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Abelian Varieties

Abelian variety: A projective group variety

Examples:

1. Elliptic curves (i.e., y2 = x3+ax+b)
2. Jacobians of curves
3. Modular abelian varieties

4. Weil restriction of scalars

Abel



2. Jacobians of Curves

If X is an algebraic curve then

Jacobi

Jac(X) = { divisor classes of degree O0on X }

Examples (defined over Q):

e X1(N) = modular curve parameterizing pairs

(E, Z/N = E)

e J1(N) = Jac(X1(N))



The Modular Jacobian J;(N)

e Hecke algebra:

Hecke

T =2Z[T1,To,...] = End(J1(N))

e Cuspidal modular forms (cotangent space of J1(N) af 0):

S2(M1(N)) = HO (Xa(N), 0 )



3. Modular Abelian Varieties

A modaular abelian variety A is any quotient

Shimura

J]_(N) —— A

Shimura associated abelian varieties to T-eigenforms:

f=g+ 5 ang" € Sa(M'1(N))
n>2

|1 = Ker(T — Z[ag,a2,a3,...]), Th— an

Abelian variety A over Q of dim = [Q(ajy,ay,...) : QJ:

At :=J1(N)/1£I1(N)



The A; are Interesting

e Wiles et al.: Every elliptic curve
over Q is isogenous to an As

e Serre’s Conjecture: All odd irreducible continuous

p:Ga(Q/Q) — GL2(Fy)
occur (up to twist) in the forsion points on At

e Understand A¢ well using modular forms



4. Weil Restriction of Scalars

Way to construct abelian varieties from others

F /K: finite extension of number fields
A/F: abelian variety over F

R = Resg /k (A) abelian variety over K with
dim(R) =dim(A) - [F : K]

Functorial characterization:
For any K-scheme S,

R(S) = A(S xk F)




Birch and Swinnerton-Dyer Conjecture

LO(Af,1) cory (MCp) - Q¢ - Rega,
r! -~ #A+(Q)tor - #AY (Q)tor

-#II(Af/Q)



BSD Conjecture

L(r)(Af,l) conj (|_| Cp) Q¢ 'RegAf
rl B+ (Qtor '#A¥(Q)tor

-H#II(Af/Q)

Here

00 ag)
L(Af,S) — |_| Z F
galois orbit \n=1

r = orde—1 L(At,5) 2 rank of A¢(Q)
cp = order of component group at p
Qa, = canonical measure of A¢(R)



Shafarevich-Tate Group i '

Shafarevich

A mysterious subgroup of Galois cohomology:

[II(A¢/Q) = Ker (Hl(Q,Af) - P Hl(Qv,Af)>

all v
Classifies locally trivial torsors for As:

3x3 + 4y3 1+ 573 = 0] € T (x3 +y3 + 60z = 0)[3]

Conjecture. I11(A/Q) is finite
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Shafarevich-Tate Group

m C
m(Af/Q) Hl(Q,Af)
(finite?) DaivHY(Qv, Af)

(forsion)
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Theorems of Kato and Kolyvagin

Kolyvagin

Hypothesis: Suppose dimA =1 and ords_1L(A,s) < 1.
Kolyvagin: I11(A/Q) is finite.

Kato: If x is a Dirichlet character corresponding to an abelian ex-
tension K/Q with L(A,x,1) # 0 then the x-component of III(A/K) is
finite.

(Rubin: Similar results first when A has CM.)
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Maximal Divisible Subgroup (Qp/Zp C III(A)?)

Even if III(A) were nof finite, for each prime p the quotient

II(A)[P™] / giv
would be finite. (That we don’t know finitfeness in general causes
much frustration in work toward the BSD conjecture.)

(Here G, 4y = G/Gdgiv Where Gy is the subgroup of infinitely divisible elements.)
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The Dual of A

Invertible sheaves on A algebraically equivalent to O

AV = Pic’(A).,

Functorial:

If A— BthenBY — AV,
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Polarization

A polarization of A is an isogeny

AAAY

induced by divisor class on A. A principal polarization is a polarizo-
fion of degree 1 (an isomorphism).

Example. If dimA = 1, then A is principally polarized since A= AY by
P—-P—-0¢ PicO(A). Jacobians are also principally polarized.
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Theorem of Cassels and Tate

A/F: abelian variety over number field

Cassels

Theorem. If A is principally polarized by a polarization arising from
an F-rational divisor, then there is a nondegenerate alternating pair-
ing on II(A/F) /gy SO for all p:

HILL(A/F)[p™] /giv = U

(Same statement away frorn minimal degree of polarizations.)

Corollary. If dimA = 1 and III(A/F) finite, then
#HITI(A/F) =[O
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What if dmA > 1?

Assume #I1I(A/F) finite. Overly opfimistic literature:

Page 306 of (Tate, 1963): If A is a Jacobian then

HITI(A/F) = L.

Page 149 of (Swinnerton-Dyer, 1967). Tate proved that

HITI(A/F) = L.
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Stoll’s Computation

Stoll

During a grey winter day in 1996, Michael Stoll sat puzzling over a
computation in his study on a magjestic embassy-peppered hill over-
looking the Rhine. He had implemented an algorithm for perform-
INg 2-descents on Jacobians of hyperelliptic curves. He stared at a
curve X for which his computations implied that

HITT(Jec(X ) /Q)[2) = 2

(Recall Jac(X) = divisor classes of degree 0 on X.)

What was wrong?
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Poonen «— Stoll

From M chael Stoll (9 Dec 1996)

Dear Bjorn, Dear Ed:

[...] your results would inply that Sha[2] = Z/2Z
in contradiction to the fact that the order of Sha[2] should Poonen
be a square (always assunmi ng, as everybody does, that Sha is finite).
So ny question is (of course): Wat is wong ?

From Bjorn Pooenen (9 Dec 96)

Dear M chael:

Thanks for your e-mails. |1’mglad soneone is actually taking the tine
to think about our paper critically! [...]

| would really like to resolve the apparent contradiction,

because | amsure it will end with us | earning sonething!

(And | don’t think that it will be that Sha[2] can have odd di nension!)

From Bjorn Poonen (11 hours |ater)

Dear M chael:

| think I may have resolved the problem There is nothing wong with
the paper, or with the calculation. The thing that is wong is the
cl aimthat Sha nust have square order!
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Theorem of Poonen-Stoll

J a Jacobian over a number field F

Poonen 1988

Theorem (Annals 1999). If IT11(J/F) finite then

#II(J/F)=0or2-[]

Both cases occur and there is a simple criterion to decide.

Example. The Jacobian J of

y2 = —3(x% 4 1)(x* — 6x+ 1) (x° + 6x + 1)
has #I11(J/Q) = 2.
20



Question
Is #I1I(A/F) always [J or 2-[17?
Hendrik Lenstra asked me this once on the bus from MSRI.

Poonen asked at Arizona Winter School 2000: Is there an abelian
variety such that

HITI(A/F) = 3?

21



Answer: YES!

0= —X3 — X3 4 (—6XaXa + 3x3) X1 + (=33 + 3%3X3 + (—9X5 — 2X3) X2
+ (G5 + (Vi +y1+ (232~ ¥3))))

0 = —3x2%¢ + ((—12%3 — 2)X2 + 3X3) X1 4 (—2)X3 + 3xXaX5+
(—15x5 — 4xa)xa + (553 +X5 + (2y2y1 + ((4ys +1)y2 — ¥3))))

0 = —3xaX + (—3%5 4 6XaXo + (—9X5 — 2x3) )1 + (3 + (—9x3 — 1)%5
+ (124 +2x3) X2+ (96 — 3G + (2y3y1 + (Y5 — 2yay2+ (3y3+Y3)))))

0 = X% — 8XPXSX3 + 30XEX5X5 — 44XTXoX3 + 25X2%3 — 2/3%1)S + 26 /3X1 X%z + 2/ 3X1 X5
— 140/3x%1X3X5 — 16/3X1X3X3 + 388 /3X1X5X3 + 20X1X5X5 — 2 /3X1X5y5 + 8/3X1X5Y2Y3
— 10/3x1X5y5 — 490 /3x1X2X3 — 88 /3x1 XX + 8 /3X1 XaX3y3 — 40 /3X1 XoXaY2Y'3
4 44 /3%1XoX3y5 + 250 /3%1)X3 + 50/3x1 X3 — 10/3x%1X3y5 + 44 /3x1X5Y2y3 — 50/3x1X5y5
+1/958 — 2X3x3 — 2/9x3 + 15X9%3 + 26 /9x3x3 + 1/9x5 — 544 /9x3x5 — 140 /9x3X3
— 8/9x3x3+2/9Cy2 — 8/9x3yys + 10/9x3y2 + 1355334 + 388 /9x23 + 10/3xx2
— 2X5%3Yy5 + 80 /9X5X3y2y3 — 94 /9X5Xay3 — 2/9X5Y5 + 8/9X5yaya — 10/9X5y3
— 15053 — 490/9%X3 — 44 /9%X3 4 50/ 9xoX3Y5 — 244/ 9%oX3y2Y3 + 30%X3Yy5
+ 8/9%oX3Y5 — 40/9%oXaYoY3 + 44/ IxoxXay5 + 625 /9x§ + 250/9x3 + 25/9x3 — 50/9x3y5
+220/9x3y5ys — 250/9x3y2 — 10/9x2y2 + 44 /9x2yys — 50/9x2y2 + 1/9yA
—8/9y3y3+10/3y3y5 — 44/9y2y3 + 25/9y5
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Plenty of Nonsquare III|p|!

Theorem 1 (Stein). For every prime p < 25000, there is an abelian
variety A over Q such that

#II(A/Q) =p-[I

Revised Question. Possibilities for #I11(A)?

Conjecture 1 (Stein). The integers +#I11(A) for all abelian vari-
eties A represent every element of Q*/Q*2.
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Constructing Nonsquare 111

The rest of this talk is about the
construction | found to prove Theorem 1.

History. | fried fo construct 111 of order 3 directly for a long fime, gave
up, thought about visibility (in the sense of Mazur) and accidently

found III of order 3.

Summary. Find visible nonsquare 111 living in

Ker (ResK/Q(EK) Trace, E)
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Higher Degree Twists

il

Recall: Quadratic twist of y2 = x3 +ax+b by
the Dirichlet character x corresponding to Q(+/D):

EX: Dy?=x3+ax+h.

Generadlize:
p aprime and ¢ a prime with £ =1 (mod p)
X:(Z/¢)* — C* a Dirichlet character of degree p

K C Q({y) of degree p
R = Resy /o(Ex) (Note: Rk 2 E = E x -+ x Ex)
The fwist of E by x is tThe abelian variety of dimension p — 1.

A:EX:Ker<R"Oﬁ>E>

Note: A isogenous to Af where f = S an(E)x(n)q" = fe @ x.
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Nonvanishing Twist Conjecture

E /Q an elliptic curve, conductor N
Suppose p is a prime such that

pt2-]cqg and pgp:Gq— Aut(E[p])
qiN
For any prime /=1 (mod p) let

Xp,e: (Z/0)" == Up
be the unique (up tfo conjugacy) character of degree p and con-
ductor /.

Conjecture 2 (Stein). Thereis a prime /=1 (mod p) with £4N such
that L(E,Xp¢,1) #0and ay(E) #£+1 (mod p).
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A Visibly Beautiful Exact Sequence

Assume p and £ as in above conjecture. Let X = Xp s A= EX, and
K C Q({y) of degree p.

Theorem 1 (Stein). There is an exact sequence
0— E(Q)/pE(Q) — II(A/Q)[p”] — LI(E/K)[p”] — LI(E/Q)[p~] — O.

(Remark: The visible subgroup of III(A/Q) is E(Q)/pE(Q).)

Application. If all III’s finite and E has odd rank, then
H#III(A/Q) = p- L.

Note: By hypothesis rankE = dimE(Q)/pE(Q).
Remark: Work of Claus Diem on polarizations of A.
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Sketch of Proof (1)

The exact sequence

O—A—-R—E—O

extends to an exact sequence of Néron models (and hence sheaves
for the étale topology) over Z:

O—-4—-RR—E—0.

To check this, we use that formation of Néron models commutes with
unramified base change and Prop. 7.5.3(a) of (Néron Models, 1990).

Main hypothesis used: £1 pN.
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Sketch of Proof (2)

Mazur’s Appendix to Rational Points of Abelian
Varieties with Values in Towers of Number Fields:
For F = AR,E let ¥ =Néron(F). Then

Ha(Z, F)[p™] = TII(F/Q)[p”]

Main hypothesis used:

ay(E)£/¢+1 (mod p) and p1 []ce-
That ay(E) Z¢+1 (mod p) implies Frob, has no fixed points.
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Sketch of Proof (3)

Associated long exact sequence of étale cohomology:

0—AQ)—=R(Q)=E(Q) DX

— Hi(Z,4) - H(Z,R) = H(Z,E) — H3(Z,4)
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Sketch of Proof (4)

We have Coker(d) =E(Q)/pE(Q) since

L(E,Xps, 1) #0 and ay#{+1 (mod p).

Also HA(Z, 4)[p™] = 0 (proof uses Artin-Mazur duality).

Note: Both of these steps use Kato’s finiteness theorem in an essential
way.

Putting everything fogether, yields

0— E(Q)/pE(Q) — HI(A/Q)[p"] — HI(E/K)[p"] — HI(E/Q)[p"] = O
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Application

Let E be y2+y = x3—x of conductor 37 and rank 1. -
MECCAH

Large modular symbols computation to verify Conjecture 2 (nonva-
nishing twists) for all odd primes p < 25000.

For each p < 25000, we obtain a fwist A of E of dimension p — 1 such
that III(A/Q) is finite and #ITI(A/Q)[p*] is an odd power of p. Using
Cassels-Tate pairing get

#II(A/Q) = p-[0.
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Replace p by a prime power. Columns record BSD conjectural order

Some Other Visibly Twisted 111

of III(A/Q)., where pn denotes an n-digit prime:

(P | 7 61A 389A 5077A

3 | 487 3 3% 33

9 | 487 32.192 38 36.17°
27 [ 487 | 3319713 312.1632 3°.172.433%. pg
81 | 487 | 3*.19%.p7-ps-p? 316.163%.p2 312.172.433%. p2- p2- p2- p5- 5
5 | 251 5 52 —

25 | 251 5.151°- pg 5%.149. pg —

125 | 251 || 53-1512-p2-p2; | 5°-1492.p2. p- p2y P2y —

7 | 197 7-29? 72.13% 73

49 | 197 || 72292, 771332 7°-pg-p3-pe
11 | 89 11-672 112 11°.677
13 | 53 13 132 —

17 | 103 17-6132 172.1012 173.67°2
19 | 191 19.377 19~ 19°.377

Note: 61A has rank 1, 389A has rank 2, 5077 A has rank 3.




Thank you for coming!
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For more details;
http://nodul ar. fas. harvard. edu/ paper s/ nonsquar esha/ .
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