next up previous
Next: What is Known Up: Lecture 35: The Birch Previous: Lecture 35: The Birch

The BSD Conjecture

Let $ E$ be an elliptic curve over  $ \mathbb{Q}$ given by an equation

$\displaystyle y^2 = x^3 + ax + b
$

with $ a,b\in\mathbb{Z}$. For $ p\nmid \Delta = -16(4a^3 + 27b^2)$, let $ a_p = p+1 - \char93  E(\mathbb{Z}/p\mathbb{Z})$. Let

$\displaystyle L(E,s) = \prod_{p\nmid\Delta} \frac{1}{1-a_p p^{-s} + p^{1-2s}}.
$

Theorem 1.1 (Breuil, Conrad, Diamond, Taylor, Wiles)  
$ L(E,s)$ extends to an analytic function on all of $ \mathbb{C}$.

Conjecture 1.2 (Birch and Swinnerton-Dyer)   The Taylor expansion of $ L(E,s)$ at $ s=1$ has the form

$\displaystyle L(E,s) = c(s-1)^r +$   higher order terms$\displaystyle $

with $ c\neq 0$ and $ E(\mathbb{Q})\approx \mathbb{Z}^r \times E(\mathbb{Q})_{\tor}$.

A special case of the conjecture is the assertion that $ L(E,1)=0$ if and only if $ E(\mathbb{Q})$ is infinite. The assertion ``$ L(E,1)=0$ implies that $ E(\mathbb{Q})$ is infinite'' is the part of the conjecture that secretely motives much of my own research.



William A Stein 2001-12-06