
Orders of Quaternion Algebras Over Number

Fields

December 15, 2010

One generalization of modular forms, Hilbert modular forms, are currently pop-
ular to study. The methods used to compute Hilbert modular forms exploit the
Jacquet-Langlands correspondence with spaces of quaternionic modular forms.
The goal of this paper, is to give someone with a back ground of a basic al-
gebraic number theory course plus some modular forms enough background in
quaternion algebras to understand the statement of the Jacquet-Langlands cor-
respondence.

This paper draws mostly from the work of John Voight in The arithmetic of
quaternion algebras and Lassina Dembele and John Voight in Explicit methods
for Hilbert modular forms.

1 Quaternion Algebras over Fields

An algebra over the field F is a ring B equipped with an embedding F ↪→ B
such that the image of F lies in the center of B. We then identify F with its
image in B. Further, we say the dimension of B is the dimension dimFB of B
as an F -vector space.

A quaternion algebra over a field F is an F -algebra B =
(
a,b
F

)
with basis

1, i, j, ij where if char(F ) 6= 2

i2 = a, j2 = b, and ji = −ij

and a, b ∈ F× and if char(F ) = 2,

i2 + i = a, j2 = b, ji = (i+ 1)j

and a ∈ F , b ∈ F×. Or equivalently, a quaternion algebra B is a central simple
F -algebra with dimFB = 4.
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Another useful way to view quaternion algebra is as an algebra containing two
quadratic extension of F which anti-commute. Say K is a quadratic extension
of F contained in B. Then B =

(
a,b
F

)
where i2 = a and i ⊂ K and ij = −ji,

i.e., we can view K = F [i] = F ⊕ Fi as an F -algebra generated by i. Then
either K = F (

√
a) or K has a zero divisor. If K is a field, then the notation for

this quaternion algebra is B =
(
K,b
F

)
⊂ M2(K). If K has a zero divisor, then

B ∼= M2(F ).

Example: If B =
(
a,b
R

)
, then B ∼= M2(R) or B ∼= H where H are the Hamilto-

nian quaternions.

Example: Let F be a number field. Then B = M2(F ) =
(

1,b
F

)
is a quatenrion

algebra over F .

In a given quaternion algebra over a number field, it would be nice to have an
analog of a ring of integers. This analog is a maximal order.

For the following, let R be a noetherian integral domain with field of fractions
F , though late we will be interested specifically in number fields F with ring
of integers R. First recall that if V is a finite-dimensional F vector space, an
R-lattice of V is a finitely generated R-submodule I ⊂ V such that IF = V .

Definition 1. An R-order O ⊂ B is an R-lattice of B which is also a subring
of B.

An order is maximal if it is not properly contained in another R-order. Another
useful type of order is an Eichler order. Later we will define a class set on Eichler
orders which is used when computing Hilbert Modular forms. An Eichler order
is an order which can be written as the intersection of two maximal orders.
Additionally, two orders O and O′ are said to be of the same type or isomorphic
or conjugate if there exists x ∈ B× such that O′ = xOx−1.

Example: Let F = Q(
√

5). Then R = Z[γ] where γ = 1+
√

5
2 . We can take

B =
(−1,−1

F

)
so that B has basis 1, i, j, ij over F and i2 = −1 = j2. Then

O = R⊕Ri⊕Rj ⊕Rij is an R-order. O is not a maximal order. Let

e1 =
1
2

(1− γi+ γj)

e2 =
1
2

(−γi+ j + γk)

e3 =
1
2

(γi− γj + k)
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e4 =
1
2

(i+ γj − γk)

then OB = Re1 ⊕ Re2 ⊕ Re3 ⊕ Re4 is a maximal R-order of B. Conjugat-
ing by e = 1

2 (1 − γi + γj) gives another maximal order O′ = R ⊕ Ri ⊕
R((γ + 1) + (γ + 2)i + j) ⊕ R((γ − 8) + (γ + 21)i − 4j + k). The intersec-
tion OB ∩ O′ = O = R⊕Ri⊕R(γ + 1) + (γ + 2)i+ j ⊕R(γ + (γ − 5)i+ k) is
an Eichler order.

Example: For a more general example of a maximal order, let F be any number
field with ring of integers R. Then for any integer n, O = Mn(R) is an R-order
of B = Mn(F ). If we conjugate O by any invertible matrix to get another order
O′, then O′ is another maximal order of B which in general is not equal to O.
Further, if R is not a PID then there may be maximal orders O′ which are not
conjugate to O. However, if R is a PID then every maximal R-order in B is
conjugate to O.

For the rest of this paper, F is a number field with ring of integers R. Then R
is the integral closure of Z in F . It is useful to define integrality for quaternion
algebras too.

Let B =
(
a,b
F

)
be quaternion algebra over F . Then if x ∈ B, x = u+vi+wj+zij

for some u, v, w, z ∈ F . The map

x = u+ vi+ wj + zij 7→ x = u− vi− wj − zij

is called conjugation.

We are familiar with the norm and traces maps F → Q. With the conjugation
we can define similar maps B → F . They are called the reduced norm and the
reduced trace and are denoted by nrd and trd respectively.

trd : B → F

x 7→ x+ x

and
nrd : B → F

x 7→ xx.

Notice that for every element x ∈ B, x and x are the roots of the polynomial
t2 − trd(x)t + nrd(x) ∈ F [t]. We say that the element x ∈ B is integral over
R if x satisfies a monic polynomial with coefficients in R. Thus if x ∈ B, x is
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integral if and only if nrd(x) and trd(x) are in R. (Notice, this generalizes. If
R is any integrally closed ring with field of fractions F we still get the previous
statement.)

Lemma 1. For x ∈ B, the following are equivalent:

1. x is integral over R;

2. R[x] is a finitely generated R-module;

3. x is contained in a subring A which is a finitely generated R-module

Now with the concept of integrality, we can see where viewing maximal orders
of quaternion algebras over number fields as the analog of a the ring of integers
fails. First, the ring of integers of a number field is the set of all integral
elements and as we proved in class, a ring. The set of all R-integral elements of
a quaternion algebra is in general not a ring or integrally closed.

Example: Take B = M2(Q) with elements

x =
(

0 0
1/2 0

)
and y =

(
0 1/2
0 0

)
.

Then x2 = y2 = 0, so x and y are integral over Z but not in M2(Z). Additionally
nrd(x+ y) = 1/4 so x+ y is not integral. Thus the set of all integral elements
is not closed under addition and can’t be a ring.

Even though maximal orders are not integrally closed or even unique, orders in
general still have a tie to integrality.

Lemma 2. Let B be a quaternion algebra over the number field F . Let O ⊂ B
be a subring of B such that OF = B. Then O is an R-order if and only if every
x ∈ O is integral.

2 Discriminants

With norms and traces we can define discriminants and see that as in the com-
mutative case, these are related to ramification and maximality of orders. For a
quaternion algebra B with elements x1, x2, x3, x4, we define the function

d(x1, x2, x3, x4) = det(trd(xixj))i,j=1,2,3,4.

Let O be an order. Notice that if x1, x2, x3, x4 ∈ O then d(x1, x2, x3, x4) ∈ R.
Then we can define the discriminant of O to be the R-ideal

disc(O) = {d(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ O}.
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More generally, we can write O as,

O = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ a4x4

where ai are fractional ideals of R and x1, x2, x3, x4 is a psuedobasis for O. From
this form we see that disc(O) = (a1a2a3a4)2d(x1, x2, x3, x4).

Example: O = R ⊕ Ri ⊕ Rj ⊕ Rij be an order in B =
(
a,b
F

)
with a, b ∈ R.

Then disc(O) is generated by

d(1, i, j, ij) = det


2 0 0 0
0 2a 0 0
0 0 2b 0
0 0 0 −2ab

 = −(4ab)2

3 Valuations

Let v be a valuation of F . Then the complete field Fv has ring of integers
Rv. Additionally, let πv be a uniformizer. Then we can define Bv = B ⊗ Fv.
Then Bv is a quaternion algebra over Fv. If O ⊂ B is an R-order of B, then
Ov = O ⊗Rv is an order.

Useful fact about local norms: If F is a number field with noncomplex valuation
v, then Fv has a unique unramified quadratic extension Kv. This fact gives us
the following:

Lemma 3. Let v be a noncomplex place of F . Then there is a unique quaternion
algebra Bv over Fv which is a division ring up to Fv-algebra isomorphism.

As C is algebraically closed, there is no division quaternion algebra. Over R the
unique division algebra is the Hamiltonians, H =

(−1,−1
R
)
. Over R, if B =

(
a,b
R

)
is not a division algebra, then B ∼= M2(R).

If v is nonarchimedean, then Fv has Kv as its unique unramified extension.
Thus to create a division ring over Fv, Bv ∼=

(
Kv,πv

Fv

)
. Similarly, if Bv is not a

division ring, then Bv ∼= M2(Fv).

Definition 2. If Bv is a division ring, we say Bv is ramified or that B is
ramified at v. Otherwise we say Bv is split or B splits at v.
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Let S be the set of ramified places of B. Then S is finite and even and char-
acterizes B up to isomorphism. Further, as S is finite we have the following
definition:
Definition 3. The discriminant of B,

D(B) =
∏

v∈S,v finite

v,

i.e., D is the product of the ramified primes.

Studying Eichler orders and Maximal orders locally return global properties. If
Bv is ramified, Bv has a unique maximal order. However, in the split case we
have the following:

Lemma 4. Let O be an order of M2(Kv). TFAE:

1. O = O1 ∩ O2 for two unique maximal orders O1 and O2.

2. For some n ∈ Z>0, O is conjugate to

On :=
(

R R
πnR R

)
.

We say such order O is an Eichler order of local level (πn). Further, disc(O) =
(πn). We can view a maximal order as an Eichler order of level 0. Notice that
in the ramified case, Bv has a unique maximal order, which is then the unique
Eichler order.

Lemma 5. Let O be an order of B. Then O is maximal if and only if Ov is
maximal for every finite place v. Further, O is maximal if and only if discO =
D.

Using this lemma one can show:

Lemma 6. Let O be an order of B. Then O is an Eichler order if and only if
Ov is an Eichler order for every finite place v.

Now we can define the level of an Eichler order.

Definition 4. Let O be an Eichler order of B. Then the level N of O is the
unique integral ideal N in R such that Nv is the level of each Ov at each finite
place v of F . I.e., N is the product of the local levels.

4 Class numbers and Class not-groups

For this section we fix B to be the quaternion algebra B =
(
a,b
F

)
over the

number field F with ring of integers R. We define a right ideal, I, to be a
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right R-lattice in B such that IF = B. [1] Left and two-sided ideals are de-
fined similarly. This definition gives us the analogue of a fractional ideal in the
commutative case. Notice that if I is additionally a subring of B, then it is an
order. [1] We say two ideals I and J are in the same right ideal class if I = xJ
for some x ∈ B.

Above we gave a very general definition of an ideal, it did not require giving
which order with which the ideal is associated. Given an ideal I, we can build
orders of B called the left and right orders of I:

Ol(I) = {x ∈ B : xI ⊂ I}

Or(I) = {x ∈ B : Ix ⊂ I}.

Further, I is a two-sided ideal iff Ol(I) = Or(I).

We define an ideal I to be principal if there exists some x ∈ B such that
I = Ol(I)x = xOr(I) and the inverse of I to be I−1 = {x ∈ B : IxI ⊂ I}. If I
is principal or if I is an ideal of an Eichler order then

II−1 = Ol(I), I−1I = Or(I).

In general we can only say

II−1 ⊂ Ol(I), I−1I ⊂ Or(I).

In general, if I is a right fractional ideal of the order O, we say I is invertible if
there exists a left fractional O-ideal I−1 such that I−1I = O. If I is invertible,
I−1 = {x ∈ B : xI ⊂ O}.

Now we have the machinery to talk about ideal classes. With these definitions,
we have the possibility for right, left, or two-sided class sets. We define a right
class set, denoted Cl(O), of an order O ⊂ B to be the right ideal classes of
invertible right fractional ideals. The left and two-sided ideal class sets are def-
inite similarly. While the right and left ideal classes do not form groups, the
two-sided ideal classes do.

If two orders O and O′ are such that the there exists an ideal I with Ol(I) = O
and Or(I) = O′ then we say O and O′ are linked. This is an equivalence relation
on orders called linkage classes.

Example: Let O and O′ be any two maximal orders of B. Then I = OO′ is
an ideal and O ⊂ Ol(I) and O′ ⊂ Or(I). However, O and O′ are maximal so
we must have equality, thus O and O′ are linked.
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Lemma 7. Linked orders have the same number of (left or right) ideal classes.

Corollary 1. All maximal orders have the same number of (left or right) ideal
classes.

With this corollary we can define the class number of B with respect to R. This
is the order of Cl(O) where O is any maximal order. Further, the type number
of B is the number of conjugacy classes of maximal orders of B. For example,
if R is a PID then B ∼= M2(F ) has type number 1 as all maximal orders are
conjugate to M2(R).

Lemma 8. The following are equivalent:

1. Two orders O and O′ are of the same type.

2. Two orders O and O′ are linked by a principal ideal I.

As with most things in number theory, to study the class number of B and the
type number of B it is useful to study the local case. As before, Kv is a local
field with uniformizing element π and ring of integers Rv. Then Bv is either the
unique division quaternion algebra or Bv ∼= M2(Kv). First we’ll examine the
split case.

4.1 Split Case: Bv
∼= M2(Kv)

Punchline: There are infinitely many maximal orders, but they’re all conjugate.
Thus the type number is 1. Similarly, the class number is 1. Further, to classify
conjugacy classes of Eichler orders, the only invariant necessary is the level,
which can be any positive integer. Thus the class sets are the same for Eichler
orders of the same level.

4.2 Ramified Case: Bv a division algebra

I.e., The awesome case.

Lemma 9. The set of integral elements of Bv forms the unique maximal order
Ov.

Further, the discriminant of Ov is (π). Thus the class number is 1, the type
number is 1, and as there is only one maximal order, there is only one Eichler
order, the maximal order itself.
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5 Adeles/Ideles

In class we examined the adeles and ideles of a number field F , AF and IF . In
the same way we defined Bv by tensoring, we can create the adeles of a quater-
nion algebra.

As usual

AF =
′∏
v

Fv = {(xv)v ∈
∏
v

Fv : |xv|v ≤ 1 for all but finitely many places v}

and

IF = A×F = {(xv)v ∈
∏
v

F×v : xv ∈ R×v for all but finitely many places v}.

The adele ring of B is defined to be AB = B ⊗F AF . As A×F = IF , we define
IB = A×B . Further, the topology on AB is the restricted product topology (just
like with AF ) and as with the ideles, the topology on IB is the induced topology
on the product topology with respect to the embedding of IB into AB × AB
sending x to (x, x−1).

For an order O ⊂ B, we’ve defined the set Cl(O) to be isomorphism classes
of right invertible fractional O-ideals. Then, as with the number field case, we
have the following theorem:

Theorem 1 (4). The set Cl(O) is in bijection with B× \ B̂×/Ô×

Proof: Take I to be an invertible right fractional O-ideal. Then I is locally
principal, so Iv = xvOv is principal for all v primes of R. Thus we associate I
with (xvOv)v = x̂Ô ⊂ B̂. This association is unique up to units of Ov, i.e., the
associated x̂ is unique in B̂×/Ô×.
Going the other direction, with a given x̂ ∈ B̂×/Ô×, just take the unique ideal
I defined by I = x̂Ô ∩B.

We could have also chosen to work on the left instead of the right. The
bijection between the two Cl(O)-set is then given by the bijection betwen
B̂×/Ô× → Ô× \ B̂×, x̂ 7→ x̂.

Again, we could have chosen to work with two-sided ideals. If we take N(Ô) =
{x̂ ∈ B̂× : x̂Ô = Ôx̂}, then the two-sided class group of O is in bijection with
N(O) \N(Ô)/Ô×.
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6 Application: Hilbert Modular Forms

For this section, we restrict F to being a totally real number field with [F : Q] =
n and real places v1, ..., vn. Let H be the complex upper half plane. Then the
group Gl+2 (F ) acts on Hn by coordinate wise linear fractional transformations.
For γ ∈ Gl+2 (F )

γ =
(
a b
c d

)
,

γ acts on z ∈ Hn by

γz = (γizi) =
(
aizi + bi
cizi + di

)
i=1,...,n

,

where γi = vi(γ). Let N be a non-zero ideal of R, the ring of integers of F .
Define

Γ0(N ) =
{
γ =

(
a b
c d

)
∈ Gl+2 (R) : c ∈ N

}
.

Definition 5. A Hilbert modular form of parallel weight 2 and level N is a
holomorphic function f : Hn → C such that

f(γz) = f

(
a1z1 + b1
c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
=

(
n∏
i=1

(cizi + di)2

det γi

)
f(z)

for all γ ∈ Γ0(N ).

The space of parallel weight 2 and level N modular forms is a finite dimensional
C-vector space and is denoted by M2(N ). In the Hilbert modular form case,
the cusps are (zi) ∈ Rn where zi = vi(z) for some z ∈ F ∪ {∞}. A form f is
a cusp form if f vanishes at the cusps. If [F : Q] = n > 1, we do not need the
condition that the form must be holomorphic at the cusps as this follows from
Koecher’s principal.

Let B be a quaternion algebra over F . We can write the real places of F so
that v1, · · · , vr are the places where B is split and vr+1, · · · , vn are the places
where B is ramified. Then

B ⊕Q R ∼= M2(R)r ×Hn−r.

If r = 0, so that B is ramified at all the real places, then we say that B is
definite. Otherwise we say B is indefinite.

If B is indefinite and n > 1, then we have a map

ι∞ : B ↪→M2(R)r
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which corresponds to the embeddings v1, · · · , vr. Then B×+ embeds into Gl+2 (R)r

where
B×+ = {γ ∈ B× : detγi = (nrdγ)i > 0 for i = 1, ...r}

and so acts onHr coordinate wise. LetOB be a maximal order of B andO ⊂ OB
be an order of level N . Let O×+ = O× ∩ B×+ . If we further restrict F to hav-
ing narrow class number one, then O×+ = R×O×1 where O×1 are the elements of
O with reduced norm 1. Then we can define Γ = ΓB0 (N ) = ι∞(O×+) ⊂ GL+

2 (R)r.

Definition 6. Let B be indefinite. A quaternionic modular form of parallel
weight 2 and level N is a holomorphic function f : Hn → C such that

f(γz) = f

(
a1z1 + b1
c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
=

(
n∏
i=1

(cizi + di)2

det γi

)
f(z)

for all γ ∈ ΓB0 (N ).

The space of parallel weight 2 and level N quaternionic modular forms is a
finite dimensional C-vector space and is denoted by MB

2 (N ). If B is a division
ring (so we are working in the case 0 < r < n) then there are no cusps, and so
MB

2 (N ) = SB2 (N ), the quaternionic cusp forms.

Now let’s work out the definite case, so r = 0. Again O ⊂ OB is an Eichler
order of level N . Recall that the set of invertible right O-ideal classes Cl(O) is
finite and its order is independent of the choice of Eichler order of level N .

Definition 7. Let B be definite and O be an Eichler order of level N . Then a
quaternion modular form for B of parallel weight 2 and level N is a map

f : Cl(O)→ C.

Then MB
2 (N ) is a C-vector space of dimension equal to the order of the class

set. Here we define cusp forms to be modular forms of B which are orthogonal
with respect to the Petersson inner product (see van der Geer, Hilbert Modular
Surfaces for the definition) to the subspace of constant functions. As before
they are denoted by SB2 (N ).

Theorem 2. (Eichler-Shimizu-Jacquet-Langlands). [3] Let B be a quaternion
algebra over F of discriminant D. Let N be an ideal coprime to D. Then there
is an injective map of Hecke modules

SB2 (N ) ↪→ S2(DN )

with image consisting of the Hilbert cusp forms which are new at all primes
dividing D.
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(I haven’t given the definition of new, it can be found in [3]). If we take B to
be a quaternion algebra of discriminant D = (1), then

SB2 (N ) ∼= S2(N ).

Such quaternion algebra B with D = 1 is one such that it is ramified only at real
places (as we are taking F to be totally real). Recall that a quaternion algebra
must be ramified at an even number of places. So when n = [F : Q] is even, we
just take B to be the definite quaternion algebra ramified at all the real places.
When n is odd, we take B to be the indefinite quaternion algebra ramified at
all but one real place (and again unramified at all finite places).

This correspondence is what Voight and Dembele exploit to compute the space
S2(N ) of Hilbert cusp forms of level N over F (a totally real number field with
narrow class number 1) as a Hecke module.
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