
SAGE: Software for Algebra and Geometry

Experimentation

William Stein

February 26, 2006

William Stein SAGE: Software for Algebra and Geometry Experimentation

Reminders!!

1. Turn on my iRiver recorder.

2. Thank the organizers! Lauter and Klassen.

3. I’m originally from the Northwest (Oregon), and I’m moving
here next month.

William Stein SAGE: Software for Algebra and Geometry Experimentation

The SAGE Mailing List on Thursday, Feb 2, 2006

Dear SAGE community.

My name is Tiziano and I’m from Italy. I’m writing this mail first
of all because I would like to thank you all for SAGE. It’s
something the world was really missing.

[Every free computer algebra system I’ve tried has] “reinvented
many times the wheel without being able to build the car.”

Goal of SAGE: Build the car.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Another Email...

Dear William,

[...] I think that you are doing a superb work

with Sage, and thank you for it.

Best,

Henri [Cohen (GP/PARI founder)]

William Stein SAGE: Software for Algebra and Geometry Experimentation

My Story

I 1997-98: Hecke and interpreter in C++ (based on other
code); for modular forms research with Buzzard and Mazur.

I 1998: D. Kohel: “too bad you have to write interpreter”;
vast amount of Magma code

I 1998: A. Steel: 2 days in Berkeley teaching me Magma

I 1999-2004: I wrote heaps of Magma code (3 Sydney visits),
and tried to convert everyone I met to using it.

I 2000: M. Stoll –“Magma – Everything under one roof”

I 2004: Frustration: Magma is closed source, closed
development model, and expensive; authorship issues; no
user-defined objects; hard to save/load data (no eval
command) – not a mainstream programming language.

William Stein SAGE: Software for Algebra and Geometry Experimentation

I S. Hillion (Berkeley) – Love using Python in my job.

I Nov 2004: Gonzalo Tornaria (Austin) – “if I come up with
a new algorithm what should I implement it in?”

I Jan 2005: D. Joyner – winter AMS meeting; SAGE born

I One year of work with many people:
David Kohel, David Joyner, Iftikhar Burhanuddin, John
Cremona, Martin Albrecht, Wilson Cheung, Alex Clemesha,
Neal Harris, Naqi Jaffery, David Kirkby, Jon Hanke, Gregg
Musiker, Kyle Schalm, Steven Sivek, Justin Walker, Mark
Watkins, Joe Wetherell, Karim Belebas, John Tate, and many
others...

I Feb 4–5: SAGE Days at UCSD

I Many more contributors now! Gonzalo Tornaria, Kiran
Kedlaya, Justin Walker, Steve Linton, ... and I’m getting new
code (and offers of support) from people I’ve never heard of
constantly.

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Days 2006

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Has 3 Distinct Complementary Goals

1. Distribution of free open source mathematics software.

2. New computer algebra system (very structural like Gap and
Magma; object-oriented; user extensible; do things right).

3. Better way to use all your favorite (commercial or free)
mathematics software together.

William Stein SAGE: Software for Algebra and Geometry Experimentation

1. Distribution of Free Open Source Software

I Free self-contained distribution of the very best open source
math software that has an active community.

I SAGE tarball: about 40MB; all GPL or compatible; you can
change anything, rebuild, make any changed versions
available, can fork SAGE and make your own variant.

I Type sage -sdist <version> to make distro from your
local modified version of sage. Type sage -bdist

<version> to make a binary.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Does Open Source Matter for Math Research?

“You can read Sylow’s Theorem and its proof in Huppert’s book in the
library [...] then you can use Sylow’s Theorem for the rest of your life free
of charge, but for many computer algebra systems license fees have to be
paid regularly [...]. You press buttons and you get answers in the same
way as you get the bright pictures from your television set but you cannot
control how they were made in either case.

With this situation two of the most basic rules of conduct in
mathematics are violated: In mathematics information is passed on
free of charge and everything is laid open for checking. Not applying
these rules to computer algebra systems that are made for mathematical
research [...] means moving in a most undesirable direction. Most
important: Can we expect somebody to believe a result of a program
that he is not allowed to see? ”

– J. Neubüser in 1993 (he started GAP in 1986).

William Stein SAGE: Software for Algebra and Geometry Experimentation

The SAGE Website

William Stein SAGE: Software for Algebra and Geometry Experimentation

Not-included With SAGE and Why

1. NZMATH – provides inspiration (but not included)

2. Macaulay2 – supported but not included; working with Dan
Grayson right now to make it part of SAGE.

3. Gnuplot – screwy license (e.g., I wanted to change C source
so paths not hard coded, but this is not allowed!)

4. KASH – closed source (but FREE and very powerful)

5. Magma – expensive and closed source (the dominant
system in arithmetic geometry)

6. Mathematica / Maple – expensive and closed source

7. MATLAB – not supported, since I don’t have it.

But using these from SAGE is supported!

William Stein SAGE: Software for Algebra and Geometry Experimentation

2. A New Computer Algebra System

$ ls

algebras databases __init__.py modular schemes

all.py edu interfaces modules sets

categories ext libs monoids structure

coding functions matrix plot tests

crypto groups misc rings version.py

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|uniq|wc -l

52764

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|uniq|grep "sage: " | wc -l

5888 <-------- INPUT TEST CODE

William Stein SAGE: Software for Algebra and Geometry Experimentation

3. Cooperation – “Everything Under One Roof”

SAGE has many interfaces (bold included with SAGE):

I GAP – groups, discrete math

I Singular – polynomial computation

I PARI/GP – number theory

I Maxima – symbolic manipulation

I mwrank, ec, simon, sea – elliptic curves

I Macaulay2 – commutative algebra (e.g., over Z)

I Gnuplot – 2d and 3d graphics

I KANT/KASH – very sophisticated algebraic number theory

I Magma – vast high-quality research math environment

I Maple – symbolic, educational

I Mathematica – symbolic, numerical, educational

I Octave – numerical

William Stein SAGE: Software for Algebra and Geometry Experimentation

−2006 = −1 · 2 · 17 · 59

sage: (-2006).factor()

-1 * 2 * 17 * 59

sage: gap(-2006).FactorsInt()

[-2, 17, 59]

sage: pari(-2006).factor()

[-1, 1; 2, 1; 17, 1; 59, 1]

sage: maxima(-2006).factor()

-2*17*59

sage: kash(-2006).Factorization()

[<2, 1>, <17, 1>, <59, 1>], extended by: ext1 := -1

sage: magma(-2006).Factorization()

[<2, 1>, <17, 1>, <59, 1>]

sage: maple(-2006).ifactor()

-‘‘(2)*‘‘(17)*‘‘(59)

sage: mathematica(-2006).FactorInteger()

{{-1, 1}, {2, 1}, {17, 1}, {59, 1}}

William Stein SAGE: Software for Algebra and Geometry Experimentation

Non-math SAGE Components

1. IPython: Wonderful Interactive Shell

2. Python: A Mainstream Programming Language (many
books; numerous excellent tutorials; constantly being
improved by dozens of developers)

3. Pyrex: Compiled Python-Like Extension Language

4. Saving and Loading Objects (ZODB and cPickle)

William Stein SAGE: Software for Algebra and Geometry Experimentation

1. IPython: Wonderful Interactive Shell

Under very active development (especially parallel version); widely
used by applied math/physics people.

William Stein SAGE: Software for Algebra and Geometry Experimentation

2. Python: A Mainstream Programming Language

I 1991: Guido van Rossum–Dutchman (now at Google)

I Numerous libraries available for networking, graphics, video
game programming, numerical analysis, etc.

I Designed to be a gluing language (unlike many languages),
i.e., easier to use code from other languages.

I Easy to read other people’s code (unlike, e.g., Perl, C++)

I Free and open source (unlike, e.g., Java)

I From Python Advocacy FAQ:
I Run Web sites
I Write GUI interfaces
I Control number-crunching code on supercomputers
I Build test suites for C or Java code

William Stein SAGE: Software for Algebra and Geometry Experimentation

Guido van Rossum

William Stein SAGE: Software for Algebra and Geometry Experimentation

3. Pyrex: Compiled Python-Like Extension Language

def factorial(n):

cdef mpz_t f

cdef int i

cdef char* s

mpz_init(f)

mpz_set_si(f, n)

for i from 2 <= i <= n:

mpz_mul_si(f, f, i)

s = mpz_get_str(NULL, 32, f)

r = int(s,32)

free(s)

return r

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex is CRUCIAL to Success of SAGE

1. Written by Greg Ewing of New Zealand.

2. Code converted to C code that is compiled by a C compiler.

3. Can use any Python functions and objects from Pyrex and any
C libraries.

4. Time-critical SAGE code gets implemented in Pyrex, which
is (as fast as) C code, but easier to read (e.g., since all
variables and scopes are explicit).

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex Works

sage: time n=factorial_pure_python(100000)

CPU times: user 78.72 s, sys: 2.64 s, total: 81.37 s

sage: time v=pari(’prod(n=1,100000,n)’)

CPU times: user 18.89 s, sys: 0.19 s, total: 19.08 s

sage: time n=factorial_ZZ(100000)

CPU times: user 8.56 s, sys: 2.22 s, total: 10.79 s

magma: time n := Factorial(100000); # MAGMA V2.12-10

Time: 9.030

sage: time n = factorial(100000) # Pyrex (first try)

CPU times: user 6.93 s, sys: 0.00 s, total: 6.93 s

(PARI/MAGMA tricks...)

sage: time n = pari(’100000!’)

CPU times: user 1.06 s, sys: 0.03 s, total: 1.08 s

magma: time n := &*[1..100000]; #

Time: 0.850

William Stein SAGE: Software for Algebra and Geometry Experimentation

4. Saving and Loading Objects

Almost any individual object in SAGE can easily be loaded and
saved in a compressed format, as can sessions. This requires almost
no programmer support, even for very complicated objects.

sage: E = EllipticCurve([1,2,3,4,5])

sage: time v = E.anlist(10^5)

CPU times: user 1.03 s, sys: 0.22 s, total: 1.25 s

Wall time: 1.59

sage: E.save(’E’)

sage: quit

Exiting SAGE (CPU time 0m1.45s, Wall time 0m25.36s).

$ sage

sage: F = load(’E’)

sage: time v = F.anlist(10^5)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

sage: save_session, load_session, ...

William Stein SAGE: Software for Algebra and Geometry Experimentation

Help System

1. function? gives documentation about function (extracted
from source code)

2. function?? gives the source code of function

3. Because Python is so readable, function?? is incredibly
useful and users frequently use it.

4. help(module or object) gives man-page like docs

5. TO DO: full text search (Steven Sivek?)

William Stein SAGE: Software for Algebra and Geometry Experimentation

Attribution

I Whenever possible, files, function docs, and the reference
manual state clearly who the author is.

I All new code submitted to SAGE must be under a GPL
compatible license. Author may optionally keep copyright.

I Citation: William Stein and David Joyner, SAGE: System for

algebra and geometry experimentation, Communications in
Computer Algebra (SIGSAM Bulletin) (July 2005),
http://sage.sourceforge.net/.

I VERY Important! Always cite the underlying backends used
by SAGE for your work, e.g., GAP, Singular, PARI, Kash, etc.
Ask in SAGE forum and/or use function?? to view source.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 1: Bernoulli Numbers

Easy to compare timings in different systems...

sage: a = maple(’bernoulli(1000)’) # Wall time: 9.27

sage: a = maxima(’bern(1000)’) # Wall time: 5.49

sage: a = magma(’Bernoulli(1000)’) # Wall time: 2.58

sage: a = gap(’Bernoulli(1000)’) # Wall time: 5.92

sage: a = mathematica(’BernoulliB[1000]’) #W time: 1.01

calcbn (http://www.bernoulli.org) # Time: 0.06

sage: a = gp(’bernfrac(1000)’) # Wall time: 0.00?!

The above led to a paper I’m writing with Kevin McGown.

(NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at

computing Bernoulli numbers, and the timing is almost identical to PARI

(for n > 1000), though amusingly Mathematica 5.2 is slow for n ≤ 1000!)

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 2: Elliptic Curves L-series

sage: E = EllipticCurve(’37a’); E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: E.Lseries(1.1) --> 0.032330449021518493

sage: E.Lseries(1) --> 0.00000000000000000

sage: plot([float(E.Lseries(float(n)/20)) for n in range(10,30)])

sage: L = EllipticCurve(’389a’).Lseries

sage: plot([float(L(float(n)/20)) for n in range(10,30)])

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 2 (continued): Complex L-series

sage: E = EllipticCurve(’389a’)

sage: E.Lseries_extended(1+I, 50)

-0.33297168182616760 + 0.37317660446124179*I

sage: E.Lseries_extended(1+0.2*I, 50)

-0.029679202996999034 + 0.0034727623999086183*I

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 3: Birch and Swinnerton-Dyer

sage: E = EllipticCurve(’37a’)

sage: E.sha_an() --> 1

sage: E.non_surjective() --> []

sage: E.sha_an() --> 1

sage: E.regulator() --> 0.051111408239999996

sage: E.gens() --> [(0 : 0 : 1)]

sage: E.heegner_discriminants(50) --> [-3, -4, -7, -11, -40, -47]

sage: E.heegner_index(-7) # Kolyvagin ==> Sha trivial

[0.999990645298, 1.00000935475]

sage: E.q_expansion(5)

--> q - 2*q^2 - 3*q^3 + 2*q^4 + O(q^5)

sage: E.simon_two_descent ()

(1, 1, [(0 : 108 : 1)])

sage: E.sea(next_prime(10^30))

1000000000000001426441464441649

William Stein SAGE: Software for Algebra and Geometry Experimentation

Summary: Cool Features of SAGE

1. Mainstream programming language

2. Save and load individual data and sessions

3. DVI and HTML logging

4. Easy-to-use compiled extension language (can easily use C
libraries).

5. attach, load; even works with compiled code.

6. All examples in documentation tested

William Stein SAGE: Software for Algebra and Geometry Experimentation

To Do

MUCH is left to do. I hope YOU will help!

1. Much new code still needs to be written for plotting,
algebraic geometry, linear algebra, number theory, etc.,
especially when no open source implementations exist.

2. Optimization — parts of SAGE are currently very slow.

3. Many excellent free packages need to be included, e.g.,
genus2reduction, sympow, Rubinstein’s L-functions package.

4. Documentation! Examples! More Documentation! Even
more examples!

5. Package Distribution: rpm, msi, deb, pkg, etc. Need user
support. The sage-mindist-*.*.*.tar package is supposed
to make this easier.

6. STR: Sage Technical Reports: (Unusual?) Journal;
refereed, widely mirrored, subsequent traditional journal
publication.

William Stein SAGE: Software for Algebra and Geometry Experimentation

