) 11350309489829+O(438) 1490080422844+ O(438)
9236325503676+O(478) 9352977397857+O(478) 3877324130340+ O(478)
66592510503713+O(598) 126498662012390+O(598) 66521146158463+O(598)
73605475872145+O(618) 67998854641813+O(618) 149495311709314+O(618)
215631855830774+O(678) 276136144242399+O(678) 300204582979356+O(678)
235988007934369+O(718) 4203263257242+O(717) 297538516047502+O(718)
1405009654786451+O(798) 1425538781612665+O(798) 637219753066297+O(798)
966246807067004+O(838) 29073683 +O(835) 122301722091732+O(838)
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4.7. N = 115. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

151819184 +O(118) 96031694 +O(118) 55470083 +O(118)

6070540659 +O(178) 2602174031 +O(178) 2479111430 + O(178)
443043366998+O(378) 3207000318071+O(378) 518402902203 +O(378)
10506890337861+O(438) 466034248434+O(438) 3160248767946+O(438)
25938666299194+O(538) 43404652273198+O(538) 24704105954182+O(538)
68828469915327+O(598) 15822514736163+O(598) 112268718282797+O(598)
117125015025879+ O(618) 99513360280408+O(618) 144234417021077+O(618)
117261157211649+ O(678) 369365142758789+O(678) 388573100762289+O(678)
38346420175144+O(798) 1042744621946608+ O(798) 856522414733559+O(798)
232154244720909+ O(838) 1238796074898239+ O(838) 2232922964727286+O(838)
3680613169329886+O(898) 1982664616252635+ O(898) 1447736508567520+O(898)
337111037730418+ O(978) 5523549952859660+ O(978) 5537610452725212+O(978)

4.8. N = 125, A. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

298562498 +O(138) 592894408 +O(138) 337691501 +O(138)
6712555657 +O(198) 7153379737 +O(198) 7352726322 +O(198)
28761182485+ O(238) 19244567041 +O(238) 47769373949 +O(238)
1610334394992+O(378) 2619837199442+O(378) 518402902203+O(378)
5827125727855+O(478) 2438975823319+O(478) 20137488978024+ O(478)

43827481404730+O(538) 12237145144494+O(538) 45444073360562+ O(538)
934069839446+O(598) 138331812786050+O(598) 119463235911829+O(598)
94940897306587+O(618) 86820693223899+O(618) 134545325721836+O(618)
344652595573416+O(678) 285200220171958+O(678) 55395450190703+ O(678)
494778091759992+O(738) 211635131306627+O(738) 338214791799846+O(738)
911058348384486+O(838) 15062127863580+O(837) 1695835531921770+O(838)
3812663593637783+O(898) 140584030153+ O(896) 3229221353736449+O(898)
7743507247513256+O(978) 72751227747664+O(977) 6602401135477806+O(978)

4.9. N = 133, B. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

4554714851 + O(178) 1400369830 +O(178) 1530767973 +O(178)
482641533 +O(296) 224834369110+O(298) 188246220652+O(298)
285247284517 +O(318) 644745508559+O(318) 65426082523+O(318)
873461875052 +O(418) 5913841764921+O(418) 5173622706020+O(418)
6395433286380+O(438) 5250591893580+O(438) 7173815953060+O(438)
40174155934745+O(538) 9436443664 +O(536) 47071170371848+O(538)
388303423009987+O(678) 74275805470+ O(676) 287829738202699+ O(678)
582542046575002+O(738) 47404160292+ O(736) 214334244118640+ O(738)
997934987934019+O(798) 1692929332309+O(797) 85649658584845+O(798)

337083794306147+O(838) 8815903470 +O(836) 1446666792043837+O(838)
3826161118964265+O(898) 689438763 +O(895) 1571471061650586+O(898)
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4.10. N = 147. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

434194800 +O(138) 772553365 +O(138) 69777210 +O(138)
3085885399 +O(198) 14351355419 +O(198) 10124513344 +O(198)
57105870 +O(236) 56314647135 +O(238) 77688619426 +O(238)
598807495296+O(318) 500890389807+ O(318) 226083261470+O(318)
1255556858069+O(378) 728534804896+ O(378) 925099803678+O(378)
3028914438423+O(438) 5310811645878+O(438) 1448245155768+O(438)
21722415097178+O(538) 32574036544128+O(538) 14098536063957+ O(538)
9696531871680+O(618) 147051772023912+O(618) 127085340697404+O(618)
252460432397529+O(678) 2933215623449+O(677) 15805729099128+ O(678)
319985315705867+O(718) 4744056079140+O(717) 454718387048106+O(718)
696485497462517+O(738) 75645384726 +O(736) 263081220212640+O(738)
1036811888178773+O(798) 965207536 +O(795) 74020902743243+ O(798)
4273472549945572+O(978) 6770845150 +O(975) 7422648274246094+O(978)

4.11. N = 161. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

171933135 +O(118) 104178769 +O(118) 48803991 +O(118)
16676191757 +O(198) 8396822512 +O(198) 10186228540+ O(198)
3000539180980+O(378) 2959738471101+O(378) 1378603735422+O(378)
4799012913812+O(438) 820015420 +O(436) 7358928540810+O(438)
33038825747471+ O(538) 14752347930+O(536) 37415160388754+O(538)
144048375212404+O(598) 67829338510607+O(598) 113039802800992+O(598)
989091293021+O(618) 62763431617869+O(618) 191252449121304+O(618)
93625125465306+ O(678) 43269028077+O(676) 228681540167106+O(678)
372742847896101+O(798) 16260012523515+O(797) 1380060506871347+O(798)
133689266642605+O(838) 27328857470+O(836) 1997163923487638+O(838)
109602346601919+O(898) 3775670578 +O(895) 404117712562583+O(898)
4449889265258731+O(978) 8056056109 +O(975) 3796862465389610+O(978)

4.12. N = 165. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

2478665 +O(79) 988615 +O(78) 2047938 +O(78)
7577669996 +O(139) 546478360 +O(138) 19120487 +O(138)
1345832 +O(175) 115518752 +O(178) 6743866153 + O(178)
317314039860+O(199) 15454527827 +O(198) 16701261693 +O(198)
1197529401836+O(239) 21430827992 +O(238) 32283075894 +O(238)
182820405709+O(299) 462793840863+O(298) 167834932128 +O(298)

30402585606264+O(379) 145763317789+O(378) 1905855970461+O(378)
300867423531184+ O(419) 4638175450295+O(418) 7243944162192+O(418)
453491841293220+ O(439) 10502890759714+ O(438) 981850330755 +O(438)
841500704008115+ O(479) 22177682954670+ O(478) 15840901508219+O(478)
108480654690546+ O(539) 812837848921+O(537) 17925543534180+O(538)
5924946879989069+O(599) 2021593887077+O(597) 32899436516884+O(598)
11004676059690151+O(619) 1114772875983+O(617) 102536167075224+O(618)
6402333518135195+O(679) 1539009404714+O(677) 15805729099128+O(678)
18266464992713450+O(719) 98457973781 +O(716) 34536869719889+O(718)
42183534718264644+O(739) 6514036760733+O(737) 39739465931437+O(738)
1224455456912234+O(798) 1812891052 +O(795) 186442021878008+O(798)
124036966428761339+O(839) 203487283131+O(836) 1504086404024377+O(838)
243696118400513337+O(899) 2097535192 +O(895) 1826662988317474+O(898)
635540819872824429+O(979) 1063985237 +O(975) 4391966065852909+O(978)
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4.13. N = 167. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

19432714 + O(79) 2251 +O(74) 307185 +O(78)

13117611 + O(137) 666390377 +O(138) 526042526 +O(138)
1908862518313+O(1710) 2314174880 +O(178) 5234654956 + O(178)
2053675284265+O(1910) 7656154501 +O(198) 14340680958 +O(198)
27719111127295+O(2310) 41736439730 +O(238) 16647712571 +O(238)
405640880151858+ O(3110) 714765172682+O(318) 358709025654 +O(318)
57769565310991429+O(5310) 19704952386 +O(536) 17681237786119+O(538)
501328316424338015+O(5910) 64487204069600+ O(598) 140344643451642+O(598)
1243828341260907954+O(7110) 56573288611 +O(716) 557648531014830+O(718)
2079988387733147685+O(7310) 4104591 +O(734) 759308640111719+O(738)
20365783254113182401+O(8910) 5065696436 +O(895) 1447017073110591+O(898)
67990777180272953115+O(9710) 23364634 +O(974) 6376229493766338+O(978)

4.14. N = 177. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

1072267 +O(78) 1192 +O(74) 507488 +O(78)
9772408 +O(196) 2558009183 +O(198) 11268267357 +O(198)
27690468499+ O(238) 51308343838 +O(238) 3788873485 +O(238)
141718660962+O(298) 391909937451+ O(298) 65127401733 +O(298)
265288097732+O(318) 167635394515+ O(318) 519021947371+O(318)
1019326123826+O(378) 2370016933013+O(378) 1021993916814+O(378)
952644023485+O(418) 5888249521909+O(418) 5919384948361+O(418)
21867793727731+O(478) 3399186192198+O(478) 18039627327365+ O(478)

54813744728211+O(618) 136070004398022+O(618) 149495311709314+O(618)
374976464608823+O(738) 92506712920 +O(736) 469524064138469+O(738)
2024750045809193+O(838) 1537698302 +O(836) 2034477952337988+O(838)

4.15. N = 188. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

5623044 +O(78) 1259 + O(74) 507488 +O(78)
4478725 +O(117) 150222285 +O(118) 143254320 +O(118)
775568547 +O(138) 237088204 +O(138) 523887415 +O(138)
1129909080 + O(178) 6922098082 +O(178) 4494443586 +O(178)
14409374565 +O(198) 15793371104+ O(198) 4742010391 +O(198)
31414366115 +O(238) 210465118 +O(238) 45043095109+O(238)
2114154456754+O(378) 1652087821140+O(378) 1881820314237+O(378)
6279643012659+O(418) 2066767021277+O(418) 4367414685819+O(418)
9585122287133+O(438) 3309737400961+O(438) 85925017348+O(438)
3328142761956+O(538) 5143002859 +O(536) 6112104707558+O(538)
17411023818285+O(598) 7961878705 +O(596) 98405729721193+O(598)
102563258757138+O(618) 216695090848+O(617) 137187998566490+ O(618)
26014679325501+O(678) 7767410995 +O(676) 38320151289262+O(678)
490864897182147+O(718) 16754252742+ O(716) 530974572239623+ O(718)
689452389265311+O(738) 193236387 +O(735) 162807895476311+ O(738)
878760549863821+O(798) 1745712500 +O(795) 1063642669147985+O(798)
2070648686579466+O(838) 2888081539 +O(835) 1103760059074178+O(838)

3431343284115672+O(898) 1591745960 +O(895) 1012791564080640+O(898)
4259144286293285+O(978) 21828881 +O(974) 6376229493766338+O(978)
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4.16. N = 191. We have the following data:

p-adic regulator Regp(A/Q) p-adic L-value p-adic multiplier εp(A)

4195478 +O(78) 1867 +O(74) 1638463 +O(78)
43495803539 +O(238) 62365909362+O(238) 47598354917+ O(238)
276478270993+O(318) 411081898951+O(318) 611200443823+O(318)
7847912037610+O(438) 1839263047933+O(438) 10085036614653+O(438)
3701160666066+O(478) 16594732090932+O(478) 9836262988784+O(478)
19837992635361+ O(538) 121641372 +O(535) 22289116823061+O(538)
207820830309704+O(718) 80098460638243+O(718) 318837731560077+O(718)
105659818394179+O(738) 278456920 +O(735) 160255667550084+O(738)
4330286071100495+O(978) 12214648 + O(974) 1683523428082670+O(978)

5. Evidence for a twist of rank 4

In this section, we present evidence for Conjecture 1.4 on a rank 4 twist of a
rank 0 modular abelian surface for the primes 29, 61 and 79. Let X = X0(31).
According to [14], an affine equation for X is given by

y2 = (x3 − 2x2 − x+ 3) · (x3 − 6x2 − 5x− 1).

The Jacobian A of X has rank zero over Q.
We search for quadratic twists of high rank by searching among quadratic twists

ψ of small conductor D for some Aψ whose complex L-series seems to vanish at
s = 1 up to order at least 4. This is the case for D = −47. We then use a 2-descent
on Aψ as implemented in Magma to find that the rank is at most 4. Searching for
Q-rational points on Aψ of small height quickly reveals subgroups of rank 4, such as
the groups Gp described below, thus proving that the rank Aψ over Q is indeed 4.

Using [7, Theorem 1.17] we find that the potentially nontrivial Tamagawa num-
bers are c31(Aψ) = 1 and c47(Aψ) = 16. Moreover, the torsion subgroup is trivial
as is the 2-torsion of X(Aψ/Q). Since the divisors supported in Q-rational points
of Xψ do not generate a subgroup of finite index, we compute the p-adic regulator
for p ∈ {29, 61, 79} using the second method outlined in Section 3.4. Namely, for
each p we find a finite index subgroup Gp of Aψ(Q)/Aψ(Q)tors generated by the
classes of divisors D1, . . . , D4 such that each Di has pointwise Qp-rational support.
It is then enough to compute the p-adic regulator of Gp to find the p-adic regulator
of Aψ(Q)/Aψ(Q)tors.

The generators we used are given in Table 5.1 in Mumford representation, along
with the index of Gp.

Table 5.1. Indices and generators, N = 31 twisted by D = −47

p index generators of Gp

29 2 [x2 − 7/2x+ 49/16, 581/16x− 1305/32], [x2 − 2x− 1/2,−47/2x],
[x2 − 5/3x+ 5/6, 47/18x− 517/18], [x2 − 19/3x− 11/4,
−517/36x− 47/12]

61 4 [x2 − 7/2x+ 49/16, 581/16x− 1305/32], [x2 − 5x+ 11/2,
−235/2x+ 423/2], [x2 − 5x− 7/3, 235/3x+ 94/3],

[x2 − 5/3x+ 5/6,−47/18x+ 517/18]
79 4 [x2 − 7/2x+ 49/16, 581/16x− 1305/32], [x2 − x− 1/3,−47/3x],

[x2−3x−5/3, 149/3x+82/3], [x2−19/7x+3/7,−1363/49x−564/49]
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In order to compute the special values of the p-adic L-series, we need to find out
the correct normalization factor δ− of the minus modular symbol map associated
to A. The twist Aχ of A by the quadratic character χ associated to Q(

√
−19) has

rank 0 over Q. Comparing [0]+Aψ
= −4 to

L(Aχ,1)

Ω+
Aχ

= 1, we find that δ− = − 1
4 .

For the latter computation, we used that for a minimal equation of Xχ, a basis
of the integral 1-forms on Aχ is given by (ω1, ω2) as in Remark 2.12. Since the
corresponding fact also holds for A, we find that ηχ = 1 using [19].

The data presented in this section proves:

Proposition 5.1. Assume that X(Aψ/Q) consists entirely of 2-torsion, and that
the conjectural order of X(Aψ/Q) is 1 (numerically it is 1.0000000 . . . to as many
digits as we care to compute). Then Conjecture 1.4 is satisfied up to the respective
precision specified in the table below for the twist Aψ of J0(31) of rank 4 for the
primes 29, 61 and 79.

The special values of the p-adic L-series, the p-adic regulators and the p-adic
multipliers for p ∈ {29, 61, 79} are given in the following table:

p-adic regulator Regp(Aψ/Q) p-adic L-value p-adic multiplier εp(Aψ)

351486231941615978 + O(2912) 202402009906 + O(298) 423952915488 + O(298)
1650697608489237057465 + O(6112) 4326648666405 + O(618) 10267186717780 + O(618)
8155329946924028539010 + O(7912) 1513185184992411 + O(798) 1431106352547896 + O(798)

Remark 5.2. Assume that X(Aχ/Q) consists entirely of 2-torsion. Then we also
verified the classical (and hence for good ordinary primes p the p-adic) conjecture of
Birch and Swinnerton-Dyer for the rank 0 twist Aχ, since all Tamagawa numbers,
the order of the torsion subgroup and the order of X(Aχ/Q)[2] are easily seen to
be equal to 1.
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