Visibility of Shafarevich-Tate Groups at Higher Level

William Stein
http://modular.fas.harvard.edu

April 19, 2004

Abstract

I will begin by introducing the Birch and Swinnerton-Dyer conjecture in the context of abelian varieties attached to modular forms, and discuss some of the main results about it. I will then introduce Mazur's notion of visibility of Shafarevich-Tate groups and explain some of the basic facts and theorems. Cremona, Mazur, Agashe, and myself carried out large computations about visibility for modular abelian varieties of level N in $J_{0}(N)$. These computations addressed the following question: If A is a modular abelian variety of level N, how much of the Shafarevich-Tate group $\amalg(A)$ is modular of level N, i.e., visible in $J_{0}(N)$. The results of these computations suggest that often much of the Shafarevich-Tate group is not modular of level N. It is then natural to ask if every element of $\amalg(A)$ is modular of level M, for some multiple $M=N R$, and if so, what can one say about the set of such M ? I will finish the talk with some new data and a conjecture about this last question, which is still very much open.

1 Modular Abelian Varieties

Let N be a positive integer and consider the congruence subgroup

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}) \text { such that } N \mid c\right\}
$$

(Almost everything in this talk also makes sense with $\Gamma_{0}(N)$ replaced by $\Gamma_{1}(N)$.) The modular curve

$$
X_{0}(N)=\Gamma_{0}(N) \backslash(\{z \in \mathbf{C}: \operatorname{Im}(z)>0\} \cup \mathbf{Q} \cup\{\infty\})
$$

is a Riemann surface that is the set of complex points of an algebraic curve over \mathbf{Q}. We will not use that

$$
X_{0}(N)(\mathbf{C})=\{\text { isomorphism classes of }(E, C)\} \cup\{\text { cusps }\} .
$$

Our primary interest is the Jacobian

$$
J_{0}(N)=\operatorname{Jac}\left(X_{0}(N)\right)
$$

which is an abelian variety over \mathbf{Q} of dimension equal to the genus of $X_{0}(N)$. The points on the Jacobian parametrize, in a natural way, the divisor classes of degree 0 on $X_{0}(N)$.

Let $S_{2}\left(\Gamma_{0}(N)\right)$ be the cusp forms of weight 2 for $\Gamma_{0}(N)$. This is the finite-dimensional complex vector space of holomorphic functions on the upper half plane such that

$$
f(z) d z=f(\gamma(z)) d(\gamma(z))
$$

for all $\gamma \in \Gamma_{0}(N)$, and which "vanish at the cusps". The map $f(z) \mapsto f(z) d z$ induces

$$
S_{2}\left(\Gamma_{0}(N)\right) \cong \mathrm{H}^{0}\left(X_{0}(N)_{\mathbf{C}}, \Omega^{1}\right)
$$

so $S_{2}\left(\Gamma_{0}(N)\right)$ has dimension the genus of $X_{0}(N)$.
The Hecke algebra is a commutative ring

$$
\mathbf{T}=\mathbf{Z}\left[T_{1}, T_{2}, T_{3}, \ldots\right]
$$

which acts on $S_{2}\left(\Gamma_{0}(N)\right)$ and $J_{0}(N)$. A newform

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)
$$

is an eigenvector for every element of \mathbf{T} normalized so $a_{1}=1$, which does not "come from" any lower level. Attached to f there is an ideal

$$
I_{f}=\operatorname{Ann}_{\mathbf{T}}(f)=\operatorname{Ker}\left(\mathbf{T} \rightarrow \mathbf{Z}\left[a_{1}, a_{2}, \ldots\right]\right),
$$

and (following Shimura) to this ideal we attach an abelian variety A_{f} and an L-function $L\left(A_{f}, s\right)$.

Let

$$
A_{f}=J_{0}(N)\left[I_{f}\right]^{0}=\left(\bigcap_{\varphi \in I_{f}} \operatorname{Ker}(\varphi)\right)^{0}
$$

be the connected component of the intersections of the kernels of elements of I_{f}. Then A_{f} has dimension $\left.\left[K_{f}: \mathbf{Q}\right]=\left[\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right): \mathbf{Q}\right)\right]$, and is define over \mathbf{Q}.

Let

$$
L\left(A_{f}, s\right)=\prod_{i=1}^{d} L\left(f_{i}, s\right)
$$

where $d=\left[K_{f}: \mathbf{Q}\right]$ and the f_{i} are the Galois conjugates of f. Also,

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} .
$$

Hecke proved that $L(f, s)$ is entire and satisfies a functional equation.
The abelian varieties A_{f} are a rich class of abelian varieties. The elliptic curves over \mathbf{Q} are all isogenous to some A_{f} (the Wiles-Breuil-Conrad-Diamond-Taylor modularity theorem).

2 The Birch and Swinnerton-Dyer Conjecture

2.1 Conjecture

Conjecture 2.1 (Birch and Swinnerton-Dyer).

1. $\operatorname{rank} A_{f}(\mathbf{Q})=\operatorname{ord}_{s=1} L\left(A_{f}, s\right)$
2. $\frac{L^{(r)}\left(A_{f}, 1\right)}{r!}=\frac{\prod c_{p} \cdot \Omega_{A_{f}} \cdot \operatorname{Reg}_{A_{f}} \cdot \# Ш\left(A_{f}\right)}{\# A_{f}(\mathbf{Q})_{\mathrm{tor}} \cdot \# A_{f}^{\vee}(\mathbf{Q})_{\mathrm{tor}}}$.

Remarks: Part of the conjecture is that $\amalg\left(A_{f}\right)$ is finite. There is also a conjecture for arbitrary abelian varieties over global fields. Clay Math Problem: $\$ 1000000$ prize for proof of (1) in case $\operatorname{dim}\left(A_{f}\right)=1$

Here:

- c_{p} is the Tamagawa number at the prime p, and the product is over the prime divisors of N.
- $\Omega_{A_{f}}$ is the canonical Néron measure of $A_{f}(\mathbf{R})$.
- $\operatorname{Reg}_{A_{f}}$ is the regulator (absolute value of Néron-Tate canonical height pairing matrix).
- $A_{f}(\mathbf{Q})_{\text {tor }}$ is the torsion subgroup of $A_{f}(\mathbf{Q})$.
- $\amalg\left(A_{f}\right)$ is the Shafarevich-Tate group.

2.2 Evidence

- Rubin: results in CM Case
- Kolyvagin, Logachev, Gross-Zagier, et al.: If $\operatorname{ord}_{s=1} L(f, s)=0$ or 1 , then (1) true and $\amalg\left(A_{f}\right)$ finite.
- Cremona: Compute $\amalg\left(A_{f}\right)_{\text {? }}$ (=conjectural order) for tens of thousands of A_{f} of dimension 1 and get approximate square order. (Theorem of Cassels: if E an elliptic curve and $\amalg(E)$ finite then order a perfect square. Note that the analogue for abelian varieties is false; for exampe, I've constructed examples for each odd prime $p<25000$ of abelian varieties A of dimension $p-1$ such that $\amalg(A)=p \cdot n^{2}$.)

In this talk I will focus on A_{f} of possibly large dimension with $L\left(A_{f}, 1\right) \neq 0$, since computation of $\operatorname{Reg}_{A_{f}}$ is difficult (impossible?) when one can't even reasonably hope to write down A_{f} explicitly with equations.

3 Visibility of Shafarevich-Tate Groups

3.1 Definitions

It is easy to write down a point on an elliptic curve E. You simply write down a pair of rational numbers, which are a solution to a Weierstrass equation. In contrast, imagine describing explicitly an element of $\amalg(E)$ of order 2003 . The most direct way would be to give a genus one curve (with principal homogeneous space structure), embedded in \mathbf{P}^{3} of degree at least 2003 (!), hence very complicated.

The idea of visibility of Shafarevich-Tate groups was introduced by Barry Mazur around 1998 to unify various constructions of elements of Shafarevich-Tate groups.

Definition 3.1 (Shafarevich-Tate Group).

$$
\amalg(A)=\operatorname{Ker}\left(\mathrm{H}^{1}(K, A) \rightarrow \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}, A\right)\right) .
$$

Here $\mathrm{H}^{1}(K, A)$ is the first Galois cohomology, which can be interpreted geometrically as the Weil-Chatalet group

$$
\mathrm{WC}(A / K)=\{\text { principal homogenous spaces } X \text { for } A\} / \sim \text {. }
$$

Then $\amalg(A)$ is the subgroup of locally trivial classes of homogenous spaces. For example

$$
3 x^{3}+4 y^{3}+5 z^{3}=0 \in Ш\left(x^{3}+y^{3}+60 z^{3}=0\right)[3] .
$$

Fix an inclusion $i: A \hookrightarrow B$ of abelian varieties and let $\pi: B \rightarrow C$ be the quotient of B by the image of A, so we have an exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

of abelian varieties.

Definition 3.2 (Visible Subgroup).

$$
\begin{aligned}
\operatorname{Vis}_{i}\left(\mathrm{H}^{1}(K, A)\right) & =\operatorname{Ker}\left(\mathrm{H}^{1}(K, A) \rightarrow \mathrm{H}^{1}(K, B)\right) \\
& =\operatorname{Coker}(B(K) \rightarrow C(K))
\end{aligned}
$$

and

$$
\operatorname{Vis}_{i}(\amalg(A))=\operatorname{Ker}(\amalg(A) \rightarrow \amalg(B)) .
$$

1. The visible subgroup is finite because $B(K)$ is finitely generated and $\operatorname{Vis}_{i}\left(\mathrm{H}^{1}(K, A)\right)$ is torsion.
2. If $c \in \operatorname{Vis}_{i}\left(\mathrm{H}^{1}(K, A)\right)$, then c is also "visible" in the sense that if c is the image of a point $x \in C(K)$, and if $X=\pi^{-1}(x) \subset B$, then $[X] \in \mathrm{WC}(A)$ corresponds to c.
3. The visibile subgroups depends on the choice of embedding $i: A \hookrightarrow B$. I've also considered defining $\operatorname{Vis}_{B}\left(\mathrm{H}^{1}(K, A)\right)$ to be the subgroup generated by all visible subgroups with respect to all embeddings $A \rightarrow B$, but I'm not sure what properties this definition has.

3.2 Theorems

"Everything is visible somewhere."
Theorem 3.3 (Stein). If $c \in \mathrm{H}^{1}(K, A)$ then there exists $B=\operatorname{Res}_{L / K}\left(A_{L}\right)$ such that $i: A \hookrightarrow B$ and $c \in \operatorname{Vis}_{i}\left(\mathrm{H}^{1}(K, A)\right)$. (Here L is such that $\operatorname{res}_{L / K}(c)=0$.)
"Visibility construction."
Theorem 3.4 (Agashe-Stein). Suppose $A, B \subset C$ over \mathbf{Q}, that $A+B=C$, that $A \cap B$ is finite. Suppose N is divisible by all bad primes for C, and p is a prime such that

- $B[p] \subset A$
- $p \nmid 2 \cdot N \cdot \# B(\mathbf{Q})_{\mathrm{tor}} \cdot \#(C / B)(\mathbf{Q})_{\mathrm{tor}} \cdot \prod_{p \mid N} c_{A, p} \cdot c_{B, p}$.

If A has rank 0 , then there is a natural inclusion

$$
B(\mathbf{Q}) / p B(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_{C}(\amalg(A)) .
$$

(And certain generalizations...)

3.3 Example

Example 3.5. For $N=389$, take B the (first ever) rank 2 elliptic curve, and A the 20dimensional rank 0 factor.

Gives

$$
(\mathbf{Z} / 5 \mathbf{Z})^{2} \cong B(\mathbf{Q}) / 5 B(\mathbf{Q}) \hookrightarrow \amalg(A) .
$$

Part 2 of the Birch and Swinnerton-Dyer conjecture predicts that

$$
Ш(A)=5^{2} \cdot 2^{?},
$$

so this gives evidence.

4 Visibility in Modular Jacobians

Suppose now $A=A_{f} \subset J_{0}(N)$ is attached to a newform.
Definition 4.1 (Modular of level M). An element $c \in \amalg(A)[p]$ is modular of level M if $c \in \operatorname{Vis}_{M}^{p}(\amalg(A))$, where $\operatorname{Vis}_{M}^{p}(\amalg(A))$ is the subgroup generated by all kernels of maps $\amalg(A)\left[p^{\infty}\right] \rightarrow \amalg\left(J_{0}(M)\right)\left[p^{\infty}\right]$ induced by homomorphisms $A \rightarrow J_{0}(M)$ of degree coprime to p.

Note that M must be a multiple of N.
Question 4.2 (Mazur). Suppose $E \subset J_{0}(N)$ is an elliptic curve of conductor N. How much of $\amalg(E)$ is modular of level N ?

Answer: In examples, surprisingly much. Expect not all visible, since

$$
\operatorname{Vis}_{N}(\amalg(E)) \subset \amalg(E)[\text { modular degree }],
$$

and modular degree annihilates symmetric square Selmer group (work of Flach).

4.1 Data and Experiments

- Cremona-Mazur: There are 52 elliptic curves $E \subset J_{0}(N)$ with $N<5500$ such that $p \mid \# Ш(E)$?. Cremona-Mazur show that for 43 of these that $\amalg(E)$ "probably" is modular of level N, and for 3 that it is definitely not: $N=2849,4343,5389$. ("Probably" was made "provably" in many cases in subsequent work.)
- Agashe-Stein: Same question as Cremona-Mazur for $A_{f} \subset J_{0}(N)$ of any dimension. Using results of my Ph.D. thesis, MAGMA packages, etc. I computed a divisor and multiple of $\# \amalg\left(A_{f}\right)$? for the following:
- 10360 abelian varieties $A_{f} \subset J_{0}(N)$ with $L\left(A_{f}, 1\right) \neq 0$.
- Found 168 with $\# Ш\left(A_{f}\right)$? definitely divisible by an odd prime.
- For 39 of these, prove that all $\# Ш\left(A_{f}\right)$? odd elements are modular of level N, and 106 probably are. This gives strong evidence for the BSD conjecture, and a sense that maybe something further is going on.
- Of these 168, at least 62 have odd conjectural Ш that is definitely not modular of level N. Big mystery? Where is this \amalg modular? Is it modular at all? Is it even there?? (Perhaps a good place to look for counterexample to BSD.)

5 Visibility at Higher Level

Definition 5.1. Let $c \in \amalg\left(A_{f}\right)$. The modularity levels of c are the set of integers

$$
\mathcal{N}(c)=\left\{M: c \in \operatorname{Vis}_{M}\left(\amalg\left(A_{f}\right)\right)\right\} .
$$

Conjecture 5.2 (Stein). For any $c \in \amalg\left(A_{f}\right)$ we have

$$
\mathcal{N}(c) \neq \emptyset,
$$

i.e., every element of $\amalg\left(A_{f}\right)$ is modular.

Motivation: This is a working hypothesis that makes computing with modular abelian varieties easier. Also, if there were a common level at which all of $\amalg\left(A_{f}\right)$ were modular, then $\amalg\left(A_{f}\right)$ would be finite, and conversely (assuming the conjecture).

5.1 Ribet Level Raising

Suppose that $f=\sum a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)$ is a newform and \mathfrak{p} is a nonzero prime ideal of $\mathbf{Z}\left[a_{1}, a_{2}, \ldots\right]$ such that $A_{f}[\mathfrak{p}]$ is irreducible. If

$$
a_{\ell}+\ell+1 \equiv 0 \quad(\bmod \mathfrak{p})
$$

then there exists an ℓ-newform $g \in S_{2}\left(\Gamma_{0}(N \ell)\right.$) such that $i\left(A_{f}[\mathfrak{p}]\right)=A_{g}[\mathfrak{p}]$ for an appropriate $i: J_{0}(N) \rightarrow J_{0}(N \ell)$ of degree coprime to char (\mathfrak{p}) and the sign of the functional equations for $L(f, s)$ and $L(g, s)$ are the same.

If we instead require that $a_{\ell}-(\ell+1) \equiv 0(\bmod \mathfrak{p})$ then there is such a g, but the sign of the functional equation changes, and the new Tamagawa numbers of A_{g} at ℓ will (or tends to be?) divisible by \mathfrak{p}.

5.2 Evidence for Conjecture

I defined a precise notion of "probably modular" motivated by Theorem 3.4 and what I can compute. In many cases I could do extra work and actually prove modularity; however, at this stage it is more interesting to gather data to see what is going on, in order to have a sense for what to conjecture.

Mazur proved that everything in $\amalg(E)$ [3], for E an elliptic curve, is visible in an abelian surface, which, together with the modularity theorem, might imply modularity of $\amalg(E)[3]$ at higher level. Same for 2, proved by me and by a different method by Thomas Klenke.

6 Some Tables

The first two pages of tables below give some of the data that I computed about visibility of Shafarevich-Tate groups at level N. The third table gives the new data about visibility at higher level.

Nontrivial Odd Parts of Shafarevich-Tate Groups

A	dim	S_{l}		moddeg $(A)^{\text {odd }}$	$B \mathrm{dim}$	$A^{\vee} \cap \vec{B}^{\vee}$	Vis
389E*	20	5^{2}	S	5	389A	[20 ${ }^{2}$	5^{2}
433D*	16	7^{2}	=	$7 \cdot 111$	433 A	[14 ${ }^{2}$]	7^{2}
446F*	8	11^{2}	$=$	11-359353	446B	[11 ${ }^{2}$]	11^{2}
551H	18	3^{2}	$=$	169	NONE		
563E*	31	13^{2}	=	13	563A	[26 ${ }^{2}$]	13^{2}
571D*	2	3^{2}	$=$	$3^{2} \cdot{ }^{127}$	571B	[32]	3^{2}
655D*	13	3^{4}	$=$	3^{2}.9799079	655A	[36 ${ }^{2}$]	3^{4}
681B	1	3^{2}	$=$	$3 \cdot 125$	681C	[32]	-
707G*	15	13^{2}	=	13-800077	707A	[132]	13^{2}
709C*	30	11^{2}	=	11	709A	[22 ${ }^{2}$]	11^{2}
718F*	7	7^{2}	$=$	7-5371523	718B 1	$\left[7^{2}\right]$	7^{2}
767F	23	3^{2}	=	1	NONE		
794G*	12	11^{2}	=	11-34986189	794A	[11 ${ }^{2}$	-
817E*	15	7^{2}	$=$	$7 \cdot 79$	817A 1	$\left[7^{2}\right]$	-
959D	24	3^{2}	$=$	583673	NONE		
997H*	42	3^{4}	$=$	3^{2}	997B	[12 ${ }^{2}$]	3^{2}
					997C	[24 ${ }^{2}$]	3^{2}
1001F	3	3^{2}	$=$	$3^{2} \cdot{ }^{1269}$	1001C 1	[32]	-
					91A 1	[3^{2}]	-
1001L	7	7^{2}	$=$	7-2029789	1001C 1	[7^{2}]	-
1041E	4	5^{2}	=	$5^{2} \cdot 13589$	1041B 2	[52]	-
1041J	13	5^{4}	=	$5^{3} \cdot 21120929983$	1041B 2	[54]	-
1058D	1	5^{2}	$=$	5-483	1058C 1	[5^{2}]	-
1061D	46	$151{ }^{2}$	$=$	151.10919	1061B 2	$\left[2^{2} 302^{2}\right]$	-
1070M	7	$3 \cdot 5{ }^{2}$	$3^{2} \cdot 5^{2}$	$3 \cdot 5 \cdot 1720261$	1070A 1	[15 ${ }^{2}$]	-
1077J	15	3^{4}		$3^{2} \cdot 1227767047943$	1077A 1	[9^{2}]	-
1091C	62	7^{2}	$=$	1	NONE		
1094F*	13	11^{2}	$=$	$11^{2} \cdot 172446773$	1094A 1	[11 ${ }^{2}$]	11^{2}
1102K	4	3^{2}	=	$3^{2} \cdot 31009$	1102A 1	[32]	-
1126F*		11^{2}	$=$	$11 \cdot 13990352759$	1126A 1	[11 ${ }^{2}$]	11^{2}
1137C	14	3^{4}	=	$3^{2} \cdot 64082807$	1137A 1	[92]	-
1141I	22	7^{2}	$=$	7-528921	1141A 1	[14 ${ }^{2}$]	-
1147H	23	5^{2}	=	$5 \cdot 729$	1147A 1	$\left[10^{2}\right]$	-
1171D*		11^{2}	=	$11 \cdot 81$	1171A 1	[44 ${ }^{2}$]	11^{2}
1246B	1	5^{2}	$=$	$5 \cdot 81$	1246C 1	[5²]	-
1247D	32	3^{2}	$=$	$3^{2} \cdot 2399$	43A	[36 ${ }^{2}$]	-
1283C	62	5^{2}	=	5•2419	NONE		
1337 E	33	3^{2}	$=$	71	NONE		
1339G	30	3^{2}	$=$	5776049	NONE		
1355E	28	3	3^{2}	$3^{2} \cdot 2224523985405$	NONE		
1363F	25	31^{2}	$=$	31-34889	1363B 2	$\left[2^{2} 62^{2}\right]$	-
1429B	64	5^{2}	$=$		NONE		
1443G	5	7^{2}	$=$	$7^{2} \cdot 18525$	1443C 1	[$\left.7^{1} 14^{1}\right]$	-
1446N	7	3^{2}	$=$	$3 \cdot 17459029$	1446A 1	[12 ${ }^{2}$]	-

Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim	S_{l}	$S_{u} \operatorname{moddeg}(A)^{\text {odd }}$		B di	dim	$A^{\vee} \cap B^{\vee}$	Vis
1466H*23	13^{2}	,	$13 \cdot 25631993723$	1466B	1	[26 ${ }^{\text {] }}$	13^{2}
1477C* 24	13^{2}	$=$	$13 \cdot 57037637$	1477A		$\left[13^{2}\right]$	13^{2}
1481C 71	13^{2}	$=$	70825	NONE			
1483D* 67	$3^{2} \cdot 5^{2}$	$=$	$3 \cdot 5$	1483A	1	$\left[60^{2}\right]$	$3^{2} .5^{2}$
1513F 31	3	3^{4}	$3 \cdot 759709$	NONE			
1529D 36	5^{2}	$=$	535641763	NONE			
1531D 73	3	3^{2}	3	1531A		[48 ${ }^{2}$]	-
1534J 6	3	3^{2}	$3^{2} \cdot 635931$	1534B		[62]	-
1551G 13	3^{2}	$=$	$3 \cdot 110659885$	141A	1	[15 ${ }^{2}$]	-
1559B 90	11^{2}	$=$	1	NONE			
1567D 69	$7^{2} \cdot 41^{2}$	$=$	$7 \cdot 41$	1567B		[$4^{4} 1148^{2}$]	-
1570J* 6	11^{2}	$=$	$11 \cdot 228651397$	1570B	1	[11 ${ }^{2}$]	11^{2}
1577E 36	3	3^{2}	$3^{2} \cdot 15$	83A	1	[6^{2}]	-
1589D 35	3^{2}	$=$	${ }_{6005292627343}$	NONE			
1591F* 35	31^{2}	$=$	$31 \cdot 2401$	1591A		[31 ${ }^{2}$]	31^{2}
1594J 17	3^{2}	$=$	$3 \cdot 259338050025131$	1594A		[12 ${ }^{2}$]	-
1613D* 75	5^{2}	=	5•19	1613A	1	[20 ${ }^{2}$]	5^{2}
1615J 13	3^{4}	$=$	$3^{2} \cdot 13317421$	1615A		[$9^{1} 18^{1}$]	-
1621C* 70	17^{2}	$=$	17	1621A		[34 ${ }^{2}$]	17^{2}
1627C* 73	3^{4}	$=$	3^{2}	1627A		[36 ${ }^{2}$]	3^{4}
1631C 37	5^{2}	$=$	6354841131	NONE			
1633D 27	$3^{6} \cdot 7^{2}$	$=$	$3^{5} \cdot 7 \cdot 31375$	1633A		[$\left.6^{4} 42^{2}\right]$	-
1634K 12	3^{2}	$=$	$3 \cdot 3311565989$	817A		[32]	-
1639G* 34	17^{2}	$=$	$17 \cdot 82355$	1639B	1	[34 ${ }^{2}$]	17^{2}
1641J* 24	23^{2}	=	23.1491344147471	1641B		[23 ${ }^{2}$]	23^{2}
1642D* 14	7^{2}	$=$	$7 \cdot 123398360851$	1642A		[7^{2}]	7^{2}
1662K 7	11^{2}	$=$	$11 \cdot 16610917393$	1662A		[11 ${ }^{2}$]	-
1664K 1	5^{2}	$=$	$5 \cdot 7$	1664N		$\left[5^{2}\right]$	-
1679C 45	11^{2}	$=$	6489	NONE			
1689E 28	3^{2}		$3 \cdot 172707180029157365$	563A	1	[3 ${ }^{2}$	-
1693C 72	$1301{ }^{2}$	$=$	1301	1693A		[$2^{4} 2602^{2}$]	-
$\mathbf{1 7 1 7} \mathrm{H} * 34$	13^{2}	$=$	$13 \cdot 345$	1717B		[26 ${ }^{2}$]	13^{2}
1727E 39	3^{2}	=	118242943	NONE			
1739F 43	659^{2}	$=$	659•151291281	1739C 2		[$2^{2} 1318^{2}$]	-
1745K 33	5^{2}	$=$	5-1971380677489	1745D		[20 ${ }^{2}$]	-
1751C 45	5^{2}	$=$	$5 \cdot 707$	103A	2	[505²]	-
1781D 44	3^{2}	$=$	61541	NONE			
1793G* 36	23^{2}	$=$	23-8846589	1793B		[23 ${ }^{2}$]	23^{2}
1799D 44	5^{2}	$=$	201449	NONE			
1811D 98	31^{2}	$=$	1	NONE			
1829E 44	13^{2}	$=$	3595	NONE			
1843F 40	3^{2}	$=$	8389	NONE			
1847B 98	3^{6}	$=$	1	NONE			
1871C 98	19^{2}	$=$	14699	NONE			

Visibility at Higher Level

A_{f} with odd invisible $Ш_{\text {an }}[\ell]$	All ℓ-congruent $A_{g} \subset J_{0}(N p)_{\text {new }}$ with $N p \leq 5000$ and $\operatorname{ord}_{s=1} L(g, s) \geq 0$ (and higher $N p$ if known)
551, $\operatorname{dim} 18, \ell=3$	$\begin{aligned} & \mathbf{p}=\mathbf{2}: \operatorname{dim} 1, \operatorname{rank} 2 \\ & \mathbf{p}=\mathbf{3}: \operatorname{dim} 1, \operatorname{rank} 2 \\ & \mathbf{p}=\mathbf{5}: \operatorname{dim} 25, \operatorname{rank} 0 \end{aligned}$
767, $\operatorname{dim} 23, \ell=3$	$\begin{aligned} & \mathbf{p}=\mathbf{2}: \operatorname{dim} 1, \operatorname{rank} 2 \\ & \mathbf{p}=\mathbf{7}: \operatorname{dim} 1, \operatorname{rank} 2 \\ & \mathbf{p}=\mathbf{7}: \operatorname{dim} 52, \operatorname{rank} 0 \end{aligned}$
959, $\operatorname{dim} 24, \ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1$, rank 2
1091, dim $62, \ell=7$	$\mathbf{p}=\mathbf{7}: \operatorname{dim} 2, \operatorname{rank} 2$
1283, dim $62, \ell=5$	p=3: $\operatorname{dim} 2$, rank 2
1337, dim 33, $\ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1$, rank 2
1339, dim 30, $\ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1$, rank 2
1355, $\operatorname{dim} 28, \ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1$, rank 2
1429, $\operatorname{dim} 64, \ell=5$	$\begin{aligned} & \mathbf{p}=\mathbf{2}: \operatorname{dim} 2, \operatorname{rank} 2 \\ & \mathbf{p}=\mathbf{3}: \operatorname{dim} 66, \operatorname{rank} 0 \\ & \hline \end{aligned}$
1481, $\operatorname{dim} 71, \ell=13$	Nothing in range
1513, dim 31, $\ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1, \operatorname{rank} 2$
1529, dim 36, $\ell=5$	$\mathbf{p}=\mathbf{7}: \operatorname{dim} 1$, rank 2
1559, $\operatorname{dim} 90, \ell=11$	Nothing in range
1589, $\operatorname{dim} 35, \ell=3$	Nothing in range
1631, $\operatorname{dim} 37, \ell=5$	$\mathbf{p}=\mathbf{2}$: dim 1, rank 2
1679, $\operatorname{dim} 45, \ell=11$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 2$, rank 2
1727, $\operatorname{dim} 39, \ell=3$	$\mathbf{p}=\mathbf{2}: \operatorname{dim} 1$, rank 2
2849, $\operatorname{dim} 1, \ell=3$	$\mathbf{p}=\mathbf{3}: \operatorname{dim} 1$, rank 2
4343, dim $1, \ell=3$	Nothing in range
5389, dim $1, \ell=3$	$\mathbf{p}=\mathbf{7}$: dim 1, rank 2

When the second column contains an A_{g} of rank 2 , then $\amalg\left(A_{f}\right)[\ell]$ is "very likely" to be visible of level $M=N p$. This is the case for most examples. The "Nothing in range" note means that the smallest p for which there exists g of even analytic rank congruent to f is beyond the range of my current tables. The examples of level 2849, 4343, and 5389 are the odd and definitely invisible examples in Cremona and Mazur's original paper on visibility.

