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An Introduction to the Birch and 
Swinnerton-Dyer Conjecture

William Stein
http://modular.fas.harvard.edu

April 1, 2004

Slides: http://modular.fas.harvard.edu/talks/uconn

Read the title.  Point out that the slides are available on that web page.

Thank Conrad for inviting me. 

My talk is about a beautiful area of pure mathematics.  This area has applications to 
secure communications and physics, but I will only try to convey the intrinsic beauty 
and excitement of the area, rather than convince you of its applicability to everyday 
life.
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Pythagorean 
Theorem

Pythagoras
approx 569-475 B.C.

The Pythagorean theorem asserts that if a, b, and c are the sides of a right triangle 
with hypotenuse c, then a^2 + b^2 = c^2. Pythagoras (and others before him) were 
interested in systematically finding solutions to the equation a^2+b^2=c^2, with a, b, 
c, all integers. 
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Babylonians

1800-1600 B.C.

The painting on the upper right is “Artist's conception of the thriving city state of 
Babylon 
(circa 7th Century B.C.), including the Hanging Gardens.” The photo on the lower 
right is from modern Babylon: “Its ruins are found 90 km south of modern Baghdad 
in Iraq.”

The big tablet illustrates the Pythagorean relation with a=b=1 and c=sqrt(2).   Notice 
that if we view the lengths of the four short sides of the small triangles as 1, then the 
are of the big square is twice the are of a 1x1 square (pick up a small triangle and 
move it to the other side.  Thus the area of the square made from all four small 
triangles is 2, so that square must have side length sqrt(2).  Note that 1^2+1^2 = 
(sqrt(2))^2.   
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Pythagorean Triples

Triples of whole numbers a, b, c such that
2 2 2a b c+ =

This tablet is Plimpton 322, a BABYLONIAN tablet from 1900-1600BC.  (It’s 
supposed to be at Columbia University.)  The second and third columns list integers 
a and c such that a and c are the side lengths of the base and hypotenuse of a right 
triangle with integer side lengths.   Thus if b=sqrt(c^2-a^2), then (a,b,c) is a 
Pythagorean triple.  The first row contains a=119 and c=169=13^2, so b=120.  The 
other rows also contain rather large triples.

The picture in the upper right is mainly to add color to the slide.  It is a Ziggurat, 
which was a “house of god” built by the Babylonians from around 2200BC to 
500BC, and there are about 25 left today.  

The left side of the slide lists all the Pythagorean triples so that a,b,c all have at 
most two digits.

Question: How can we systematically enumerate Pythagorean triples?
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Enumerating Pythagorean Triples

ax
c

=
by
c

=

2 2 1x y+ =
Circle of Radius 1

Line of Slope t

This slide illustrates a method to enumerate all of the Pythagorean triples.  The blue 
circle is a circle about the origin of radius 1.   It is defined by the equation 
x^2+y^2=1, so any point (x,y) on the circle satisfies x^2+y^2=1.  The red line has 
slope t, and is defined by the equation y=tx+t=t(x+1).  Using elementary algebra, 
one sees that if t is a rational number, then the intersection point (x,y) has rational 
coordinates.   By clearing denominators we obtain a Pythagorean triple, and (up to 
scaling) one can show that every Pythagorean can be obtained in this way.  So 
finding the rational solutions to x^2+y^2=1, or what’s the same, the integral 
solutions to a^2+b^2=c^2 is reasonably straightforward:  there are infinitely many 
and they are parameterized by the rational slopes t.
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If                then

is a Pythagorean triple.

Enumerating Pythagorean Triples

rt
s

=
2 2a s r= − 2b rs= 2 2c s r= +

We can solve explicitly for x and y in terms of t.  The first upper-right equation gives 
the equation of the red line.  We then solve for x and y in terms of t by solving the 
two equations y=t*(x+1) and x^2+y^2=1 for x and y.  (subst first into second for y 
and get equation in x and t, then solve for x using algebra).

Finally, at the bottom of the slide I’ve listed the correspondence very explicitly.  If t is 
a rational number r/s in lowest terms, then the displayed formulas define a 
(primitive) Pythagorean triple.  When give example, note that r/s should be between 
0 and 1 as indicated in the diagram. 
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Integer and Rational Solutions

Mathematicians have long been interested in solving equations in the integers or 
rational numbers.  The contents of most of Diophantus’s works were totally lost, but 
a version of this book remains.  It contains many interesting questions that boil 
down to “what are the [or here are some] rational solutions to an algebraic equation 
in two variables.” The picture on the right is of Andrew Wiles looking at a copy of 
this very book, along with a zoom of the book.  Fermat wrote in the margin of his 
copy of Diophantus his famous assertion that x^n+y^n=1 has no rational solutions 
besides those with |x|=1 or |y|=1.  Wiles proved the conjecture in 1995. 
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Elliptic Curves

Cubic algebraic equations in two unknowns x and y.
Exactly the 1-dimensional compact algebraic groups.

3 33 4 5 0x y+ + =

2 3y x ax b= + +

3 3 1x y+ =

2 3y y x x+ = −

The simplest class of equations in 2 variables are the linear and quadratic 
equations.  Solving linear equations in two variables is straightforward (back 
substitute).  The circle trick for enumerating Pythagorean triples works well in 
general for enumerating the solutions to a quadratic equation in two variables (and 
there is an effective local-to-global procedure for deciding whether a degree two 
equation has any solutions).  The next more complicated equation in 2 variables is a 
cubic equation.  The first cubic equation on the slide is the Fermat equation for 
exponent 3 – Fermat’s famous conjecture is the assertion that this equation has no 
solutions (besides the obvious ones with x or y pm 1).   The third equation is an 
example of a cubic equation that has no rational solutions at all (not even “at 
infinity”)--- it is an open problem to give an algorithm that can decide whether any 
given cubic equation in 2 variables has a rational solution.  Any cubic equation that 
has some rational solution (possibly “at infinity”) can be put in the third from 
y^2=x^3+ax+b.  Such curves are called elliptic curves.  Their graphs are definitely 
not ellipses (which are graphs of quadratic equations).  The name “elliptic” arises 
because these curves appear naturally when trying to understand integration 
formulas for arc lengths of ellipses. 
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The Secant Process

Recall that before given the point (-1,0) on the circle of radius 1, we found all other 
rational solutions by drawing a line through (-1,0) and finding the other point of 
intersection.  Fermat introduced a similar process for elliptic curves.  If we have 
TWO points on an elliptic curve, both with rational coordinates, we obtain a third 
point with rational coordinates by drawing the line they determine and finding the 
third point of intersection.  In the example on the left, the blue curve is the graph of 
y^2+y=x^3-x “when is the product of two consecutive numbers equal to the product 
of three consecutive numbers?”, and there are two “obvious” rational solutions (-1,0) 
and (0,-1).  Using the secant process of Fermat we find the less-obvious solution 
(2,-3).   
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The Tangent Process

2 3y y x x+ = −

Even if we only know one point on the curve, we can hope to find others using the 
tangent process. Draw a tangent line through the point and find the third point of 
intersection.  For example, from (0,0) we get (1,-1); from (1,-1) we get (2,-3), and 
(surprise!) from (2,-3) we get (21/25,-56/125).  

Sometimes this process cycles around, and the corresponding points are called 
“torsion points”, but we will not discuss them further today.
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Big Points From Tangents

Continuing this process we immediately obtain SHOCKINGLY large points.  Does 
every solution appear in this way, up to sign??  Answer – NO!!  But, if we combine 
tangent with secant correctly, we get everything.  More precisely, the points on the 
curve form a free abelian group of rank 1, and the tangent process corresponds to P 
goes to -2*P.
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The
Group 

Operation

( )E ≅Q Z

One can prove that the set of point on an elliptic curve with coordinates in Q forms a 
group with identity element the point “at infinity” (which is a rational point in the 
projective closure).  The group operation is defined as follows: To add the orange 
and green points, draw the red line they determine, find the third (blue) point of 
intersection.  That third point is the negative of the sum of the two points.  Now draw 
the (vertical) line determined by the blue dot and infinity.  The third (yellow) point of 
intersection is the sum of the organge and blue dots in the group.  

The secant process is P, Q -(P+Q)
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Group Law When P=Q

In the “limiting case” when P=Q, the line determined by P and Q is simply the 
tangent line.  Thus, e.g., 
(0,0) + (0,0) = -(1,-1) = (1,0).  The tangent process is P -2P.
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Mordell’s
Theorem

The group          of rational 
points on an elliptic curve 
is finitely generated.  Thus 
every rational point can 
be obtained from a finite
number of solutions, using 
some combination of the 
secant and tangent 
processes.

1888-1972

( )E Q

Mordell proved that given any cubic equation in two variables, there exists a finite 
number of solutions such that each solution on the cubic can be obtained from that 
finite number by iteration of the secant and tangent processes applied to those 
points.   Mordell did not give a method to find such a “finite basis” of starting 
solutions, and in fact, there is no PROVABLY correct algorithm known even today 
for doing this!  It is an open problem. 
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The Simplest Solution Can 
Be Huge

Stolls

It was a deep theorem (which is a special case of a much more general theorem 
that I will discuss later) that the rather simple looking equation y^2=x^3+7823 has 
infinitely many solutions, but many years passed and nobody was able to write one 
down explicitly.  For every other curve of the form y^2=x^3+d, with d<10000, such a 
solution had been written down when the general theory predicted it would be there.   
I suggested finding one to high school student Jen Balakrishnan as a Westinghouse 
project; she didn’t find one, but did some cool stuff anyways.   Finally, in 2002,
Michael Stoll found the simplest solution, which is quite large. Every solution can 
be obtained from this one (and from (x,-y)) by using the secant and tangent 
process.

The photo is from a short video clip I shot of Michael Stoll and his son when I visited 
them in Bonn, Germany in 2000. 

Stoll found the solution by doing a “4-descent”.  He found another curve F=0 which 
maps to y^2=x^3+7823 by a map of degree 4.  Then he found a smaller point on the 
curve F=0 and mapped that small point to the point above.   This method of descent 
goes from more complicated points to less complicated points, which are easier to 
find by a brute force search, and conjecturally (but not yet provably!) it should 
always succeed in finding points. 

This same point should also be find-able using an analytic method due to Benedict 
Gross and Don Zagier, but in practice it wasn’t because of complexity issues. 
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Central Question

EDSAC in Cambridge, England

Birch and Swinnerton-Dyer

How many solutions are 
needed to generate all 
solutions to a cubic equation?

In the 1960s Birch and Swinnerton-Dyer set up computations on EDSAC (pictured 
below, but maybe the version B-SD used was a little more “modern”?), to try to find 
a conjecture about how many points are needed to generate all solutions to a cubic 
equation.  Mordell’s theorem ensures that only finitely many are needed, but says 
nothing about the actual number in particular cases.   

These EDSAC photos are genuine and come from the EDSAC simulator web page.

EDSAC: “The EDSAC was the world's first stored-program computer to operate a 
regular computing service. Designed and built  at Cambridge University, England, 
the EDSAC performed its first calculation on 6th May 1949.” (from EDSAC simulator 
web page)

The picture in the upper right is a picture I took of Birch and Swinnerton-Dyer in 
Utrecht in 1999. 
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More EDSAC Photos

Electronic Delay 
Storage Automatic 

Computer

Construction and key punching.   

TELL Swinnerton-Dyer operating system story?  SD is the guy in the photo in the 
upper right.
I ate dinner with him and others at “high table” at Trinity College, Cambridge.  It was 
dark and very formal, and there were servants.  Lots of tradition and nice suits.  
After dinner we went to the formal smoke room, where these posh old professors 
chewed fine tobacco and drank wine.  It was all quite surreal for a young graduate 
student.  I sat next to Swinnerton-Dyer and he started telling me stories about his 
young days as a computer wiz.  He told me that when EDSAC was completed they 
needed a better operating system.  He learned how the machine worked, wrote an 
operating system, they loaded it, and it worked the first time. Presumably this made 
him favored by the computing staff, which might be part of why he got extensive 
computer time to do computations with elliptic curves. 

From simulator page: “EDSAC, Electronic Delay Storage Automatic Computer, was 
built by Maurice Wilkes and colleagues at the University of Cambridge Mathematics 
Lab, and came into use in May 1949. It was a very well-engineered machine, and 
Wilkes designed it to be a productive tool for mathematicians from the start. It used 
mercury delay line tanks for main store (512 words of 36 bits) and half megacycle/S 
serial bit rate. Input and output on paper tape, easy program load, nice 
rememberable machine order-code. See Resurrection issue 2 for some of Wilkes' 
design decisions.”
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Conjectures Proliferated
Conjectures Concerning Elliptic Curves

By B.J. Birch, pub. 1965

“The subject of this lecture is rather a special one.  I want to describe 
some computations undertaken by myself and Swinnerton-Dyer on 
EDSAC, by which we have calculated the zeta-functions of certain 
elliptic curves.  As a result of these computations we have found an 
analogue for an elliptic curve of the Tamagawa number of an 
algebraic group; and conjectures (due to ourselves, due to Tate, and 
due to others) have proliferated.  […] though the associated theory is 
both abstract and technically complicated, the objects about which I 
intend to talk are usually simply defined and often machine 
computable; experimentally we have detected certain relations 
between different invariants, but we have been unable to approach 
proofs of these relations, which must lie very deep.”

Read the above excerpt paper by Birch, from the 1960s.   

I took the photo of Birch during lunch in the middle of a long hike in Oberwolfach, 
Germany. 
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Solutions Modulo p
Consider solutions modulo a prime number:

2,3,5,7,11,13,17,19,23,29,31,37,...p =

We say that (a,b), with a,b integers, is a solution modulo p to

if

For example,

This idea generalizes to any cubic equation.

2 3y y x x+ = −
2 3 (mod ).b b a a p+ ≡ −

2 34 4 2 2  (mod 7).+ ≡ −

To describe the conjecture of Birch and Swinnerton-Dyer about how many solutions 
are needed to generate all solutions, we do something rather sneaky and strange.  
We count the number of solutions modulo p for lots of primes p. This is a very 
general technique in number theory (both computational and theoretical) --- to 
understand something “over Q”, try to understand it well modulo lots of primes.  (For 
example, to find echelon form of a dense matrix over Q, find it mod p for many 
primes, use chinese remainder theorem, and rational reconstruction.) 

Note that we just consider pairs (x,y) of integers. 

The graph in the upper right corner is of the solutions modulo 7 to y^2+y=x^3-x.  
This is the graph of the equation mod 7.  [Check some of the points.]
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Counting Solutions

Notice that there are 8 solutions and 8 is close to 7. 



21

The Error Term
(Hasse’s Bound)

Write                                   with 
error term

For example,                        so 

( ) ( )N p p A p= +

( ) 2A p p≤
(7) 8N = (7) 1.A =

1898-1979

It is a general fact about cubic curves that the number of solutions mod p is very 
close to p, it is 
at most 2*sqrt(p) from p.  

This is Hasse’s theorem from about 1933, and was proved in response to a 
challenge by Davenport. 
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More Primes

( ) ( )N p p A p= +

( ) number of soln'sN p =

Continuing: (13) 2,  (17) 0,  (19) 0,  (23) -2, (29) -6,  (31) 4,  ....A A A A A A= = = = = =

In this slide we list the error (the amount that you have to add to p to get the number 
of points) for primes 2,3,5,7, and 11.
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Commercial Break: 
Cryptographic Application

Commercial Plug: The set of solutions modulo p to an elliptic curve equation (along 
with one extra point “at infinity”) forms a finite abelian group on which the “discrete 
logarithm problem” appears to usually be very difficult.  Such groups are immensely 
useful in cryptography.   The books listed on this slide are about using elliptic curves 
over finite fields to build cryptosystems, for example, for securing bank transactions, 
or e-commerce.  This cryptosystems appear to be better than the RSA system 
because the key size need for a given level of security seems to be much smaller. 
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Guess
If a cubic curve has infinitely many 
solutions, then probably N(p) is 
larger than p, for many primes p.

Thus maybe the product of terms

will tend to 0 as M gets larger. Swinnerton-Dyer at AIM

0.010…100000
0.013…10000
0.021…1000
0.032…100
0.083…10

M

The guess that Birch and Swinnerton-Dyer made was that if E has infinitely many 
solutions, then N(p) will be “big” on average, which should mean “bigger than p”, 
hence the partial products of p/N(p) will probably tend to 0 as M gets large.   Thus 
maybe we can decide if a cubic equation has infinitely many solutions by counting 
points and forming these products. 

The table on the right lists the partial products for various M for y^2+y=x^3-x.  The 
same numbers for the Fermat cubic, which has finitely many solutions, are M=10: 
0.432,  M=100, 0.425…, M=1000, 0.383;  M=10000, 0.4738…;  M=100000, 0.3714,  
these are small, but do not seem to be tending to 0.  
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The L-function

2

1( , )
1 ( ) s sL E s

A p p p p− −=
− ⋅ + ⋅∏

The product is over all primes p.  (At a finite number of 
primes the factor must be slightly adjusted.)

Product converges for
3Re( )
2

s >

Formally, define a function L(E,s) by the infinite product over primes of factors ,as 
indicated above.  Note that the factors at a finite number of “primes of bad 
reduciton” must be slightly adjusted.  The product converges for Re(s) > 3/2. 

The product reminds us of the Riemann Zeta function. 
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The Riemann Zeta 
Function

all primes 

1( )  
1 s

p

s
p

ζ −=
−∏

Zeta extends to an analytic
function everywhere but at 1. 

1826-1866

The definition of Zeta is similar to L(E,s), and zeta has good analytic properties on 
all C.  The graph is of zeta restricted to the real line.  If you zoom in really close on 
the left, it makes an interesting sqiggle, which is not visible from this resolution.
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An Analytic Function

Thus Bryan Birch and Sir Peter 
Swinnerton-Dyer defined an 
analytic function 
such that formally:

Swinnerton-Dyer

( , )L E s

( ,1) " "
( )
pL E

N p
= ∏

Birch and Swinnerton-Dyer defined a function attached to the cubic curve. It is given
by a formula on some right half plane, and if you plug 1 into that formula you get our 
product.  In fact, it’s not known whether the product really converges, and it is 
known that if it does converge, it doesn’t converge to the value of the Birch-
Swinnerton-Dyer function at 1.   Nonetheless, the guess is that the behavior of f at 1 
should be intimately related to how many solutions are needed to generate all 
solutions on E.
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The Birch and Swinnerton-Dyer 
Conjecture

The order of vanishing of 

at 1 equals the rank of the group
of all rational solutions to E: 

CMI: $1000000 reward for a proof.
Bryan Birch

( , )L E s
( )E Q

1ord ( , ) rank ( )s L E s E= = Q

The conjecture of Birch and Swinnerton-Dyer is that the order of vanishing of f at 1 
is the number of solutions needed to generate.

This is a one million dollar Clay Math Inst. Prize problem.  -- THE problem for 
arithmetic geometry.

Emphasize that we throw in the torsion points for free, since they are easy to 
compute.  

This conjecture relates the order of vanishing of a function at a point at which it isn’t 
known to be defined to the order of a group that we don’t know how to compute.
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The Modularity Theorem

Theorem (2000, Wiles, Taylor, and 
Breuil, Conrad, Diamond) The curve
E arises from a “modular form”, so          

extends to an analytic 
function on the whole complex plane.

( , )L E s

A. Wiles

R. Taylor

(This modularity is the key input to Wiles’s
proof of Fermat’s Last Theorem.)

The function is analytic on the entire complex plane (a fact not known until 2000 
work of Breuil, Conrad, Diamond, Taylor, and WILES).
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2 3y y x x+ = −L-series for

This is a graph (that I computed using PARI) of L(E,s) for real s.  Notice that indeed 
L(E,s) appears to vanish to order 1 at s=1, as predicted by BSD.



31

Birch and Swinnerton-Dyer

This is a picture I took of Birch and Swinnerton-Dyer in Utrecht, Netherlands.
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The graph of             vanishes to order r.( , )rL E s

Some Graphs of                 for s real( , )L E s

s

These are graphs of four more function f_E(x).  The curve E_r has group of rational 
points minimally generated by r elements.  Note that the order of vanishing of the 
corresponding functions appear to match up with the expectation of Birch and 
Swinnerton-Dyer. 

The equations of the curves are [0,0,0,0,1],  [0,0,1,-1,0], [0,1,1,-2,0],  [0,0,1,-7,6]
Green: E0
Blue: E1
Light blue: E2
Purple: E3
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Examples of               that appear
to vanish to order 4 

( , )L E s

s

2 3 2 79 289y xy x x x+ = − − +

These are some graphs of the L-series attached to curves that require 4 generators.  
It is an OPEN PROBLEM to prove that f_E(s) really vanishes to order 4 for any 
curve --- we only know the function vanishes to order at least 2, and that f’’(1) = 
0.000000….
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Congruent Number Problem
Open Problem: Decide whether an integer n is the 
area of a right triangle with rational side lengths.

Fact: Yes, precisely when the cubic equation

has infinitely many solutions 

2 3 2y x n x= −
,x y∈

1 1 3 4 6
2 2

A b h= × = × = 6

6n =

Application:
The congruent number problem has been an open problem for about a thousand 
years, at least.  It asks for an algorithm to decide, with a finite amount of 
computation, whether a given integer is the area of a right triangle with rational side 
lengths.

The congruent number problem looks at first like it has nothing to do with cubic 
equations.  However, some algebraic manipulation shows that it does.
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Connection with BSD Conjecture

Theorem (Tunnell): The Birch 
and Swinnerton-Dyer conjecture 
implies that there is a simple 
algorithm that decides whether or 
not a given integer n is a 
congruent number.

See [Koblitz] for more details

And, Jerrold Tunnell proved that if the Birch and Swinnerton-Dyer conjecture is true, 
then there is a simple algorithm for deciding whether or not an integer n is a 
congruent number.  Nonetheless, still not enough of the conjecture is known, and 
the congruent number problem remains a tantalizing open problem. I would not be 
surprised if this 1000 year old problem is solved in the next decade.  In fact, it has 
already been solved for many classes of integers n, because of deep theorems of 
Benedict Gross, Don Zagier, Victor Kolyvagin, and others. 
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Gross-Zagier
Theorem

Benedict Gross

Don ZagierWhen the order of vanishing of
at 1 is exactly 1, then E

has rank at least 1.
( , )L E s

Subsequent work showed that if the order 
of vanishing is exactly 1, then the rank 
equals 1, so the Birch and Swinnerton-
Dyer conjecture is true in this case.

The Gross-Zagier theorem says that the conjecture of Birch and Swinnerton-Dyer is 
true when the order of vanishing is exactly 1.   That is, if the function vanishes to 
order exactly 1, then one solution can be used to generate them all.  This is the 
case for our example curve y^2+y=x^3-x.



37

Kolyvagin’s Theorem

Theorem. If is nonzero then the
rank is zero, i.e.,            is finite.

( ,1)L E
( )E Q

Kolyvagin’s theorem asserts that the conjecture is true when f vanishes to order 0, 
i.e, when f(1) is nonzero.  

Very little is known when f vanishes to order 2 or higher.  Also, not a single example 
is known where we can prove that f really does vanishes to order bigger than 3 
(though it appears to). 

Kolyvagin’s an intense Russian mathematician. I snapped this photo of him recently 
after I spoke at CUNY and he went to dinner with us. 
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Thank You

Acknowledgments
• Benedict Gross
• Keith Conrad
• Ariel Shwayder (graphs 

of               )( , )L E s

1ord ( , ) rank ( )s L E s E= = Q

Thank everyone.  
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Mazur’s Theorem
For any two rational 
a, b, there are at 
most 15 rational 
solutions (x,y) to 

with finite order.

2 3y x ax b= + +

In the 1970s Barry Mazur wrote a huge paper that answered a pressing question, 
which I mentioned earlier.  How do you know if the tangent process will eventually 
cycle around or keep producing large and larger points?  Either possibility can and 
does occur, but how do you know in a particular case?  Mazur showed that if you 
get at least 16 distinct points by iterating the tangent process, then the tangent 
process will never cycle around on itself, and you will always get new points.   This 
is an extremely deep theorem, and the method of proof opened many doors.   

The picture on the right is one I took of Mazur outside his Harvard office.  The 
boxed theorem is the statement of this theorem from the paper “Modular Curves 
and the Eisenstein Ideal” in which it appears.   For those who know group theory:  
The set of solutions to a cubic equation (plus one extra “0” element) form an abelian
group.  Mazur’s theorem then gives an explicit list of the possible torsion subgroups 
of this group.


