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Appetizer

The elliptic curve over F = Q(
√
−3) given by

E : y2 + xy = x3 +
3 +

√
−3

2
x2 +

1 +
√
−3

2
x

has aK = F (
√

22 +
√
−3)-valued point (x, y) with

x =
125460788− 629994

√
−3

127165927

y =
12488668253575 + 1451573987512

√
−3

31646131095439

√
22 +

√
−3−

− 62730394− 314997
√
−3

127165927
.



Modularity of Elliptic Curves over IQ
Fields

Let F = Q(
√
d) be a Euclidean imaginary quadratic

field (so d ∈ {−1,−2,−3,−7,−11}).

Langlands predicts:

Elliptic curve E/F (with End(E)⊗Q 6= F )

l (conjectured)

A C3-valued harmonic 1-form on the upper half-space

H(3) = C× R>0

Such differentials on H(3) allow for an elementary
description of modularity in this case – amenable to
computations.



The Geometry of the Upper Half-Space

Think of (z, t) ∈ H(3) as the quaternion z + tj ∈ H.

This allows us to define an action ofGL2(C) onH(3):

(
a b
c d

)
: h 7→ (ah + b)(ch + d)−1,

A basis of 1-forms is given by the triple

~β =

(
−dz
t
,
dt

t
,
dz̄

t

)
.



Congruence subgroup: for N ⊂ OK an ideal, set

Γ0(N ) =

{(
a b
c d

)
∈ GL2(OF )|c ∈ N

}
(Note we’re working with GL2 rather than SL2).

Definition 1. A cusp form of weight 2 on Γ0(N )

is a vector-valued function ~f : H(3) → C3 (row
vectors) satisfying

• (Invariance) The harmonic 1-form ~f · ~β is
invariant under γ ∈ Γ0(N );

• (Cuspidality)
∫

C/OF
(γ∗)(~f · ~β) = 0 for all

γ ∈ PSL2(OF ) (i.e. the constant term of

the Fourier-Bessel expansion of ~f – see be-
low – at the cusp γ−1∞ is zero).

The space of all plus-cusp forms of weight 2 and
level N is denoted by S+

2 (N ).

Hecke theory entirely analogous to Q.



Fourier-Bessel Expansion

A cusp form has a Fourier-Bessel expansion:

~f (z, t) =
∑
(α)6=0

c(α)t2 ~K

(
4π|α|t√
|D|

) ∑
ε∈O×F

ψ

(
εαz√
D

)
.

where

ψ(z) = e4πiRe z, ~K(t) =

(
− i

2
K1(t), K0(t),

i

2
K1(t)

)
.

The hyperbolic Bessel functionsKi(t) are rapidly de-
creasing as t → ∞, and ψ(z) is a character of the

additive group, so ~Kψ is analogous to e−2πye2πix =
e2πiz.



The Shimura-Taniyama Conjecture

Conjecture 1 (Shimura-Taniyama). To every isogeny
class of elliptic curves E/F of conductor ideal N
with End(E) ⊗ Q 6= F there corresponds a new-

form ~f ∈ S+
2 (N ) characterized by

c(p) = Np + 1−#E(Fp).

for all prime ideals p 6= 0.

This is a much weaker claim than Shimura-Taniyama
over Q:

1. Manin: there exists a single positive real period
Ω for which{∫ γP

P

~f · ~β|γ ∈ Γ0(N )

}
= ΩZ

Can’t reconstruct the Weierstrass lattice of E(C).

2. H(3) is a 3D real manifold, so there can’t be a
holomorphic modular parametrization H(3) → E –
bad news for modular constructions of points.



A Comparison With Modular Forms on
GL2(AQ)

Let E be an elliptic curve over Q. Two views of the
modular parametrization of E:

Algebraic Geometry. There is a morphism of
algebraic curves ψ : X0(N) → E defined over Q.

Heegner points: O ⊂ K an order in an imaginary
quadratic field N factors as N = N · N .

xc = (C/O → C/N−1) ∈ X0(N)(Hc), where Hc is
the ring class field of K of conductor c.

Applying φ yields essentially the only known system-
atic construction of rational points on E.

Analysis. The composed map

ψ : H → H/Γ0(N) ↪→ X0(N)(C) → E(C)

can be computed as follows:

ψ(τ ) = c

∫ τ

i∞
fE(z)dz =

∞∑
n=1

an
n
e2πinτ (mod ΛE),

Heegner points: If O = Z[τ ], the Heegner point is
given by ψ(τ ).



The Dictionary

Over F , no algebraic geometry, but the analytic con-
struction still makes sense, provided we work at a
finite prime π|N instead of ∞.

Complex p-adic

1. Archimedean place ∞ 1. Non-Archimedean place π‖N

2. K/Q imaginary quadratic 2. K/F quadratic, inert at π

(local degree 2 at ∞) (local degree 2 at π)

3. Poincaré upper half-plane H 3. Hyperbolic upper half-space H(3)

(domain of f(z)dz) (domain of ω~f)

4. Poincaré upper half plane H 4. p-adic upper half-plane

(⊃ quadratic irrationalities Hπ = P1(Cp)− P1(Fπ)

K ∩H 6= ∅) (⊃ K ∩Hπ 6= ∅)

5. Weierstrass parametrization 5. Tate parametrization

ΦWei : C/ΛE → E(C) ΦTate : C×
p /q

Z
E → E(Cp)

6. Complex line integral 6. ‘Mixed multiplicative integral’∫ τ2

τ1

f(z)dz ∈ C, τ1, τ2 ∈ H∗ ×
∫ τ2

τ1

∫ s

r

ω~f ∈ C×
p , τ1, τ2 ∈ Hπ,

r, s ∈ P1(F )



The Conjecture

Conjecture 2. Let τ1, τ2 ∈ OK [1/π] such that
OF [1/π][τ1] = OF [1/π][τ1] = O. There is an ex-
plicit matrix γO with the same characteristic poly-
nomial as a fundamental unit of OK [1/π]×, and
an integer t ∈ Z, such that the point

Jτ1,τ2 = ΦTate

([
×
∫ τ2

τ1

∫ γOr

r

ω~f

]t)
∈ C×

p /q
Z
E
∼= E(Cp).

(a ‘Stark-Heegner point’) is in fact in E(Kab).



A more precise version of the conjecture, stated in
terms of a conjectural ‘indefinite mixed multiplica-
tive integral’, allows a precise description of the ac-
tion of Gal(Kab/K) on (a variant of) Jτ1,τ2.

This gives a conjectural answer to a special case (K
totally complex quartic field) of

Hilbert’s 12th Problem For an arbitrary field
K, is it possible to generate Kab by special values of
analytic functions?

So far, only known answers are for Q and K imagi-
nary quadratic.

For more general fields, we may have to allow p-adic
as well as complex analysis.



Analogy with Darmon’s Stark-Heegner
Points

A) Darmon’s setting: E/Q, auxiliary K real qua-
dratic

⇓ Conjecture

• Stark-Heegner points defined over ring class fields
of K

• Hilbert’s 12th problem for real quadratic K.

B) Our setting: E/F , auxiliary quadratic K/F

⇓ Conjecture

• Stark-Heegner points defined over ring class fields
of K

• Hilbert’s 12th problem for totally complex quar-
tic K.

In both cases, the main ingredients:

(1) Modular symbols
(2) rk O×

K = 1

In the imaginary quadratic case, no modular parametriza-
tion.



The Computation

Proposition 1 (Manin-Drinfeld). There exists a
d ∈ Z such that for any two cusps r, s ∈ P1(F ),∫ s
r
~f · ~β ∈ Ω

dZ.

The Z-valued modular symbol

φ{r → s} =
d

Ω

∫ s

r

~f · ~β, r, s ∈ P1(F )

is an eigensymbol for Uπ:

Uπφ{r → s} =
∑

α∈OF /π

φ{
r + α

π
→ s + α

π
} =

= c(π)φ{r → s}.

We can compute the mixed multiplicative integrals
if we can lift this to a Uπ eigensymbol with values in
measures on Oπ.



Pollack-Stevens/Pollack-Darmon polynomial-time al-
gorithm for computing the mixed multiplicative in-
tegral:

(1) Lift φ to some modular symbol Φ0 with values
in measures onOπ (need not be a Uπ eigensym-
bol):

φ{r → s} =

∫
Oπ

dΦ0{r → s}

(2) Iterate Uπ:

Φ = lim
n→∞

Un
πΦ0

is a Uπ-eigensymbol.
(3) Compute the integrals from Φ by simple alge-

bra.



Q: How do you find the initial lift Φ0?

Biggest problem computationally: need to specify Φ0

values on edge of the fundamental domain for Γ0(N ),
with each of the (many) faces imposing a Z[Γ0(N )]-
linear relation.

A: You don’t!

For any pair of cusps r, s, choose Φ0{r → s} to be
an arbitrary measure with total integral φ{r → s}
(not necessarily satisfying face relations). Then

lim
n→∞

Un
πΦ0

turns out to be an honest modular symbol, i.e. sat-
isfies the face relations even thought Φ0 didn’t.



p-adic Approximation

xp−adic =56 · 73−2 + 43 · 73−1 + 35 + 68 · 73 + 36 · 732+

+61 · 733 + 27 · 734 + 36 · 735 + 69 · 736 + 58 · 737 . . .

⇓

Find the shortest element of F which agrees with
xp−adic to given precision

⇓

xglobal =
125460788− 629994

√
−3

127165927

The point is:

1. The p-adic values of xp−adic and yp−adic satisfy the
cubic equation to the given precision.

2. The global values xglobal and yglobal are obtained
by independently approximating their p-adic coun-
terparts.

3. xglobal and yglobal satisfy the cubic equation ex-
actly.



More Examples

Consider the curve over F = Q(
√
−11) given by

E : y2 + y = x3 +
1−

√
−11

2
x2 − x,

with prime conductor π = 6+
√
−11 of norm p = 47.

Take K = F (
√

13), whose Hilbert class field H is of
degree 5.

A refinement of the Conjecture produces five 47-
adic Stark-Heegner points {J1. . . . , J5} which con-
jecturally form an orbit under the action ofGal(H/K) ∼=
Cl(K). We find that, to 20 digits of 47-adic accu-
racy, the x and the y-coordinates of the Ji’s seem to
be the roots of global polynomials

fx(T ) = T 5 + (1−
√
−11)T 4 − 13 + 5

√
−11

2
T 3 − 9T 2 − 1 +

√
−11

2
T +

3−
√
−11

2

fy(T ) = T 5 − 3 +
√
−11

2
T 4 +

25−
√
−11

2
T 3 + (30− 2

√
−11)T 2 +

23 +
√
−11

2
T+

+
15 + 5

√
−11

2

respectively, both of which do generate the Hilbert
class field of K.



Let α = 1+
√
−11

2 .

Let K = F (
√
−31α + 13) of class number 11. As

in the previous example, we get a conjectural orbit
{J1, . . . , J11} whose x and y coordinates satisfy re-
spectively the polynomials

fx(T ) = T 11+
(
−1001

81
α +

17
27

)
T 10+

(
323272
6561

α− 424678
2187

)
T 9+

(
1089383

2187
α +

171223
729

)
T 8+

+
(
−6204140

6561
α +

6960362
2187

)
T 7 +

(
−23838260

6561
α− 2734360

2187

)
T 6+

+
(

14741863
6561

α− 21734605
2187

)
T 5 +

(
31785055

6561
α +

945548
2187

)
T 4+

+
(
−187616

243
α +

345851
81

)
T 3 +

(
−1233710

6561
α +

39776
2187

)
T 2+

+
(
−418849

2187
α +

404362
729

)
T +

(
−152569

2187
α− 71186

729

)

fy(T ) = T 11 +
(
−9040

729
α +

808
243

)
T 10 +

(
27617002
531441

α− 9969382
177147

)
T 9+

+
(
−357040964

531441
α− 36661465

177147

)
T 8 +

(
−190683592

177147
α− 10652966

59049

)
T 7+

+
(
−2222665025

531441
α +

6043268
177147

)
T 6 +

(
−2659900916

531441
α− 239230063

177147

)
T 5+

+
(
−994603849

177147
α− 49156820

59049

)
T 4 +

(
−153123922

177147
α− 422939471

59049

)
T 3+

+
(
−12030155

19683
α− 7540141

6561

)
T 2+

(
2238101

6561
α− 2089850

2187

)
T+
(
−322343

6561
α− 222079

2187

)
,

again to 20 digits of 47-adic accuracy. Both of these
do in fact cut out the Hilbert Class field of K.



Base Change

g ∈ S2(Γ0(N)) - modular form on H, F imaginary
quadratic field of class number 1.

g ↔ E/Q
base change ↓ ↓

~g ↔ E/F

Periods over Q. Modular symbols of g (over Q):

{a→ b}Q =

∫ b

a

g(z)dz,

{a→ b}±Q =
{a→ b}Q ± {−a→ −b}Q

2
.

Ω+,Ω− ∈ R+: smallest real and imaginary parts of
periods {a→ b}Q.

ΩC = Ω+Ω−: area of E(C) for E the strong Weil
curve corresponding to g.



Proposition 2. a) (Manin-Drinfeld Lemma) For
any two cusps a, b ∈ P1(Q), there exist r+, r− ∈ Q
with

{a→ b}+
Q = r+Ω+, {a→ b}−Q = r−iΩ−.

b) (Birch Lemma) Let χ : (Z/fZ)× → C× be a
primitive Dirichlet character. Denote by

τQ(χ) =

f−1∑
k=0

χ(a)e
2πia

f

its Gauss sum. Set Ω = Ω+ if χ is even, and
Ω = iΩ− if χ is odd. The special value of the
twisted L-function of g is given by

L(g, χ, 1) = τQ(χ)−1
∑

k∈Z/fZ

χ̄(k)

{
k

f
→∞

}
Q

= rχΩ,

for some rχ ∈ Q(χ).



Periods over F . Modular symbol of ~g (over F ):

{a→ b}F =
16π2

w |D|

∫ b

a

~g · ~β.

ΩF ∈ R+: smallest positive real period of ~f .

Proposition 3. a) (Manin-Drinfeld Lemma) For
any two cusps a, b ∈ P1(F ), there exists r ∈ Q
with

{a→ b}F = rΩF .

b) (Birch Lemma) Let χ : (OF/ϕ)×/O×
F → C×

be a primitive ‘Dirichlet’ character (i.e. a Hecke
character with trivial archimedean component) with
Gauss sum

τF (χ) =
∑

α∈OF /ϕ

χ(α)e
2πiTrF/Q

α
ϕ
√

D .

Then the special value L(~f, χ, 1) is given by

L(~g, χ, 1) = τF (χ)−1
∑

κ∈OF /ϕ

χ̄(κ)

{
κ

ϕ
→∞

}
F

= rχΩF ,

for some rχ ∈ Q(χ).



Proposition 4. Let F be an imaginary quadratic
field of class number 1. Let g ∈ S2(N) be a new-
form on H and ~g its base-change to H(3). Let
ΩC = Ω+Ω− be the complex period of g, and let
ΩF be the smallest positive real period of ~g. Then

(1)
1√
|D|

ΩC

ΩF
∈ Q.

Proof. χ : (Z/fZ)× → C× - primitive Dirichlet
character of conductor prime to ND. By definition
of base change

L(~g, χ◦NF/Q, 1) = L(g, χ, 1)L(g, χεF , 1) = L(g, χ, 1)L(gεF , χ, 1),

Expressing in terms of modular symbols,

τF (χ ◦NF/Q)−1rFΩF =
[
τQ(χ)τQ(χεF )

]−1

rQiΩ+Ω−.

with rF , rQ ∈ Q(χ) (we get both Ω+ and Ω− since F
is imaginary, so the associated character εF is odd).
The Gauss sums are related by

τF (χ ◦NF/Q) = −iτQ(χ)τQ(χεF )√
|D|

,

which yields



√
|D|rFΩF = −rQΩC.

A theorem of Rohrlich guarantees the existence of
infinitely many characters χ such that L(g, χ, 1) 6=
0 6= L(gεF , χ, 1), i.e. such that rF 6= 0. Divide by
rF :

1√
|D|

ΩC

ΩF
∈ Q(χ).

Repeating this argument with a χ′ of conductor prime
to that of χ, we get that

1√
|D|

ΩC

ΩF
∈ Q(χ) ∩Q(χ′) = Q,

as desired �



Remark: The base change identity

L(~g, χ ◦NF/Q, 1) = L(g, χ, 1)L(g, χεF , 1)

can be read as a linear equation in
{
α
f →∞

}
F
.

Can we choose enough χ’s to completely determine
{a→ b}F in terms of {x→ y}Q?

Can we get an explicit formula in this way?

If so, in base change cases there might be hope of re-
lating the Stark-Heegner points over F with classical
Heegner points, and use that to provide evidence for
the conjecture that Stark-Heegner points are global.


