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Enumerating Pythagorean Triples
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Integer and Rational Solutions
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The Secant Process
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Elliptic Curves
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Cubic algebraic equations in two unknowns X and Y.
Exactly the 1-dimensional compact algebraic groups.
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Group Law When P=Q
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Simplest solution to 3° = = 4 7823:
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(Found by Michael Stoll in 2002)
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Mordell’'s
Theorem

The group E(Q) of rational
points on an elliptic curve
is finitely generated. Thus
every rational point can
be obtained from a finite
number of solutions, using
some combination of the
secant and tangent
processes.

1888-1972

Central Question

How many solutions are
needed to generate all : R
solutions to a cubic equation? B and Swinnerton-Dyer

EDSAC in Cambridge, Egland

Conjectures Proliferated

Conjectures Concerning Elliptic Curves
By B.J. Birch, pub. 1965

“The subject of this lecture is rather a special one. | want to describe
some computations undertaken by myself and Swinnerton-Dyer on
EDSAC, by which we have calculated the zeta-functions of certain
elliptic curves. As a result of these computations we have found an
analogue for an elliptic curve of the Tamagawa number of an
algebraic group; and conjectures (due to ourselves, due to Tate, and
due to others) have proliferated. [...] though the associated theory is
both abstract and technically complicated, the objects about which |
intend to talk are usually simply defined and often machine
computable; experimentally we have detected certain relations
between different invariants, but we have been unable to approach
proofs of these relations, which must lie very deep.”
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Solutions Modulo p
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Consider solutions modulo a prime number:

.
p=2,35,7111317,19,23,29,31,37,...

We say that (a,b), with a,b integers, is a solution modulo p to
yo+y=x>-x

if

b*>+b=a’-a (mod p).

For example,

4 +4=2°-2 (mod 7).

This idea generalizes to any cubic equation.

The Error Term
(Hasse’s Bound)

write N(p) = p+A(p) with 1898-1979

error term

[A(p)| <2/p

Forexample, N(7)=8 so A(7)=1.
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Counting Solutions

N(p) = # of solutions (mod p) < p*
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More Primes . .
V4y=2—=z 11
1[2}=2 nl‘).l EE
ji’i;ij N(p) = number of soln's
A(T) =1 N(p)=p+A(p)
A1) =5

Thus N(p) > p for these primes p.

Continuing: A(13) =2, A(17) =0, A(19) =0, A(23) =-2, A(29) =-6, A(31) =4, ....

M I35
Guess =
10 0.083...
If a cubic curve has infinitely many 100 0.032...
solutions, then probably N(p) is 1000 0.021...
larger than p, for many primes p. 10000 0.013
Thus maybe the product of terms 100000 |0.010...

will tend to 0 as M gets larger.

Swinnerton-Dyer at AIM




The L-function

1
HES :Hl—A( p)-pE+p-p*

The product is over all primes p. (At a finite number of
primes the factor must be slightly adjusted.)

3
Product converges for Re(s) > —

The Riemann Zeta
Function
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all primes p 1- p

Zeta extends to an analytic
function everywhere butat 1. -

1826-1866

An Analytic Function

Thus Bryan Birch and Sir Peter Swinnerton-Dyer
Swinnerton-Dyer defined an

analytic function L(E,s)

such that formally:

=TIty

The Birch and Swinnerton-Dyer
Conjecture

The order of vanishing of

L(E,s)

at 1 equals the rank of the group
E(Q) of all rational solutions to E:

ord,_,L(E,s) = rank E(Q)

CMI: $1000000 reward for a proof.

Bryan Birch

The Modularity Theorem

Theorem (2000, Wiles, Taylor, and
Breuil, Conrad, Diamond) The curve A. Wiles
E arises from a “modular form”, so
L(E,s) extends to an analytic
function on the whole complex plane.

(This modularity is the key input to Wiles’s
proof of Fermat’s Last Theorem.)
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L-series for y*+y=x>-x
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Some Graphs of L(E,S) for s real
u

Birch and Swinnerton-Dyer m

1 E,

o E >
0 f s

The glraph of L(E,,s) vanishes to order r.

Examples of L(E,s) that appear Congruent Number Problem

Open Problem: Decide whether an integer n is the

to vanish to order 4

v | area of a right triangle with rational side lengths.

Fact: Yes, precisely when the cubic equation
1 y2+xy = x* - x> —79x+289 2_ 3 _ 2

| y-=X -nX
has infinitely many solutions X,y € Q
n==6
3
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Connection with BSD Conjecture Gross-Zagier
Theorem
Theorem (Tunnell): The Birch :
. . Benedict Gross
and Swinnerton-Dyer conjecture o
implies that there is a simple Vﬁ/?gn ;P;e ordgr of VaTIShmﬁ OfE Don zagier
algorithm that decides whether or el Kobitz ) atlis exactly 1, then
. . ntroduction has rank at least 1.
not a given integer nis a e et .
con Forms Subsequent work showed that if the order
gruent number. fhasnen AT
of vanishing is exactly 1, then the rank
¥ equals 1, so the Birch and Swinnerton-
AT Dyer conjecture is true in this case.
See [Koblitz] for more detaild
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Kolyvagin’s Theorem ord,,L(E,s) = rank E(Q)
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Theorem. If L(E,1) is nonzero then the . of L(E.S))

rank is zero, i.e., E(Q) is finite.

Mazur’'s Theorem

For any two rational
a, b, there are at
most 15 rational
solutions (X,y) to

y =x"+ax+b

with finite order.

Theorem (B). — Let @ be the torsion subgroup of the Mordell-Weil group of an elliptic
curve defined over Q. Then © is isomorphic to one of the following 15 groups:

Zim.Z Sfor mgwo o m=12
or: (Zfz Z)x(Zfzv. L) for ve4.




