Possibilities for Shafarevich-Tate Groups of Modular Abelian Varieties

William Stein
Harvard University

March 21, 2003 for Lenstra's Treurfeest

Overview of Tour

1. Review of Abelian Varieties
2. Theorems About Shafarevich-Tate Groups
3. Shafarevich-Tate Groups of Order $p \cdot \square$

Abelian Varieties

Abelian variety: A projective group variety

Examples:

1. Elliptic curves (i.e., $y^{2}=x^{3}+a x+b$)
2. Jacobians of curves
3. Modular abelian varieties
4. Weil restriction of scalars

2. Jacobians of Curves

If X is an algebraic curve then

Jacobi

$$
\operatorname{Jac}(X)=\{\text { divisor classes of degree } 0 \text { on } X\}
$$

Examples (defined over Q):

- $X_{1}(N)=$ modular curve parameterizing pairs

$$
(E, \mathbf{Z} / N \hookrightarrow E)
$$

- $J_{1}(N)=\operatorname{Jac}\left(X_{1}(N)\right)$

The Modular Jacobian $J_{1}(N)$

- Hecke algebra:

Hecke

$$
\mathbf{T}=\mathbf{Z}\left[T_{1}, T_{2}, \ldots\right] \hookrightarrow \operatorname{End}\left(J_{1}(N)\right)
$$

- Cuspidal modular forms (cotangent space of $J_{1}(N)$ at 0):

$$
S_{2}\left(\Gamma_{1}(N)\right)=H^{0}\left(X_{1}(N), \Omega_{X_{1}(N)}^{1}\right)
$$

3. Modular Abelian Varieties

A modular abelian variety A is any quotient

Shimura

Shimura associated abelian varieties to \mathbf{T}-eigenforms:

$$
\begin{aligned}
f & =q+\sum_{n \geq 2} a_{n} q^{n} \in S_{2}\left(\Gamma_{1}(N)\right) \\
I_{f} & =\operatorname{Ker}\left(\mathbf{T} \rightarrow \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]\right), T_{n} \mapsto a_{n}
\end{aligned}
$$

Abelian variety A_{f} over \mathbf{Q} of $\operatorname{dim}=\left[\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right): \mathbf{Q}\right]$:

$$
A_{f}:=J_{1}(N) / I_{f} J_{1}(N)
$$

The A_{f} are Interesting

- Wiles et al.: Every elliptic curve

Wiles over \mathbf{Q} is isogenous to an A_{f}

- Serre's Conjecture: All odd irreducible continuous

$$
\rho: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)
$$

occur (up to twist) in the torsion points on A_{f}

- Understand A_{f} well using modular forms

4. Weil Restriction of Scalars

Way to construct abelian varieties from others

F / K : finite extension of number fields
A / F : abelian variety over F
$R=\operatorname{Res}_{F / K}(A)$ abelian variety over K with

$$
\operatorname{dim}(R)=\operatorname{dim}(A) \cdot[F: K]
$$

Functorial characterization:
For any K-scheme S,

$$
R(S)=A\left(S \times_{K} F\right)
$$

Birch and Swinnerton-Dyer Conjecture

$$
\frac{L^{(r)}\left(A_{f}, 1\right)}{r!} \stackrel{\text { conj }}{=} \frac{\left(\prod c_{p}\right) \cdot \Omega_{A_{f}} \cdot \operatorname{Reg}_{A_{f}}}{\# A_{f}(\mathbf{Q})_{\mathrm{tor}} \cdot \# A_{f}^{\mathrm{V}}(\mathbf{Q})_{\mathrm{tor}}} \cdot \# \amalg\left(A_{f} / \mathbf{Q}\right)
$$

BSD Conjecture

$$
\frac{L^{(r)}\left(A_{f}, 1\right)}{r!} \stackrel{\text { conj }}{=} \frac{\left(\Pi c_{p}\right) \cdot \Omega_{A_{f}} \cdot \operatorname{Reg}_{A_{f}}}{\# A_{f}(\mathbf{Q})_{\mathrm{tor}} \cdot \# A_{f}^{\mathrm{V}}(\mathbf{Q})_{\mathrm{tor}}} \cdot \# \amalg\left(A_{f} / \mathbf{Q}\right)
$$

Here

$$
\begin{aligned}
L\left(A_{f}, s\right) & =\prod_{\text {galois orbit }}\left(\sum_{n=1}^{\infty} \frac{a_{n}^{(i)}}{n^{s}}\right) \\
r & =\operatorname{ord}_{s=1} L\left(A_{f}, s\right) \stackrel{\text { conj }}{=} \text { rank of } A_{f}(\mathbf{Q}) \\
c_{p} & =\text { order of component group at } p \\
\Omega_{A_{f}} & =\text { canonical measure of } A_{f}(\mathbf{R})
\end{aligned}
$$

Shafarevich-Tate Group

Shafarevich

A mysterious subgroup of Galois cohomology:

$$
Ш\left(A_{f} / \mathbf{Q}\right)=\operatorname{Ker}\left(H^{1}\left(\mathbf{Q}, A_{f}\right) \rightarrow \bigoplus_{\mathrm{all} v} H^{1}\left(\mathbf{Q}_{v}, A_{f}\right)\right)
$$

Classifies locally trivial torsors for A_{f} :

$$
\left[3 x^{3}+4 y^{3}+5 z^{3}=0\right] \in Ш\left(x^{3}+y^{3}+60 z^{3}=0\right)[3]
$$

Conjecture. $\amalg\left(A_{f} / \mathbf{Q}\right)$ is finite

Shafarevich-Tate Group

Theorems of Kato and Kolyvagin

Kolyvagin

Hypothesis: Suppose $\operatorname{dim} A=1$ and $\operatorname{ord}_{s=1} L(A, s) \leq 1$.

Kolyvagin: $\amalg(A / \mathbf{Q})$ is finite.

Kato: If χ is a Dirichlet character corresponding to an abelian extension K / \mathbf{Q} with $L(A, \chi, 1) \neq 0$ then the χ-component of $\amalg(A / K)$ is finite.
(Rubin: Similar results first when A has CM.)

Maximal Divisible Subgroup $\quad\left(\mathrm{Q}_{p} / \mathbf{Z}_{p} \subset Ш(A)\right.$?)

Even if $\amalg(A)$ were not finite, for each prime p the quotient

$$
Ш(A)\left[p^{\infty}\right]_{/ \mathrm{div}}
$$

would be finite. (That we don'† know finiteness in general causes much frustration in work toward the BSD conjecture.)
(Here $G_{/ \text {div }}=G / G_{\text {div }}$ where $G_{\text {div }}$ is the subgroup of infinitely divisible elements.)

The Dual of A

Invertible sheaves on A algebraically equivalent to 0 :

$$
A^{\vee}=\operatorname{Pic}^{0}(A)_{\text {red }}
$$

Functorial:

$$
\text { If } A \rightarrow B \text { then } B^{\vee} \rightarrow A^{\vee}
$$

Polarization

A polarization of A is an isogeny

$$
\lambda: A \rightarrow A^{\vee}
$$

induced by divisor class on A. A principal polarization is a polarization of degree 1 (an isomorphism).

Example. If $\operatorname{dim} A=1$, then A is principally polarized since $A \cong A^{\vee}$ by $P \mapsto P-O \in \operatorname{Pic}^{0}(A)$. Jacobians are also principally polarized.

Theorem of Cassels and Tate

A / F : abelian variety over number field

Cassels

Theorem. If A is principally polarized by a polarization arising from an F-rational divisor, then there is a nondegenerate alternating pairing on $Ш(A / F) /$ div, so for all p :

$$
\# Ш(A / F)\left[p^{\infty}\right] / \mathrm{div}=\square
$$

(Same statement away from minimal degree of polarizations.)

Corollary. If $\operatorname{dim} A=1$ and $\amalg(A / F)$ finite, then

$$
\# \amalg(A / F)=\square
$$

What if $\operatorname{dim} A>1$?

Assume \#Ш (A / F) finite. Overly optimistic literature:
Page 306 of (Tate, 1963): If A is a Jacobian then

$$
\# Ш(A / F)=\square .
$$

Page 149 of (Swinnerton-Dyer, 1967): Tate proved that

$$
\# Ш(A / F)=\square .
$$

Stoll's Computation

Stoll
During a grey winter day in 1996, Michael Stoll sat puzzling over a computation in his study on a majestic embassy-peppered hill overlooking the Rhine. He had implemented an algorithm for performing 2-descents on Jacobians of hyperelliptic curves. He stared at a curve X for which his computations implied that

$$
\# Ш(\operatorname{Jac}(X) / \mathbf{Q})[2]=2 .
$$

(Recall $\operatorname{Jac}(X)=$ divisor classes of degree 0 on X.)

What was wrong?

Poonen \longleftrightarrow Stoll

From: Michael Stoll (9 Dec 1996)
Dear Bjorn, Dear Ed:
[...] your results would imply that Sha[2] = Z/2Z
in contradiction to the fact that the order of Sha[2] should Poonen
be a square (always assuming, as everybody does, that Sha is finite).
So my question is (of course): What is wrong ?

From: Bjorn Pooenen (9 Dec 96)
Dear Michael:
Thanks for your e-mails. I'm glad someone is actually taking the time to think about our paper critically! [...]
I would really like to resolve the apparent contradiction, because I am sure it will end with us learning something! (And I don't think that it will be that Sha[2] can have odd dimension!)

From: Bjorn Poonen (11 hours later)
Dear Michael:
I think I may have resolved the problem. There is nothing wrong with the paper, or with the calculation. The thing that is wrong is the claim that Sha must have square order!

Theorem of Poonen-Stoll

J a Jacobian over a number field F

Poonen 1988

Theorem (Annals 1999). If $\amalg(J / F)$ finite then

$$
\# Ш(J / F)=\square \text { or } 2 \cdot \square
$$

Both cases occur and there is a simple criterion to decide.

Example. The Jacobian J of

$$
y^{2}=-3\left(x^{2}+1\right)\left(x^{2}-6 x+1\right)\left(x^{2}+6 x+1\right)
$$

has $\# Ш(J / \mathbf{Q})=2$.

Question

Is \#Ш (A / F) always \square or $2 \cdot \square$?

Hendrik Lenstra asked me this once on the bus from MSRI.

Poonen asked at Arizona Winter School 2000: Is there an abelian variety such that

$$
\# \amalg(A / F)=3 ?
$$

Answer: YES!

$$
\begin{aligned}
& 0=-x_{1}^{3}-x_{1}^{2}+\left(-6 x_{3} x_{2}+3 x_{3}^{2}\right) x_{1}+\left(-x_{2}^{3}+3 x_{3} x_{2}^{2}+\left(-9 x_{3}^{2}-2 x_{3}\right) x_{2}\right. \\
&\left.+\left(4 x_{3}^{3}+x_{3}^{2}+\left(y_{1}^{2}+y_{1}+\left(2 y_{3} y_{2}-y_{3}^{2}\right)\right)\right)\right) \\
& 0=-3 x_{2} x_{1}^{2}+\left(\left(-12 x_{3}-2\right) x_{2}+3 x_{3}^{2}\right) x_{1}+\left(-2 x_{2}^{3}+3 x_{3} x_{2}^{2}+\right. \\
&\left.\left(-15 x_{3}^{2}-4 x_{3}\right) x_{2}+\left(5 x_{3}^{3}+x_{3}^{2}+\left(2 y_{2} y_{1}+\left(\left(4 y_{3}+1\right) y_{2}-y_{3}^{2}\right)\right)\right)\right) \\
& 0=-3 x_{3} x_{1}^{2}+\left(-3 x_{2}^{2}+6 x_{3} x_{2}+\left(-9 x_{3}^{2}-2 x_{3}\right)\right) x_{1}+\left(x_{2}^{3}+\left(-9 x_{3}-1\right) x_{2}^{2}\right. \\
&\left.+\left(12 x_{3}^{2}+2 x_{3}\right) x_{2}+\left(-9 x_{3}^{3}-3 x_{3}^{2}+\left(2 y_{3} y_{1}+\left(y_{2}^{2}-2 y_{3} y_{2}+\left(3 y_{3}^{2}+y_{3}\right)\right)\right)\right)\right) \\
& 0=x_{1}^{2} x_{2}^{4}-8 x_{1}^{2} x_{2}^{3} x_{3}+30 x_{1}^{2} x_{2}^{2} x_{3}^{2}-44 x_{1}^{2} x_{2} x_{3}^{3}+25 x_{1}^{2} x_{3}^{4}-2 / 3 x_{1} x_{2}^{5}+26 / 3 x_{1} x_{2}^{4} x_{3}+2 / 3 x_{1} x_{2}^{4} \\
&-140 / 3 x_{1} x_{2}^{3} x_{3}^{2}-16 / 3 x_{1} x_{2}^{3} x_{3}+388 / 3 x_{1} x_{2}^{2} x_{3}^{3}+20 x_{1} x_{2}^{2} x_{3}^{2}-2 / 3 x_{1} x_{2}^{2} y_{2}^{2}+8 / 3 x_{1} x_{2}^{2} y_{2} y_{3} \\
&-10 / 3 x_{1} x_{2}^{2} y_{3}^{2}-490 / 3 x_{1} x_{2} x_{3}^{4}-88 / 3 x_{1} x_{2} x_{3}^{3}+8 / 3 x_{1} x_{2} x_{3} y_{2}^{2}-40 / 3 x_{1} x_{2} x_{3} y_{2} y_{3} \\
&+44 / 3 x_{1} x_{2} x_{3} y_{3}^{2}+250 / 3 x_{1} x_{3}^{5}+50 / 3 x_{1} x_{3}^{4}-10 / 3 x_{1} x_{3}^{2} y_{2}^{2}+44 / 3 x_{1} x_{3}^{2} y_{2} y_{3}-50 / 3 x_{1} x_{3}^{2} y_{3}^{2} \\
&+1 / 9 x_{2}^{6}-2 x_{2}^{5} x_{3}-2 / 9 x_{2}^{5}+15 x_{2}^{4} x_{3}^{2}+26 / 9 x_{2}^{4} x_{3}+1 / 9 x_{2}^{4}-544 / 9 x_{2}^{3} x_{3}^{3}-140 / 9 x_{2}^{3} x_{3}^{2} \\
&-8 / 9 x_{2}^{3} x_{3}+2 / 9 x_{2}^{3} y_{2}^{2}-8 / 9 x_{2}^{3} y_{2} y_{3}+10 / 9 x_{2}^{3} y_{3}^{2}+135 x_{2}^{2} x_{3}^{4}+388 / 9 x_{2}^{2} x_{3}^{3}+10 / 3 x_{2}^{2} x_{3}^{2} \\
&-2 x_{2}^{2} x_{3} y_{2}^{2}+80 / 9 x_{2}^{2} x_{3} y_{2} y_{3}-94 / 9 x_{2}^{2} x_{3} y_{3}^{2}-2 / 9 x_{2}^{2} y_{2}^{2}+8 / 9 x_{2}^{2} y_{2} y_{3}-10 / 9 x_{2}^{2} y_{3}^{2} \\
&-150 x_{2} x_{3}^{5}-490 / 9 x_{2} x_{3}^{4}-44 / 9 x_{2} x_{3}^{3}+50 / 9 x_{2} x_{3}^{2} y_{2}^{2}-244 / 9 x_{2} x_{3}^{2} y_{2} y_{3}+30 x_{2} x_{3}^{2} y_{3}^{2} \\
&+8 / 9 x_{2} x_{3} y_{2}^{2}-40 / 9 x_{2} x_{3} y_{2} y_{3}+44 / 9 x_{2} x_{3} y_{3}^{2}+625 / 9 x_{3}^{6}+250 / 9 x_{3}^{5}+25 / 9 x_{3}^{4}-50 / 9 x_{3}^{3} y_{2}^{2} \\
&+220 / 9 x_{3}^{3} y_{2} y_{3}-250 / 9 x_{3}^{3} y_{3}^{2}-10 / 9 x_{3}^{2} y_{2}^{2}+44 / 9 x_{3}^{2} y_{2} y_{3}-50 / 9 x_{3}^{2} y_{3}^{2}+1 / 9 y_{2}^{4} \\
&-8 / 9 y_{3}^{3} y_{3}+10 / 3 y_{2}^{2} y_{3}^{2}-44 / 9 y_{2} y_{3}^{3}+25 / 9 y_{3}^{4}
\end{aligned}
$$

Plenty of Nonsquare $\amalg[p]$!

Theorem 1 (Stein). For every prime $p<25000$, there is an abelian variety A over \mathbf{Q} such that

$$
\# Ш(A / \mathbf{Q})=p \cdot \square
$$

Revised Question. Possibilities for \#Ш(A)?

Conjecture 1 (Stein). The integers $\pm \# \amalg(A)$ for all abelian varieties A represent every element of $\mathbf{Q}^{*} / \mathbf{Q}^{* 2}$.

Constructing Nonsquare Ш

The rest of this talk is about the
 construction I found to prove Theorem 1.

History. I tried to construct Ш of order 3 directly for a long time, gave up, thought about visibility (in the sense of Mazur) and accidently found $Ш$ of order 3.

Summary. Find visible nonsquare Ш living in

$$
\operatorname{Ker}\left(\operatorname{Res}_{K / \mathbf{Q}}\left(E_{K}\right) \xrightarrow{\text { trace }} E\right)
$$

Higher Degree Twists

Recall: Quadratic twist of $y^{2}=x^{3}+a x+b$ by the Dirichlet character χ corresponding to $\mathbf{Q}(\sqrt{D})$:

$$
E^{\chi}: \quad D y^{2}=x^{3}+a x+b .
$$

Generalize:

p a prime and ℓ a prime with $\ell \equiv 1(\bmod p)$
$\chi:(\mathbf{Z} / \ell)^{*} \rightarrow \mathbf{C}^{*}$ a Dirichlet character of degree p
$K \subset \mathbf{Q}\left(\zeta_{\ell}\right)$ of degree p
$R=\operatorname{Res}_{K / \mathbf{Q}}\left(E_{K}\right)$ (Note: $R_{K} \cong E_{K}^{p}=E_{K} \times \cdots \times E_{K}$)
The twist of E by χ is the abelian variety of dimension $p-1$:

$$
A=E^{\chi}=\operatorname{Ker}(R \xrightarrow{\text { trace }} E)
$$

Note: A isogenous to A_{f} where $f=\sum a_{n}(E) \chi(n) q^{n}=f_{E} \otimes \chi$.

Nonvanishing Twist Conjecture

$E /$ Q an elliptic curve, conductor N

Suppose p is a prime such that

$$
p \nmid 2 \cdot \prod_{q \mid N} c_{q} \quad \text { and } \quad \rho_{E, p}: G_{\mathbf{Q}} \rightarrow \operatorname{Aut}(E[p])
$$

For any prime $\ell \equiv 1(\bmod p)$ let

$$
\chi_{p, \ell}:(\mathbf{Z} / \ell)^{*} \rightarrow \mu_{p}
$$

be the unique (up to conjugacy) character of degree p and conductor ℓ.

Conjecture 2 (Stein). There is a prime $\ell \equiv 1(\bmod p)$ with $\ell \nmid N$ such that $L\left(E, \chi_{p, \ell}, 1\right) \neq 0$ and $a_{\ell}(E) \not \equiv \ell+1(\bmod p)$.

A Visibly Beautiful Exact Sequence

Assume p and ℓ as in above conjecture. Let $\chi=\chi_{p, \ell}, A=E^{\chi}$, and $K \subset \mathbf{Q}\left(\zeta_{\ell}\right)$ of degree p.

Theorem 1 (Stein). There is an exact sequence

$$
0 \rightarrow E(\mathbf{Q}) / p E(\mathbf{Q}) \rightarrow Ш(A / \mathbf{Q})\left[p^{\infty}\right] \rightarrow Ш(E / K)\left[p^{\infty}\right] \rightarrow Ш(E / \mathbf{Q})\left[p^{\infty}\right] \rightarrow 0 .
$$

(Remark: The visible subgroup of $\amalg(A / \mathbf{Q})$ is $E(\mathbf{Q}) / p E(\mathbf{Q})$.)
Application. If all W's finite and E has odd rank, then

$$
\# Ш(A / \mathbf{Q})=p \cdot \square .
$$

Note: By hypothesis $\operatorname{rank} E=\operatorname{dim} E(\mathbf{Q}) / p E(\mathbf{Q})$.
Remark: Work of Claus Diem on polarizations of A.

Sketch of Proof (1)

The exact sequence

Neron

$$
0 \rightarrow A \rightarrow R \rightarrow E \rightarrow 0
$$

extends to an exact sequence of Néron models (and hence sheaves for the étale topology) over \mathbf{Z} :

$$
0 \rightarrow \mathcal{A} \rightarrow \mathcal{R} \rightarrow \mathcal{E} \rightarrow 0
$$

To check this, we use that formation of Néron models commutes with unramified base change and Prop. 7.5.3(a) of (Néron Models, 1990).

Main hypothesis used: $\ell \nmid p N$.

Sketch of Proof (2)

Mazur's Appendix to Rational Points of Abelian
Varieties with Values in Towers of Number Fields:
For $F=A, R, E$ let $\mathcal{F}=\operatorname{Néron}(F)$. Then

$$
H_{\mathrm{et}}^{1}(\mathbf{Z}, \mathcal{F})\left[p^{\infty}\right] \cong Ш(F / \mathbf{Q})\left[p^{\infty}\right]
$$

Main hypothesis used:

$$
a_{\ell}(E) \not \equiv \ell+1 \quad(\bmod p) \quad \text { and } \quad p \nmid \prod c_{\ell} .
$$

That $a_{\ell}(E) \not \equiv \ell+1(\bmod p)$ implies Frob $_{\ell}$ has no fixed points.

Sketch of Proof (3)

Associated long exact sequence of étale cohomology:

$$
\underbrace{0 \rightarrow A(\mathbf{Q}) \rightarrow R(\mathbf{Q}) \rightarrow E(\mathbf{Q}) \quad \rightarrow H_{\mathrm{et}}^{1}(\mathbf{Z}, \mathcal{A}) \rightarrow H_{\mathrm{tet}^{1}}(\mathbf{Z}, \mathcal{R}) \rightarrow H_{\mathrm{et}}^{1}(\mathbf{Z}, \mathcal{E}) \rightarrow H_{\mathrm{ett}^{2}}^{(\mathbf{Z}, \mathcal{A})} .}
$$

Sketch of Proof (4)

We have $\operatorname{Coker}(\boldsymbol{\delta})=E(\mathbf{Q}) / p E(\mathbf{Q})$ since

$$
L\left(E, \chi_{p, \ell}, 1\right) \neq 0 \quad \text { and } \quad a_{\ell} \not \equiv \ell+1 \quad(\bmod p)
$$

Also $H_{\mathrm{et}}^{2}(\mathbf{Z}, \mathcal{A})\left[p^{\infty}\right]=0$ (proof uses Artin-Mazur duality).

Note: Both of these steps use Kato's finiteness theorem in an essential way.

Putting everything together, yields

$$
0 \rightarrow E(\mathbf{Q}) / p E(\mathbf{Q}) \rightarrow \amalg(A / \mathbf{Q})\left[p^{\infty}\right] \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow Ш(E / \mathbf{Q})\left[p^{\infty}\right] \rightarrow 0
$$

Application

Let E be $y^{2}+y=x^{3}-x$ of conductor 37 and rank 1 .

MECCAH

Large modular symbols computation to verify Conjecture 2 (nonvanishing twists) for all odd primes $p<25000$.

For each $p<25000$, we obtain a twist A of E of dimension $p-1$ such that $\amalg(A / \mathbf{Q})$ is finite and $\# \amalg(A / \mathbf{Q})\left[p^{\infty}\right]$ is an odd power of p. Using Cassels-Tate pairing get

$$
\# Ш(A / \mathbf{Q})=p \cdot \square .
$$

Some Other Visibly Twisted Ш

Replace p by a prime power. Columns record BSD conjectural order of $\amalg(A / \mathbf{Q})$, where p_{n} denotes an n-digit prime:

p^{r}	ℓ	$\mathbf{6 1 A}$	$\mathbf{3 8 9} \mathbf{A}$	$\mathbf{5 0 7 7} \mathbf{A}$
3	487	3	3^{4}	3^{3}
9	487	$3^{2} \cdot 19^{2}$	3^{8}	$3^{6} \cdot 17^{2}$
27	487	$3^{3} \cdot 19^{2} \cdot p_{6}^{2}$	$3^{12} \cdot 163^{2}$	$3^{9} \cdot 17^{2} \cdot 433^{2} \cdot p_{6}^{2}$
81	487	$3^{4} \cdot 19^{2} \cdot p_{4}^{2} \cdot p_{6}^{2} \cdot p_{7}^{2}$	$3^{16} \cdot 163^{2} \cdot p_{19}^{2}$	$3^{12} \cdot 17^{2} \cdot 433^{2} \cdot p_{4}^{2} \cdot p_{5}^{2} \cdot p_{6}^{2} \cdot p_{7}^{2} \cdot p_{9}^{2}$
5	251	5	5^{2}	-
25	251	$5^{2} \cdot 151^{2} \cdot p_{5}^{2}$	$5^{4} \cdot 149^{2} \cdot p_{4}^{2}$	-
125	251	$5^{3} \cdot 151^{2} \cdot p_{5}^{2} \cdot p_{18}^{2}$	$5^{6} \cdot 149^{2} \cdot p_{4}^{2} \cdot p_{5}^{2} \cdot p_{10}^{2} \cdot p_{11}^{2}$	-
7	197	$7 \cdot 29^{2}$	$7^{2} \cdot 13^{4}$	7^{3}
49	197	$7^{2} \cdot 29^{2} \cdot p_{10}^{2}$	$7^{4} \cdot 13^{4} \cdot p_{9}^{2}$	$7^{6} \cdot p_{4}^{2} \cdot p_{4}^{2} \cdot p_{5}^{2}$
11	89	$11 \cdot 67^{2}$	11^{2}	$11^{3} \cdot 67^{2}$
13	53	13	13^{2}	-
17	103	$17 \cdot 613^{2}$	$17^{2} \cdot 101^{2}$	$17^{3} \cdot 67^{2}$
19	191	$19 \cdot 37^{2}$	19^{2}	$19^{5} \cdot 37^{2}$

Note: 61A has rank 1, 389A has rank 2, 5077A has rank 3.

Thank you for coming!

Acknowledgements: Michael Stoll, Cristian Gonzalez, Barry Mazur, Ken Ribet, Bjorn Poonen

Hendrik, thanks for being my Ph.D. adviser!

For more details:
http://modular.fas.harvard.edu/papers/nonsquaresha/.

