Visibility of Shafarevich-Tate Groups at Higher Level

William Stein http://modular.fas.harvard.edu

April 19, 2004

Abstract

I will begin by introducing the Birch and Swinnerton-Dyer conjecture in the context of abelian varieties attached to modular forms, and discuss some of the main results about it. I will then introduce Mazur's notion of visibility of Shafarevich-Tate groups and explain some of the basic facts and theorems. Cremona, Mazur, Agashe, and myself carried out large computations about visibility for modular abelian varieties of level Nin $J_0(N)$. These computations addressed the following question: If A is a modular abelian variety of level N, how much of the Shafarevich-Tate group III(A) is modular of level N, i.e., visible in $J_0(N)$. The results of these computations suggest that often much of the Shafarevich-Tate group is not modular of level N. It is then natural to ask if every element of III(A) is modular of level M, for some multiple M = NR, and if so, what can one say about the set of such M? I will finish the talk with some new data and a conjecture about this last question, which is still very much open.

1 Modular Abelian Varieties

Let N be a positive integer and consider the congruence subgroup

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \text{ such that } N \mid c \right\}.$$

(Almost everything in this talk also makes sense with $\Gamma_0(N)$ replaced by $\Gamma_1(N)$.) The modular curve

$$X_0(N) = \Gamma_0(N) \setminus (\{z \in \mathbf{C} : \operatorname{Im}(z) > 0\} \cup \mathbf{Q} \cup \{\infty\})$$

is a Riemann surface that is the set of complex points of an algebraic curve over \mathbf{Q} . We will not use that

$$X_0(N)(\mathbf{C}) = \{ \text{ isomorphism classes of } (E, C) \} \cup \{ \text{ cusps } \}.$$

Our primary interest is the Jacobian

$$J_0(N) = \operatorname{Jac}(X_0(N))$$

which is an abelian variety over \mathbf{Q} of dimension equal to the genus of $X_0(N)$. The points on the Jacobian parametrize, in a natural way, the divisor classes of degree 0 on $X_0(N)$.

Let $S_2(\Gamma_0(N))$ be the cusp forms of weight 2 for $\Gamma_0(N)$. This is the finite-dimensional complex vector space of holomorphic functions on the upper half plane such that

$$f(z)dz = f(\gamma(z))d(\gamma(z))$$

for all $\gamma \in \Gamma_0(N)$, and which "vanish at the cusps". The map $f(z) \mapsto f(z)dz$ induces

$$S_2(\Gamma_0(N)) \cong \mathrm{H}^0(X_0(N)_{\mathbf{C}}, \Omega^1)$$

so $S_2(\Gamma_0(N))$ has dimension the genus of $X_0(N)$.

The *Hecke algebra* is a commutative ring

$$\mathbf{T} = \mathbf{Z}[T_1, T_2, T_3, \ldots]$$

which acts on $S_2(\Gamma_0(N))$ and $J_0(N)$. A newform

$$f = \sum_{n=1}^{\infty} a_n q^n \in S_2(\Gamma_0(N))$$

is an eigenvector for every element of **T** normalized so $a_1 = 1$, which does not "come from" any lower level. Attached to f there is an ideal

$$I_f = \operatorname{Ann}_{\mathbf{T}}(f) = \operatorname{Ker}(\mathbf{T} \to \mathbf{Z}[a_1, a_2, \ldots]),$$

and (following Shimura) to this ideal we attach an abelian variety A_f and an L-function $L(A_f, s)$.

Let

$$A_f = J_0(N)[I_f]^0 = \left(\bigcap_{\varphi \in I_f} \operatorname{Ker}(\varphi)\right)^0$$

be the connected component of the intersections of the kernels of elements of I_f . Then A_f has dimension $[K_f : \mathbf{Q}] = [\mathbf{Q}(a_1, a_2, \ldots) : \mathbf{Q})]$, and is define over \mathbf{Q} .

Let

$$L(A_f, s) = \prod_{i=1}^d L(f_i, s)$$

where $d = [K_f : \mathbf{Q}]$ and the f_i are the Galois conjugates of f. Also,

$$L(f,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

Hecke proved that L(f, s) is entire and satisfies a functional equation.

The abelian varieties A_f are a rich class of abelian varieties. The elliptic curves over **Q** are all isogenous to some A_f (the Wiles-Breuil-Conrad-Diamond-Taylor modularity theorem).

2 The Birch and Swinnerton-Dyer Conjecture

2.1 Conjecture

Conjecture 2.1 (Birch and Swinnerton-Dyer).

1. rank
$$A_f(\mathbf{Q}) = \operatorname{ord}_{s=1} L(A_f, s)$$

2. $\frac{L^{(r)}(A_f, 1)}{r!} = \frac{\prod c_p \cdot \Omega_{A_f} \cdot \operatorname{Reg}_{A_f} \cdot \# \operatorname{III}(A_f)}{\# A_f(\mathbf{Q})_{\operatorname{tor}} \cdot \# A_f^{\vee}(\mathbf{Q})_{\operatorname{tor}}}.$

Remarks: Part of the conjecture is that $\operatorname{III}(A_f)$ is finite. There is also a conjecture for arbitrary abelian varieties over global fields. Clay Math Problem: \$1000000 prize for proof of (1) in case $\dim(A_f) = 1$

Here:

- c_p is the *Tamagawa number* at the prime p, and the product is over the prime divisors of N.
- Ω_{A_f} is the canonical Néron measure of $A_f(\mathbf{R})$.
- Reg_{A_f} is the regulator (absolute value of Néron-Tate canonical height pairing matrix).
- $A_f(\mathbf{Q})_{\text{tor}}$ is the torsion subgroup of $A_f(\mathbf{Q})$.
- $\operatorname{III}(A_f)$ is the Shafarevich-Tate group.

2.2 Evidence

- Rubin: results in CM Case
- Kolyvagin, Logachev, Gross-Zagier, et al.: If $\operatorname{ord}_{s=1} L(f,s) = 0$ or 1, then (1) true and $\operatorname{III}(A_f)$ finite.
- Cremona: Compute $\operatorname{III}(A_f)_?$ (=conjectural order) for tens of thousands of A_f of dimension 1 and get approximate square order. (Theorem of Cassels: if E an elliptic curve and $\operatorname{III}(E)$ finite then order a perfect square. Note that the analogue for abelian varieties is false; for exampe, I've constructed examples for each odd prime p < 25000 of abelian varieties A of dimension p 1 such that $\operatorname{III}(A) = p \cdot n^2$.)

In this talk I will focus on A_f of possibly large dimension with $L(A_f, 1) \neq 0$, since computation of Reg_{A_f} is difficult (impossible?) when one can't even reasonably hope to write down A_f explicitly with equations.

3 Visibility of Shafarevich-Tate Groups

3.1 Definitions

It is easy to write down a point on an elliptic curve E. You simply write down a pair of rational numbers, which are a solution to a Weierstrass equation. In contrast, imagine describing explicitly an element of III(E) of order 2003. The most direct way would be to give a genus one curve (with principal homogeneous space structure), embedded in \mathbf{P}^3 of degree at least 2003 (!), hence very complicated.

The idea of visibility of Shafarevich-Tate groups was introduced by Barry Mazur around 1998 to unify various constructions of elements of Shafarevich-Tate groups.

Definition 3.1 (Shafarevich-Tate Group).

$$\operatorname{III}(A) = \operatorname{Ker}\left(\operatorname{H}^{1}(K, A) \to \bigoplus_{v} \operatorname{H}^{1}(K_{v}, A)\right).$$

Here $\mathrm{H}^1(K, A)$ is the first Galois cohomology, which can be interpreted geometrically as the Weil-Chatalet group

$$WC(A/K) = \{ \text{ principal homogenous spaces } X \text{ for } A \} / \sim$$

Then III(A) is the subgroup of locally trivial classes of homogenous spaces. For example

$$3x^3 + 4y^3 + 5z^3 = 0 \in \operatorname{III}(x^3 + y^3 + 60z^3 = 0)[3]$$

Fix an inclusion $i: A \hookrightarrow B$ of abelian varieties and let $\pi: B \to C$ be the quotient of B by the image of A, so we have an exact sequence

$$0 \to A \to B \to C \to 0$$

of abelian varieties.

Definition 3.2 (Visible Subgroup).

$$\operatorname{Vis}_{i}(\operatorname{H}^{1}(K, A)) = \operatorname{Ker}\left(\operatorname{H}^{1}(K, A) \to \operatorname{H}^{1}(K, B)\right)$$
$$= \operatorname{Coker}(B(K) \to C(K))$$

and

$$\operatorname{Wis}_i(\operatorname{III}(A)) = \operatorname{Ker}(\operatorname{III}(A) \to \operatorname{III}(B)).$$

- 1. The visible subgroup is finite because B(K) is finitely generated and $\operatorname{Vis}_i(\operatorname{H}^1(K, A))$ is torsion.
- 2. If $c \in \text{Vis}_i(\text{H}^1(K, A))$, then c is also "visible" in the sense that if c is the image of a point $x \in C(K)$, and if $X = \pi^{-1}(x) \subset B$, then $[X] \in WC(A)$ corresponds to c.
- 3. The visibile subgroups depends on the choice of embedding $i : A \hookrightarrow B$. I've also considered defining $\operatorname{Vis}_B(\operatorname{H}^1(K, A))$ to be the subgroup generated by all visible subgroups with respect to all embeddings $A \to B$, but I'm not sure what properties this definition has.

3.2 Theorems

"Everything is visible somewhere."

Theorem 3.3 (Stein). If $c \in H^1(K, A)$ then there exists $B = \operatorname{Res}_{L/K}(A_L)$ such that $i : A \hookrightarrow B$ and $c \in \operatorname{Vis}_i(H^1(K, A))$. (Here L is such that $\operatorname{res}_{L/K}(c) = 0$.)

"Visibility construction."

Theorem 3.4 (Agashe-Stein). Suppose $A, B \subset C$ over \mathbf{Q} , that A + B = C, that $A \cap B$ is finite. Suppose N is divisible by all bad primes for C, and p is a prime such that

• $B[p] \subset A$

•
$$p \nmid 2 \cdot N \cdot \#B(\mathbf{Q})_{\text{tor}} \cdot \#(C/B)(\mathbf{Q})_{\text{tor}} \cdot \prod_{p|N} c_{A,p} \cdot c_{B,p}.$$

If A has rank 0, then there is a natural inclusion

$$B(\mathbf{Q})/pB(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_C(\operatorname{III}(A)).$$

(And certain generalizations...)

3.3 Example

Example 3.5. For N = 389, take B the (first ever) rank 2 elliptic curve, and A the 20dimensional rank 0 factor.

$$A \longrightarrow J_0(389)$$

Gives

$$(\mathbf{Z}/5\mathbf{Z})^2 \cong B(\mathbf{Q})/5B(\mathbf{Q}) \hookrightarrow \mathrm{III}(A).$$

Part 2 of the Birch and Swinnerton-Dyer conjecture predicts that

$$\operatorname{III}(A) = 5^2 \cdot 2^2,$$

so this gives evidence.

4 Visibility in Modular Jacobians

Suppose now $A = A_f \subset J_0(N)$ is attached to a newform.

Definition 4.1 (Modular of level M). An element $c \in \text{III}(A)[p]$ is modular of level M if $c \in \text{Vis}^p_M(\text{III}(A))$, where $\text{Vis}^p_M(\text{III}(A))$ is the subgroup generated by all kernels of maps $\text{III}(A)[p^{\infty}] \to \text{III}(J_0(M))[p^{\infty}]$ induced by homomorphisms $A \to J_0(M)$ of degree coprime to p.

Note that M must be a multiple of N.

Question 4.2 (Mazur). Suppose $E \subset J_0(N)$ is an elliptic curve of conductor N. How much of III(E) is modular of level N?

Answer: In examples, surprisingly much. Expect not all visible, since

 $\operatorname{Vis}_N(\operatorname{III}(E)) \subset \operatorname{III}(E)[\operatorname{modular degree}],$

and modular degree annihilates symmetric square Selmer group (work of Flach).

4.1 Data and Experiments

- Cremona-Mazur: There are 52 elliptic curves $E \subset J_0(N)$ with N < 5500 such that $p \mid \# \operatorname{III}(E)_?$. Cremona-Mazur show that for 43 of these that $\operatorname{III}(E)$ "probably" is modular of level N, and for 3 that it is definitely not: N = 2849, 4343, 5389. ("Probably" was made "provably" in many cases in subsequent work.)
- Agashe-Stein: Same question as Cremona-Mazur for $A_f \subset J_0(N)$ of any dimension. Using results of my Ph.D. thesis, MAGMA packages, etc. I computed a divisor and multiple of $\# \operatorname{III}(A_f)_{?}$ for the following:
 - 10360 abelian varieties $A_f \subset J_0(N)$ with $L(A_f, 1) \neq 0$.
 - Found 168 with $\# III(A_f)$? definitely divisible by an odd prime.

- For 39 of these, prove that all $\# \operatorname{III}(A_f)^{\operatorname{odd}}_{?}$ elements are modular of level N, and 106 probably are. This gives strong evidence for the BSD conjecture, and a sense that maybe something further is going on.
- Of these 168, at least 62 have odd conjectural III that is definitely *not* modular of level N. Big mystery? Where is this III modular? Is it modular at all? Is it even there?? (Perhaps a good place to look for counterexample to BSD.)

5 Visibility at Higher Level

Definition 5.1. Let $c \in \text{III}(A_f)$. The modularity levels of c are the set of integers

 $\mathcal{N}(c) = \{ M : c \in \operatorname{Vis}_M(\operatorname{III}(A_f)) \}.$

Conjecture 5.2 (Stein). For any $c \in III(A_f)$ we have

 $\mathcal{N}(c) \neq \emptyset,$

i.e., every element of $\amalg(A_f)$ is modular.

Motivation: This is a working hypothesis that makes *computing* with modular abelian varieties easier. Also, if there were a common level at which all of $III(A_f)$ were modular, then $III(A_f)$ would be finite, and conversely (assuming the conjecture).

5.1 Ribet Level Raising

Suppose that $f = \sum a_n q^n \in S_2(\Gamma_0(N))$ is a newform and \mathfrak{p} is a nonzero prime ideal of $\mathbb{Z}[a_1, a_2, \ldots]$ such that $A_f[\mathfrak{p}]$ is irreducible. If

$$a_{\ell} + \ell + 1 \equiv 0 \pmod{\mathfrak{p}}$$

then there exists an ℓ -newform $g \in S_2(\Gamma_0(N\ell))$ such that $i(A_f[\mathfrak{p}]) = A_g[\mathfrak{p}]$ for an appropriate $i: J_0(N) \to J_0(N\ell)$ of degree coprime to char(\mathfrak{p}) and the sign of the functional equations for L(f, s) and L(g, s) are the same.

If we instead require that $a_{\ell} - (\ell + 1) \equiv 0 \pmod{\mathfrak{p}}$ then there is such a g, but the sign of the functional equation changes, and the new Tamagawa numbers of A_g at ℓ will (or tends to be?) divisible by \mathfrak{p} .

5.2 Evidence for Conjecture

I defined a precise notion of "probably modular" motivated by Theorem 3.4 and what I can compute. In many cases I could do extra work and actually prove modularity; however, at this stage it is more interesting to gather data to see what is going on, in order to have a sense for what to conjecture.

Mazur proved that everything in III(E)[3], for E an elliptic curve, is visible in an abelian surface, which, together with the modularity theorem, *might* imply modularity of III(E)[3]at higher level. Same for 2, proved by me and by a different method by Thomas Klenke.

6 Some Tables

The first two pages of tables below give some of the data that I computed about visibility of Shafarevich-Tate groups at level N. The third table gives the new data about visibility at higher level.

Δ	dim	S,	S	modder(A)odd	B	dim	$A^{\vee} \cap \tilde{B}^{\vee}$	Vie
280E	20	52 52	<i>D</i> _{<i>u</i>}	5	280 1	1	$\frac{11}{[20^2]}$	× 15
199D.	20 16	$\frac{5}{72}$	_	7	199A	1	[20] [142]	$\frac{5}{72}$
400D*	010	1 112	_	11	400A	1	$\begin{bmatrix} 14 \\ 112 \end{bmatrix}$	1 112
440F*	0	11 92	=	$11 \cdot 359353$	440D	L		11
201U	10	3 192	=	169	NONE FCOA	1	[0c2]	1.92
563E*	31	13-	=	13	563A	1	$[26^2]$	13-
571D*	2	34	=	$3^2 \cdot 127$	571B	1	[3 ²]	32
655D*	13	3ª	=	$3^2 \cdot _{9799079}$	655A	1	$[36^2]$	3-
681B	1	32	=	3.125	681C	1	[32]	-
707G*	15	134	=	13.800077	707A	1	$[13^{2}]$	134
709C*	30	11 ²	=		709A	1	$[22^2]$	11" _2
718F*	7	7^{2}	=	$7 \cdot 5371523$	718B	1	$[7^2]$	74
767F	23	32	=	1	NONE	i .	5	
794G*	12	112	=	$11_{34986189}$	794A	1	[112]	—
817E*	15	7^{2}	=	7.79	817A	1	$[7^2]$	—
959D	24	34	=	583673	NONE	,	5 03	0
997H*	42	3^{4}	=	3^{2}	997B	1	$[12^2]$	3^{2}
		2		2	997C	1	$[24^2]$	3^{2}
1001F	3	3^2	=	$3^2 \cdot {}_{1269}$	1001C	C 1	$[3^2]$	—
					91A	1	$[3^2]$	—
1001L	7	7^{2}	=	$7_{2029789}$	10010	21	$[7^2]$	_
1041E	4	5^{2}	=	$5^2 \cdot 13589$	1041E	B 2	$[5^2]$	—
1041J	13	5^{4}	=	$5^3 \cdot {}_{21120929983}$	1041E	B 2	$[5^4]$	—
1058D	1	5^{2}	=	$5 \cdot {}_{483}$	10580	C 1	$[5^2]$	—
1061D	46	151^{2}	=	151_{10919}	1061E	B 2	$[2^2 3 0 2^2]$	_
1070M	7	$3 \cdot 5^2$	$3^2 \cdot 5^2$	$3 \cdot 5 \cdot {}_{1720261}$	1070A	1	$[15^2]$	_
1077J	15	3^4	=	$3^2 \cdot$ 1227767047943	1077A	1	$[9^2]$	—
1091C	62	7^{2}	=	1	NONE			
1094F*	: 13	11^{2}	=	$11^2 \cdot {}_{172446773}$	1094A	1	$[11^2]$	11^{2}
1102K	4	3^{2}	=	$3^2 \cdot {}_{31009}$	1102A	1	$[3^2]$	_
1126F*	: 11	11^{2}	=	$11_{13990352759}$	1126A	1	$[11^2]$	11^{2}
1137C	14	3^4	=	$3^2 \cdot {}_{64082807}$	1137A	1	$[9^2]$	—
1141I	22	7^2	=	$7 \cdot {}_{528921}$	1141A	1	$[14^2]$	_
1147H	23	5^{2}	=	$5 \cdot _{729}$	1147A	1	$[10^2]$	_
1171D>	* 53	11^{2}	=	$11_{.81}$	1171A	1	$[44^2]$	11^{2}
1246B	1	5^{2}	=	$5 \cdot 81$	1246C	21	$[5^2]$	—
$1247\mathrm{D}$	32	3^{2}	=	$3^2 \cdot {}_{2399}$	43A	1	$[36^2]$	—
1283C	62	5^{2}	=	5_{2419}	NONE	l		
1337E	33	3^{2}	=	71	NONE			
1339G	30	3^{2}	=	5776049	NONE			
1355E	28	3	3^{2}	$3^2 \cdot 2224523985405$	NONE			
1363F	25	31^{2}	=	$31_{\cdot 34889}$	1363E	B 2	$[2^2 6 2^2]$	_
1429B	64	5^2	=	1	NONE			
1443G	5	7^{2}	=	$7^2 \cdot {}_{18525}$	1443C	C 1	$[7^114^1]$	—
1446N	$\overline{7}$	3^{2}	=	$3 \cdot {}_{17459029}$	1446A	1	$[12^2]$	_

Nontrivial Odd Parts of Shafarevich-Tate Groups

1,011011,	iai Ouu	-	and of Sha			rate or	Capo
A di	m S_l	S_u	$moddeg(A)^{odd}$	B of	lim	$A^{\vee} \cap \tilde{B}^{\vee}$	Vis
1466H * 2	$3 13^2$	=	$13_{\cdot 25631993723}$	1466B	1	$[26^2]$	13^{2}
1477C * 2	$4 13^2$	=	$13 \cdot {}_{57037637}$	1477A	1	$[13^2]$	13^{2}
1481C 7	$1 13^2$	=	70825	NONE			
1483D * 6	$7 3^2 \cdot 5^2$	=	$3 \cdot 5$	1483A	1	$[60^2]$	$3^{2} \cdot 5^{2}$
1513F 3	1 3	3^4	$3_{2759709}$	NONE			
1529D 3	$6 5^2$	=	535641763	NONE			
1531D 7	3 3	3^2	3	1531A	1	$[48^2]$	—
1534J 6	5 3	3^2	$3^2 \cdot {}_{635931}$	1534B	1	$[6^2]$	—
1551G 1	$3 3^2$	=	$3_{\cdot_{110659885}}$	141A	1	$[15^2]$	_
1559B 9	$0 11^2$	=	1	NONE			
1567D 6	9 $7^2 \cdot 41^2$	=	$7 \cdot 41$	1567B	3	$[4^4 1148^2]$	_
1570J* 6	$5 11^2$	=	$11_{\cdot 228651397}$	1570B	1	$[11^2]$	11^{2}
1577E 3	6 3	3^2	$3^2 \cdot 15$	83A	1	$[6^2]$	_
1589D 3	$5 3^2$	=	6005292627343	NONE			
1591F* 3	$5 31^2$	=	$31_{\cdot 2401}$	1591A	1	$[31^2]$	31^{2}
1594J 1	$7 3^2$	=	$3 \cdot _{259338050025131}$	1594A	1	$[12^2]$	—
1613D * 7	$5 5^2$	=	5_{19}	1613A	1	$[20^2]$	5^{2}
1615J 1	$3 3^4$	=	$3^2 \cdot {}_{13317421}$	1615A	1	$[9^118^1]$	—
1621C * 7	$0 17^2$	=	17	1621A	1	$[34^2]$	17^{2}
1627C * 7	$3 3^4$	=	3^{2}	1627A	1	$[36^2]$	3^4
1631C 3	$7 5^2$	=	6354841131	NONE			
1633D 2	7 $3^6 \cdot 7^2$	=	$3^5 \!\cdot\! 7 \!\cdot\! _{31375}$	1633A	3	$[6^4 4 2^2]$	—
1634K 1	$2 3^2$	=	$3 \cdot {}_{3311565989}$	817A	1	$[3^2]$	-
1639G* 3	$4 17^2$	=	$17 \cdot _{82355}$	1639B	1	$[34^2]$	17^{2}
1641J* 2	$4 23^2$	=	$23_{1491344147471}$	1641B	1	$[23^2]$	23^{2}
1642D * 1	$4 7^2$	=	$7 \cdot {}_{123398360851}$	1642A	1	$[7^2]$	7^2
1662K 7	$7 11^2$	=	$11_{16610917393}$	1662A	1	$[11^2]$	—
1664K 1	<u> </u>	=	$5 \cdot 7$	1664N	1	$[5^2]$	—
1679C 4	$5 11^2$	=	6489	NONE		1.01	
1689E 2	$8 3^{2}$	=	3.172707180029157365	563A	1	[34]	_
1693C 7	$2 1301^{2}$	=	1301	1693A	3	$[2^{4}2602^{2}]$	_ 1.0?
1717H* 3	$\frac{4}{2}$ 13 ²	=	$13 \cdot _{345}$	1717B	1	$[26^2]$	132
1727E 3	$9 3^{2}$	=	118242943	NONE	0	[2]1212]	
1739F 4	$3 659^2$	=	659·151291281	1739C	2	$[2^{2}1318^{2}]$	_
1745K 3	$3 5^2$	=	5·1971380677489	1745D	1	$[20^2]$	_
1751C 4	$\frac{5}{4}$ $\frac{5^2}{2}$	=	5.707	103A	2	$[505^2]$	—
1781D 4	$4 3^{2}$	=	61541	NONE	-1	[002]	<u></u>
1793G* 3	$5 23^2$	=	$23 \cdot 8846589$	1793B	T	$[23^{2}]$	232
1799D 4	4 5 ⁻	=	201449	NONE			
1011D 9/	$\frac{0}{4}$ $\frac{31^{-}}{192}$	=	1	NONE			
1849E 4	4 1 5 0 92	=	3595	NONE			
1847D 0	∪ პ [−] დ ერ	_	8389	NONE			
1041D 9	ບ ວັ ວຳ <u>ດ</u> 2	=	1	NONE			
10/10 9	0 19-	=	14699	NONE			

Nontrivial Odd Parts of Shafarevich-Tate Groups

A_f with odd invisible $\operatorname{III}_{\operatorname{an}}[\ell]$	All ℓ -congruent
	$A_g \subset J_0(Np)_{\text{new}}$
	with $Np \leq 5000$ and
	$\operatorname{ord}_{s=1} L(q,s) > 0$
	(and higher Np if known)
551 dim 18 $\ell = 3$	$\mathbf{p} = 2$: dim 1 rank 2
551 , unit 10, $\ell = 5$	$\mathbf{p} = 2$: dim 1, rank 2 $\mathbf{p} = 3$: dim 1, rank 2
	$\mathbf{p} = 3$. dim 1, rank 2
	$\mathbf{p} = 3$: dim 25, rank 0
767 , dim 23, $\ell = 3$	$\mathbf{p} = 2$: dim 1, rank 2
	$\mathbf{p} = 7$: dim 1, rank 2
	p = 7: dim 52, rank 0
959 , dim 24, $\ell = 3$	$\mathbf{p} = 2$: dim 1, rank 2
1091 , dim 62, $\ell = 7$	$\mathbf{p} = 7$: dim 2, rank 2
1283 , dim 62, $\ell = 5$	$\mathbf{p} = 3$: dim 2, rank 2
1337 , dim 33, $\ell = 3$	$\mathbf{p} = 2$: dim 1, rank 2
1339 , dim 30, $\ell = 3$	$p = 2: \dim 1, \operatorname{rank} 2$
1355 , dim 28, $\ell = 3$	p = 2: dim 1, rank 2
1429 , dim 64, $\ell = 5$	$\mathbf{p} = 2$: dim 2, rank 2
	$\mathbf{p} = 3$: dim 66, rank 0
1481 , dim 71, $\ell = 13$	Nothing in range
1513 , dim 31, $\ell = 3$	$\mathbf{p} = 2$: dim 1, rank 2
1529 , dim 36, $\ell = 5$	$p = 7: \dim 1, \operatorname{rank} 2$
1559 , dim 90, $\ell = 11$	Nothing in range
1589 , dim 35, $\ell = 3$	Nothing in range
1631 , dim 37, $\ell = 5$	$\mathbf{p} = 2$: dim 1, rank 2
1679 , dim 45, $\ell = 11$	$\mathbf{p} = 2$: dim 2, rank 2
1727 , $\overline{\dim 39}$, $\ell = 3$	$\mathbf{p} = 2: \dim 1, \operatorname{rank} 2$
2849 , dim 1, $\ell = 3$	$\mathbf{p} = 3$: dim 1, rank 2
4343 , dim 1, $\ell = 3$	Nothing in range
5389 , dim 1, $\ell = 3$	$p = 7: \dim 1, \operatorname{rank} 2$

Visibility at Higher Level

When the second column contains an A_g of rank 2, then $\operatorname{III}(A_f)[\ell]$ is "very likely" to be visible of level M = Np. This is the case for most examples. The "Nothing in range" note means that the smallest p for which there exists g of even analytic rank congruent to f is beyond the range of my current tables. The examples of level 2849, 4343, and 5389 are the odd and definitely invisible examples in Cremona and Mazur's original paper on visibility.