

1888-1972

processes.

How many solutions are needed to generate all

solutions to a cubic equation? Birch and Swinnerton-Dyer

Conjectures Proliferated

Conjectures Concerning Elliptic Curves By B.J. Birch, pub. 1965

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures (due to ourselves, due to Tate, and due to others) have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep."

The Modularity Theorem

Theorem (2000, Wiles, Taylor, and Breuil, Conrad, Diamond) The curve E arises from a "modular form", so L(E,s) extends to an analytic function on the whole complex plane.

(This modularity is the key input to Wiles's proof of Fermat's Last Theorem.)

Gross-Zagier Theorem

Don Zagier

When the order of vanishing of L(E, s) at 1 is exactly 1, then E has rank at least 1.

Subsequent work showed that if the order of vanishing is exactly 1, then the rank equals 1, so the Birch and Swinnerton-Dyer conjecture is true in this case.

Theorem. If L(E,1) is nonzero then the rank is zero, i.e., $E(\mathbf{Q})$ is finite.

