
Figure 1.   This is a picture of the Bloch 
Sphere.  The north and south poles represent 
the base states.  A qubit can take any value on 
the sphere.  These are linear superpositions of 
the |0> and |1> states whose inner product with 
themselves is 1. 
(http://www.bradrubin.com/Site/Blog/Entries/2
008/12/29_Entry_1.html) 
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Introduction 
 Factoring of integers has been 
a problem of interest in number 
theory for years. Using classical 
computers the current (in 2010) best 
algorithm for factoring has order 
O(exp((logN)^(1/3)*log(log 
(N))^(2/3))).  Shor’s algorithm uses a 
quantum computer to reduce the 
problem to O((log N)3), which is 
exponentially faster. Shor’s algorithm 
is a special case of a period finding 
algorithm.  While quantum computers 
would be much faster than classical 
computers for factoring, the 
implementation of quantum 
computing is still in its infancy, at 
least compared with classical 
computing.  Nonetheless, in 2001 a 
group working at IBM successfully 
used Shor’s algorithm to factor 15 
using NMR (Nuclear Magnetic 
Resonance) qubits.  Since then it has 
also been successfully implemented 
using photonic quantum computers in 
2007.  Shor’s algorithm uses a 
quantum Fourier Transform 
algorithm (O(logN)2)), as well as 
period calculating algorithm 
(O(logN)).  I will give a brief 
introduction to the necessary elements of quantum mechanics/computing and then 
describe the algorithms needed.  The calculations involved were taken from lecture notes 
for Physics 427 summer 2009 as well as the book by Le Bellac. 
 
Basics of Quantum Computing 
 In quantum computing a two state system is usually known as a qubit. A two state 
system is some quantum mechanical system which only has two states. Analogous with 
classical computing, the two states are represented as |0> (the ground state) and |1> (the 
excited state).  However, unlike classical computing, in quantum computing we can have 
superpositions of these two states.  This is a quantum mechanical effect analogous to 
superpositions of two waves on a string.  These states are represented as points on the 
Bloch Sphere (Figure 1).  During the running of a quantum algorithm each of the qubits 



will become some superposition of the |0> and |1>.  However, when they are measured 
they snap back to one of the two base states with a probability given by the inner product 
of their superposition state with the base states.   
 Because we are working with a quantum mechanical system all actions operating 
on the qubits must be unitary operations (UtU=I).  Also it is useful to recall that if we let 
A = {|x>} be a complete orthonormal basis for the Hilbert space of possible states then  
     ∑A|x><x| = I,  
where in vector notation |1><1| = (0,1)T*(0,1) = ({0,0},{0,1}) this will be referred to as 
the completeness relationship. (Griffiths) 
 Quantum computers are able to do many computations more rapidly than classical 
computers, because they are able “to explore at the same time all the branches of a 
nondeterministic algorithm” (Le Bellac). If one subscribes to the many worlds philosophy 
(that all possible choices are taken in some universe) a quantum computer is simply using 
many different universes to do the computation and by interfering the qubits arrive at the 
answer (in a probabilistic way) when the qubits are measured.  Even if you do not 
subscribe to this philosophy it provides a way to understand what makes a quantum 
computer so powerful. 
 
Quantum Fourier Transform 
    One of the components necessary for Shor’s algorithm is the quantum Fourier 
Transform.  The quantum Fourier Transform goes as follows.  First let any integer x such 
that 0≤x≤2n-1 be written as  
    |x> = |xn-1 xn-2…x0>  
where xj is the jth digit in the binary representation of x and n is the number of qubits.  
Next let UFT be the unitary operator whose elements are defined by 
  <y|UFT|x> = (UFT)yx = 2-n/2 exp^(2πixy/2n).      

Figure 2. This circuit diagram shows how a quantum Fourier Transform
would work for 3 qubits.  Here the H stands for a Hadamard gate, which
has the following affect on the basis vectors (H|0> = 2-1/2(|0>+|1>),
H|1>=2-1/2(|0>-|1>)).  If one writes out the corresponding matrix it is easy
to see that it is unitary.  The Rd are control rotation gates which has no
affect on the control qubit and if the control qubit is 0 then nothing
happens to the other qubit if however the control qubit is 1 then |0> -> |0>
and |1> -> exp^(ip/2d)|1>.  If you write out the matrix it is unitary.

 



Next we define a vector |Ψ> as 
   |Ψ> = ∑ xεBf(x)|x> where B = {0,1,…,2n –1}    (1) 
and  

∑B|f(x)|2 = 1.         (2) 
The second condition (Eq. 2) just means that the vector is appropriately normalized.  
Observe that <x|Ψ> = f(x).  Then  
  <y|UFT|Ψ> = ∑ xεB<y| UFT|x><x| Ψ>     (3) 
   = 2-n/2 ∑ xεB exp^(2πixy/2n) f(x) = F(y).  (4) 
where F(y) is the Fourier Transform of y.  The first equality (Eq. 3) used the 
completeness relationship to insert a complete set of states and the second (Eq. 4) was 
just evaluating the sum and observing that the result was the Fourier Transform.   
 Quickly we will now show that UFT is in fact unitary. 
      ((UFT

†)(UFT))y’y  =  ∑xεB(UFT
†)y’x(UFT)xy  

   =  ∑xε B(UFT
*)xy’(UFT)xy 

  =  2-n/2 (∑xεBexp^(2πi(y-y’)x/2n)) 
  =  δy’y. 
Where δy’y is the Kronker delta function.  The first equality is just the definition of matrix 
multiplication.  The second is the definition of the Hermitian conjugate, while the third is 
substituting into the equation.  Finally, the last equality uses the fact that the sum over y 
was a geometric series.  So Ut

FTUFT = I which proves that UFT is a unitary operator. 
 The quantum Fourier Transform can be implemented using Hadamard gates (see 
caption in Figure 2 for discussion of such gates) and controlled rotation gates (see caption 
in Figure 2).  The quantum circuit for the quantum Fourier Transform can be seen in 
Figure 2 for three qubits.  Generalizing this to n qubits involves n H-gates and  

   (n-1) + (n-2)+…+1 = n(n-1)/2  
controlled rotation gates.  So as a whole the quantum Fourier Transform requires O(n2) 
gates.  One can work out that the circuit shown in Figure 2 does indeed give the desired 
result and then argue by induction that it would work for n qubits, but the calculation is 
not particularly enlightening.  If the reader would like to see the computation they should 
look in any introductory quantum computing text.  This algorithm for the Fourier 
transform is significantly faster than the classical algorithm. 
 
Period calculating algorithm 
 The second algorithm needed is the period calculating algorithm.  It uses the 
Fourier Transform developed in the previous section.  Unlike the Fourier Transform the 
period calculating algorithm is probabilistic.  As we will show it is successful roughly 1 
in 4 times.  Shor’s algorithm works by finding the period of f(x) = bx mod N where N is 
the number to be factored and b is a random integer which does not divide N (if it did we 
would be done because we had found a factor of N).  We start with n qubits where 2n > 
N2.    
 We start with the initial state containing n+m qubits 
 |Φ> = 2-n/2 (∑ xεB|x>)⊗|00…0>, 
where B = {0,1,…,2n –1}. From there apply a unitary transformation which takes |Φ> to 
|Ψ> in the following way 
 |Ψ> = 2-n/2 (∑ xεB|x⊗f(x)>. 



Figure 3. Plot of sin2(7x)/sin2(x) to show the nature of the 
function near the origin.  It is easy to see that the numbers 
with the largest probabilities of occurring are those near 0.  
The peaks to the left and right are farther away than the 
largest value of x.   

Now if we were to measure the output register (the m qubits) and got f0 then the first n 
qubits would be in the state 
 |Ψ0> = M-1∑ xεC|x>, 
where C = {x:f(x) = f0} and M is a normalization to make the vector (|Ψ0>) unit length.  
Let m = (#C). Then if we let the period of f(x) = r and x0 be the smallest x which is an 
element of C, then  

|Ψ0> = m-1/2∑ kε(Z/mZ)|x0 + kr>. 
 Now we take the quantum Fourier Transform of |Ψ0> and calculate the inner 
product of that with |y> to get 
 <y|UFT|Ψ> = 2-n/2 m-1/2∑ kε(Z/mZ)exp^(2πiy(x0 +kr)/2n). 
 If we then find the magnitude squared of this value we find the probability that of 
finding a given |y> as the measured value of the output.  So 
 P(y)  = |2-n/2 m-1/2∑ kε(Z/mZ)exp^(2πiy(x0 +kr)/2n)|2 

 = (2n m)-1 |∑ kε(Z/mZ)exp^(2πiykr)/2n)|2. 
Now we calculate the sum using the equation for a geometric series.  To get 
 ∑ kε(Z/mZ)exp^(2πiykr)/2n)  = (1- exp^(2πiymr)/2n))/(1- exp^(2πiyr)/2n)) 
 = e^(πi(m-1)r)/2n)sin(πymr/2n)/ sin(πyr/2n). 
There are now two cases.  In the case that 2n/r is an integer then m = 2n/r   
P(y) = (2n m)-1sin2(πy)/ sin2(πy/K) = 1/r if y = j m for some integer j. 
Otherwise, 
 P(y) = 0. 
Now in Case 1, j/r = y/2n which tells us what j and r are.  In the other case we can write 
 yj = j (2n/r)+δj. 
Then, 
 P(yj) = (2n m)-1 sin(πδjmr/2n)/ sin(πδjr/2n). 
This has large values when y is close to j (2n/r) see Figure 3.  To calculate just how likely 
we are to measure the correct value of y consider  
 2 x/π ≤sin(x)≤x for 0 ≤x≤π/2. 
So if we require |πδj|<π/2 then  
 P(yj) ≥ 4m/(p22n) ≈ 4/(p2r). 
Since r is large and 0 ≤ j ≤ r-1 there 
is at least a 4/p2 (40%) chance of 
finding one value of yj near j2n/r.  
At this point, one can take yj/2n 
(which is known) and expand it out 
using continued fractions to get 
j0/r0.  If we are lucky, then j and r 
have no common factors and we 
immediately get r = r0.  This will 
happen roughly 6/π2 ≈ 60% (this 
comes from ∏2

∞(1-p-2) = 6/ π2), so 
0.40 x 0.60 ≈ 25% of the time one 
will immediately get the period 
which can be tested on a classical 
computer.  If that fails trying 2r0,3r-
0… may also give the period.  If this 



fails then likely you did not get the right yj and the algorithm should be run again. (Le 
Bellac). 
 
Breaking RSA and Factoring 
  If we now want to break RSA using the period we calculated.  For Eve to break 
RSA encryption she calculates c where c e = 1 mod r, where e is the public key.  Then if 
b is the message then  

bc = a mod N  
where a is the message.  Alternatively, if the goal was to factor N then  

br –1 = 0 mod N,  
so 

(br/2-1)(br/2+1)=0 mod N.   
So as long as  

br/2 ≠ ±1mod N  
and r is even, then  

p = gcd(N, (br/2-1))       (5) 
and  

q = gcd(N, (br/2+1))       (6) 
are factors of N.  If either of the conditions (Eqs. 5 and 6) fails, Shor’s algorithm should 
be repeated with a different b.  The probability of success for this method is greater 50%. 
(Le Bellac). 
 
Factoring 15 
 A group at IBM has successfully factored 15, the easiest case, using NMR qubits.  
These qubits are molecules, which are specially designed with the nucleus having a given 
spin.  Then using the methods of NMR (how a MRI machine works) they manipulated 
the qubits in order to physically carry out Shor’s algorithm.  They were successful in 
showing that 15=3*5.  However, it is currently not possible to entangle NMR qubits and, 
because it has been shown that to get running times faster than standard computers you 
need to entangle qubits, this is not as impressive a result as was first believed.  However, 
in 2007 a photonic quantum computer managed to factor 15 as well with actual 
entanglement of the qubits.  Photonic qubits use photons (particles of light) along with 
optical methods of beam splitters and mirrors to perform the computation.  The photonic 
method of quantum computing has issues with scalability, but it is really easy to make 
quantum gates.  Within the next several years, other methods of quantum computing (e.g. 
trapped ion and supercomputing) should be able to achieve similar results while at the 
same time having greater likelihood of being scalable. (Lu et. al. 2007) 
 
Conclusion 
 While quantum computers are currently unable to do realistic computations they 
have the capability to be much faster.  Like classical computers there is an analog to 
Moore’s Law for the number of qubits, which can be manipulated.  Because of this there 
is great hope that quantum computers have a future.  Besides Shor’s algorithm for 
factoring there are many other quantum algorithms for searching and determining the 
parity of a function that require far fewer steps than similar algorithms in a classical 



computer.  While it is unlikely that quantum computers will completely take over the 
functions of classical computers, they still have a bright future. 
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