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1 Introduction

In this paper we introduce projective geometry and one of its important
theorems. We begin by defining projective space in terms of homogenous
coordinates. Next, we define homgenous curves, and describe a few im-
portant properties they have. We then introduce Bezout’s Theorem, which
asserts that the number of intersection points of two homogenous curves is
less than or equal to the product of their degrees. We conclude by proving
the theorem, assuming several results about intersection multiplicities.

2 Projective Spaces

We begin by defining Pn, the n-dimensional projective space. We define
an equivalence relation ∼ on the non-zero points of Rn+1 such that given
p1 = [x1, x2, . . . , xn+1] and p2 = [x′1, x

′
2, . . . , x

′
n+1], p1 ∼ p2 if and only if

there exists r ∈ R, r 6= 0, such that p1 = rp2. For each equivalence class,
the coordinates of any one of the included points are said to be homogeneous
coordinates. We can see that each of these equivalence classes corresponds
to a line in Rn+1, so there is a mapping from 1-dimensional subspaces in
Rn+1 to points of Pn. Similarly, we may map planes in Rn+1 to lines of Pn.

An alternative way to look at P2 is as A2 ∪ P1, where P1 is the set of
equivalence classes of non-zero points in A2. We can think of these equiva-
lence classes as corresponding to the “directions” in A2. This can be made
more clear by noting that any lines with the same slope will all intersect at
the same point at infinity.

It is straightforward to define curves in P2. We say that a C is a ho-
mogenous curve in P2 if it is the set of solutions of F (X,Y, Z) = 0, where
F is a polynomial that satisfies F (tX, tY, tZ) = tdF (tX, tY, tZ) for some d.
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Given any affine curve f(x, y) =
∑

i,j aijx
iyj , we can extend it to a projec-

tive curve. Let d = deg(f). Then F =
∑

i,j aijX
iY jZd−i−j . This ensures

that our extended curve will be homogenous.
It is possible, using our description of P2 as A2 ∪ P1, to define the affine

part of a given curve. We let f(x, y) = F (X,Y, 1) be this function. This
includes all the points on the curve with non-zero Z-coordinates. The points
on C with Z = 0 end up as points at infinity. We may think of this mapping
as intersecting the lines in R3 with the plane Z = 1. Any horizontal line
maps to a point at infinity, while the X − Y plane is mapped to the line at
infinity. It is of course possible to perform this intersection with any plane in
R3 not passing through the origin, allowing us to map different parts of the
projective curve to infinity. Easy cases are mapping onto X = 1 or Z = 1,
but even the more complicated projections simply require us to use linear
transformations of the projective coordinates. [2]

Given any projective curve C : F (X,Y, Z) = 0, we may write it as the
product F (X,Y, Z) = F1(X,Y, Z) · · ·Fm(X,Y, Z), where each of the Fi is
an irreducible projective polynomial. We call each of the Fi a component
of C. We will be interested in pairs of curves C1 and C2 that have distinct
sets of components; that is, such that if fi(x, y) is a component of C1, it is
not a component of C2, and vice versa. We will say that such curves have
no common component.

3 Intersections

The axiomatic description of Pn differs from the axiomatic description of
Rn in one respect - there are no parallel lines: every pair of distinct lines
shares an intersection point. A similar property holds when we look at
curves of higher degree. Bezout’s theorem, which will be presented in the
next section, shows that the number of intersection points of two projective
curves is related to the product of the degrees of the intersecting curves,
a remarkable result with many interesting consequences. This section will
introduce a few of the notions we will need to introduce and prove this
theorem.

First of all, we will look only at curves that have no common components.
It is easy to see that curves with a shared component have infinitely many
intersection points. The converse of this statement is also true:

Proposition 3.1. If C1 and C2 are projective curves with no common com-
ponents, then C1 ∩ C2 is a finite set.
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Proof. We need one result that will be assumed both here and below:

#(C1 ∩ C2 ∩ A2) ≤ n1n2.

We choose some line l1 that is not a component of C1 or C2, and map it to the
line at infinity. By the assumed inequality, this means that #(C1 ∩C2 ∩ lC1 )
is finite. Now choose another line l2 also not a component of C1 or C2. Now
l1 ∩ l2 is a single point, and we have as before that #(C1 ∩C2 ∩ lC2 ) is finite.
So

#(C1 ∩ C2) ≤ #(C1 ∩ C2 ∩ lC1 ) + #(C1 ∩ C2 ∩ lC2 ) + 1,

which is finite.

For the rest of this discussion, let C1 and C2 be projective curves with no
common components, with C1 : F1(X,Y, Z) = 0 and C2 : F2(X,Y, Z) = 0.
We will also require that they are curves over k, where k is any algebraically
closed field. If k is not algebraically closed, Bezout’s Theorem will not hold.
For example, consider the unit circle x2 + y2 − 1 = 0 and the line x− 2 = 0
in R2. It is clear that these do not intersect. We can homogenize each,
giving X2 + Y 2 − Z2 = 0 and X − 2Z = 0. Substituting X = 2Z into
the first equation gives 3Z2 + Y 2 = 0, which has no non-zero real solutions.
Therefore, these curves don’t intersect in the real projective plane either.
Viewed as curves in C2, however, they intersect at (2, i

√
3) and (2,−i

√
3).

Now, let us make a few necessary definitions:

Definition 3.2 (Local Ring). Let P ∈ P2 be a projective point. Then we
define the local ring OP of P to be the set of functions ϕ ∈ k(x, y) which are
defined at P . That is, OP is the set of rational functions in x and y with a
non-zero denominator at P . Note that OP is a subring of k(x, y).

Now, we will denote by (f1, f2)P the ideal OP f1 +OP f2, and by MP the
set {φ ∈ OP : φ(P ) = 0}.

Definition 3.3 (Intersection Multiplicity in A2). Let C1 and C2 be
curves in the affine plane with no common components. We define the
intersection multiplicity at a point P ∈ (C1 ∩ C2) by:

I(P,C1 ∩ C2) = dim
(

OP

(f1, f2)P

)
We will now state a few facts about I(P,C1 ∩ C2).

Proposition 3.4. If P /∈ C1 ∩C2, then I(P,C1 ∩C2) = 0. If P ∈ C1 ∩C2,
then I(P,C1 ∩ C2) = 1 + dim

(
MP

(f1,f2)P

)
.
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Proof. To prove the first part of the proposition, we need only show that
1 ∈ (f1, f2)P . By hypothesis, either f1 or f2 6= 0 at P , say f1. But this
means that f−1

1 ∈ OP , so that f1f
−1
1 = 1 ∈ (f1, f2)P , as desired.

To prove the second statement, we must first note that OP = k +MP .
Moreover, given P ∈ C1 ∩ C2, we have (f1, f2)P ⊂MP . This follows imme-
diately from the fact that f1(P ) = f2(P ) = 0. We now proceed:

I(P,C1 ∩ C2) =dim
(

OP

(f1, f2)P

)
=dim

(
k +MP

(f1, f2)P

)
=dim

(
k

(f1, f2)P

)
+ dim

(
MP

(f1, f2)P

)
.

But, dim
(

k
(f1,f2)P

)
= 1, so we are done.

We can also define interesection multiplicity over homogeneous coordi-
nates, although we will not do so explicitly here. This definition is equivalent
to the given definition on the affine plane. Furthermore, it is invariant under
projective transformations.[3][pp. 248–249]

4 Bezout’s Theorem

Now that we have defined intersection multiplicities, we can give the full
statement of Bezout’s Theorem:

Theorem 4.1 (Bezout’s Theorem). Let C1 and C2 be projective curves
with no common components, and I(P,C1∩C2) the intersection mulitiplicity
of point P ∈ C1 ∩ C2. Then∑

P∈C1∩C2

I(P,C1 ∩ C2) = (degC1)(degC2).

An elementary proof of this theorem is possible, but quite lengthy. The
rest of this section will present an outline of the proof, and the details of
several important steps. Our proof follows the outline presented in [3][pp.
242–251], filling in many of the details left as exercises there.

We have already mentioned in Section 3 how we can apply a projective
transformation so that any finite set of points in P2 will lie in the affine
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plane. Combined with the facts that C1 ∩C2 is finite, and that intersection
multiplicites are invariant under projective transformations, this means that
we need only consider the case where all of the intersection points line in
the affine plane.

Proof. The proof proceeds by first showing that

#(C1 ∩ C2 ∩ A2) ≤ dim
(

R

(f1, f2)

)
≤ n1n2.

In a complete proof, we would also show that dim
(

R
(f1,f2)

)
= n1n2 in the

case that none of the elements of C1∩C2 lie at infinity. In this presentation,
however, these steps of the proof will be taken as given, and we will only
present the details of the rest of the proof.

We first wish to show that∑
P∈C1∩C2∩A2

I(P,C1 ∩ C2) ≤ dim
(

R

(f1, f2)P

)

We then show that this is an equality, giving us Bezout’s Theorem in the
case where none of the intersection points lie at infinity. We then explain
how to obtain the general result.

To begin, we claim dim( OP
(f1,f2)P

) ≤ dim( R
(f1,f2)P

). First, we observe that
given any set of functions φ1, φ2, . . . , φm ∈ OP , we can write each as gi

h ,
that is, with a common denominator. Now, let g1

h ,
g2

h , . . . ,
gm

h ∈ OP be a set
of functions that are linearly independent modulo (f1, f2)P . We claim that
g1, g2, . . . , gm are linearly independent modulo (f1, f2). If not, then there
exist functions α1, α2, . . . , αm 6= 0 such that

α1g1 + α2g2 + · · ·+ αmgm = 0 (mod (f1, f2)),

with each of the αi ∈ OP . But then we have α1g1 + α2g2 + · · · + αmgm ∈
(f1, f2), so we can write α1g1 + α2g2 + · · ·+ αmgm = β1f1 + β2f2.

Then, αigi

h ∈ OP , giving α1g1

h + · · ·+ αmgm

h ∈ OP . But this is just equal
to

α1g1 + · · ·+ αmgm

h
=
β1f1 + β2f2

h
=
β1

h
f1 +

β2

h
f2

Since h 6= 0 at P , we have β1

h ,
β2

h ∈ OP , so that α1g1+···+αmgm

h ∈ (f1, f2)P .
But this imples that α1g1+···+αmgm

h = 0 (mod (f1, f2)P ), which contradicts
our assumption that the gi

h were linearly independent. Therefore it must be
the case that g1, . . . , gm are linearly independent modulo (f1, f2).
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We continue by showing that given P ∈ C1 ∩ C2, and r ≥ dim
(

OP
(f1,f2)

)
,

M r
P ⊂ (f1, f2)P . Let t1, t2, . . . , tr ∈MP . Now, let Ji ⊂ OP be a sequence of

ideals with Ji = t1t2 · · · tiOP + (f1, f2)P for 1 ≤ i ≤ r, and Jr+1 = (f1, f2).
Now, we note that for any i, Ji ⊃ Ji+1. Furthermore, for any i, we have
MP ⊃ Ji ⊃ (f1, f2)P . Since r ≥ dim

(
OP

(f1,f2)

)
, we know that Ji = Ji+1 for

some i. If this i equals r, then we have t1 · · · tr ∈ (f1, f2)P , as desired. If
not, then for some i, we have t1 · · · ti ∈ Ji+1. This gives

t1t2 · · · ti = t1t2 · · · ti+1φ+ ψ

where φ ∈ OP , and ψ ∈ (f1, f2)P . This gives t1t2 · · · ti(1− ti+1φ) = ψ. Note
that (1− ti+1φ) = 1, since ti+1 ∈MP . This means that (1− ti+1φ)−1 ∈ OP ,
so we have t1 · · · ti = ψ(1− ti+1φ)−1. Thus, we may rewrite:

t1 · · · tr = ti+1 · · · trψ(1− ti+1φ)−1.

Since ψ ∈ (f1, f2)P , and each of the tj ∈ OP , this product is in (f1, f2)P , as
desired. This proves the second case.

Next, we show that given P ∈ C1 ∩ C2 ∩ A2, φ ∈ OP , there exists g ∈ R
so that

g ≡ φ (mod (f1, f2)P ) and

g ≡ 0 (mod (f1, f2)Q) for all Q 6= P,Q ∈ C1 ∩ C2 ∩ A2.

To show this, we use the following fact: For any finite set of points p1, . . . , pn ∈
A2, there exists a set of functions g1, g2, . . . , gn such that each gi has the prop-
erty that gi(pi) = 1, and gi(pj) = 0 for j 6= i. The inequalitites we assumed
at the beginning of the proof tell us that C1 ∩ C2 ∩ A2 is finite, so the fact
applies. So take P as given. Then there exists a function h ∈ R such that
h(P ) = 1, and h(Q) = 0 for Q 6= P,Q ∈ C1 ∩C2 ∩A2. Note that for any Q,
we have h ∈ MQ. By the previous result, there is some r such that for any
Q, we have hr ∈ (f1, f2)Q. Furthermore, since h(P ) 6= 0, h−1 ∈ OP , so that
φh−r ∈ OP . We showed above that OP /(f1, f2)P

∼= R, so there exists f ∈ R
such that f ≡ φh−r (mod (f1, f2)P ). Now consider g = fhr. We have

g ≡ φhrh−r ≡ φ (mod (f1, f2)P ).

Finally, for any Q, we have f ∈ (f1, f2)Q and hr ∈ (f1, f2)Q, so that

g ≡ 0 (mod (f1, f2)Q),

as desired.
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Now, in order to prove the desired inequality, we must show that the
map given by

R→
∏

P∈C1∩C2∩A2

OP

(f1, f2)P

f 7→ (· · · , f (mod (f1, f2)P ), · · · )P∈C1∩C2∩A2

is surjective. This map sends a function f ∈ R into a product space with di-
mension #(C1∩C2∩A2). Now, say that (C1∩C2∩A2) = (P1, . . . , Pm), and let
(φ1, . . . , φm) be an element of the target space. Then the result just proven
asserts that there exist g1, . . . , gm ∈ R such that gi ≡ φi (mod (f1, f2)Pi).
Now consider the polynomial g =

∑m
i=1 gi. The image of g under the map

will be (φ1, . . . , φm), as desired.
Let J be the kernel of this map. We can see that

dim
R

J
=

∑
P

dim
(

OP

(f1, f2)P

)
=

∑
P

I(P,C1 ∩ C2).

If we can show that J = (f1, f2), then this will give us the desired equality.
It is clear that (f1, f2) ⊂ J , and so we will prove the other direction.To that
end, let f ∈ J . We will consider the set Lf = {g ∈ R : gf ∈ (f1, f2)},
showing that Lf is the unit ideal. It is clear that Lf is an ideal in R, and
that (f1, f2) ⊂ R. We now claim that for every P ∈ A2, there exists g ∈ Lf

such that g(P ) 6= 0. There are two cases to condsider. First, assume that
p ∈ C1 ∩ C2 ∩ A2. The function f has the property that f ∈ (f1, f2)P for
this P . Then f = α1f1 +α2f2, where α1, α2 ∈ OP . We can write α1 and α2

over a common denominator: α1 = β1/g, α2 = β2/g. Then

gf = β1f1 + β2f2, where β1, β2 ∈ R and g(P ) 6= 0.

Therefore, we have g as desired. Now assume that P /∈ C1 ∩C2 ∩A2. Then
either f1(P ) 6= 0 or f2(P ) 6= 0. Let g be whichever is non-zero.

We now assume that Lf is not the unit ideal; that is, 1 /∈ Lf . Note
that since (f1, f2) ⊂ Lf , we know that dim(R/Lf ) is finite. Because of this,
we know that it cannot be the case that all powers of x ∈ R are linearly
independent modulo Lf . Therefore there exist ci ∈ k and n ∈ Z such that
xn + c1x

n−1 + · · ·+ cn ∈ L. Recall that k is algebraically closed. This means
we can rewrite this sum as the product

n∏
i=1

(x− ai) for some ai ∈ k
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Now, let us assume that 1 ∈ L+R(x− ai) for all 1 ≤ i ≤ n. Then for each
i, we have 1 = gi + ri(x− ai), with gi ∈ Lf and ri ∈ R. So, we have(

1− g1
r1

) (
1− g2
r2

)
· · ·

(
1− gn

rn

)
∈ Lf .

Multiplying through by r1r2 · · · rn gives (1− g1) · · · (1− gn) ∈ L. But this is
equal to 1 +G, where G is the sum of products of the gi. We have G ∈ L,
giving that 1 ∈ L. But this contradicts our assumption that 1 /∈ L, so we
conclude that there is an a ∈ k such that 1 /∈ L+R(x− a).

We can similarly prove the result that there exists b ∈ k such that
1 /∈ L+R(x− a) +R(y − b).

With the previous two results in hand, we let P = (a, b), and show that
g(P ) = 0 for g ∈ L. Note that we may write g(x, y) as g(a+(x−a), b+(y−b)).
Since g is a polynomial, this is equivalent to

g(a, b) + g1(x, y)(x− a) + g2(x, y)(y − b)

for some g1, g2 ∈ R. But this lets us write

−g(a, b) = −g(x, y) + g1(x, y)(x− a) + g2(x, y)(y − b)

Note that the right-hand side is an element of L+R(x−a)+R(y−b). Now,
-g(a,b) is a constant, so −g(a, b) ∈ k. If g(a, b) 6= 0, we can divide through
by −g(a, b), and the right-hand side will still be in L+R(x− a) +R(y− b).
But the left-hand side will be 1, giving 1 ∈ L + R(x − a) + R(y − b), and
contradicting the result just proven. This means that g(a, b) = 0, but this is
another contradiction, since we had shown that for any P there must exist
some g ∈ L such that g(P ) 6= 0.

We have therefore contradicted our hypothesis that 1 /∈ L, so we have
1 ∈ L, as desired. This means that J = (f1, f2). As we claimed, this shows
that ∑

P∈C1∩C2∩A2

I(P,C1 ∩ C2) = dim
(

R

(f1, f2)

)
.

So long as all of the intersection points lie in the affine plane, we have proven
Bezout’s Theorem.

We now need the following result:

Proposition 4.2. Given a finite set of points in P2, there is a line L not
intersecting any of them.
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Proof. Say the proposition is not true. Then there exists a set S = p1, . . . , pn

such that every line in P2 meets S. This means that one of the si is a solution
to every equation aX+bY +cZ+d = 0 with a, b, c, d ∈ k. Now, given such an
equation, say that si = [Xi, Yi, Zi] is a root. Now, if we chose any other d′, it
must be the case that aXi+bYi+cZi+d′ 6= 0. However, by assumption, there
exists j such that sj such that aXj + bYj + cZj +d′ = 0. We can continue to
choose d′′, · · · , d(n−1) in this manner. Now, if there were another d(n) ∈ k
distinct from the chosen d’s, we would contradict our assumption. So k
must be finite. This contradicts the fact that an algebraically closed field is
infinite. Therefore, there exists such L as claimed.

However, as mentioned in Section 3, the number of intersection points
of two homogenous curves is finite. This means we can find a line L not
meeting C1∩C2. We can then find a projective transformation T that carries
this line to the line at infinity. This will mean that each of C1 ∩ C2 will lie
in the affine plane. Since the intersection multiplicities are invariant under
T , we can easily reduce the general case to the case just proved.

5 Some Consequences

This theorem has many important consequences, which is not surprising,
given the nature of the result. It leads to many geometric and analytic
results. On the geometric side, we have the following results: [1][These
results and more may be found in Chap. 6]

Proposition 5.1. If any two projective curves of degree m intersect in
m(m+ 3)/2 or more points, they are the same curve.

Theorem 5.2. Let C1 and C2 be homogenous curves of degree n that meet
in exactly n2 points. When exactly mn of these points lie on an irreducible
curve C ′ of degree m, then the remaining n(n−m) interesection points line
on a curve C ′′ of order m− n.

This allows us to prove many other results, such as Pascal’s theorem:

Theorem 5.3. Let C be an irreducible quadratic curve in P2. If H is a
hexagon inscribed inside C, then the intersection points of the three pairs of
opposite sides are collinear.

On the analytic side, Bezout’s Theorem allows us to construct the group
operation on elliptic curves. Let E be an elliptic curve, p1, p2 two points on
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E, and l the line through p1 and p2. Then we define p1 + p2 as the third
intersection of l with E. Such a point is guaranteed to exist by Bezout’s
Theorem.
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