{{{id=302| 1+2+3+4 # testing /// 10 }}} {{{id=301| /// }}}
Sage is not a drop-in replacement: does not run programs written in the custom languages of the Ma's.
Sage is not like Octave (versus Matlab).
Sage's culture, architecture, programming language, and feel are different than the Ma's.
{{{id=272| /// }}} {{{id=271| /// }}} {{{id=158| /// }}} {{{id=133| /// }}} {{{id=132| /// }}} {{{id=94| /// }}}{{{id=8| /// }}} {{{id=135| /// }}} {{{id=83| /// }}}
See this article for more details about the (pre-)history of Sage.
{{{id=98| /// }}} {{{id=157| /// }}} {{{id=156| /// }}} {{{id=181| /// }}} {{{id=185| /// }}} {{{id=184| /// }}}Some random examples involving Sage:
{{{id=275| time n = factorial(10^7) /// Time: CPU 11.42 s, Wall: 11.42 s }}} {{{id=324| %cython import numpy as np cimport numpy as np def mandelbrot_cython(float x0,float x1,float y0,float y1, int N=200, int L=50, float R=3): '''returns an array NxN to be plotted with matrix_plot ''' cdef double complex c, z, I cdef float deltax, deltay, R2 = R*R cdef int h, j, k cdef np.ndarray[np.uint16_t, ndim=2] m m = np.zeros((N,N), dtype=np.uint16) I = complex(0,1) deltax = (x1-x0)/N deltay = (y1-y0)/N for j in range(N): for k in range(N): c = (x0+j*deltax)+ I*(y0+k*deltay) z=0 h=0 while (hFile: /home/salvus/sage-5.3/devel/sage/sage/matrix/matrix0.pyx
Type: <type ‘builtin_function_or_method’>
Definition: a.rank()
Docstring:
TESTS:
We should be able to compute the rank of a matrix whose entries are polynomials over a finite field (trac #5014):
sage: P.<x> = PolynomialRing(GF(17)) sage: m = matrix(P, [ [ 6*x^2 + 8*x + 12, 10*x^2 + 4*x + 11], ... [8*x^2 + 12*x + 15, 8*x^2 + 9*x + 16] ]) sage: m.rank() 2