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Abstract: A number of classical and

not so classical problems in number the-

ory concern finding polynomials with

integer coefficients that are of small

norm. These include old chestnuts like

the Merit Factor problem, Lehmer’s Con-

jecture and Littlewood’s (other) Con-

jecture.



Let

Zn :=







n
∑

i=0
aiz

i : ai ∈ Z







denote the set of algebraic polynomials

of degree at most n with integer coef-

ficients and let Z denote the union.

Let

Ln :=







n
∑

i=0
aiz

i : ai ∈ {−1,1}






denote the set of polynomials of de-

gree at most n with coefficients from

{−1,1}. Call such polynomials Little-

wood polynomials.



The supremum norm of a polynomial

p on a set A is defined as

‖p‖A := sup
z∈A

|p(z)|.

For positive α, the Lα norm on the

boundary of the unit disk is defined by

‖p‖α :=

(

1

2π

∫ 2π

0

∣

∣

∣

∣

p
(

eiθ
)∣

∣

∣

∣

α
dθ

)1/α
.

For

p(z) := anzn + · · · + a1z + a0

the L2 norm on D is also given by

‖p‖2 =

√

|an|2 + · · · + |a1|2 + |a0|2.



The two interesting limiting cases give

lim
α→∞ ‖p‖α = ‖p‖D =: ‖p‖∞

and

lim
α→0

‖p‖α = exp

(

1

2π

∫ 2π

0
log

∣

∣

∣

∣

p
(

eiθ
)∣

∣

∣

∣

dθ

)

.

The latter is the Mahler measure de-

noted by M(p). Jensen’s theorem for

pn(z) := a(z − α1)(z − α2) · · · (z − αn)

gives

M(pn) = |a|
∏

|αi|≥1

|αi|.

Mahler’s measure is multiplicative:

M(p q) = M(p)M(q)



Problem 1. Littlewood’s Problem

in L∞ (1950?). Find the polynomial

in Ln that has smallest possible supre-

mum norm on the unit disk.

Show that there exist positive constants

c1 and c2 so that for any n is it is pos-

sible to find pn ∈ Ln with

c1
√

n ≤ |pn(z)| ≤ c2
√

n

for all complex z with |z| = 1.

Littlewood, in part, based his conjec-

ture on computations of all such poly-

nomials up to degree twenty.



Odlyzko has now done 200 MIPS years

of computing on this problem

A Related Erdős’s Problem in L∞.

Show that there exists a positive con-

stant c3 so that for all n and all pn ∈ Ln

we have ‖pn‖D ≥ (1 + c3)
√

n.



Merit Factor Problems (1950?). The

L4 norm computes algebraically. If

p(z) :=
n
∑

k=0

akzk

has real coefficients then

p(z)p(1/z) =
n
∑

k=−n
ckzk

where the acyclic autocorrelation co-

efficients

ck =
n−k
∑

j=0
ajaj+k and c−k = ck

and

‖p(z)‖44 = ‖p(z)p(1/z)‖22 =
n
∑

k=−n
c2k.



The merit factor is defined by

MF (p) =
‖p‖42

‖p|44 − ‖p‖42
or equivalently

MF (p) =
n + 1

2
∑

k>0 c2k
.

The merit factor is a useful normaliza-

tion. It tends to give interesting se-

quences integer limits and makes the

expected merit factor of a polynomial

with ±1 coefficients 1.

The Rudin-Shapiro polynomials have

merit factors that tend to 3.



Problem 2. Merit Factor Problem.

Find the polynomial in Ln that has small-

est possible L4 norm on the unit disk.

Show that there exists a positive con-

stant c4 so that for all n and all pn ∈ Ln

we have

L4(pn) ≥ (1 + c4)
√

n.

Equivalently show that the Merit Fac-

tor is bounded above.



The Related Barker Polynomial Prob-

lem. For n > 12 and pn ∈ Ln show that

L4(pn) > ((n + 1)2 + 2n)1/4.

Equivalently show that at least one non

trivial autocorrelation coefficient is strictly

greater than 1 in modulus.

This is much weaker than the Merit

Factor Problem.



• Find sequences that have analysable

Merit Factors

Theorem . For q an odd prime, the

Turyn type polynomials

Rq(z) :=
q−1
∑

k=0





k + [q/4]

q



 zk

where [·] denotes the nearest integer,

satisfy

‖Rq‖44 =
7q2

6
− q − 1

6
− γq

and

γq :=























h(−q)
(

h(−q) − 4
)

if q ≡ 1,5 (mod 8),

12
(

h(−q)
)2

if q ≡ 3 (mod 8),

0 if q ≡ 7 (mod 8).



Thus these polynomials have merit fac-

tors asymptotic to 6.

Golay, Høholdt and Jensen, and Tu-

ryn (and others) show that the merit

factors of cyclically permuted charac-

ter polynomials associated with non-

principal real characters (the Legendre

symbol) vary asymptotically between 3/2

and 6.



Several authors have conjectured this

is best possible. For example in 1983

Golay wrote:

“[Six] is the highest merit factor

obtained so far for systematically

synthesized binary sequences, and

the eventuality must be consid-

ered that no systematic synthe-

sis will ever be found which will

yield higher merit factors.”



And in 1988 Høholdt and Jensen wrote:

“We therefore make a new con-

jecture concerning the merit fac-

tor problem, namely, that asymp-

totically the maximum value of

the merit factor is 6 and hence

that offset Legendre sequences

are optimal.”



A really interesting observation made

by Tony Kirilusha and Ganesh Narayanaswamy

as summer students at the University

of Richmond of Jim Davis suggested

that one should try building on Turyn’s

construction by appending the initial

part of Turyn’s sequence to the end.

Their suggestion was wrong but the in-

tuition was good. To see what is hap-

pening one needs to look at sequences

of length 100,000 or greater.



We conjecture there exist sequences of

Turyn type polynomials (with modifi-

cation) that have merit factors grow-

ing like 6.3. (Joint work with Choi and

Jedwab).

Basically one rotates the Fekete poly-

nomials by 22 percent and adds 5.7

percent of the initial terms to the end.

The numbers are compelling!!



Merit Factor Problem Restated.

For a sequence of length n+1

{a0, a1, a2, . . . , an} ak = ±1

the acyclic autocorrelation coefficients

ck :=
n−k
∑

j=0
ajaj+k and c−k = ck

and the Merit factor

MF :=
n + 1

2
∑

k>0 c2k
.

For any (all) n, maximize this!

• This has been called the ”hardest

combinatorial optimization problem known.”



• Best merit factors have been com-

puted up to length 59. This is by vari-

ations on branch and bound algorithms

(with huge effort).

• The “landscape” for best merit fac-

tors is very irregular. We suspect that

most hueristics are wrong.

• All Golay pairs are known up to length

100.

• Barker polynomials (all autocorrela-

tions of size at most 1) are known not

to exist up to 1020 – far past compu-

tational rangs.



• One ambition is to map out the best

merit factor space probabilistically up

to degree 100 or so.

• This is done with a mix of hill climb-

ing and simulated annealing. (And a

lot of cluster computing.)

• It works surprisingly well. (Joint with

Ferguson and Knauer).



Problem 3. Lehmer’s Problem (1933).

Show that a (non-cyclotomic) polyno-

mial p with integer coefficients has Mahler

measure at least 1.1762.... (This lat-

ter constant is the Mahler measure of

1+ z− z3− z4− z5− z6− z7+ z9+ z10.)

A conjecture of similar flavour (implied

by the above) is

Conjecture of Schinzel and Zassen-

haus (1965). There is a constant c

so that any non-cyclotomic polynomial

pn of degree n with integer coefficients

has at least one root of modulus at

least c/n.



The best partials are due to Smyth.

If p is a non-reciprocal polynomial of

degree n then at least one root ρ sat-

isfies

ρ ≥ 1 +
logφ

n

where φ = 1.3247 . . . is the smallest

Pisot number, namely the real root of

z3 − z − 1.

The number φ is also the smallest mea-

sure of a non-reciprocal polynomial.



Theorem 1 (Hare, Mossinghoff and

PB) Suppose f is a monic, nonrecipro-

cal polynomial with integer coefficients

satisfying f ≡ ±f∗ mod m for some in-

teger m ≥ 2. Then

M(f) ≥ m +
√

m2 + 16

4
, (1)

and this bound is sharp when m is even.

Corollary 1 If f is a monic, nonrecip-

rocal polynomial whose coefficients are

all odd integers, then

M(f) ≥ M(x2 − x − 1) = (1 +
√

5)/2.



Theorem 2 (Dobrowolski, Mossinghoff

and PB) Suppose f is a monic poly-

nomial with all odd integer coefficients

of degreen that does not have measure

1.

a] Schinzel and Zassenhaus holds for

this class with at least one root of mod-

ulus at least (1 + .31/n).

b] If f is irreducible then Lehmer’s con-

jecture holds for this class and the mea-

sure must be at least 1.495.
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A Related Problem of Mahler’s. For

each n find the polynomials in Ln that

have largest possible Mahler measure.

Analyse the asymptotic behaviour as n

tends to infinity.



Multiplicity of Zeros of Height One

Polynomials. What is the maximum

multiplicity of the vanishing at 1 of a

height 1 polynomial ?

Multiplicity of Zeros in Ln. What is

the maximum multiplicity of the van-

ishing at 1 of a polynomial in Ln?
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Problem 4. Littlewood’s 22nd Prob-

lem

“If the nm are integral and alldifferent,

what is the lower bound on the number

of real zeros of

N
∑

m=1
cos(nmθ)??

Possibly N − 1, or not much less.”

Littlewood in his 1968 monograph “Some

Problems in Real and Complex Analy-

sis” poses this research problem, which

appears to still be open.



In fact no progress appears to have

been made on this in the last half cen-

tury. Until now.

Theorem 3 It is possible to construct

cosine polynomials with the nm integral

and all different, so that the number of

real zeros of

N
∑

m=1
cos(nmθ)

is

O
(

N9/10
)

.



We also prove in a positive direction.

Denote the number of zeros of T in the

period [−π, π) by N(T ).

Theorem 4 Suppose the set {aj : j ∈
N} ⊂ R is finite and the set {j ∈ N :

aj 6= 0} is infinite. Let

Tn(t) =
n
∑

j=0
aj cos(jt) .

Then

lim
n→∞N(Tn) = ∞ .



One of our main tools for this, not sur-

prisingly, is the resolution of the Little-

wood Conjecture.



The next two results SHOULD be straight-

foward corollaries of the above result

(????)



Theorem 5 Let AN denote the the lower

bound on the number of zeros in pe-

riod [−π, π) of all N term cosine sums

of the form

N
∑

m=1
cos(nmθ)

then

lim
n→∞Bn = ∞.

As an answer to a question of B. Con-

rey.

Theorem 6 Let BN denote the the lower

bound on the number of zeros in pe-

riod [−π, π) of all N term cosine sums



of the form

N
∑

m=1
± cos(nθ)

then

lim
n→∞An = ∞ .

Lemma 1 Let λ0 < λ1 < · · · < λm be

nonnegative integers and let

Sm(t) =
m
∑

j=0
Aj cos(λjt) .

Then

∫ π

−π
|Sm(t)| dt ≥ 1

80

m
∑

j=0

|Am−j|
j + 1

.



Littlewood’s 22nd Problem

Problem 1 “If the nm are integral and

all different, what is the lower bound

on the number of real zeros of
∑N

m=1 cos(nmθ)?

Possibly N − 1, or not much less.”

In terms of reciprocal polynomials one

is looking for a reciprocal polynomial

with coefficients 0 and 1 with 2n terms

and n-1 or fewer zeros.

Even achieving n-1 is fairly hard.



An exhaustive search up to 2n = 32

yielded only the 2 examples below with

n-1 zeros of modulus one and none

with n-2 or fewer zeros.

There where only 11 more examples

with exactly n zeros. It is hard to see

how one might generate infitely many

examples or indeed why Littlewood made

his conjecture.

x27+x26+x25+x19+x18+x17+x15+

x14+x13+x12+x10+x9+x8+x2+x+1

and



x31 + x30 + x29 + x28 + x27 + x26 +

x25 + x24 + x23 +x20 +x19 +x17 +x14

+x12 + x11 + x8 + x7 + x6 + x5 + x4 +

x3 + x2 + x + 1

The following is a reciprocal polyno-

mial with 32 terms and exactly 14 zeros

of modulus 1. So it corresponds to a

cosine sum of 16 terms with 14 zeros in

[−π, π). In other words the sharp ver-

sion of Littlewood’s conjecture is false.

(Though barely.)

1+x+x2+x4+x3+x5+x6+x7+x8+

x9+x12+x13+x14+x15+x16+x18+x20



+x22 + x23 + x24 + x25 + x26 + x29 +

x30+x31+x32+x33+x34+x35+x36+

x37 + x38

The following is a reciprocal polyno-

mial with 280 terms and 52 zeros of

modulus 1. So it corresponds to a co-

sine sum of 140 terms with 52 zeros in

[−π, π). In other words the sharp ver-

sion of Littlewood’s conjecture is false.

Though this time by a margin.

It was found by a version of the greedy

algorithm (and some guessing). There



is no reason to believe it is a minimal

example.

(1+x+x2+x4+x3+x5+x6+x7+x8+

x9+x10+x11+x12+x13+x19+x14+

x15+x17+x18+x16+x20+x21+x22+

x23+x24+x25+x26+x27+x28+x29+

x30+x31+x32+x33+x34+x35+x36+

x37+x38+x39+x40+x41+x42+x43+

x44+x45+x46+x47+x48+x49+x50+

x51+x52+x53+x54+x55+x56+x57+

x58+x59+x60+x61+x62+x63+x64+

x65+x66+x67+x68+x69+x70+x71+

x72+x73+x74+x75+x76+x78+x79+



x80+x81+x82+x83+x77+x84+x85+

x86+x87+x88+x89+x90+x91+x92+

x93+x94+x95+x96+x97+x98+x99+

x100+x101+x102+x103+x104+x105+

x106+x107+x108+x109+x110+x111+

x112+x113+x114+x115+x116+x117+

x118+x119+x120+x121+x122+x123+

x129+x130+x131+x132+x133+x135+

x136+x137+x138+x139+x140+x142+

x144+x146+x149+x150+x154+x155+

x158+x160+x162+x164+x165+x171+

x166+x167+x169+x168+x172+x173+

x174+x175+x181+x182+x183+x184+

x185+x186+x187+x188+x189+x190+



x191+x192+x193+x194+x195+x196+

x197+x198+x199+x200+x201+x202+

x203+x204+x205+x206+x207+x208+

x209+x210+x211+x212+x213+x214+

x215+x216+x217+x218+x219+x220+

x221+x222+x223+x224+x225+x226+

x227+x228+x230+x231+x232+x233+

x234+x235+x229+x236+x237+x238+

x239+x240+x241+x242+x243+x244+

x245+x246+x247+x248+x249+x250+

x251+x252+x253+x254+x255+x256+

x257+x258+x259+x260+x261+x262+

x263+x264+x265+x266+x267+x268+

x269+x270+x271+x272+x273+x274+



x275+x276+x277+x278+x279+x280+

x281+x282+x283+x284+x285+x286+

x287+x288+x289+x290+x291+x292+

x293+x294+x295+x296+x297+x298+

x299+x300+x301+x302+x303+x304)



Auxilliary Functions

The key is to construct n term cosine

sums that are large most of the time.

Lemma 2 There is a constant C such

that for all n and α > 1 there is a se-

quence a0, . . . , an with each ai ∈ {0,1}
such that

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ Cαn−1/2.

where

Pn(t) =
n
∑

j=0
aj cos(jt).



The Main Theorem

Theorem 7 It is possible to construct

cosine polynomials with the nm integral

and all different, so that the number of

real zeros of

N
∑

m=1
cos(nmθ)

is

O
(

N9/10 log1/5(N)
)

.

The proof follows immediately from the

following lemma and Lemma 2.



(Take m := N+1, n = m2/5 log−4/5(m),

α = n1/4 and β = Cαn−1/2 = Cn−1/4.)



Lemma 3 Let m ≤ n,

Dm(t) :=
m
∑

j=0
cos(jt) ,

Pn(t) :=
n
∑

j=0
aj cos(jt) , aj ∈ {0,1} .

Suppose α ≥ 1 and

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ β .

Let Sm := Dm − Pn. Then the number

of zeros of Sm in [−π, π) is at most

c1m

α
+ c2mβ + c3nm1/2 logm ,

where c1, c2, and c3 are absolute con-

stants.



For this we need the following conse-

quence of the Erdős-Turán Theorem.

Lemma 4 Let

Sm(t) =
n
∑

j=0
aj cos(jt) , aj ∈ {0,1} .

Denote the number of zeros of Sm in

[α, β] ⊂ [−π, π) by N([α, β]). Then

N([α, β]) ≤ c4m(β − α) + c4
√

m logm ,

where c4 is an absolute constant.



Average Number of Zeros

Lemma 5 Suppose that p is a polyno-

mial of degree exactly n and p has k

zeros of modulus greater than 1 and j

zeros of modulus 1 then for any m

(

zmp(z) ± p∗(z)
)

has degree m+n and at least m+n -

2k roots of modulus 1.

Proof. Rouché’s theorem shows that

(1 + ε)zmp(z) ± p∗(z)



and

zmp(z)

have the same number of roots inside

the unit disk. Note that |p(z)| = |p∗(z)|
for |z| = 1.

So with ε = 0, zmp(z) ± p∗(z) has all

but k zeros in the closed unit disk.

Now use the fact that zmp(z) ± p∗(z)

is reciprocal so has the same number

of zeros of modulus less than 1 as of

modulus greater than 1.



Lemma 6 Suppose that p is a polyno-

mial of degree exactly n and p(0) 6= 0.

Consider

P :=
(

zmp(z) ± p∗(z)
)

and

Q :=
(

zmp∗(z) ± p(z)
)

.

with the same choice of sign (ie the

cos case and the sin case). Suppose P

has j1 zeros of modulus 1 and Q has

j2 zeros of modulus 1. Then

j1 + j2 ≥ 2m.



Proof. Use the previous lemma and

note that if p has k zeros of modulus

greater than 1 and j zeros of modulus

1 then p∗ has n−k−j zeros of modulus

greater than 1 and j zeros of modulus

1.



Note that if M := (m − n)/2 ≥ 1 with

M an integer then

C :=
n+M
∑

i=M
ai cos it

and

S :=
n+M
∑

i=M
ai sin it

correspond to

P (z) :=
(

zmp(z) ± p∗(z)
)

with

p(z) =
n
∑

i=0
aiz

i.



Also zeros of P of modulus 1 corre-

spond (with the same count) to ze-

ros of the trigonometric polynomials C

amd S in the period [0, π).

Lemma 7 Suppose an+M 6= 0. Con-

sider

C(t) :=
n+M
∑

i=M
ai cos it

and

C∗(t) :=
n+M
∑

i=M
a(n+M+M−i) cos it

which reverses the coefficents.



Let w1 be the number of zeros of C

in the period [0, π) and let w2 be the

number of zeros of C∗ in the period

[0, π) then

w1 + w2 ≥ m ≥ n + 1.

Furthermore w1 ≥ m and w2 ≥ m.



Averaging over any reasonable class of

sums gives:

Lemma 8 The average number of ze-

ros over the classes

{

n
∑

i=1
± cos it

}

and

{

n
∑

i=1
δi cos it, δi ∈ 0,1

}

is at least n/2.


