
Figure 1. This is a picture of the Bloch
Sphere. The north and south poles represent
the base states. A qubit can take any value on
the sphere. These are linear superpositions of
the |0> and |1> states whose inner product with
themselves is 1.
(http://www.bradrubin.com/Site/Blog/Entries/2
008/12/29_Entry_1.html)

Michael Spillane
Final Project 414

Introduction
 Factoring of integers has been
a problem of interest in number
theory for years. Using classical
computers the current (in 2010) best
algorithm for factoring has order
O(exp((logN)^(1/3)*log(log
(N))^(2/3))). Shor’s algorithm uses a
quantum computer to reduce the
problem to O((log N)3), which is
exponentially faster. Shor’s algorithm
is a special case of a period finding
algorithm. While quantum computers
would be much faster than classical
computers for factoring, the
implementation of quantum
computing is still in its infancy, at
least compared with classical
computing. Nonetheless, in 2001 a
group working at IBM successfully
used Shor’s algorithm to factor 15
using NMR (Nuclear Magnetic
Resonance) qubits. Since then it has
also been successfully implemented
using photonic quantum computers in
2007. Shor’s algorithm uses a
quantum Fourier Transform
algorithm (O(logN)2)), as well as
period calculating algorithm
(O(logN)). I will give a brief
introduction to the necessary elements of quantum mechanics/computing and then
describe the algorithms needed. The calculations involved were taken from lecture notes
for Physics 427 summer 2009 as well as the book by Le Bellac.

Basics of Quantum Computing
 In quantum computing a two state system is usually known as a qubit. A two state
system is some quantum mechanical system which only has two states. Analogous with
classical computing, the two states are represented as |0> (the ground state) and |1> (the
excited state). However, unlike classical computing, in quantum computing we can have
superpositions of these two states. This is a quantum mechanical effect analogous to
superpositions of two waves on a string. These states are represented as points on the
Bloch Sphere (Figure 1). During the running of a quantum algorithm each of the qubits

will become some superposition of the |0> and |1>. However, when they are measured
they snap back to one of the two base states with a probability given by the inner product
of their superposition state with the base states.
 Because we are working with a quantum mechanical system all actions operating
on the qubits must be unitary operations (UtU=I). Also it is useful to recall that if we let
A = {|x>} be a complete orthonormal basis for the Hilbert space of possible states then
 ∑A|x><x| = I,
where in vector notation |1><1| = (0,1)T*(0,1) = ({0,0},{0,1}) this will be referred to as
the completeness relationship. (Griffiths)
 Quantum computers are able to do many computations more rapidly than classical
computers, because they are able “to explore at the same time all the branches of a
nondeterministic algorithm” (Le Bellac). If one subscribes to the many worlds philosophy
(that all possible choices are taken in some universe) a quantum computer is simply using
many different universes to do the computation and by interfering the qubits arrive at the
answer (in a probabilistic way) when the qubits are measured. Even if you do not
subscribe to this philosophy it provides a way to understand what makes a quantum
computer so powerful.

Quantum Fourier Transform
 One of the components necessary for Shor’s algorithm is the quantum Fourier
Transform. The quantum Fourier Transform goes as follows. First let any integer x such
that 0≤x≤2n-1 be written as
 |x> = |xn-1 xn-2…x0>
where xj is the jth digit in the binary representation of x and n is the number of qubits.
Next let UFT be the unitary operator whose elements are defined by
 <y|UFT|x> = (UFT)yx = 2-n/2 exp^(2πixy/2n).

Figure 2. This circuit diagram shows how a quantum Fourier Transform
would work for 3 qubits. Here the H stands for a Hadamard gate, which
has the following affect on the basis vectors (H|0> = 2-1/2(|0>+|1>),
H|1>=2-1/2(|0>-|1>)). If one writes out the corresponding matrix it is easy
to see that it is unitary. The Rd are control rotation gates which has no
affect on the control qubit and if the control qubit is 0 then nothing
happens to the other qubit if however the control qubit is 1 then |0> -> |0>
and |1> -> exp^(ip/2d)|1>. If you write out the matrix it is unitary.

Next we define a vector |Ψ> as
 |Ψ> = ∑ xεBf(x)|x> where B = {0,1,…,2n –1} (1)
and

∑B|f(x)|2 = 1. (2)
The second condition (Eq. 2) just means that the vector is appropriately normalized.
Observe that <x|Ψ> = f(x). Then
 <y|UFT|Ψ> = ∑ xεB<y| UFT|x><x| Ψ> (3)
 = 2-n/2 ∑ xεB exp^(2πixy/2n) f(x) = F(y). (4)
where F(y) is the Fourier Transform of y. The first equality (Eq. 3) used the
completeness relationship to insert a complete set of states and the second (Eq. 4) was
just evaluating the sum and observing that the result was the Fourier Transform.
 Quickly we will now show that UFT is in fact unitary.
 ((UFT

†)(UFT))y’y = ∑xεB(UFT
†)y’x(UFT)xy

 = ∑xε B(UFT
*)xy’(UFT)xy

 = 2-n/2 (∑xεBexp^(2πi(y-y’)x/2n))
 = δy’y.
Where δy’y is the Kronker delta function. The first equality is just the definition of matrix
multiplication. The second is the definition of the Hermitian conjugate, while the third is
substituting into the equation. Finally, the last equality uses the fact that the sum over y
was a geometric series. So Ut

FTUFT = I which proves that UFT is a unitary operator.
 The quantum Fourier Transform can be implemented using Hadamard gates (see
caption in Figure 2 for discussion of such gates) and controlled rotation gates (see caption
in Figure 2). The quantum circuit for the quantum Fourier Transform can be seen in
Figure 2 for three qubits. Generalizing this to n qubits involves n H-gates and

 (n-1) + (n-2)+…+1 = n(n-1)/2
controlled rotation gates. So as a whole the quantum Fourier Transform requires O(n2)
gates. One can work out that the circuit shown in Figure 2 does indeed give the desired
result and then argue by induction that it would work for n qubits, but the calculation is
not particularly enlightening. If the reader would like to see the computation they should
look in any introductory quantum computing text. This algorithm for the Fourier
transform is significantly faster than the classical algorithm.

Period calculating algorithm
 The second algorithm needed is the period calculating algorithm. It uses the
Fourier Transform developed in the previous section. Unlike the Fourier Transform the
period calculating algorithm is probabilistic. As we will show it is successful roughly 1
in 4 times. Shor’s algorithm works by finding the period of f(x) = bx mod N where N is
the number to be factored and b is a random integer which does not divide N (if it did we
would be done because we had found a factor of N). We start with n qubits where 2n >
N2.
 We start with the initial state containing n+m qubits
 |Φ> = 2-n/2 (∑ xεB|x>)⊗|00…0>,
where B = {0,1,…,2n –1}. From there apply a unitary transformation which takes |Φ> to
|Ψ> in the following way
 |Ψ> = 2-n/2 (∑ xεB|x⊗f(x)>.

Figure 3. Plot of sin2(7x)/sin2(x) to show the nature of the
function near the origin. It is easy to see that the numbers
with the largest probabilities of occurring are those near 0.
The peaks to the left and right are farther away than the
largest value of x.

Now if we were to measure the output register (the m qubits) and got f0 then the first n
qubits would be in the state
 |Ψ0> = M-1∑ xεC|x>,
where C = {x:f(x) = f0} and M is a normalization to make the vector (|Ψ0>) unit length.
Let m = (#C). Then if we let the period of f(x) = r and x0 be the smallest x which is an
element of C, then

|Ψ0> = m-1/2∑ kε(Z/mZ)|x0 + kr>.
 Now we take the quantum Fourier Transform of |Ψ0> and calculate the inner
product of that with |y> to get
 <y|UFT|Ψ> = 2-n/2 m-1/2∑ kε(Z/mZ)exp^(2πiy(x0 +kr)/2n).
 If we then find the magnitude squared of this value we find the probability that of
finding a given |y> as the measured value of the output. So
 P(y) = |2-n/2 m-1/2∑ kε(Z/mZ)exp^(2πiy(x0 +kr)/2n)|2

 = (2n m)-1 |∑ kε(Z/mZ)exp^(2πiykr)/2n)|2.
Now we calculate the sum using the equation for a geometric series. To get
 ∑ kε(Z/mZ)exp^(2πiykr)/2n) = (1- exp^(2πiymr)/2n))/(1- exp^(2πiyr)/2n))
 = e^(πi(m-1)r)/2n)sin(πymr/2n)/ sin(πyr/2n).
There are now two cases. In the case that 2n/r is an integer then m = 2n/r
P(y) = (2n m)-1sin2(πy)/ sin2(πy/K) = 1/r if y = j m for some integer j.
Otherwise,
 P(y) = 0.
Now in Case 1, j/r = y/2n which tells us what j and r are. In the other case we can write
 yj = j (2n/r)+δj.
Then,
 P(yj) = (2n m)-1 sin(πδjmr/2n)/ sin(πδjr/2n).
This has large values when y is close to j (2n/r) see Figure 3. To calculate just how likely
we are to measure the correct value of y consider
 2 x/π ≤sin(x)≤x for 0 ≤x≤π/2.
So if we require |πδj|<π/2 then
 P(yj) ≥ 4m/(p22n) ≈ 4/(p2r).
Since r is large and 0 ≤ j ≤ r-1 there
is at least a 4/p2 (40%) chance of
finding one value of yj near j2n/r.
At this point, one can take yj/2n
(which is known) and expand it out
using continued fractions to get
j0/r0. If we are lucky, then j and r
have no common factors and we
immediately get r = r0. This will
happen roughly 6/π2 ≈ 60% (this
comes from ∏2

∞(1-p-2) = 6/ π2), so
0.40 x 0.60 ≈ 25% of the time one
will immediately get the period
which can be tested on a classical
computer. If that fails trying 2r0,3r-
0… may also give the period. If this

fails then likely you did not get the right yj and the algorithm should be run again. (Le
Bellac).

Breaking RSA and Factoring
 If we now want to break RSA using the period we calculated. For Eve to break
RSA encryption she calculates c where c e = 1 mod r, where e is the public key. Then if
b is the message then

bc = a mod N
where a is the message. Alternatively, if the goal was to factor N then

br –1 = 0 mod N,
so

(br/2-1)(br/2+1)=0 mod N.
So as long as

br/2 ≠ ±1mod N
and r is even, then

p = gcd(N, (br/2-1)) (5)
and

q = gcd(N, (br/2+1)) (6)
are factors of N. If either of the conditions (Eqs. 5 and 6) fails, Shor’s algorithm should
be repeated with a different b. The probability of success for this method is greater 50%.
(Le Bellac).

Factoring 15
 A group at IBM has successfully factored 15, the easiest case, using NMR qubits.
These qubits are molecules, which are specially designed with the nucleus having a given
spin. Then using the methods of NMR (how a MRI machine works) they manipulated
the qubits in order to physically carry out Shor’s algorithm. They were successful in
showing that 15=3*5. However, it is currently not possible to entangle NMR qubits and,
because it has been shown that to get running times faster than standard computers you
need to entangle qubits, this is not as impressive a result as was first believed. However,
in 2007 a photonic quantum computer managed to factor 15 as well with actual
entanglement of the qubits. Photonic qubits use photons (particles of light) along with
optical methods of beam splitters and mirrors to perform the computation. The photonic
method of quantum computing has issues with scalability, but it is really easy to make
quantum gates. Within the next several years, other methods of quantum computing (e.g.
trapped ion and supercomputing) should be able to achieve similar results while at the
same time having greater likelihood of being scalable. (Lu et. al. 2007)

Conclusion
 While quantum computers are currently unable to do realistic computations they
have the capability to be much faster. Like classical computers there is an analog to
Moore’s Law for the number of qubits, which can be manipulated. Because of this there
is great hope that quantum computers have a future. Besides Shor’s algorithm for
factoring there are many other quantum algorithms for searching and determining the
parity of a function that require far fewer steps than similar algorithms in a classical

computer. While it is unlikely that quantum computers will completely take over the
functions of classical computers, they still have a bright future.

Works Cited
Le Bellac, Michel. Quantum Information and Quantum Computation. Cambridge:

Cambridge University Press, 2006.

Lu, Chao-Yang. Daniel E. Browne, Tao Yang, and Jian-Wei Pan. “Demonstration of a
 Compiled Version of Shor’s Quantum Factoring Algorithm Using Photonic
 Qubits. ” Physical Review Letters 99 (Dec. 2007): 250504.

Griffiths, David. Introduction to Quantum Mechanics. New Jersey: Pearson, Prentice

Hall, 2005.

