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1 Generalities

We will denote by In the set of irreducible (monic) polynomials of degree n in Fp[X].
There are a few questions. Is In nonempty? Can one test whether f ∈ In? Is there is
fast algorithm to decompose a (random) polynomial in Fp[X] into irreducible factors?

Proposition 1.1. Let f ∈ Fp[X] be an irreducible polynomials of degree n. Then
f(X) | Xpn −X and f(X) - Xpm −X for any m < n.

Proof. We can realize Fpn as Fp[X]/(f) so f has a root in Fpn , which in turn is a
root of Xpn −X. Therefore (f(X), Xpn −X) 6= 1 in Fpn [X] and so in Fp[X]. Since
f(X) is irreducible over Fp[X] this implies that f(X) | Xpn −X.

Assume that f(X) | Xpm−X for some m. Then f has a root α in Fpm , since Fpm is
the set of roots of Xpm−X. Then 1, α, . . . , αm are m+1 vectors in the m-dimensional
vector space Fpm/Fp. Therefore they are linearly dependent. Therefore the minimal
polynomial g(X) of α in Fp[X] will have degree m < n, which contradicts the fact
that f(X) is irreducible.

Theorem 1.2. Let n ≥ 2 be a positive integer. Then

Xpn −X =
∏

d|n

∏

f∈Id

f.

Proof. For every d | n and every f ∈ Id we know that f(X) | Xpd − X | Xpm − X
(because Xpn − X is Mersenne). Since all the polynomials f are irreducible so
coprime, their product will divide Xpn −X.
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Corollary 1.3. Let an = |In|. Then

an ≥
pn − (log n)pn/2

n
.

Proof. By degree comparison, Theorem 1.2 gives pn =
∑

d|n dad. By the Möbius
inversion formula we get that

an =
1

n

∑

d|n
pdµ(n/d).

If n = pn1
1 · · · pnkk then an ≥ 1

n
(pn −∑k

1 p
n/pi) ≥ 1

n
(pn − kpn/2).

In conclusion In is nonempty for all n ≥ 2.

2 Irreducibility Testing

2.1 Theory

Let f ∈ Fp[X] be a polynomial of degree n. We would like to devise a test to see if
f ∈ In. We have seen that if f is irreducible then f(X)|Xpn −X and for all m < n
(f(X), Xpm −X) = 1. Evidently, a counterexample to this would have m|n so it is
enough to check this condition for m = n/pi for each prime divisor pi of n. Let’s
make things formal

Theorem 2.1. f ∈ In if and only if

1. f(X)|Xpn −X.

2. For each pi | n a prime divisor we have (f(X), Xpm −X) = 1 for m = n/pi.

Proof. Assume that f is irreducible. Then f will pass the test by what we have
already seen. Assume that f = f `11 · · · f `rr . If `j > 1, then f 2

i | f cannot divide
Xpn −X since this polynomial is a product of distinct irreducible polynomials. So
`i = 1 for all i.

Let α be a root of f1. If r 6= 1 then deg f1 < n so α has degree < n over Fp.
Moreover, if f passes test 1 then α ∈ Fpn so Fpn/Fp(α)/Fp is a field extension tower.

Therefore degα | n so degα | n/pi for some i. Then f1 | Xpn/pi−X so test 2 fails.
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2.2 Running Time

The first test is Xpn ≡ X (mod f(X)) and this can be done in n log p steps using
repeated squarings. The second test needs log n tests of the form gcd(f(X), X pm −
X) = 1. Each such test uses the Euclidean algorithm that needs m operations with
degree ≤ m polynomials. So the running time of each such Euclidean algorithms is
roughly O(n3), although it might be faster in practice.

3 Finding Roots (mod p)

Let p 6= 2 be a prime number. Let f ∈ Fp[X] be a polynomial of degree m, and
we may assume that 0 is not a root. We want to find a root of f in E = Fpn . Let
q = pn. If (f(X), Xq−1 − 1) = 1 then f clearly has no roots in E. Otherwise, let
f0(X) = gcd(f(X), Xq−1 − 1), and all the roots of f in E will be roots of f0. Write
f0(X) = (X − a1) · · · (X − ak). Whether all the roots are equal it is easy to check:
simply compute all the derivatives of f and each should divide f . Assume that not
all the roots are equal.

Lemma 3.1. Let u 6= v ∈ E. The the number of w ∈ E such that one of the
following two cases is satisfied is (q − 1)/2:

1. u+ w is a root of X (q−1)/2 − 1 and v + w is a root of X (q−1)/2 + 1.

2. u+ w is a root of X (q−1)/2 + 1 and v + w is a root of X (q−1)/2 − 1.

Proof. For such a w it is clear that (u + w)/(v + w) is a quadratic nonresidue mod
q, of which there are (q − 1)/2. Moreover, for every quadratic nonresidue c there is
a unique w such that (u+ w)/(v + w) = c since u 6= v.

For d ∈ E write fd(X) = f0(X − d). Then the roots of fd are a1 + d, . . . , ak + d
and by the lemma above for half of the d’s, there exist i, j such that ai 6= aj and d
satisfies the conditions in the lemma.

Proposition 3.2. If d satisfies the conditions in the lemma for ai, aj then gcd(fd(X), X(q−1)/2−
1) = hd(X) has degree < deg fd(X).

Proof. Otherwise fd(X) | X(q−1)/2 − 1 so all the roots are quadratic residues which
contradicts the assumption on d.

Algorithm 3.3.

Input f .
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Compute f0(X) = gcd(f(X), Xq−1 − 1).

Choose d ∈ E randomly.

Compute gcd(fd(X), X(q−1)/2−1) = hd(X). With probability 1/2 we have deg hd(X) <
deg fd(X). Repeat until this happens.

Then hd(X) | fd(X) so hd(X + d) | f0(X) is a proper factor.

Repeat the algorithm for hd(X + d) until reach a linear factor.

Output a root of the last linear factor which will be a root of f(X) in E.

Problem 3.4. For a prime p ≡ 1 (mod 4) find a, b integers so that p = a2 + b2.

Proof. Let u be a root of X2 + 1 (mod p), found as above. Then you know that
(a+bi) | (u+i) so use the Euclidean algorithm in Z[i] to find a+bi = gcd(p, u+i).

4 Factorisation (mod p)

4.1 Theory

Let f ∈ Fp[X] be a polynomial of degree n. We would like to factor f into irreducible
polynomials in Fp[X]. Test to see if irreducible, stop if yes. Otherwise continue.

For each k ∈ {1, . . . , n} find hk(X) = gcd(f(X), Xpk−1 − 1). For each hk 6= 1 we
have hk(X)|f(X) and all the roots of hk(X) are in Fpk . Use the above algorithm to
find an α ∈ Fpk such that hk(α) = 0. Find the minimal polynomial gα(X) of α over
Fp. Then clearly gα(X) will be an irreducible factor of f(X).

Divide by gα(X) and repeat.

Theorem 4.1. This works.

Proof. The only problem that may occur is that all the hk(X) are 1. Since f(X) is
reducible then f = f `11 · · · f `rr . Then the roots of f1 are in Fpdeg f1 so hdeg f1 6= 1.

4.2 Running Time

Let α be in Fpk and in no smaller field (easy to check using powers of Frobe-
nius). Then the minimal polynomial has degree k so simply find a relation between
1, α, . . . , αk using simple linear algebra.
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