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Abelian Varieties

Abel

Abelian variety: A projective group variety

Examples:

1. Elliptic curves (i.e., y2 � x3
� ax � b)

2. Jacobians of curves

3. Modular abelian varieties

4. Weil restriction of scalars
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2. Jacobians of Curves

Jacobi
If X is an algebraic curve then

Jac � X � � � divisor classes of degree 0 on X �

Examples (defined over Q):

� X1 � N � � modular curve parameterizing pairs

� E � Z � N � � E �

� J1 � N � � Jac � X1 � N � �
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The Modular Jacobian J1 �

N

�

Hecke� Hecke algebra:

T � Z
�

T1 � T2 � � � �
�

� � End � J1 � N � �

� Cuspidal modular forms (cotangent space of J1 � N � at 0):

S2 � Γ1 � N � � � H0

�

X1 � N � � Ω1
X1 �

N

� �
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3. Modular Abelian Varieties

Shimura
A modular abelian variety A is any quotient

J1 � N � � � A

Shimura associated abelian varieties to T-eigenforms:

f � q � ∑
n � 2

anqn
� S2 � Γ1 � N � �

I f � Ker � T � Z

�

a1 � a2 � a3 � � � �
� � � Tn �� an

Abelian variety A f over Q of dim �

�

Q � a1 � a2 � � � � � : Q

�

:

A f : � J1 � N � � I f J1 � N �
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The A f are Interesting

Wiles� Wiles et al.: Every elliptic curve
over Q is isogenous to an A f

� Serre’s Conjecture: All odd irreducible continuous

ρ : Gal � Q � Q � � GL2 � F � �

occur (up to twist) in the torsion points on A f

� Understand A f well using modular forms
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4. Weil Restriction of Scalars

Weil

Way to construct abelian varieties from others

F � K: finite extension of number fields
A � F : abelian variety over F

R � ResF � K � A � abelian variety over K with

dim � R � � dim � A �
�

�

F : K

�

Functorial characterization:
For any K-scheme S,

R � S � � A � S � K F �
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Birch and Swinnerton-Dyer Conjecture

L �

r

� � A f � 1 �

r!
conj

�

� ∏cp � � ΩA f

� RegA f

#A f � Q � tor � #A �

f � Q � tor

� # � � A f � Q �
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BSD Conjecture

L �

r

� � A f � 1 �

r!
conj

�

� ∏cp � � ΩA f

� RegA f

#A f � Q � tor � #A �

f � Q � tor

� # � � A f � Q �

Here

L � A f � s � � ∏
galois orbit

∞
∑

n� 1

a �

i

�

n

ns

r � ords� 1 L � A f � s �

conj

� rank of A f � Q �

cp � order of component group at p

ΩA f

� canonical measure of A f � R �
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Shafarevich-Tate Group

Shafarevich

A mysterious subgroup of Galois cohomology:

� � A f � Q � � Ker H1
� Q � A f � �

all v

H1

� Qv � A f �

Classifies locally trivial torsors for A f :

�

3x3

� 4y3

� 5z3 � 0

�

� � � x
3

� y3
� 60z3 � 0 � �

3

�

Conjecture. � � A f � Q � is finite
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Shafarevich-Tate Group

Tate

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

PSfrag replacements

� 	 A f 
 Q �

(finite?)
(torsion)

H1

	 Q � A f �







� all v H1

	 Qv � A f �
H1

	 Q2 � A f �

H1

	 Q3 � A f �

H1

	 Q5 � A f �
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Theorems of Kato and Kolyvagin

Kolyvagin
Hypothesis: Suppose dimA � 1 and ords� 1 L � A � s �� 1.

Kolyvagin: � � A � Q � is finite.

Kato: If χ is a Dirichlet character corresponding to an abelian ex-
tension K � Q with L � A � χ � 1 � �� 0 then the χ-component of � � A � K � is
finite.

(Rubin: Similar results first when A has CM.)
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Maximal Divisible Subgroup (Qp � Zp �

�

A

�

?)

Even if � � A � were not finite, for each prime p the quotient

� � A � �

p∞

� � div

would be finite. (That we don’t know finiteness in general causes
much frustration in work toward the BSD conjecture.)

(Here G � div� G 
 Gdiv where Gdiv is the subgroup of infinitely divisible elements.)
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The Dual of A

Invertible sheaves on A algebraically equivalent to 0:

A � � Pic0

� A � red

Functorial:

If A � B then B � � A � .
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Polarization

A polarization of A is an isogeny

λ : A � A �

induced by divisor class on A. A principal polarization is a polariza-
tion of degree 1 (an isomorphism).

Example. If dimA � 1, then A is principally polarized since A� � A � by
P �� P � O � Pic0

� A � . Jacobians are also principally polarized.
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Theorem of Cassels and Tate

Cassels
A � F : abelian variety over number field

Theorem. If A is principally polarized by a polarization arising from
an F-rational divisor, then there is a nondegenerate alternating pair-
ing on � � A � F � � div, so for all p:

# � � A � F � �

p∞
� � div � �

(Same statement away from minimal degree of polarizations.)

Corollary. If dimA � 1 and � � A � F � finite, then

# � � A � F � � �
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What if dimA � 1?

Assume # � � A � F � finite. Overly optimistic literature:

Page 306 of (Tate, 1963): If A is a Jacobian then

# � � A � F � � � �

Page 149 of (Swinnerton-Dyer, 1967): Tate proved that

# � � A � F � � � �
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Stoll’s Computation

Stoll

During a grey winter day in 1996, Michael Stoll sat puzzling over a
computation in his study on a majestic embassy-peppered hill over-
looking the Rhine. He had implemented an algorithm for perform-
ing 2-descents on Jacobians of hyperelliptic curves. He stared at a
curve X for which his computations implied that

# � � Jac � X � � Q � �

2
�

� 2 �

(Recall Jac � X � � divisor classes of degree 0 on X .)

What was wrong?
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Poonen �� Stoll

Poonen

From: Michael Stoll (9 Dec 1996)
Dear Bjorn, Dear Ed:
[...] your results would imply that Sha[2] = Z/2Z
in contradiction to the fact that the order of Sha[2] should
be a square (always assuming, as everybody does, that Sha is finite).
So my question is (of course): What is wrong ?
------------------------------------------------------------------

From: Bjorn Pooenen (9 Dec 96)
Dear Michael:
Thanks for your e-mails. I’m glad someone is actually taking the time
to think about our paper critically! [...]
I would really like to resolve the apparent contradiction,
because I am sure it will end with us learning something!
(And I don’t think that it will be that Sha[2] can have odd dimension!)
------------------------------------------------------------------

From: Bjorn Poonen (11 hours later)
Dear Michael:
I think I may have resolved the problem. There is nothing wrong with
the paper, or with the calculation. The thing that is wrong is the
claim that Sha must have square order!
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Theorem of Poonen-Stoll

Poonen 1988
J a Jacobian over a number field F

Theorem (Annals 1999). If � � J � F � finite then

# � � J � F � � � or 2 � �

Both cases occur and there is a simple criterion to decide.

Example. The Jacobian J of

y2 � � 3 � x
2

� 1 � � x
2 � 6x � 1 � � x

2
� 6x � 1 �

has # � � J � Q � � 2.
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Question

Is # � � A � F � always � or 2 � � ?

Hendrik Lenstra asked me this once on the bus from MSRI.

Poonen asked at Arizona Winter School 2000: Is there an abelian
variety such that

# � � A � F � � 3?
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Answer: YES!

0�� x3
1

� x2
1� 	� 6x3x2� 3x2

3 � x1� 	� x3
2� 3x3x2

2� 	� 9x2
3

� 2x3 � x2
� 	 4x3

3� x2
3� 	 y

2
1� y1� 	 2y3y2� y2

3 � � � �

0�� 3x2x2
1� 	 	� 12x3� 2 � x2� 3x2

3 � x1� 	� 2x3
2� 3x3x2

2�

	� 15x2
3

� 4x3 � x2� 	 5x3
3� x2

3� 	 2y2y1� 	 	 4y3� 1 � y2� y2
3 � � � �

0�� 3x3x2
1� 	� 3x2

2� 6x3x2� 	� 9x2
3

� 2x3 � � x1� 	 x
3
2� 	� 9x3� 1 � x2

2

� 	 12x2
3� 2x3 � x2� 	� 9x3

3
� 3x2

3� 	 2y3y1� 	 y
2
2

� 2y3y2� 	 3y2
3� y3 � � � � �

0� x2
1x4

2

� 8x2
1x3

2x3� 30x2
1x2

2x2
3

� 44x2
1x2x3

3� 25x2
1x4

3

� 2 
 3x1x5
2� 26 
 3x1x4

2x3� 2 
 3x1x4
2

� 140 
 3x1x3
2x2

3

� 16 
 3x1x3
2x3� 388 
 3x1x2

2x3
3� 20x1x2

2x2
3

� 2 
 3x1x2
2y2

2� 8 
 3x1x2
2y2y3

� 10 
 3x1x2
2y2

3

� 490 
 3x1x2x4
3

� 88 
 3x1x2x3
3� 8 
 3x1x2x3y2

2

� 40 
 3x1x2x3y2y3

� 44 
 3x1x2x3y2
3� 250 
 3x1x5

3� 50 
 3x1x4
3

� 10 
 3x1x2
3y2

2� 44 
 3x1x2
3y2y3� 50 
 3x1x2

3y2
3

� 1 
 9x6
2

� 2x5
2x3� 2 
 9x5

2� 15x4
2x2

3� 26 
 9x4
2x3� 1 
 9x4

2

� 544 
 9x3
2x3

3

� 140 
 9x3
2x2

3

� 8 
 9x3
2x3� 2 
 9x3

2y2
2

� 8 
 9x3
2y2y3� 10 
 9x3

2y2
3� 135x2

2x4
3� 388 
 9x2

2x3
3� 10 
 3x2

2x2
3

� 2x2
2x3y2

2� 80 
 9x2
2x3y2y3� 94 
 9x2

2x3y2
3

� 2 
 9x2
2y2

2� 8 
 9x2
2y2y3� 10 
 9x2

2y2
3

� 150x2x5
3

� 490 
 9x2x4
3

� 44 
 9x2x3
3� 50 
 9x2x2

3y2
2

� 244 
 9x2x2
3y2y3� 30x2x2

3y2
3

� 8 
 9x2x3y2
2

� 40 
 9x2x3y2y3� 44 
 9x2x3y2
3� 625 
 9x6

3� 250 
 9x5
3� 25 
 9x4

3

� 50 
 9x3
3y2

2

� 220 
 9x3
3y2y3� 250 
 9x3

3y2
3

� 10 
 9x2
3y2

2� 44 
 9x2
3y2y3� 50 
 9x2

3y2
3� 1 
 9y4

2

� 8 
 9y3
2y3� 10 
 3y2

2y2
3

� 44 
 9y2y3
3� 25 
 9y4

3
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Plenty of Nonsquare � p � !

Theorem 1 (Stein). For every prime p � 25000, there is an abelian
variety A over Q such that

# � � A � Q � � p � �

Revised Question. Possibilities for # � � A � ?

Conjecture 1 (Stein). The integers � # � � A � for all abelian vari-
eties A represent every element of Q �

� Q � 2.
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Constructing Nonsquare

The rest of this talk is about the
construction I found to prove Theorem 1.

History. I tried to construct � of order 3 directly for a long time, gave
up, thought about visibility (in the sense of Mazur) and accidently
found � of order 3.

Summary. Find visible nonsquare � living in

Ker ResK � Q � EK �

trace� � � � � E
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Higher Degree Twists

Recall: Quadratic twist of y2 � x3

� ax � b by
the Dirichlet character χ corresponding to Q �� D � :

Eχ : Dy2 � x3

� ax � b �

Generalize:
p a prime and � a prime with �� 1 � mod p �

χ : � Z � � �
� � C � a Dirichlet character of degree p

K � Q � ζ � � of degree p
R � ResK � Q � EK � (Note: RK

�
� E p

K

� EK � � � � � EK)
The twist of E by χ is the abelian variety of dimension p � 1:

A � Eχ � Ker R
trace� � � � � E

Note: A isogenous to A f where f � ∑an � E � χ � n � qn � fE� χ.
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Nonvanishing Twist Conjecture

E � Q an elliptic curve, conductor N
Suppose p is a prime such that

p

�

2 � ∏
q

�

N

cq and ρE

�

p : GQ � � Aut � E �

p

� �

For any prime �� 1 � mod p � let

χp

� �

: � Z � � �
�

� � µp

be the unique (up to conjugacy) character of degree p and con-
ductor � .

Conjecture 2 (Stein). There is a prime �� 1 � mod p � with �
�

N such
that L � E � χp

� � � 1 � �� 0 and a

� � E � �� � � 1 � mod p � .
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A Visibly Beautiful Exact Sequence

Assume p and � as in above conjecture. Let χ � χp

� �

, A � Eχ, and
K � Q � ζ � � of degree p.

Theorem 1 (Stein). There is an exact sequence

0 � E

�

Q

� � pE

�

Q

�

� �
�

A � Q
�� p∞ � � �
�

E � K

�� p∞ � � �
�

E � Q

�� p∞ � � 0�

(Remark: The visible subgroup of � � A � Q � is E � Q � � pE � Q � .)

Application. If all � ’s finite and E has odd rank, then

# � � A � Q � � p � � �

Note: By hypothesis rankE � dimE � Q � � pE � Q � .
Remark: Work of Claus Diem on polarizations of A.
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Sketch of Proof (1)

Neron
The exact sequence

0 � A � R � E � 0

extends to an exact sequence of Néron models (and hence sheaves
for the étale topology) over Z:

0 � A � R � E � 0 �

To check this, we use that formation of Néron models commutes with
unramified base change and Prop. 7.5.3(a) of [Néron Models, 1990].

Main hypothesis used: �
�

pN.
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Sketch of Proof (2)

Mazur’s Appendix to Rational Points of Abelian
Varieties with Values in Towers of Number Fields:
For F � A � R � E let F � Néron � F � . Then

H1
ét � Z � F � �

p∞
�

�
� � � F � Q � �

p∞

�

Main hypothesis used:

a

� � E � �� � � 1 � mod p � and p

� ∏c

�

�

That a

� � E � �� � � 1 � mod p � implies Frob

�

has no fixed points.
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Sketch of Proof (3)

Associated long exact sequence of étale cohomology:
PSfrag replacements

0 � A � Q � � R � Q � � E � Q �

H1
ét � Z � A � � H1

ét � Z � R � � H1
ét � Z � E � � H2

ét � Z � A �

δ
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Sketch of Proof (4)

We have Coker � δ � � E � Q � � pE � Q � since

L � E � χp
� � � 1 � �� 0 and a

� �� � � 1 � mod p � �

Also H2
ét � Z � A � �

p∞

�

� 0 (proof uses Artin-Mazur duality).

Note: Both of these steps use Kato’s finiteness theorem in an essential
way.

Putting everything together, yields

0 � E

�

Q

� � pE

�

Q

�

� �
�

A � Q

�� p∞ � � �
�

E � K

�� p∞ � � �
�

E � Q

�� p∞ � � 0
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Application

MECCAH
Let E be y2

� y � x3 � x of conductor 37 and rank 1.

Large modular symbols computation to verify Conjecture 2 (nonva-
nishing twists) for all odd primes p � 25000.

For each p � 25000, we obtain a twist A of E of dimension p � 1 such
that � � A � Q � is finite and # � � A � Q � �

p∞
�

is an odd power of p. Using
Cassels-Tate pairing get

# � � A � Q � � p � � �
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Some Other Visibly Twisted

Replace p by a prime power. Columns record BSD conjectural order
of � � A � Q � , where pn denotes an n-digit prime:

pr

� 61A 389A 5077A
3 487 3 34 33

9 487 32 � 192 38 36 � 172

27 487 33 � 192 � p2
6 312 � 1632 39 � 172 � 4332 � p2

6
81 487 34 � 192 � p2

4

� p2
6

� p2
7 316 � 1632 � p2

19 312 � 172 � 4332 � p2
4

� p2
5

� p2
6

� p2
7

� p2
9

5 251 5 52 �

25 251 52 � 1512 � p2
5 54 � 1492 � p2

4

�

125 251 53 � 1512 � p2
5

� p2
18 56 � 1492 � p2

4
� p2

5

� p2
10

� p2
11

�

7 197 7 � 292 72 � 134 73

49 197 72 � 292 � p2
10 74 � 134 � p2

9 76 � p2
4

� p2
4

� p2
5

11 89 11 � 672 112 113 � 672

13 53 13 132 �

17 103 17 � 6132 172 � 1012 173 � 672

19 191 19 � 372 192 195 � 372

Note: 61A has rank 1, 389A has rank 2, 5077A has rank 3.
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