Writing a Research Paper using SageMathCloud

William Stein

University of Washington

http://wstein.org/

January 10, 2016

"A Databases of Elliptic Curves Ordered by Height and Distributions of Selmer Groups and Ranks"

Authors

Jen Balakrishnan, Wei Ho, Nathan Kaplan, Simon Spicer, William Stein, Jamie Weigandt

What's this about?

- Past tables are usually ordered by conductor or discriminant.
- Bhargava–Shankar: new upper bounds on the average algebraic rank ordered by height; got by studying the average sizes of *n*-Selmer groups.
- Make database ordered by height: compute rank and 2-Selmer size.

Background motivation

Order by conductor

 Mazur-Stein-Watkins-Bektemerov - 2006 paper: 136, 832, 795 curves ordered by conductor; average rank keeps getting bigger!?

- Conjecture: average rank is 1/2
- Manjul Bharghava: average rank is definitely bounded!

- Bharghava: order curves by height!
- Challenge: systematically compute the ranks of **all** elliptic curves $y^2 = x^3 + a_4x + a_6$ of height $H = \max\{4|a_4|^3, 27a_6^2\}$ far enough that we can finally clearly see the rank going down (and how).
- We did this.

Avg. Rank: 238764310 Curves of Height $\leq 2.7 \cdot 10^{10}$

5 / 10

Order of the torsion subgroup

Rank of the 2-Selmer Group

print v['desc'], v['count'], v['bound']

show(line(plot.derez(v['data'],5000)), figsize=[12,4], gridlines='minor', frame=True)
vlog = [(math.log(x[0],10),x[1]) for x in plot.derez(v['data'],15000)][11]
show(line(vlog, thickness=6), figsize=[12,4], gridlines='minor', frame=True)

Avg. Sign of the Root Number

Features of SageMathCloud for writing this paper

We wrote the paper in https://cloud.sagemath.com

- Collaborative editing of LATEX documents
- Collaborative persistent terminals (e.g., ssh to cluster somewhere)
- Edit Python code; run from Sage worksheets (or terminals)
- Use SQLite easily
- Run project on a 32-core big-memory VM at Google
- Chat: post comments on the side of any file being edited
- Following the log

Key things we use

- Simon Spicer's new L-function analytic rank bounding code (fully included in Sage by default, very flexible, and well documented!).
 Very fast (even for large conductor) code for bounding elliptic curve ranks.
- Simon Spicer's Elliptic curve enumeration (coming to Sage soon)
- MWRANK: the workhorse
- Magma interface helped with a few hard curves at the end.