
Elliptic Curves and the Birch and

Swinnerton-Dyer Conjecture

William Stein

Harvard University

http://modular.fas.harvard.edu/129-05/

Math 129: April 5, 2005

1



This talk is a first introduction to

elliptic curves and the

Birch and Swinnerton-Dyer conjecture.
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Elliptic Curves over the Rational Numbers Q

An elliptic curve is a nonsingular plane cu-
bic curve with a rational point (possibly “at
infinity”).
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EXAMPLES

y2 + y = x3 − x

x3 + y3 = z3
(projective)

y2 = x3 + ax + b

3x3 + 4y3 + 5z3 = 0
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The Group Operation
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∞
Point at infinity

⊕ =

(−1,0) ⊕ (0,−1) = (2,2)

The set of rational points

on E forms an abelian group.
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The First 150 Multiples of (0,0)

(The bluer the point, the

bigger the multiple.)

Fact: The group E(Q) is infinite

cylic, generated by (0,0).

In contrast, y2 + y = x3 − x2 has

only 5 rational points!
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Mordell’s Theorem

Theorem (Mordell). The group E(Q) of rational points on an

elliptic curve is a finitely generated abelian group, so

E(Q) ∼= Zr ⊕ T,

with T = E(Q)tor finite.

Mazur classified the possibilities for T .

Folklore conjecture: r can be arbitrary, but the biggest r ever

found is (probably) 24.
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Conjectures Proliferated

“The subject of this lecture is rather a special one. I want to de-

scribe some computations undertaken by myself and Swinnerton-

Dyer on EDSAC, by which we have calculated the zeta-functions

of certain elliptic curves. As a result of these computations we

have found an analogue for an elliptic curve of the Tamagawa

number of an algebraic group; and conjectures have proliferated.

[...] though the associated theory is both abstract and techni-

cally complicated, the objects about which I intend to talk are

usually simply defined and often machine computable; experi-

mentally we have detected certain relations between different

invariants, but we have been unable to approach proofs of these

relations, which must lie very deep.” – Birch 1965
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Birch and Swinnerton-Dyer (Utrecht, 2000)
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The L-Function

Theorem (Wiles et al., Hecke) The following function extends

to a holomorphic function on the whole complex plane:

L∗(E, s) =
∏

p-∆







1

1 − ap · p−s + p · p−2s





 .

Here ap = p + 1 − #E(Fp) for all p - ∆E. Note that formally,

L∗(E,1) =
∏

p-∆

(

1

1 − ap · p−1 + p · p−2

)

=
∏

p-∆

(

p

p − ap + 1

)

=
∏

p-∆

p

Np

Standard extension to L(E, s) at bad primes.
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Real Graph of the L-Series of y2+y = x3−x
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More Graphs of Elliptic Curve L-functions
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The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over Q. The order of

vanishing of L(E, s) as s = 1 equals the rank of E(Q).
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The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing ords=1 L(E, s) is ≤ 1, then

the conjecture is true for E.
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BSD Conjectural Formula

L(r)(E,1)

r!
=

ΩE · RegE ·
∏

p|N cp

#E(Q)2tor
· #X(E)

• #E(Q)tor – torsion order

• cp – Tamagawa numbers

• ΩE – real volume
∫

E(R) ωE

• RegE – regulator of E

• X(E) = Ker(H1(Q, E) →
⊕

v H1(Qv, E))

– Shafarevich-Tate group
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One of My Research Projects

Project. Find ways to compute every quantity appearing in the

BSD conjecture in practice.

NOTES:

1. This is not meant as a theoretical problem about computabil-

ity, though by compute we mean “compute with proof.”

2. I am also very interested in the same question but for modular

abelian varieties.

3. Working with Harvard Undergrads: Stephen Patrikas, Andrei

Jorza, Corina Patrascu.
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