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1 Quaternion Algebras over Number Fields

In class we studied Dedekind domaing noetherian, integrally closed, com-
mutative integral domains where ever e ideal is maximal. Specifically, we
were interested in the ring of integers of a number field. One generalization of
a number field is a quaternion algebra@

Throughout this paper, F' is a number field with ring of integers R = Op. An
algebra over the field F' is a ring B equipped with an embedding F' — B such
that the image of F' lies in the center of B. We then identify F' with its image
in B. Further, we say the dimension of B is the dimension dimpB of B as an
F-vector space.

A quaternion algebra over a field F' is an F-algebra B = (aﬁb> with basis

1,4,7,4j where
2

i’ =a,j®> =b, and ji = —ij

and a,b € F*. Or equivalently, a quaternion algebra B is a central simple
F-algebra with dimpB = 4.

Another useful way to view quaternion algebra is as an algebra containing two
quadratic extension of F' which anti-commute. Say K is a quadratic extension

of F' contained in B. Then B = (“ﬁb) where i? = @ and i C K and ij = —ji,

i.e., we can view K = F[i] = F @ Fi as an F-algebra generated by i. Then
either K = F(y/a) or K has a zero divisor. If K is a field, then the notation for

this quaternion algebra is B = (KFZ’> C M3(K). If K has a zero divisor, then
B = My(F).

Example: If B = (%b), then B 2 R, B = C, or B & H where H are the
Hamiltonian quaternions.
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Example: Let F be a number field. Then B = My(F') = (1;) is a quatenrion

algebra over F.

In a given quaternion algebra over a number field, it would be nice to have an
analog of a ring of integers. This analog is a maximal order.

First recall that if V' is a finite-dimensional F' vector space, an R-lattice of V is
a finitely generated R-submodule I C V such that IF = V.

Definition 1. An R-order O C B is an R-lattice of B which is also a subring
of B.

Here we could have taken any noetherian integral domain with field of fractions
F to get a lattice, but R is the one we will be using. An order is maximal if
it is not properly contained in another R-order. Another useful type of order
is an Eichler order. An Eicheler order is an order which can be written as the
intersection of two maximal orders. Additionally, two orders are said to be of
the same type if they are conjugate by a nonzero element of B.

Example: Let ' = Q(v/5). Then R = Z[y] where v = 1+T\/g We can take
B = (%) so that B has basis 1,4,4,ij over F and i2 = —1 = j2. Then
O=R® Ri® Rj® Rij is an R-order. O is not a maximal order. Let

1 . )
e = 5(1 — i +j)

—_

€2 = 5 (=7i+j+k)

[\
—_

es = i(yi—ﬁj—i-k)
1 .
eq = 5(i+75 —7k)

then Og = Re; ® Res & Resz & Rey is a maximal R-order of B.

Example: For a more general example of a maximal order, let F' be any num-
ber field with ring of integers R. Then for any integer n, M, (R) is an R-order
of M,,(F). M,(R) is not a unique maximal order in M, (F).

If F is a number field, then its ring of integers R is exactly the set of all Z-
integral points. We can define integrality for quaternion algebras too.



Let B = (al’,b> be quaternion algebra over F. Thenif x € B, x = u+tvi+wj+zij
for some u,v,w,z € F. The map
r=u+vi+wj+2j—T=u—vi— W] — 2ij

defines a standard involution on B, meaning 2% = u? — av? — bw? + abz? € F
for all x € B.

We are familiar with the norm and traces maps from F' — Q. With the standard
involution we can define similar maps from B — F. They are called the reduced
norm and the reduced trace and are denoted by nrd and trd respectively.

trd: B — F

rT—T+7T

and
nrd: B — F

X — XT.

Notice that every element x € B, x and T are the roots of the polynomial
t?2 — trd(x)t + nrd(z) € F[t]. We say that the element x € B is integral over
R if x satisfies a monic polynomial with coefficients in R. Thus if x € B, z is
integral if and only if nrd(z) and trd(z) are in R. (Notice, this generalizes. If
R is any integrally closed ring with field of fractions F' we still get the previous
statement.)

Lemma 1. For x € B, the following are equivalent:
1. x is integral over R;

2. R[x] is a finitely generated R-module;

8. x is contained in a subring A which is a finitely generated R-module

Now with the concept of integrality, we can see where viewing maximal orders
of quaternion algebras over number fields as the analog of a the ring of integers
fails. First, the ring of integers of a number field is the set of all integral
elements and as we proved in class, a ring. The set of all R-integral elements of
a quaternion algebra is in general not a ring or integrally closed.

Example: Take B = M>(Q) with elements

(e ) o= (5 )



Then 22 = y? = 0, so x and y are integral over Z but not in My (Z). Additionally
nrd(z +y) = 1/4 so x + y is not integral. Thus the set of all integral elements
is not closed under addition and can’t be a ring.

Even though maximal orders are not integrally closed or even unique, orders in
general still have a tie to integrallity.

Lemma 2. Let B be a quaternion algebra over the number field F'. Let O C B
be a subring of B such that OF = B. Then O is an R-order if and only if every
x € O is integral.

2 Discriminants

With norms and traces we can define discriminants and see that as in the com-
mutative case, this is related to ramifcation and maximality of orders. For a
quaternion algebra B with elements 1, z2, x3, x3, we define the function

d(w1, T, 23, 74) = det(trd(ziz;))i j=1,2,3,4-

Let O be an order. Notice that if z1, z2,x3,24 € O then d(z1,z2,23,24) € R.
Then we can define the discriminant of O to be the R-ideal

disc(0) = {d(x1, 2,3, T4) : T1,T2,23,24 € O}.

More generally, we can write O as,
O =a121 ® asxo D asrz D sy

where a; are fractional ideals of R and x1, z2, x3, x4 is a psuedobasis for O. From
this form we see that disc(O) = (a1azaza4)2d(z1, 22, T3, 24).

Example: O = R® Ri ® Rj ® Rij be an order in B = (%b) with a,b € R.
Then disc(O) is generated by

2 0 0 0
o 02 0 0 | _ .
d(1,1,4,1j) = det 0O 0 2 0 = —(4ab)
0 0 0 —2ab

Lemma 3. If O’ C O are R orders of B then disc(O)|disc(O") with equality iff
0 =0.



3 Valuations.

Let v be a valuation of F. Then the field F, has ring of integers R, and let
7, be a uniformizer. Then we can define B, = B ® F,. Then B, is a quater-
nion algebra over F,,. If O C B is an R-order of B, then O, = O®R,, is an order.

Useful fact about local norms: If F' is a number field with noncomplex valuation
v, then F), has a unique unramified quadratic extension K,. This fact gives us
the following:

Lemma 4. Let v be a noncomplex place of F'. Then there is a unique quaternion
algebra B, over F, which is a division ring up to F,-algebra isomorphism.

As C is algebraically closed, there is no division quaternion algebra. Over R the
unique division algebra is the Hamiltonians, H = (%) Over R, if B = (%b)
is not a division algebra, then B 2 M5(R).

If v is nonarchimedean, then F, has K, as it’s unique unramified extension.

~ [ Ky,
v

Thus to create a division ring over F,, B, = (
division ring, then B, & My (Fy).

). Similarly, if B, is not a

Definition 2. If B, is a division ring, we say B, is ramified or that B is
ramified at v. Otherwise we say B, is split or B splits at v.

Let S be the set of ramified places of B. Then S is finite and even and char-
acterizes B up to isomorphism. Further, as S is finite we have the following
definition:

Definition 3. The discriminant of B,

pB)= [ v

veES,v finite

i.e., D 1is the product of the ramified primes.

Locally, Eichler orders are also nice objects of study.

Lemma 5. Let O be an order of Ma(K,). TFAE:
1. O is an FEichler order.
2. O =0,N0;3 for two unique maximal orders O1 and Os.

3. For some n € Z~q, O is conjugate to

R R
O0v=( oin 1)



We say such order O is an Eichler order of level n. Further, disc(O) = 7. We
can view a maximal order as an Eichler order of level 0. Notice that in the
ramified case, B, has a unique maximal order, which is then the unique Eichler
order.

4 Class numbers and Class not-groups

Let O be an order of the quaternion algebraB = (%b) over the number field

F with ring of integers R. An ideal I of B is an R-submodule of B such that
I ®pr F — B is an isomorphism. This gives us the analogue of a fractional ideal

in the commutative case. Given this definition, I is contained in possibly many
orders of B.

With this definition, an order is just an ideal which is a subring. Since O is
non-commutative, we can choose to work with left, right, or two-sided ideals.
As usual, a right ideal T C O is a subgroup (I,+) of (O, +) such that zr € T
for all z € I and r € O. A left ideal is defined similarly and a two-sided ideal
has both xr € I and rx € I for x € I and r € O.

With these definitions, we have the possibility for right, left, or two-sided class
groups. We define a right class set, denoted Cl(O), of an order O C B to be the
isomorphism classes of invertible right fractional ideals. The left and two-sided
ideal class sets are definite similarly. While the right and left ideal classes do
not form groups, the two-sided ideal classes do.

Above we gave a very general definition of an ideal, it did not require giving
which order the ideal is contained in. Give an ideal I, we can build orders of B
called the left and right orders of I:

O(I)={xeB:2xICI}

O,(I)={zx€B:IzCI}.
Further, I is a two-sided ideal iff O;(I) = O,(I).

We define an ideal I to be principal if there exists some z € B such that
I =0,(I)x = 2O,(I) and the inverse of [ tobe "' ={z € B:Ixl C I}. If I
is principal or if I is an ideal of an Eichler order then

It =01, I 1 = 0,(I).
In general we can only say

It c o), I 1 c O,.(I).



In general, if I is a right fractional ideal of the order O, we say [ is invertible if
there exists a left fractional O-ideal I~' such that 11T = O. If I is invertible,
I7'={zeB:zI C O}.

Now we have the machinery to talk about ideal classes. We say two ideals I and
J are in the same right ideal class (or isomorphic) if I = zJ for some z € B.
Then if O is an order, we can define Cl.(O) to be the set of right-ideal classes
of O. The set Cl;(O) is defined similarly.

We could also study the two-sided class set. It has its own nice properties. The
set of invertible two-sided principal fractional O-ideals forms a group. So the
class group of two-sided fractional ideals of O is indeed a group. Further, con-
jugate orders have the same two-sided class group. Now back to right-ideals.

If two orders O and O’ are such that the there exists an ideal I with O;(I) = O
and O, (I) = O’ then we say O and O’ are linked. This is an equivalence relation
on orders called linkage classes.

Example: Let O and O be any two maximal orders of B. Then I = OO’ is
an ideal and O C O;(I) and O’ C O,(I). However, O and O’ are maximal so
we must have equality, thus O and O’ are linked.

Lemma 6. Linked orders have the same number of (left or right) ideal classes.

Lemma 7. All mazimal orders have the same number of (left or right) ideal
classes.

With this corollary we can define the class number of B with respect to R. This
is order of Cl,.(O) where O is any maximal order. Further, the type number of
B is the number of conjugacy classes of maximal orders of B.

Lemma 8. The following are equivalent:

1. Two orders O and O’ are of the same type.
2. Two orders O and O’ are linked by a principal ideal 1.

As with most things in number theory, to study class number of B and the type
number of B it is useful to study the local case. As before K, is a local field
with uniformizing element 7 and ring of integers R,. Then B, is either the
unique division quaternion algebra or B, = My(K,). First we’ll examine the
split case.



4.1 Split Case: B, = My(K,)

Punchline: There are infinitely many maximal orders, but they’re all conjugate.
Thus the type number is 1. Similarly, the class number is 1. Further, to classify
conjugacy classes of Eichler orders, the only invariant necessary is the level,
which can be any positive integer. Thus the class sets are the same for Eichler
orders of the same level.

4.2 Ramified Case: B, a division algebra
I.e., The awesome case.

Lemma 9. The set of integral elements of B, forms the unique maximal order
Oy.

Further, the discriminant of O, is (7). Thus the class number is 1, the type
number is 1, and as there is only one maximal order, every Eichler order is
maximal.

5 Adeles/Ideles

In class we examined the adeles and ideles of a number field F, Ar and Ir. In
the same way we defined B, by tensoring, we can create the adeles of a quater-
nion algebra.

As usual
/
Ap = HF” ={(zy)y € HF” i |@y]y < 1 for all but finitely many places v}

and

Ip =Af ={(zy)0 € l_va>< : x, € R for all but finitely many places v}.

v

It is useful to further define Fs, the S-finite adele ring. Let S be a finite set of
places containing all the infinite places. Then

/
Fs=]]F cAr
vgS



and we can write
Ap = Fg x H F,.
vES

If we take the units of Fi, F H;gs E, then

Ip = F$ x [] F.
veES

The adele ring of B is defined to be Ap = B ®p Ap. As Aj = Ip, we define
Ip = Aj. Similarly B=B®F. Further, the topology on Ap is the restricted
product topology (just like with Ar) and as with the ideles, the topology on Ig
is the induced topology on the product topology.

For an order O C B, we've defined the set Cl(O) to be isomorphism classes of
right invertible fractional O-ideals. Then as with the number field case, we have
the following theorem:

Theorem 1 (3). The set CI(O) is in bijection with B* \ B*/O*

Proof: Take I to be an invertible right fractional O-ideal. Then I is locally
principal, so I, = 2,0, is principal for all v primes of R. Thus we associate [
with (2,0,), = = #0 C B. This association is unique up to units of O,, i.e. the
associated # is unique in BX/O*.

Going the other direction, with a given & € Bx / OX, just take the unique ideal
I defined by I = #0N B.

We could have also chosen to work on the left instead of the right. The
bijection between the two Cl(O)-set is then given by the bijection betwen
B*/0* — O* \ B*, & — &.

Again, we could have chosen to work with two-sided ideals. If we take N (@) =
{Z € B* : £0 = 0%}, then the two-sided class group of O is in bijection with

N(O)\ N(0)/O*.

6 Application: Hilbert Modular Forms

For this section, we restrict F' to being a totally real number field.
Definition 4. A Hilbert Modular form of parallel weight 2 and level N is a
holomorphic function f: H™ — C such that

B ai1z1 + by AnZn + by, m(cizi + d;)
fhz) =1 <clzl +di’ Tepz4+n+ dn> (H dety; ) 1(2)

=1




for all v € To(N).

The space of parallel weight 2 and level ' modular forms is a finite dimensional
C-vector space and is denoted by My(N). If [F: Q] = n > 1, we do not need
the condition that the form must be holomorphic at the cusps as this follows
from Koecher’s principal.

Let B be a quaternion algebra over F. We can write the real places of F so
that v1,--- ,v, are the places where B is split and v,41,--- ,v, are the places
where B is ramified. Then

BagR = My(R)" x H" .

If r = 0, so that B is ramified at all the real places, then we say that B is
definite. Otherwise we say B is indefinite.

If B is indefinite and n > 1, then we have a map
loo : B — Ma(R)"

which corresponds to the embeddings vy, - - - , v,. Then B embeds into G13 (R)"
where
B} ={v e B* :dety; = (nrdy); >0 fori=1,..r}

and so acts on H" coordinate wise. Let Op be a maximal order of B and
O C Op be an eichler order of level N. Let OF = O* N Bf. If we further
restrict F' to having narrow class number one, then OF = R*O;* where O
are the elements of O with reduced norm 1. Then we can define I' = ¥ (N) =
Lo (OF) C GLF (R)".

Definition 5. Let B be indefinite. A quaternionic modular form of parallel
weight 2 and level N is a holomorphic function f : H" — C such that

a1z + by On2n + b ) B (

fW@=f(

ciz1 +dy) e,z tntd,

for all v e TE(N).

The space of parallel weight 2 and level AV quaternionic modular forms is a
finite dimensional C-vector space and is denoted by MP(N). If B is a division
ring (so we are working in the case 0 < r < n) then there are no cusps, and so
MZE(N) = SB(N), the quaternionic cusp forms.

Now let’s work out the definite case, so r = 0. Again O C Op is an Eichler
order of level V. Recall that the set of invertible right O-ideal classes Cl(O) is
finite and its order is independent of the choice of Eichler order of level .
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Definition 6. Let B be definite and O be an Eichler order of level N'. Then a
quaternion modular form for B of parallel weight 2 and level N is a map

f:ClO) = C.

Then MZ(N) is a C-vector space of dimension equal to the order of the class
set. Here we define cusp forms to be modular forms of B which are orthogo-
nal to the subspace of constant functions. As before they are denoted by S2(N).

Theorem 2. (Eichler-Shimizu-Jacquet-Langlands). [2] Let B be a quaternion
algebra over F of discriminant D. Let N be an ideal coprime to D. Then there
18 an injective map of Hecke modules

SB(N) — S5(DN)

thats image consists of the Hilbert cusp forms which are new at all primes di-
viding D.

If we take B to be a quaternion algebra of discriminant D = (1), then
57 (N) 22 Sy(N).

Such quaternion algebra is one such that it is ramified only at real places (as
we are taking F' to be totally real). Recall that a quaternion algebra must be
ramified at an even number of places. So when n = [F' : Q] is even, we just take
B to be the definite quaternion algebra ramified at exact all the real places.
When n is odd, we take B to be the indefinite quaternion algebra ramified at
all but one real place (and again unramified at all finite places).

This correspondence is what Voight and Dembele exploit to compute the space
S2(N) of Hilbert cusp forms of level N over F' (a totally real number field with
narrow class number 1) as a Hecke module.
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