# A p-adic Construction of Points on Elliptic Curves over Imaginary Quadratic fields 

Mak Trifković

## Appetizer

The elliptic curve over $F=\mathbb{Q}(\sqrt{-3})$ given by

$$
E: y^{2}+x y=x^{3}+\frac{3+\sqrt{-3}}{2} x^{2}+\frac{1+\sqrt{-3}}{2} x
$$

has a $K=F(\sqrt{22+\sqrt{-3}})$-valued point $(x, y)$ with

$$
\begin{aligned}
x= & \frac{125460788-629994 \sqrt{-3}}{127165927} \\
y= & \frac{12488668253575+1451573987512 \sqrt{-3}}{31646131095439} \sqrt{22+\sqrt{-3}}- \\
& -\frac{62730394-314997 \sqrt{-3}}{127165927} .
\end{aligned}
$$

## Modularity of Elliptic Curves over IQ Fields

Let $F=\mathbb{Q}(\sqrt{d})$ be a Euclidean imaginary quadratic field (so $d \in\{-1,-2,-3,-7,-11\}$ ).

Langlands predicts:

Elliptic curve $E_{/ F}($ with $\operatorname{End}(E) \otimes \mathbb{Q} \neq F)$ $\downarrow$ (conjectured)
A $\mathbb{C}^{3}$-valued harmonic 1-form on the upper half-space

$$
\mathcal{H}^{(3)}=\mathbb{C} \times \mathbb{R}_{>0}
$$

Such differentials on $\mathcal{H}^{(3)}$ allow for an elementary description of modularity in this case - amenable to computations.

## The Geometry of the Upper Half-Space

Think of $(z, t) \in \mathcal{H}^{(3)}$ as the quaternion $z+t j \in \mathbb{H}$.

This allows us to define an action of $G L_{2}(\mathbb{C})$ on $\mathcal{H}^{(3)}$ :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): h \mapsto(a h+b)(c h+d)^{-1}
$$

A basis of 1-forms is given by the triple

$$
\vec{\beta}=\left(\frac{-d z}{t}, \frac{d t}{t}, \frac{d \bar{z}}{t}\right)
$$

Congruence subgroup: for $\mathcal{N} \subset \mathcal{O}_{K}$ an ideal, set

$$
\Gamma_{0}(\mathcal{N})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(\mathcal{O}_{F}\right) \right\rvert\, c \in \mathcal{N}\right\}
$$

(Note we're working with $G L_{2}$ rather than $S L_{2}$ ).

Definition 1. A cusp form of weight 2 on $\Gamma_{0}(\mathcal{N})$ is a vector-valued function $\vec{f}: \mathcal{H}^{(3)} \rightarrow \mathbb{C}^{3}$ (row vectors) satisfying

- (Invariance) The harmonic 1-form $\vec{f} \cdot \vec{\beta}$ is invariant under $\gamma \in \Gamma_{0}(\mathcal{N})$;
- (Cuspidality) $\int_{\mathbb{C} / \mathcal{O}_{F}}\left(\gamma^{*}\right)(\vec{f} \cdot \vec{\beta})=0$ for all $\gamma \in P S L_{2}\left(\mathcal{O}_{F}\right)$ (i.e. the constant term of the Fourier-Bessel expansion of $\vec{f}-$ see below - at the cusp $\gamma^{-1} \infty$ is zero).

The space of all plus-cusp forms of weight 2 and level $\mathcal{N}$ is denoted by $S_{2}^{+}(\mathcal{N})$.

Hecke theory entirely analogous to $\mathbb{Q}$.

## Fourier-Bessel Expansion

A cusp form has a Fourier-Bessel expansion:

$$
\vec{f}(z, t)=\sum_{(\alpha) \neq 0} c(\alpha) t^{2} \vec{K}\left(\frac{4 \pi|\alpha| t}{\sqrt{|D|}}\right) \sum_{\epsilon \in \mathcal{O}_{F}^{\times}} \psi\left(\frac{\epsilon \alpha z}{\sqrt{D}}\right) .
$$

where

$$
\psi(z)=e^{4 \pi i \operatorname{Re} z}, \vec{K}(t)=\left(-\frac{i}{2} K_{1}(t), K_{0}(t), \frac{i}{2} K_{1}(t)\right) .
$$

The hyperbolic Bessel functions $K_{i}(t)$ are rapidly decreasing as $t \rightarrow \infty$, and $\psi(z)$ is a character of the additive group, so $\vec{K} \psi$ is analogous to $e^{-2 \pi y} e^{2 \pi i x}=$ $e^{2 \pi i z}$.

## The Shimura-Taniyama Conjecture

Conjecture 1 (Shimura-Taniyama). To every isogeny class of elliptic curves $E_{/ F}$ of conductor ideal $\mathcal{N}$ with $\operatorname{End}(E) \otimes \mathbb{Q} \neq F$ there corresponds a newform $\vec{f} \in S_{2}^{+}(\mathcal{N})$ characterized by

$$
c(\mathfrak{p})=N \mathfrak{p}+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right) .
$$

for all prime ideals $\mathfrak{p} \neq 0$.

This is a much weaker claim than Shimura-Taniyama over $\mathbb{Q}$ :

1. Manin: there exists a single positive real period $\Omega$ for which

$$
\left\{\int_{P}^{\gamma P} \vec{f} \cdot \vec{\beta} \mid \gamma \in \Gamma_{0}(\mathcal{N})\right\}=\Omega \mathbb{Z}
$$

Can't reconstruct the Weierstrass lattice of $E(\mathbb{C})$.
2. $\mathcal{H}^{(3)}$ is a 3 D real manifold, so there can't be a holomorphic modular parametrization $\mathcal{H}^{(3)} \rightarrow E-$ bad news for modular constructions of points.

## A Comparison With Modular Forms on $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$

Let $E$ be an elliptic curve over $\mathbb{Q}$. Two views of the modular parametrization of $E$ :

Algebraic Geometry. There is a morphism of algebraic curves $\psi: X_{0}(N) \rightarrow E$ defined over $\mathbb{Q}$.

Heegner points: $\mathcal{O} \subset K$ an order in an imaginary quadratic field $N$ factors as $N=\mathcal{N} \cdot \overline{\mathcal{N}}$.
$x_{c}=\left(\mathbb{C} / \mathcal{O} \rightarrow \mathbb{C} / \mathcal{N}^{-1}\right) \in X_{0}(N)\left(H_{c}\right)$, where $H_{c}$ is the ring class field of $K$ of conductor $c$.

Applying $\phi$ yields essentially the only known systematic construction of rational points on $E$.

Analysis. The composed map

$$
\psi: \mathcal{H} \rightarrow \mathcal{H} / \Gamma_{0}(N) \hookrightarrow X_{0}(N)(\mathbb{C}) \rightarrow E(\mathbb{C})
$$

can be computed as follows:

$$
\psi(\tau)=c \int_{i \infty}^{\tau} f_{E}(z) d z=\sum_{n=1}^{\infty} \frac{a_{n}}{n} e^{2 \pi i n \tau} \quad\left(\bmod \Lambda_{E}\right)
$$

Heegner points: If $\mathcal{O}=\mathbb{Z}[\tau]$, the Heegner point is given by $\psi(\tau)$.

## The Dictionary

Over $F$, no algebraic geometry, but the analytic construction still makes sense, provided we work at a finite prime $\pi \mid \mathcal{N}$ instead of $\infty$.

| Complex | $p$-adic |
| :---: | :---: |
| 1. Archimedean place $\infty$ | 1. Non-Archimedean place $\pi \\| \mathcal{N}$ |

2. $K / \mathbb{Q}$ imaginary quadratic (local degree 2 at $\infty$ )
3. Poincaré upper half-plane $\mathcal{H}$ (domain of $f(z) d z$ )
4. Poincaré upper half plane $\mathcal{H}$ ( $\supset$ quadratic irrationalities $K \cap \mathcal{H} \neq \emptyset)$
5. Weierstrass parametrization

$$
\Phi_{W e i}: \mathbb{C} / \Lambda_{E} \rightarrow E(\mathbb{C})
$$

6. Complex line integral

$$
\int_{\tau_{1}}^{\tau_{2}} f(z) d z \in \mathbb{C}, \tau_{1}, \tau_{2} \in \mathcal{H}^{*}
$$

1. Non-Archimedean place $\pi \| \mathcal{N}$
2. $K / F$ quadratic, inert at $\pi$ (local degree 2 at $\pi$ )
3. Hyperbolic upper half-space $\mathcal{H}^{(3)}$ (domain of $\omega_{\vec{f}}$ )
4. $p$-adic upper half-plane

$$
\begin{aligned}
& \mathcal{H}_{\pi}=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)-\mathbb{P}^{1}\left(F_{\pi}\right) \\
& \left(\supset K \cap \mathcal{H}_{\pi} \neq \emptyset\right)
\end{aligned}
$$

5. Tate parametrization

$$
\Phi_{\text {Tate }}: \mathbb{C}_{p}^{\times} / q_{E}^{\mathbb{Z}} \rightarrow E\left(\mathbb{C}_{p}\right)
$$

6. 'Mixed multiplicative integral'

$$
\begin{gathered}
{\underbrace{\tau_{2}}_{\tau_{1}}}_{\int_{r}^{s} \omega_{\vec{f}} \in \mathbb{C}_{p}^{\times}, \tau_{1}, \tau_{2} \in \mathcal{H}_{\pi},}^{r, s \in \mathbb{P}^{1}(F)} .
\end{gathered}
$$

Conjecture 2. Let $\tau_{1}, \tau_{2} \in \mathcal{O}_{K}[1 / \pi]$ such that $\mathcal{O}_{F}[1 / \pi]\left[\tau_{1}\right]=\mathcal{O}_{F}[1 / \pi]\left[\tau_{1}\right]=\mathcal{O}$. There is an explicit matrix $\gamma_{\mathcal{O}}$ with the same characteristic polynomial as a fundamental unit of $\mathcal{O}_{K}[1 / \pi]^{\times}$, and an integer $t \in \mathbb{Z}$, such that the point
$J_{\tau_{1}, \tau_{2}}=\Phi_{\text {Tate }}\left(\left[\not_{\tau_{1}}^{\tau_{2}} \int_{r}^{\gamma_{\mathcal{O}} r} \omega_{\vec{f}}\right]^{t}\right) \in \mathbb{C}_{p}^{\times} / q_{E}^{\mathbb{Z}} \cong E\left(\mathbb{C}_{p}\right)$.
(a 'Stark-Heegner point') is in fact in $E\left(K^{a b}\right)$.

A more precise version of the conjecture, stated in terms of a conjectural 'indefinite mixed multiplicative integral', allows a precise description of the action of $\operatorname{Gal}\left(K^{a b} / K\right)$ on (a variant of) $J_{\tau_{1}, \tau_{2}}$.

This gives a conjectural answer to a special case ( $K$ totally complex quartic field) of

Hilbert's 12th Problem For an arbitrary field $K$, is it possible to generate $K^{a b}$ by special values of analytic functions?

So far, only known answers are for $\mathbb{Q}$ and $K$ imaginary quadratic.

For more general fields, we may have to allow $p$-adic as well as complex analysis.

## Analogy with Darmon's Stark-Heegner Points

A) Darmon's setting: $E_{/ \mathbb{Q}}$, auxiliary $K$ real quadratic
$\Downarrow$ Conjecture

- Stark-Heegner points defined over ring class fields of $K$
- Hilbert's 12th problem for real quadratic $K$.
B) Our setting: $E_{/ F}$, auxiliary quadratic $K / F$
$\Downarrow$ Conjecture
- Stark-Heegner points defined over ring class fields of $K$
- Hilbert's 12 th problem for totally complex quartic $K$.

In both cases, the main ingredients:
(1) Modular symbols
(2) $\mathrm{rk} \mathcal{O}_{K}^{\times}=1$

In the imaginary quadratic case, no modular parametrization.

## The Computation

Proposition 1 (Manin-Drinfeld). There exists a $d \in \mathbb{Z}$ such that for any two cusps $r, s \in \mathbb{P}^{1}(F)$, $\int_{r}^{s} \vec{f} \cdot \vec{\beta} \in \frac{\Omega}{d} \mathbb{Z}$.

The $\mathbb{Z}$-valued modular symbol

$$
\phi\{r \rightarrow s\}=\frac{d}{\Omega} \int_{r}^{s} \vec{f} \cdot \vec{\beta}, \quad r, s \in \mathbb{P}^{1}(F)
$$

is an eigensymbol for $U_{\pi}$ :

$$
\begin{aligned}
\left.U_{\pi} \phi_{\{ } r \rightarrow s\right\} & \left.=\sum_{\alpha \in \mathcal{O}_{F} / \pi} \phi_{\{ } \frac{r+\alpha}{\pi} \rightarrow \frac{s+\alpha}{\pi}\right\}= \\
& \left.=c(\pi) \phi_{\{ } r \rightarrow s\right\} .
\end{aligned}
$$

We can compute the mixed multiplicative integrals if we can lift this to a $U_{\pi}$ eigensymbol with values in measures on $\mathcal{O}_{\pi}$.

Pollack-Stevens/Pollack-Darmon polynomial-time algorithm for computing the mixed multiplicative integral:
(1) Lift $\phi$ to some modular symbol $\Phi_{0}$ with values in measures on $\mathcal{O}_{\pi}$ (need not be a $U_{\pi}$ eigensymbol):

$$
\phi\{r \rightarrow s\}=\int_{\mathcal{O}_{\pi}} d \Phi_{0}\{r \rightarrow s\}
$$

(2) Iterate $U_{\pi}$ :

$$
\Phi=\lim _{n \rightarrow \infty} U_{\pi}^{n} \Phi_{0}
$$

is a $U_{\pi}$-eigensymbol.
(3) Compute the integrals from $\Phi$ by simple algebra.

Q: How do you find the initial lift $\Phi_{0}$ ?
Biggest problem computationally: need to specify $\Phi_{0}$ values on edge of the fundamental domain for $\Gamma_{0}(\mathcal{N})$, with each of the (many) faces imposing a $\mathbb{Z}\left[\Gamma_{0}(\mathcal{N})\right]$ linear relation.

## A: You don't!

For any pair of cusps $r, s$, choose $\Phi_{0}\{r \rightarrow s\}$ to be an arbitrary measure with total integral $\phi\{r \rightarrow s\}$ (not necessarily satisfying face relations). Then

$$
\lim _{n \rightarrow \infty} U_{\pi}^{n} \Phi_{0}
$$

turns out to be an honest modular symbol, i.e. satisfies the face relations even thought $\Phi_{0}$ didn't.

## $p$-ADIC Approximation

$$
\begin{aligned}
& x_{p-\text { adic }}= 56 \cdot 73^{-2}+43 \cdot 73^{-1}+35+68 \cdot 73+36 \cdot 73^{2}+ \\
&+61 \cdot 73^{3}+27 \cdot 73^{4}+36 \cdot 73^{5}+69 \cdot 73^{6}+58 \cdot 73^{7} \ldots \\
& \Downarrow
\end{aligned}
$$

Find the shortest element of $F$ which agrees with $x_{p-\text { adic }}$ to given precision

$$
x_{\text {global }}=\frac{\stackrel{125460788-629994 \sqrt{-3}}{127165927}}{\frac{\downarrow}{}}
$$

The point is:

1. The $p$-adic values of $x_{p-\text { adic }}$ and $y_{p-\text { adic }}$ satisfy the cubic equation to the given precision.
2. The global values $x_{\text {global }}$ and $y_{\text {global }}$ are obtained by independently approximating their $p$-adic counterparts.
3. $x_{\text {global }}$ and $y_{\text {global }}$ satisfy the cubic equation $e x-$ actly.

## More Examples

Consider the curve over $F=\mathbb{Q}(\sqrt{-11})$ given by

$$
E: y^{2}+y=x^{3}+\frac{1-\sqrt{-11}}{2} x^{2}-x
$$

with prime conductor $\pi=6+\sqrt{-11}$ of norm $p=47$.

Take $K=F(\sqrt{13})$, whose Hilbert class field $H$ is of degree 5.

A refinement of the Conjecture produces five 47adic Stark-Heegner points $\left\{J_{1} \ldots, J_{5}\right\}$ which conjecturally form an orbit under the action of $\operatorname{Gal}(H / K) \cong$ $C l(K)$. We find that, to 20 digits of 47 -adic accuracy, the $x$ and the $y$-coordinates of the $J_{i}$ 's seem to be the roots of global polynomials

$$
\begin{aligned}
f_{x}(T) & =T^{5}+(1-\sqrt{-11}) T^{4}-\frac{13+5 \sqrt{-11}}{2} T^{3}-9 T^{2}-\frac{1+\sqrt{-11}}{2} T+\frac{3-\sqrt{-11}}{2} \\
f_{y}(T) & =T^{5}-\frac{3+\sqrt{-11}}{2} T^{4}+\frac{25-\sqrt{-11}}{2} T^{3}+(30-2 \sqrt{-11}) T^{2}+\frac{23+\sqrt{-11}}{2} T+ \\
& +\frac{15+5 \sqrt{-11}}{2}
\end{aligned}
$$

respectively, both of which do generate the Hilbert class field of $K$.

Let $\alpha=\frac{1+\sqrt{-11}}{2}$.
Let $K=F(\sqrt{-31 \alpha+13})$ of class number 11. As in the previous example, we get a conjectural orbit $\left\{J_{1}, \ldots, J_{11}\right\}$ whose $x$ and $y$ coordinates satisfy respectively the polynomials

$$
\begin{aligned}
& f_{x}(T)=T^{11}+\left(-\frac{1001}{81} \alpha+\frac{17}{27}\right) T^{10}+\left(\frac{323272}{6561} \alpha-\frac{424678}{2187}\right) T^{9}+\left(\frac{1089383}{2187} \alpha+\frac{171223}{729}\right) T^{8}+ \\
& \quad+\left(-\frac{6204140}{6561} \alpha+\frac{6960362}{2187}\right) T^{7}+\left(-\frac{23838260}{6561} \alpha-\frac{2734360}{2187}\right) T^{6}+ \\
& \quad+\left(\frac{14741863}{6561} \alpha-\frac{21734605}{2187}\right) T^{5}+\left(\frac{31785055}{6561} \alpha+\frac{945548}{2187}\right) T^{4}+ \\
& \quad+\left(-\frac{187616}{243} \alpha+\frac{345851}{81}\right) T^{3}+\left(-\frac{1233710}{6561} \alpha+\frac{39776}{2187}\right) T^{2}+ \\
& \quad+\left(-\frac{418849}{2187} \alpha+\frac{404362}{729}\right) T+\left(-\frac{152569}{2187} \alpha-\frac{71186}{729}\right) \\
& f_{y}(T)=T^{11}+\left(-\frac{9040}{729} \alpha+\frac{808}{243}\right) T^{10}+\left(\frac{27617002}{531441} \alpha-\frac{9969382}{177147}\right) T^{9}+ \\
& +\left(-\frac{357040964}{531441} \alpha-\frac{36661465}{177147}\right) T^{8}+\left(-\frac{190683592}{177147} \alpha-\frac{10652966}{59049}\right) T^{7}+ \\
& +\left(-\frac{2222665025}{531441} \alpha+\frac{6043268}{177147}\right) T^{6}+\left(-\frac{2659900916}{531441} \alpha-\frac{239230063}{177147}\right) T^{5}+ \\
& + \\
& \left(-\frac{994603849}{177147} \alpha-\frac{49156820}{59049}\right) T^{4}+\left(-\frac{153123922}{177147} \alpha-\frac{422939471}{59049}\right) T^{3}+ \\
& +\left(-\frac{12030155}{19683} \alpha-\frac{7540141}{6561}\right) T^{2}+\left(\frac{2238101}{6561} \alpha-\frac{2089850}{2187}\right) T+\left(-\frac{322343}{6561} \alpha-\frac{222079}{2187}\right),
\end{aligned}
$$

again to 20 digits of 47-adic accuracy. Both of these do in fact cut out the Hilbert Class field of $K$.

## Base Change

$g \in S_{2}\left(\Gamma_{0}(N)\right)$ - modular form on $\mathcal{H}, F$ imaginary quadratic field of class number 1.

$$
\begin{array}{lccc} 
& g & \leftrightarrow & E_{/ \mathbb{Q}} \\
\text { base change } & \downarrow & & \downarrow \\
& \vec{g} & \leftrightarrow & E_{/ F}
\end{array}
$$

Periods over $\mathbb{Q}$. Modular symbols of $g$ (over $\mathbb{Q}$ ):

$$
\begin{aligned}
& \{a \rightarrow b\}_{\mathbb{Q}}=\int_{a}^{b} g(z) d z, \\
& \{a \rightarrow b\}_{\mathbb{Q}}^{ \pm}=\frac{\{a \rightarrow b\}_{\mathbb{Q}} \pm\{-a \rightarrow-b\}_{\mathbb{Q}}}{2}
\end{aligned}
$$

$\Omega_{+}, \Omega_{-} \in \mathbb{R}_{+}$: smallest real and imaginary parts of periods $\{a \rightarrow b\}_{\mathbb{Q}}$.
$\Omega_{\mathbb{C}}=\Omega_{+} \Omega_{-}$: area of $E(\mathbb{C})$ for $E$ the strong Weil curve corresponding to $g$.

Proposition 2. a) (Manin-Drinfeld Lemma) For any two cusps $a, b \in \mathbb{P}^{1}(\mathbb{Q})$, there exist $r_{+}, r_{-} \in \mathbb{Q}$ with

$$
\{a \rightarrow b\}_{\mathbb{Q}}^{+}=r_{+} \Omega_{+},\{a \rightarrow b\}_{\mathbb{Q}}^{-}=r_{-} i \Omega_{-} .
$$

b) (Birch Lemma) Let $\chi:(\mathbb{Z} / f \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a primitive Dirichlet character. Denote by

$$
\tau_{\mathbb{Q}}(\chi)=\sum_{k=0}^{f-1} \chi(a) e^{\frac{2 \pi i a}{f}}
$$

its Gauss sum. Set $\Omega=\Omega_{+}$if $\chi$ is even, and $\Omega=i \Omega_{-}$if $\chi$ is odd. The special value of the twisted L-function of $g$ is given by

$$
\begin{aligned}
& \left.L(g, \chi, 1)=\overline{\tau_{\mathbb{Q}}(\chi}\right)^{-1} \sum_{k \in \mathbb{Z} / f \mathbb{Z}} \bar{\chi}(k)\left\{\frac{k}{f} \rightarrow \infty\right\}_{\mathbb{Q}}=r_{\chi} \Omega, \\
& \text { for some } r_{\chi} \in \mathbb{Q}(\chi) .
\end{aligned}
$$

Periods over $F$. Modular symbol of $\vec{g}$ (over $F$ ):

$$
\{a \rightarrow b\}_{F}=\frac{16 \pi^{2}}{w|D|} \int_{a}^{b} \vec{g} \cdot \vec{\beta} .
$$

$\Omega_{F} \in \mathbb{R}_{+}$: smallest positive real period of $\vec{f}$.
Proposition 3. a) (Manin-Drinfeld Lemma) For any two cusps $a, b \in \mathbb{P}^{1}(F)$, there exists $r \in \mathbb{Q}$ with

$$
\{a \rightarrow b\}_{F}=r \Omega_{F} .
$$

b) (Birch Lemma) Let $\chi:\left(\mathcal{O}_{F} / \varphi\right)^{\times} / \mathcal{O}_{F}^{\times} \rightarrow \mathbb{C}^{\times}$ be a primitive 'Dirichlet' character (i.e. a Hecke character with trivial archimedean component) with Gauss sum

$$
\tau_{F}(\chi)=\sum_{\alpha \in \mathcal{O}_{F} / \varphi} \chi(\alpha) e^{2 \pi i T_{F} / \mathbb{Q} \frac{\alpha}{\varphi \sqrt{D}}} .
$$

Then the special value $L(\vec{f}, \chi, 1)$ is given by

$$
\left.L(\vec{g}, \chi, 1)=\overline{\tau_{F}(\chi}\right)^{-1} \sum_{\kappa \in \mathcal{O}_{F} / \varphi} \bar{\chi}(\kappa)\left\{\frac{\kappa}{\varphi} \rightarrow \infty\right\}_{F}=r_{\chi} \Omega_{F},
$$

for some $r_{\chi} \in \mathbb{Q}(\chi)$.

Proposition 4. Let $F$ be an imaginary quadratic field of class number 1. Let $g \in S_{2}(N)$ be a newform on $\mathcal{H}$ and $\vec{g}$ its base-change to $\mathcal{H}^{(3)}$. Let $\Omega_{\mathbb{C}}=\Omega_{+} \Omega_{-}$be the complex period of $g$, and let $\Omega_{F}$ be the smallest positive real period of $\vec{g}$. Then

$$
\begin{equation*}
\frac{1}{\sqrt{|D|}} \frac{\Omega_{\mathbb{C}}}{\Omega_{F}} \in \mathbb{Q} \tag{1}
\end{equation*}
$$

Proof. $\chi:(\mathbb{Z} / f \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$- primitive Dirichlet character of conductor prime to $N D$. By definition of base change
$L\left(\vec{g}, \chi \circ N_{F / \mathbb{Q}}, 1\right)=L(g, \chi, 1) L\left(g, \chi \varepsilon_{F}, 1\right)=L(g, \chi, 1) L\left(g_{\varepsilon_{F}}, \chi, 1\right)$,
Expressing in terms of modular symbols,
$\left.\overline{\tau_{F}\left(\chi \circ N_{F / \mathbb{Q}}\right.}\right)^{-1} r_{F} \Omega_{F}=\left[\overline{\tau_{\mathbb{Q}}(\chi)} \overline{\tau_{\mathbb{Q}}\left(\chi \varepsilon_{F}\right)}\right]^{-1} r_{\mathbb{Q}} i \Omega_{+} \Omega_{-}$.
with $r_{F}, r_{\mathbb{Q}} \in \mathbb{Q}(\chi)$ (we get both $\Omega_{+}$and $\Omega_{-}$since $F$ is imaginary, so the associated character $\epsilon_{F}$ is odd). The Gauss sums are related by

$$
\tau_{F}\left(\chi \circ N_{F / \mathbb{Q}}\right)=-i \frac{\tau_{\mathbb{Q}}(\chi) \tau_{\mathbb{Q}}\left(\chi \varepsilon_{F}\right)}{\sqrt{|D|}},
$$

which yields

$$
\sqrt{|D|} r_{F} \Omega_{F}=-r_{\mathbb{Q}} \Omega_{\mathbb{C}}
$$

A theorem of Rohrlich guarantees the existence of infinitely many characters $\chi$ such that $L(g, \chi, 1) \neq$ $0 \neq L\left(g_{\varepsilon_{F}}, \chi, 1\right)$, i.e. such that $r_{F} \neq 0$. Divide by $r_{F}$ :

$$
\frac{1}{\sqrt{|D|}} \frac{\Omega_{\mathbb{C}}}{\Omega_{F}} \in \mathbb{Q}(\chi)
$$

Repeating this argument with a $\chi^{\prime}$ of conductor prime to that of $\chi$, we get that

$$
\frac{1}{\sqrt{|D|}} \frac{\Omega_{\mathbb{C}}}{\Omega_{F}} \in \mathbb{Q}(\chi) \cap \mathbb{Q}\left(\chi^{\prime}\right)=\mathbb{Q}
$$

as desired

Remark: The base change identity

$$
L\left(\vec{g}, \chi \circ N_{F / \mathbb{Q}}, 1\right)=L(g, \chi, 1) L\left(g, \chi \varepsilon_{F}, 1\right)
$$

can be read as a linear equation in $\left\{\frac{\alpha}{f} \rightarrow \infty\right\}_{F}$.
Can we choose enough $\chi$ 's to completely determine $\{a \rightarrow b\}_{F}$ in terms of $\{x \rightarrow y\}_{\mathbb{Q}}$ ?

Can we get an explicit formula in this way?
If so, in base change cases there might be hope of relating the Stark-Heegner points over $F$ with classical Heegner points, and use that to provide evidence for the conjecture that Stark-Heegner points are global.

