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1 Introduction

In this paper we describe a conjecture that has a similar style to the Gross-
Zagier formula, and implies the Birch and Swinnerton-Dyer conjecture. We
then discuss some relevant computations related to the conjecture for some
curves of rank > 1.

2 A Gross-Zagier Style Conjecture

Let E be an elliptic curve defined over Q with analytic rank at least 1 and let
N be its conductor. Let K be one of the infinitely many quadratic imaginary
fields with discriminant D < −4 coprime to N such that each prime dividing
N splits in K, and such that

ords=1 L(ED, s) ≤ 1.
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Fix any odd prime ` such that ρE,` is surjective. Below we only consider
primes p - ND that are inert in K. Set Np = #E(Fp), and let ãp =
`ord`(p+1−Np) be the `-part of ap = p+ 1−Np. Let

bp = #(E(Fp)/ãpE(Fp)),

Note that bp = gcd(p+1, ãp), by [?, Lemma 5.1]. For any squarefree positive
integer n, let

bn = gcd({bp : p | n}).

Let Pn = JnInyn ∈ E(Kn) be the Kolyvagin point associated to n, where
Kn is the ring class field of K of conductor n. The elements Jn, In ∈
Z[Gal(Kn/K)] are constructed so that

[Pn] ∈ (E(Kn)/bnE(Kn))Gal(Kn/K).

See [?] for more details.
Let ran(E/Q) = ords=1 L(E/Q, s) and let t < ran(E/Q) be any nonneg-

ative integer with
t ≡ ran(E/Q)− 1 (mod 2).

For any prime p - n with ` | bp | bn, reducing modulo any choice of prime ℘
over pOK yields a well defined point

Pn ∈ E(Fp)/ãpE(Fp).

The congruence condition on t and our assumption that ` is odd implies
that Pn ∈ E(Fp) and not just in E(Fp2). Let Y t

p ⊂ E(Fp)/ãpE(Fp) be
the subgroup generated by all points Pn as we vary over all n divisible by
exactly t primes such that bp | bn. The Chebotarev density theorem implies
that there are infinity many such integers n.

Let πp : E(Q)→ E(Fp)/ãpE(Fp) be the natural quotient map, and let

W t
p = π−1

p (Y t
p ) ⊂ E(Q).

If G is a subgroup of E(Q) and n is a positive integer, let

〈G,G〉n = inf{|det〈gi, gj〉| : independent points g1, . . . gn ∈ G},

where g1, . . . , gn run through all choices of indepedent elements of G/tor. If
G has rank < n, then 〈G,G〉n = 0 since it is the infimum of the empty
set. Also not that one can prove using reduction theory for quadratic forms
that there are only finitely many subgroups of G of bounded height, so we
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can replace the infimum by a minimum. Also, if G has rank n > 0, then
〈G,G〉n = Reg(G) is the regulator of G.

Chose any maximal chain of subgroups W t
p1

) W t
p2

) W t
p3
. . . associated

to primes C = {p1, p2, . . .}, and let

W t
C =

⋂
pi∈C

W t
pi
.

Note that C could be either finite or infinite. The intersection W t
C may

depend on C and not just t, but we expect that for each t, there are only
finitely many possibilities for W t and only one possibility for [E(Q) : W t].
Also, since Yp is a subgroup of the cyclic group E(Fp)/ãpE(Fp), if W t

C has
finite index in E(Q), then the quotient E(Q)/W t

C is cyclic.
Finally, let

v = t+ 1 + ran(ED/Q),

and note that v ≤ ran(E/K) and v ≡ ran(E/K) (mod 2).

Conjecture 2.1. Fix a prime `, an integer t and set of primes C as above.
Then we have the following generalization of the Gross-Zagier formula:

L(v)(E/K, 1)
v!

=
b · ‖ω‖2

c2
√
|D|
· 〈W t

C ,W
t
C〉t+1 · Reg(ED/Q),

where b is a positive integer not divisible by `.

Let B be divisible by 2 and the primes where ρE,` is not surjective.

Conjecture 2.2. Let t be an integer as above. For prime ` - B, make a
choice of W (`) = W t

C as above. Let W = ∩`-BW (`). Then

L(v)(E/K, 1)
v!

=
b · ‖ω‖2

c2
√
|D|
· 〈W,W 〉t+1 · Reg(ED/Q),

where b is an integer divisible only by prime divisors of B.

The classical Gross-Zagier formula is like the above formula, but v = 1,
we have Reg(ED/Q) = 1, and 〈W,W 〉t+1 is the height of the Heegner point
P1 ∈ E(K).

All the definitions above make sense with no assumption on `, but we are
not confident making the analogue of Conjecture 2.2 without further data.
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3 The Birch and Swinnerton-Dyer Conjecture

Theorem 3.1. Conjecture 2.1 implies the BSD conjecture. More precisely,
if Conjecture 2.1 is true, then

rank(E(Q)) = ords=1 L(E/Q, s)

and X(E/Q)[`∞] is finite.

Proof. First take t = ran(E/Q)−1. If Y t
p = 0 for all p, then using the Cheb-

otarev density theorem (see ggz paper), we can find a sequence of primes pi

so that if C = {p1, p2, . . .}, then W t
C = 0. However, in Conjecture 2.1 we have

v = ran(E/K), so L(v)(E/K, 1) 6= 0, hence 〈W t
C ,W

t
C〉t 6= 0 so W t

C is infinite.
Consequently, some Y t

p 6= 0, hence some class [Pn] 6= 0 for some n divisible by
t primes. Thus Kolyvagin’s “Conjecture A” is true with f ≤ ran(E/Q)− 1.
It follows by [?, Theorem 4.2] that for all m� 0 we have

Sel(`
m)(E/Q) = (Z/`mZ)f+1 ⊕ S (3.1)

where S is a finite group independent of m (note that conjecturally, S is the
` part of X(E/Q)). Thus rank(E/Q) ≤ f + 1.

By Conjecture 2.1 above there are t + 1 independent points in W t
C ⊂

E(Q), so t + 1 ≤ rank(E/Q) and t + 1 ≤ f + 1. Thus f = ran(E/Q) − 1,
and the BSD conjecture that rank(E/Q) = ran(E/Q) is true. Finiteness of
X(E/Q)[`∞] then follows from (3.1).

4 Explicit Computations

For the rest of this section, we let t = ran(E/Q)− 1, and set Yp = Y t
p .

Theorem 4.1. Assume Conjecture 2.1, the BSD formula at ` for E over
K, and Kolyvagin’s Conjecture D`. Then for any good prime p, the group
Yp is the image of I · E(Q) in E(Fp)/ãpE(Fp), where

I = c
∏

cq
∏ √

#X(E/K).

[[worry – there is a “sufficiently large” in Kolyvagin? If so, make this a
conjecture, then give a theorem for sufficiently large as evidence.]]

[[worry – the above only gives Wp, not Yp]]

Proof. This is Proposition 7.3 of [?]. (It might be that assuming Kolyvagin’s
Conjecture D` is redundant.)
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Assuming the conclusion of Theorem 4.1, we can in practice compute
the group Yp for any elliptic curve E. We can thus conditionally verify
Conjecture 2.1. Just verifying the conjecture is not worth doing, since un-
der the above hypothesis, Conjecture 2.1 is implied by the BSD formula,
since π−1

P (Yp) has small enough index that it must contain a Gross-Zagier
subgroup (see [?, Prop. 2.4] and [?, Lemma. 7.4]). There is, however, extra
information contained in which subgroup π−1

p (Yp) we find for a given p, since
that does depend in a possiby subtle way on p.

A deeper structure on Yp is that it has labeled generators Pn, indexed by
positive integers n. So far, it appears to be a highly nontrivial calculation
to explicitly compute a specific Pn in any particular case.

In the rest of this section, we compute as much as we reasonably can
about the objects above in some specific examples.

For the computations below, we assume BSD and Kolyvagin’s conjecture
so we can use Theorem 4.1 to compute Yp.

Example 4.2. Let E be the rank 2 elliptic curve 389a, and let ` = 3. We
have v = 0, since c = c389 = 1 and #Xan = 1.000 . . .. The primes p < 100
such that E(Fp)/ãpE(FP ) 6= 0 are P = {5, 17, 29, 41, 53, 59, 83}, and in each
case E(Fp)/ãpE(FP ) is cyclic of order 3. We have

E(Q) = ZP1 ⊕ ZP2

where P1 = (−1, 1) and P2 = (0,−1).

5 Future Directions and Projects

1. Assuming the hypothesis of Theorem 4.1, compute groups W for var-
ious choices of Wp1 ) Wp2 ) · · · when I 6= 1.

2. Formulate Conjecture 2.1 on J0(N) over the Hilbert class field of K,
and deduce Conjecture 2.1 from this more general conjecture.

3. Formulate Conjecture 2.1 at all primes ` hence get an exact formula
for 〈W,W 〉t+1 as almost in Conjecture 2.2.

4. Find an algorithm to compute Yp or Wp. This would be especially
interesting when Theorem 4.1 does not apply. Give a conjectural de-
scription of Yp in all cases.
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