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APPETIZER

The elliptic curve over F' = Q(1/—3) given by
3+v—-3, 1++/-3
5 -+ 5 x

E:y4+ay=2>+

hasa K = F(1/22 + v/=3)-valued point (z, y) with

125460788 — 629994/—3
a 127165927

X

 12488668253575 + 1451573987512/ —3
B 31646131095439

62730394 — 314997/—3
127165927 |
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MODULARITY OF ELLIPTIC CURVES OVER 1Q
FIELDS

Let F = Q(v/d) be a Euclidean imaginary quadratic
field (so d € {—1,—-2,—3,—7,—11}).

Langlands predicts:

Elliptic curve E)p (with End(E) ® Q # F)
] (conjectured)

A C?-valued harmonic 1-form on the upper half-space

H<3) = C x ]R>()

Such differentials on H® allow for an elementary
description of modularity in this case — amenable to
computations.



THE GEOMETRY OF THE UPPER HALF-SPACE

Think of (z,t) € H®) as the quaternion z +tj € H.

This allows us to define an action of G Ly(C) on H®):

(‘CL Z) o (ah+ b)(ch +d) ™",

A basis of 1-forms is given by the triple

= —dz dt dz
= (7’7’7) -



Congruence subgroup: for NV C O an ideal, set

To(N) = {(Z 2) € GLy(Op)|c € N}

(Note we're working with G Ly rather than S1L,).

Definition 1. A cusp form of weight 2 on I'o(N)
is a vector-valued function f : H®) — C3 (row
vectors) satisfying

e (Invariance) The harmonic 1-form f 5 15
invariant under v € To(N);

o (Cuspidality) fc/OF(’Y*)(f - B) = 0 for all
v € PSLy(Op) (i.e. the constant term of
the Fourier-Bessel expansion of f — see be-
low — at the cusp v 1oo is zero).

The space of all plus-cusp forms of weight 2 and
level N is denoted by S5 (N).

Hecke theory entirely analogous to Q.



FOURIER-BESSEL EXPANSION

A cusp form has a Fourier-Bessel expansion:

Fet) = 3 )R (47r\a\t> Z . (eaz)

(0)£0

where

W(z) = eRe = (p) — (—%Kl(t), Kolt), %Kl(t)) |

The hyperbolic Bessel functions K;(t) are rapidly de-
creasing as t — oo, and 1(z) is a character of the

additive group, so K1 is analogous to e ?™e?™¥ =
627m'z



THE SHIMURA-TANIYAMA CONJECTURE

Conjecture 1 (Shimura-Taniyama). To every isogeny
class of elliptic curves E/p of conductor ideal N
with End(E) ® Q # F there corresponds a new-

form f € S5 (N) characterized by
c(p) = Np+1—#E(F).
for all prime ideals p # 0.

This is a much weaker claim than Shimura-Taniyama
over Q:

1. Manin: there exists a single positive real period
() for which

P,
{ f-ﬁweFo(N)}—QZ

P

Can’t reconstruct the Weierstrass lattice of F(C).

2. H® is a 3D real manifold, so there can’t be a
holomorphic modular parametrization H®) — E —
bad news for modular constructions of points.



A COMPARISON WITH MODULAR FORMS ON
GLz(AQ)

Let E be an elliptic curve over Q. T'wo views of the
modular parametrization of £

Algebraic Geometry. There is a morphism of
algebraic curves v : Xo(N) — E defined over Q.

Heegner points: O C K an order in an imaginary
quadratic field N factors as N = N - N.

z.= (C/O — C/N 1) € Xo(N)(H,.), where H, is
the ring class field of K of conductor c.

Applying ¢ yields essentially the only known system-
atic construction of rational points on E.

Analysis. The composed map
can be computed as follows:

Y(T) = c/T fe(z)dz = Z %e%im (mod Ap),

n=1

Heegner points: If O = Z|r], the Heegner point is
given by (7).



THE DICTIONARY

Over F', no algebraic geometry, but the analytic con-
struction still makes sense, provided we work at a

finite prime 7| instead of co.

Complex

p-adic

1. Archimedean place oo

2. K/Q imaginary quadratic

(local degree 2 at co)

3. Poincaré upper half-plane 'H
(domain of f(z)dz)

4. Poincaré upper half plane ‘H
(D quadratic irrationalities

KNH#0)

5. Weierstrass parametrization
(I)Wei . C/AE — E((C)

6. Complex line integral

/ f(2)dz € C,1m, 19 € H*

. Non-Archimedean place ||

. K/F quadratic, inert at m

(local degree 2 at )

. Hyperbolic upper half-space H®

(domain of wp)

. p-adic upper half-plane

H, = P\(C,) — P'(F,)
(O KNH, #0)

. Tate parametrization

(I)Tate : (C;/Q% - E(Cp)

. ‘Mixed multiplicative integral’

T2 S
f/ ECpaTlaTQEHﬂy

r,s € PY(F)



THE CONJECTURE

Conjecture 2. Let 7, » € Ogl[l/7| such that
Op|l/7||r] = Op[l/x]|1] = O. There is an ex-
plicit matrix yo with the same characteristic poly-
nomial as a fundamental unit of Ox[l/7]*, and
an integer t € Z, such that the point

m ror ]t .
‘]7'1,7'2 — CI)Tate [][ / wf] € C; /QE = (CP)
TLYyr

(a ‘Stark-Heegner point’) is in fact in E(K™).



A more precise version of the conjecture, stated in
terms of a conjectural ‘indefinite mixed multiplica-

tive integral’, allows a precise description of the ac-
tion of Gal(K®/K) on (a variant of) J, .

This gives a conjectural answer to a special case (K
totally complex quartic field) of

Hilbert’s 12th Problem For an arbitrary field
K, is it possible to generate K by special values of
analytic functions?

So far, only known answers are for Q and K imagi-
nary quadratic.

For more general fields, we may have to allow p-adic
as well as complex analysis.



ANALOGY WITH DARMON’S STARK-HEEGNER
POINTS

A) Darmon’s setting: FE/qg, auxiliary K real qua-
dratic

|l Conjecture

e Stark-Heegner points defined over ring class fields

of K
e Hilbert’s 12th problem for real quadratic K.

B) Our setting: E,p, auxiliary quadratic K/F'

| Conjecture

e Stark-Heegner points defined over ring class fields
of K

e Hilbert’s 12th problem for totally complex quar-
tic K.

In both cases, the main ingredients:

(1) Modular symbols
(2)tk O =1

In the imaginary quadratic case, no modular parametriza-
tion.



THE COMPUTATION

Proposition 1 (Manin-Drinfeld). There exists a
d € Z such that for any two cusps r,s € PYF),

s P 3.0
I f-pes.
The Z-valued modular symbol

or—si=g [ 5. rserr)

is an eigensymbol for Uy:

T+« S+«
Urpgr — s} = Z ol — = — } =
acOp/m
= c(m)pir — s}

We can compute the mixed multiplicative integrals
if we can lift this to a U, eigensymbol with values in
measures on O.



Pollack-Stevens/Pollack-Darmon polynomial-time al-
gorithm for computing the mixed multiplicative in-
tegral:

(1) Lift ¢ to some modular symbol ®y with values
in measures on O, (need not be a U, eigensym-

bol):

¢{"“—>3}:/O7rd@0{"“—>3}

(2) Tterate Us:
O = lim U,
is a Uy-eigensymbol.
(3) Compute the integrals from & by simple alge-
bra.



Q: How do you find the initial lift $y7

Biggest problem computationally: need to specify @
values on edge of the fundamental domain for I'y(N),
with each of the (many) faces imposing a Z[T'y(N)]-
linear relation.

A: You don’t!

For any pair of cusps r, s, choose ®op{r — s} to be

an arbitrary measure with total integral ¢{r — s}

(not necessarily satisfying face relations). Then
n—oo

turns out to be an honest modular symbol, i.e. sat-

isfies the face relations even thought & didn’t.



p-ADIC APPROXIMATION

Tpadic =56 - 7372 +43- 7371 + 35+ 68 - 73 + 36 - 73°+

46173342773 +36-73°+69- 730 +58. 737 ..

4

Find the shortest element of F' which agrees with
Zp—adic tO glven precision

J
125460788 — 629994+/—3
Lolobal —
global 127165927

The point is:

1. The p-adic values of z,_aqic and yp—adqic satisty the
cubic equation to the given precision.

2. The global values gjopar and yglona are obtained
by independently approximating their p-adic coun-
terparts.

3. Zglobal and Yelonal satisty the cubic equation ez-
actly.



MORE EXAMPLES

Consider the curve over F' = Q(y/—11) given by
1—/—11 ,

E:y2+y:x3+—2 r° —x,

with prime conductor m = 6++/—11 of norm p = 47.

Take K = F(1/13), whose Hilbert class field H is of
degree 5.

A refinement of the Conjecture produces five 47-
adic Stark-Heegner points {.Jj. ..., Js} which con-
jecturally form an orbit under the action of Gal(H/K) =
CIl(K). We find that, to 20 digits of 47-adic accu-
racy, the x and the y-coordinates of the J;’s seem to

be the roots of global polynomials

13 +5V/-11
2
3Vl 25— VT
2

fo(T)=T° 4+ (1 —/—11)T* 9T

, 1+VEIl 33— V-
2

2
23 + \/—11T+

fy(T> =1T1° 9

2
15+ 5y/—11
L

T3 + (30 — 2v/—11)T? +

respectively, both of which do generate the Hilbert
class field of K.



Let o = H=t

Let K = F(v/—3la+ 13) of class number 11. As
in the previous example, we get a conjectural orbit
{J1,...,J11} whose x and y coordinates satisfy re-
spectively the polynomials

171223

81 27
<_6204140 6960362> 7. (_ 23838260 2734360) -

1001 17 323272 424678 1089383
7y — 71 ( 710 B 9
f(T) *‘( ot ) 6561 2187 2187

6561 ¢ 2187 6561 2187
<14741863a - 21734605) _ <31785055a . 945548> -
6561 2187 6561 2187
s <_187616a . 345851) - (_123371% .\ 39776> -
243 81 6561 2187
418849 404362 152569 71186
<_ o187 1 729 ) <_ 2187 729 )

9040 808 27617002 9969382
11 10 9
- S e+ 20 - T
fy(T) =T +< 720 * T 243) < 531441 177147) i
| (357040964 36661465 g 190683592 10652966 ¢
_ o _ _
531441 177147 177147 59049

2222665025 6043268 \ , ¢ 2659900916 239230063 \ 5
— a+ °+ | — o — T
531441 177147 531441 177147
< 994603849 49156820) 4 < 153123922 __422939471) T4

_|_
+ o «
177147 59049 177147 59049

729

+

o o o
19683 6561 6561 2187 6561

again to 20 digits of 47-adic accuracy. Both of these
do in fact cut out the Hilbert Class field of K.

( 12030155 7540141) 9 <2238101 2089850> <322343 222079)
2187 )’

)7



BASE CHANGE

g € S5(I'g(N)) - modular form on H, F' imaginary
quadratic field of class number 1.
g < Ex
base change | 1

—

g < E/F
Periods over Q. Modular symbols of g (over Q):

(o= bhg = [ ot

{a—>b}(:5: {a—>b}@:|:;£—a,—> —b}@.

Q,,Q_ € R,: smallest real and imaginary parts of
periods {a — b}q.

Qc = Q.Q_: area of E(C) for E the strong Weil
curve corresponding to g.



Proposition 2. a) (Manin-Drinfeld Lemma) For
any two cusps a,b € PL(Q), there exist v, r_ € Q
with

{a — b}& =71, {a — b}g=r_ifd_.

b) (Birch Lemma) Let x : (Z/fZ)* — C* be a

primitive Dirichlet character. Denote by

F-1
oria
To(x) = Y _x(a)e’
k=0

its Gauss sum. Set €2 = Q. if x is even, and
Q = 1Q_ if x 1s odd. The special value of the
twisted L-function of g 1s given by

Lig,x.1) =mo0x) " > x(k) {; — OO}Q = 1y,

keZ/fZ

for some r, € Q(x).



Periods over F. Modular symbol of g (over F'):

1672 (7

B.=—— | G4
{CL—> }F 'UJ’D| ag /8

Qp € R,: smallest positive real period of f

Proposition 3. a) (Manin-Drinfeld Lemma) For
any two cusps a,b € PY(F), there exists r € Q
with

{a — b} =rQp.

b) (Birch Lemma) Let x : (Op/p)*/Or — C*
be a primitive ‘Dirichlet’ character (i.e. a Hecke
character with trivial archimedean component) with
Gauss sum

()= Y xla)e " T,
a€Op/p

Then the special value L(f, X, 1) is given by

gD =700" ¥ ww{E -} —non

KEOR/¢ ?
for some r,, € Q(x).



Proposition 4. Let F' be an imaginary quadratic
field of class number 1. Let g € So(N) be a new-
form on H and § its base-change to H®). Let
Qc = Q.0 be the complex period of g, and let
Qp be the smallest positive real period of g. Then

1 Q¢
’ Vo €

Proof. x : (Z/fZ)* — C* - primitive Dirichlet
character of conductor prime to ND. By definition
of base change

Q.

L(§7 XONF/Q7 1) — L(QaXn 1)L(97X8F7 1) — L(QaXn 1)L(96F7X7 1)7

Expressing in terms of modular symbols,

~1
Tr(x © Npjg)~'rrlr = |To(X)T0(xer) | 7qif2: Q.

with rp, rg € Q(x) (we get both €2 and Q_ since F
is imaginary, so the associated character ep is odd).
The Gauss sums are related by

LT T I

)

which yields



\/ ‘D’TFQF = —T@Q@.

A theorem of Rohrlich guarantees the existence of
infinitely many characters x such that L(g, x,1) #
0 # L(gep, X, 1), i.e. such that rp # 0. Divide by

rp:
1 Q¢

——— € Q(x).
D1 (x)
Repeating this argument with a x’ of conductor prime

to that of x, we get that

1
ﬁﬂ_i cQ(x)NQK) =Q,

as desired []



Remark: The base change identity
L(g.x © Npjg,1) = L(g, x,1)L(g, xeF, 1)

can be read as a linear equation in {% — oo} .
F

Can we choose enough x’s to completely determine
{a — b}y in terms of {x — y}q?

Can we get an explicit formula in this way?

If so, in base change cases there might be hope of re-
lating the Stark-Heegner points over F' with classical
Heegner points, and use that to provide evidence for
the conjecture that Stark-Heegner points are global.



