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Introduction 

Jacob Bernoulli was a mathematician who created a class of numbers called, not 

surprisingly, the Bernoulli Numbers. Bernoulli was studying formulas concerning summing the 

k
th

 powers of n integers, i.e [2] 
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It was through this research on determining the coefficients of these polynomials that he created 

the Bernoulli numbers. 

Bernoulli Numbers 

The Bernoulli numbers are a sequence of rational numbers discovered by Jacob 

Bernoulli, and these numbers are used in many different areas of mathematics. Some that this 

paper addresses are the Riemann-zeta function and Kummer Congruencies. The Bernoulli 

numbers can be defined directly or recursively. The recursive definition is 
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where 0 1B  .[1] 

The direct definition refers to the coefficients of the power series of 
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This fact can be shown by the following: [2] 
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     If you look at the coefficients of values of 
1mt 

(especially when m = 0)  

    You get that 0 1b  , and when you look at multiple values of m, you get: 
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which is the definition of a Bernoulli number. Since     

    0 0b B , it follows that m mb B . 

 

Now that the definition of Bernoulli numbers has been explained, here are the first several 

numbers: 

0 4 8 12

1 5 9 13
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One will note that for all odd indices other than one, the Bernoulli number evaluates to 0, and the 

even indices always change sign. Another observation is that 2mB keeps decreasing until 6B at 

which point it begins to increase. In fact, the graph of what the Bernoulli numbers look like is as 

follows: 
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The red dotted line is represented by the equation 2log(4 ( ) )kk
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[3] In order to actually find out how the Bernoulli numbers behave, we can actually use a 

relationship between the Bernoulli numbers and the Riemann-zeta function as shown by Euler. 

The theorem that Euler proved was: 
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During Euler’s time, it was an ongoing problem to try and find a way to describe how (2 )m  

behaved but this theorem accurately describes its behavior. In order to prove this theorem, we 

use the fact that the partial fraction decomposition of cot( )x x  is: 
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Additionally, noting that: 
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However, note that the original definition of a Bernoulli Number that we gave us a 

relationship between 
2
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1ix
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and an equation involving Bernoulli Numbers. 
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If we study the two different series that we have set equal to xcot(x) 
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 we can see that we get an equation of the form: 
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From this point, it is clear that this is equivalent to the original statement of  
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From this theorem, we can note a couple of important things about the Bernoulli numbers, one 

being that we have a rough estimate of how large 2mB might become.  
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Obviously, the Bernoulli numbers grow at a fast rate, which brings up a question about their 

calculations. From this formula we get: 
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which seems like a reasonable way to calculate Bernoulli numbers. If we code up a program in 

SAGE we should be able to find Bernoulli numbers now. 

def bern(m): 

    numerator = 2*factorial(m) 

    denominator = (2*pi)^m  

    riem = zeta(m) 

    return numerator/denominator * riem 

     

And using this function, we see that we get this as an output which seems to match SAGE’s own 

implementation of the Bernoulli numbers.  

for i in range(2,6,2): 

    print(N(bern(i))) 

    print(N(bernoulli(i))) 

    >>0.166666666666667 

    >>0.166666666666667 

>> 0.0333333333333333 

>> 0.0333333333333333 

 

However, SAGE uses a better algorithm then the one previously defined above, as it finds the 

Bernoulli number as a fraction with numerator and denominator as integers. In our method, we 

have, at best, a fraction over some power of pi, which needless to say is not an integer. In order 

to calculate a Bernoulli number with integer numerators and denominators, we need to use a 

congruence discovered by Clausen and Von Staudt. The Clausen and Von Staudt congruence 

states that: 
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SAGE takes advantage of this, and thus is able to give a Bernoulli number in the form of a 

fraction of two integers. 

    bernoulli(10) 

    >> 5/66 

 

Kummer Congruences 

 

An interesting fact, is that mathematician Ernst Kummer had a similar congruence to that of 

Clausen and Von Staudt that he used to show a specific case of Fermat’s Last Theorem  and that 

also relates to ideal class theory [4]. His congruence states: 

Let p be a prime and suppose that k  2 is an even integer z s.t.(p-1) does not divide z. 

Then the quotient 
kB

k
 ,as a fraction of lower terms, is such that p does not divide its 

denominator. Also, if h is another even integer with (p-1) not dividing k and 

(mod( 1))k h p   , then: 

  (mod )k hB B
p

k h
  

 

The applications of Kummer congruencies are very vast and complicated and a couple examples 

of them are as follows: 

 Fermat’s Last Theorem is true for regular primes, as shown by Kummer himself. A 

Regular prime is  defined as being an odd prime that does not divide the numerator of 

2 4 6 3, , , ..., pB B B B  . This is also significant because the number of regular primes is 

thought to be infinite,  

 Use in p-adic L-functions, such as use in Iwasawa theory [4]. 

Bernoulli Polynomials 

 The Bernoulli polynomials are defined as such: 
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Some examples of polynomials are: 
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Earlier in the paper, we defined ( )mS n , and we will use this to define a theorem that will allow 

us to relate ( )mS n  and the Bernoulli polynomials and numbers: [2] 

   For 1m  , ( )mS n  will satisfy the equation: 
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From this theorem, we can get the relationship: 
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 The Bernoulli polynomials are used in the study of the Riemann-zeta function, and also 

in the Hurwitz-zeta function. The Bernoulli polynomials have interesting properties which are 

not immediately obvious from looking at their graphs. If we plot some of the Bernoulli 

polynomials in SAGE we get these results: 
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For 2B  

 

 

 

 

 

 

 

 

 

For 3B  

 

 

 

 

If we use SAGE to graph the first few on the same plot we get this result using this code: 

 

a = plot(bernoulli_polynomial(x,1), rgbcolor= 'red') 

a += plot(bernoulli_polynomial(x,2),  rgbcolor= 'green') 

a += plot(bernoulli_polynomial(x,3),  rgbcolor = 'blue') 

a += plot(bernoulli_polynomial(x,4),  rgbcolor = 'black') 

a += plot(bernoulli_polynomial(x,5), rgbcolor = 'yellow') 

plot(a) 
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One of the amazing things about these polynomials is that when scaled properly, they will 

approach the sine and cosine functions. [5] The polynomials have to be scaled because the 

Bernoulli Numbers increase very rapidly, and sin(x) obviously is bounded by 1 and -1.  

 These polynomials have been used in order to evaluate certain Dirichelet series in terms 

of Bernoulli polynomials. This is achieved by using the Fourier expansion of a class of certain 

Bernoulli polynomials. (For more information on this topic, see Balanzario, and Sanchez-Ortiz’s 

paper on this subject.)  
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