William A. Stein
Let p and
be distinct primes.
The modular curve X0(p) is ordinary at
iff the Hecke operator
is invertible modulo
.
The following is a table which enumerates, for each prime p between
23 and 997, the set of primes
for which the modular curve X0(p)
is not ordinary.1
| p | non-ordinary
|
| 23 | 43 |
| 29 | - |
| 31 | - |
| 37 | 2, 3, 5, 17, 19 |
| 41 | - |
| 43 | 2, 7, 17, 37 |
| 47 | - |
| 53 | 3, 5, 11, 17 |
| 59 | 2, |
| 61 | 31, 101 |
| 67 | 2, 41, 71, 97 |
| 71 | 3, 5, 37 |
| 73 | 3, 43, 59, 71, 79 |
| 79 | - |
| 83 | 2, 5, 47, 73, 89 |
| 89 | 7, 29, 41, 101 |
| 97 | 7, 23 |
| 101 | 2, 7 |
| 103 | - |
| 107 | 2 |
| 109 | 3, 13, 79 |
| 113 | 7, 11 |
| 127 | 3, 37 |
| 131 | 2, 11, 29 |
| 137 | 7, 29 |
| 139 | 2, 7, 13, 19, 53 |
| 149 | 3, 13 |
| 151 | 5, 13, 37, 41, 83 |
| p | non-ordinary
|
| 157 | 5 |
| 163 | 2, 3, 17 |
| 167 | 11 |
| 173 | - |
| 179 | 2, 3, 17, 53, 71 |
| 181 | 29 |
| 191 | 13, 17, 71 |
| 193 | 5 |
| 197 | 2, 3, 5, 17, 59 |
| 199 | 7, 11, 53, 83 |
| 211 | 2, 29, 67 |
| 223 | - |
| 227 | 2, 7, 19, 89 |
| 229 | 7, 17, 37 |
| 233 | 23 |
| 239 | 29, 97 |
| 241 | 101 |
| 251 | 2 |
| 257 | 23 |
| 263 | 13, 19 |
| 269 | 2, 3, 73 |
| 271 | 5, 7 |
| 277 | 5, 23 |
| 281 | 13, 19, 59 |
| 283 | 2 |
| 293 | 3 |
| 307 | 2, 3, 5, 7, 13, 23, 29 |
| 311 | - |
| p | non-ordinary
|
| 313 | 19, 31 |
| 317 | 5, 11 |
| 331 | 2, 11, 41 |
| 337 | 5, 61 |
| 347 | 2, 5, 41, 61, 101 |
| 349 | 2 |
| 353 | 2, 5, 13, 19, 37 |
| 359 | 3, 5, 13, 23, 43, 47, 53, 97 |
| 367 | 5, 13 |
| 373 | 2, 7 |
| 379 | 2 |
| 383 | 13 |
| 389 | 2, 5, 7, 31, 79 |
| 397 | 3, 5, 7 |
| 401 | 2 |
| 409 | 2, 83 |
| 419 | 2 |
| 421 | 13, 41 |
| 431 | 3, 11 |
| 433 | 89 |
| 439 | 3, 31 |
| 443 | 2, 5, 13, 29 |
| 449 | 7 |
| 457 | 7, 61 |
| 461 | 5, 17, 31 |
| 463 | 5 |
| 467 | 2, 3 |
| 479 | 17 |
| 487 | 2, 3, 43, 67 |
| 491 | 2 |
| 499 | 2, 5, 19 |
| 503 | 3, 5, 7, 17, 29, 37, 71, 89, 101 |
| 509 | 5, 13 |
| 521 | 3, 5 |
| 523 | 2, 5, 7, 11, 41, 43 |
| 541 | - |
| 547 | 2, 7, 17, 23 |
| 557 | 2, 5, 23, 31, 43, 89 |
| 563 | 2, 97 |
| 569 | 7, 71 |
| 571 | 2, 17, 19, 23, 37, 41, 43, 47, 79, 83 |
| 577 | 2, 3, 5, 23, 29, 47 |
| 587 | 2, 11, 19, 43 |
| 593 | 3, 23, 31, 59, 83 |
| 599 | 19 |
| 601 | - |
| 607 | 31, 59 |
| 613 | 79 |
| 617 | 23 |
| 619 | 2, 5, 7, 41 |
| 631 | 5, 101 |
| 641 | 17, 59 |
| p | non-ordinary
|
| 643 | 2, 7, 13, 43, 67 |
| 647 | 3, 29, 61, 79 |
| 653 | 83 |
| 659 | 2, 3, 7, 11, 19, 23, 29, 79, 83 |
| 661 | 3 |
| 673 | 29, 43 |
| 677 | 2, 5, 43, 59, 101 |
| 683 | 2 |
| 691 | 2, 5, 47, 73 |
| 701 | 2, 11, 79 |
| 709 | 2, 41, 61, 67 |
| 719 | 7, 11 |
| 727 | - |
| 733 | 5, 7, 11, 29, 89, 101 |
| 739 | 2, 3, 5 |
| 743 | 5, 13 |
| 751 | 2, 29 |
| 757 | 2, 3 |
| 761 | 2 |
| 769 | 7 |
| 773 | 2, 3, 5, 19, 37, 53 |
| 787 | 2, 79 |
| 797 | 5, 7, 47, 53, 61 |
| 809 | 2, 47 |
| 811 | 3, 7, 11 |
| 821 | 3, 11, 79 |
| 823 | 43 |
| 827 | 2, 3, 5, 7, 13, 23, 41, 59 |
| 829 | 2, 3, 11, 19, 31 |
| 839 | 3, 5 |
| 853 | 29, 43 |
| 857 | 17, 23 |
| 859 | 2, 5, 43 |
| 863 | 3, 7, 11, 19, 47 |
| 877 | 2 |
| 881 | 7 |
| 883 | 2, 3, 59 |
| 887 | 2 |
| 907 | 2 |
| 911 | 11 |
| 919 | 2, 5, 13 |
| 929 | 5, 11, 13 |
| 937 | - |
| 941 | 5, 79 |
| 947 | 2 |
| 953 | 3, 5 |
| 967 | - |
| 971 | 2 |
| 977 | 7 |
| 983 | 7, 11 |
| 991 | 83 |
| 997 | 2, 5, 11, 13, 29, 31, 41, 79, 83, 97 |