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1 Preface

These are the notes from a one-quarter course on Galois cohomology, which
the author taught at University of Washington in 2010. They are mostly
based on the best parts of [AW67] and [Ser67].

Acknowledgement: Sebastian Pancratz (of Cambridge University) typed
up the first 9 lectures. The course was attended by Robert Bradshaw, Amelia
Chen, Alison Deines, Ralph Greenberg, Jacob Lewis, Robert Miller, Amy
Supple, and Wenhan Wang who all made numerous comments. The author
learned Galois cohomology mainly in person from Hendrik Lenstra, to whom
he’s greatly indebted.
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2 Introduction

Number Theory is the study of G = Gal(Q̄/Q), the group of automorphisms
of the algebraic closure Q̄, and the sets G naturally acts on. The following
question, for example, is an open problem: is every finite group a quotient
of G?

Galois cohomology involves studying the group G by applying homo-
logical algebra. This provides a natural way to classify objects, e.g. twists
of a curve, and linearizes problems by defining new invariants, revealing
previously hidden structure.

This course will consists of mainly two parts, one on group cohomology
in greater generality and one on Galois cohomology. In the first part, we
will apply homological algebra to groups, solving problems like the following:
given a group G acting on an abelian group A, find all extensions of G by
A, that is, exact sequences

0→ A→ E → G→ 1,

where we write both 0 and 1 for the trivial group with one element. In the
second part, we will apply group cohomology to number theory. This is a
very important tool, vital to most advances in algebraic number theory in
the last thirty years.

We now give further details of the course structure. The first part will
cover the basic theory, involving essentially no number theory:

• G-modules

• cocycles, coboundaries

• basic homological algebra

• dimension shifting

• inflation/ restriction

• cup products, etc.

We will include most proofs in this part. In the second part, on Galois
cohomology, we will specialize to number theory, focussing more on examples
and including fewer proofs. The topics we will consider are:

• Profinite groups and their cohomology; topological groups

• Hilbert 90, and applications
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• Kummer theory

• Descent of the field of definitions of a variety

• Twists of algebraic curves

• Brauer groups, which are are classes of simple algebras

• Elliptic curves

• Duality: Tate local duality, and Pouitou–Tate global duality

• Lang’s theorem

• Shafarevich–Tate group

• Étale cohomology

3 G-modules

We will follow Chapter VII of Serre’s Local Fields for a while.

Definition 1. Suppose G is any group and A is an abelian group with a
G-action, that is, a map G×A→ A such that

1.a = a, s.(a+ a′) = s.a+ s.a′, (st).a = s.(t.a)

Let Λ = Z[G], the abelian group of formal finite sums of elements of G. This
makes A a Λ−module, which we will also refer to as a G-module.

Remark 2. The category ModG of G-modules is an abelian category. Thus,
we have direct sums, kernels, co-kernels, etc.

Definition 3. A sequence A
f−→ B

g−→ C, where A, B, and C are objects in
ModG and f , g are morphisms, is exact at B if Im(f) = ker(g). A sequence
0→ A→ B → C → 0 is a short exact sequence if it is exact at A, B, and C.

Definition 4. The map ModG → Ab from ModG to the category Ab of
abelian group given by A 7→ AG, which is the G-invariant subgroup of A,

AG = {a ∈ A : ∀g ∈ G g.a = a}

is a functor.

Let H0(G,A) = AG.
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Proposition 5. If 0→ A
f−→ B

g−→ C → 0 is an exact sequence ofG-modules,
then the sequence

0→ AG → BG → CG

is exact at AG and BG. We say the functor A 7→ AG is left exact.

Proof. Suppose that b ∈ BG and g(b) = 0. Then there exists a ∈ A such
that f(a) = 0. But for any s ∈ G,

f(s.a) = s.f(a) = s.b = b

so f(s.a) = f(a), hence a ∈ AG, since f is injective. The proof can be
completed in a similar way.

Definition 6. Formally, one can define functors Hq(G,−) : ModG → Ab

for all q ≥ 0 such that if 0→ A→ B → C → 0 is exact then we have a long
exact sequence

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)

→ H2(G,A)→ H2(G,B)→ H2(G,C)→ . . .

Definition 7. A (co-variant) functor F : ModG → Ab is exact if for every
short exact sequence 0 → A → B → C → 0 the sequence 0 → F(A) →
F(B)→ F(C)→ 0 is also exact. If F is contravariant, we similarly require
that the sequence 0← F(A)← F(B)← F(C)← 0 is exact.

Definition 8. A G-module A is projective if the functor HomG(A,−) is
exact. A is called injective if the (contravariant) functor HomG(−, A) is
exact.

Definition 9. A is induced if A ∼= Λ ⊗Z X for some X ∈ Ab, that is, if
there is a subgroup X ⊂ A such that A =

⊕
s∈G s.X. A is co-induced if

A ∼= HomZ(Λ, X) for some X ∈ Ab.

Remark 10. If G is a finite group, then HomZ(Λ, X) ∼= Λ⊗Z via the iso-
morphism f 7→

∑
s∈G s⊗f(s) for all X ∈ Ab, so that the notions of induced

and co-induced G-modules coincide.

Lemma 11. Every A ∈ ModG is a quotient of an induced module.

Proof. Let A0 denote the group underlying A. Then t.(s ⊗ a) = (ts) ⊗ a.
Thus,

Λ⊗A0 � A
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Definition 12. The functors Hq(G,−), for q ≥ 0, are called right derived
functors of the left exact functor A 7→ AG. The construction is functorial in
exact sequences, that is, from a short exact sequence 0→ A→ B → C → 0
we obtain a long exact sequence

0→ H0(G,A)→ H0(G,B)→ H1(G,C)
δ−→ H1(G,A)→ H1(G,B)→ H1(G,C) δ−→ . . .

with connecting homomorphisms δ. Hq(G,−) is a cohomological δ-functor.

Theorem 13. Hq(G,−) is the unique δ-functor such that

(i) H0(G,A) = AG;

(ii) if A is injective then, for all q ≥ 1, Hq(G,A) = 0.

Thus, everything we can prove about the functor Hq(G,−) must follow
from the two properties above.

4 Hq and Ext

Noting that AG = HomG(Z, A), we deduce that Hq(G,A) = ExtqG(Z, A).
Thus, we can in principle compute the group Hq(G,A) as follows:

(i) Find a resolution of Z by projective G-modules P0, P1, . . .

. . .→ P1 → P0 → Z→ 0.

(ii) Apply the functor HomG(−, A) to obtain groups Ki = HomG(Pi, A)
and the complex

0→ HomG(P0, A) d0−→ HomG(P1, A) d1−→ HomG(P2, A) d2−→ . . . .

Then Hq(G,A) = ker(dq)/ Im(dq−1).

We will later carry out the above procedure to obtain a very explicit
representation.

Suppose that G acts diagonally on Pi, that is, that Pi = Z[Gi+1] =
Z[G× · · · ×G]. Then the map d : Pi+1 → Pi is given by

d(g0, . . . , gi) =
i∑

j=0

(−1)j(g0, . . . , gj−1, gj+1, . . . , gi).
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Definition 14. A G-module A ∈ ModG is relatively injective if it is a direct
factor of a co-induced module, i.e., if A⊕B is co-induced for someB ∈ ModG.

Proposition 15. If A ∈ ModG is relatively injective then Hq(G,A) = 0 for
all q ≥ 1.

Proof. It suffices to consider co-induced G-modules, since we can then de-
duce the general case from the identityHq(G,A⊕B) = Hq(G,A)⊕Hq(G,B).
So assume that A is co-induced, that is, A ∼= HomZ(Λ, X) for some X ∈ Ab.
For B ∈ ModG,

HomZ(B,X) ∼= HomG(B,A), f 7→ (b 7→ (s 7→ f(s.b))).

From the above it follows that HomG(Pi, A) = HomZ(Pi, X), so

Hq(G,A) = ExtqZ(Z, X) = 0

for q ≥ 1. Moreover, HomZ(Z, X) ∼= X so the functor HomZ(Z,−) is exact.

Corollary 16 (Dimension shifting). If 0 → A → A∗ → A′ → 0 is exact
with A∗ co-induced then

Hq(G,A′) = Hq+1(G,A)

for all q ≥ 1.

Remark 17. This shows that the functor Hq+1(G,−) is completely deter-
mined by H i(G,−) for i ≤ q, giving the claimed uniqueness.

We now explicitly considerHq(G,A) as a quotient of cocycles by cobound-
aries. We have the following free resolution of Z as a G-module

. . .→ P2
d2−→ P1

d1−→ P0
d0−→ Z→ 0 (†)

where Pi = Z[Gi+1] = Z[G×· · ·×G] with G-action given by s.(g0, . . . , gi) =
(s.g0, . . . , s.gi) and d : (g0, . . . , gi) 7→

∑i
j=0(−1)j(g0, . . . , ĝj , . . . , gi).

Lemma 18. Pi is a free G-module.

Proof. The set {(1, g1, g1g2, . . . , g1 · · · gi) : g1, . . . , gi ∈ G} is a basis for Pi
over Z[G].

Proposition 19. The free resolution (†) is exact.
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Proof. We first show that di ◦ di+1 = 0. This is a standard calculation from
the definitions, for example

(d1d2)(g0, g1, g2) = d1((g1, g2)− (g0, g2) + (g0, g1))
= ((g2)− (g1))− ((g2)− (g0)) + ((g1)− (g0)) = 0.

Thus, Im(di+1) ⊂ ker(di). To prove equality, fix s ∈ G and define a fam-
ily of maps h : Pi → Pi+1, h(g0, . . . , gi) 7→ (s, g0, . . . , gi). We claim that
dh+ hd = 1,

(dh+ hd)(g0, . . . , gi) = (dh)(g0, . . . , gi) + hd(g0, . . . , gi)

= d(s, g0, . . . , gi) +
i∑

j=0

(−1)j(s, g0, . . . , ĝj , . . . , gi)

= (g0, . . . , gi) +
i+1∑
j=1

(−1)j+1(s, g0, . . . , ĝj , . . . , gi)

+
i∑

j=0

(−1)j(s, g0, . . . , ĝj , . . . , gi)

= 0

Let x ∈ ker(di). Then dhx+hdx = x, and since hdx = 0 we have d(hxd) = x
so x ∈ Im(di+1).

Recall that HomG(−, A) is a contravariant functor and letKi = HomG(Pi, A).
We obtain a complex

0→ K0
d0−→ K1

d1−→ K2
d2−→ K3

d3−→ . . .

such that Hq(G,A) = ker(dq)/ Im(dq−1).
Suppose that f ∈ HomG(Pi, A) and define the set-theoretic map φ : Gi → A

by φ(g1, . . . , gi) = f(1, g1, g1g2, . . . , g1 · · · gi).

Proposition 20.

(dφ)(g1, . . . , gi+1) = g1φ(g2, g3, . . . , gi+1) +
i∑

j=1

(−1)jφ(g1, g2, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1φ(g1, . . . , gi)
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Proof. The map d : Pi+1 → Pi induces a map HomG(Pi, A)→ HomG(Pi+1, A)
via φ 7→ φ ◦ d,

(dφ)(g1, . . . , gn) = f
(
d(1, g1, g1g2, . . . , g1 · · · gi+1)

)
= f

(
(g1, g1g2, . . . , g1 · · · gi+1)

+
i∑

j=1

(−1)j(1, g1, . . . , ̂g1 · · · gj , . . . , g1 · · · gi+1)

+ (−1)i+1(1, g1, g1g2, . . . , g1 · · · gi)
)

= g1φ(g2, g3, . . . , gi+1) +
i∑

j=1

(−1)jφ(g1, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1φ(g1, . . . , gi)

We now make some explicit considerations in small cases. Begin with
the case i = 0. If φ ∈ HomG(P0, A) then there is an a ∈ A such that
φ() = a. Thus, (dφ)(g) = gφ() − φ() = ga − a. Now let i = 1 and take
φ ∈ HomG(P1, A). Then

(dφ)(g1, g2) = g1φ(g2)− φ(g1g2) + φ(g1)

Thus

H0(G,A) = AG

H1(G,A) = {φ : G→ A : dφ = 0}/{dφ : φ ∈ HomG(P0, A)}
= {φ : G→ A : φ(g1g2) = φ(g1) + g1φ(g2)}/{φa : G→ A : a ∈ A}

where φa(g) = ga− a,

H2(G,A) = {φ : G×G→ A : g1φ(g2, g3)− φ(g1g2, g3)
+ φ(g1, g2g3)− φ(g1, g2) = 0}/?

5 Morphisms of pairs

5.1 Morphism of pairs

A morphism of pairs (G,A)→ (G′, A′) together with homomorphisms f : G′ →
G and g : A→ A′ such that g(f(s′).a) = s′.g(a) for all s′ ∈ G′, a ∈ A induces
morphisms Hq(G,A)→ Hq(G′, A′) for all q ≥ 0.
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We now explain this in detail. f : G′ → G induces a morphism of the
resolutions of Z in ModG and ModG′ .

· · · // Z[G′ ×G′] //

��

Z[G′] //

f

��

Z // 0

· · · // Z[G×G] // Z[G] // Z // 0

Hence we obtain a morphism of corresponding complexes, in the other di-
rection:

0 // HomG(Z[G], A)

��

// HomG(Z[G×G], A)

��

// · · ·

0 // HomG′(Z[G′], A) // HomG′(Z[G′ ×G′], A) // · · ·

where the map HomG(Z[G], A) → HomG′(Z[G′], A) is given by (φ : Z[G] →
A) 7→ (g ◦ φ ◦ f : Z[G′]→ A′). Thus, a morphism of pairs (G,A)→ (G′, A′)
induces a morphism on cohomology Hq(G,A)→ Hq(G′, A′).

5.2 Shapiro’s lemma

We begin by considering a special case. Let G′ ≤ G be a subgroup and A′ ∈
ModG′ . Then form a left G-module A = HomG′(Z[G], A′) by coinduction
from A′.

Given a G-action φ : Z[G] → A′ we set, for s ∈ G, s.φ : t 7→ φ(ts). For
fixed s ∈ G, the map ψs : Z[G] → Z[G] given by t 7→ ts is a left G-module
homomorphism; φ ◦ ψs would thus give a right G-action, so s.φ as above is
a left action.

Theorem 21 (Shapiro). For all q ≥ 0,

Hq(G,A) ∼= Hq(G′, A′).

Remark 22. This is very important in making Eichler–Shimura explicit
and computable.

Proof. If L• � Z is a free Z[G]-resolution, then L′• � Z is also a free
Z[G′]-resolution, since G′ ≤ G is a subgroup. We have an isomorphism

HomG

(
(Li,HomG′(Z, A′)

)
= HomG(Li, A) ∼= HomG′(Li, A′)

given by ψ 7→ ψ(b)(1) with inverse φ 7→
(
b 7→ (s 7→ φ(bs))

)
. We con-

clude that (G,A) and (G′, A′) have the same complexes and thus the same
cohomology.
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6 Inflation and restriction

Suppose that H is a subgroup of G and let A ∈ ModG. A morphism of
pairs (G,A) → (H,A) by H → G and id: A → A induces a restriction
homomorphism

resH : Hq(G,A)→ Hq(H,A).

For example, in terms of 1-cocyles, we see that the homomorphism
resH : H1(G,A) → H1(H,A), [f ] 7→ [f |H ] is given by the usual restriction
map.

Next suppose that H /G. We obtain a morphism of pairs (G/H,AH)→
(G,A). This induces an inflation homomorphism

inf : Hq(G/H,AH)→ Hq(G,A).

We shall later consider the following theorem, whose full proof uses spec-
tral sequences:

Theorem 23. The sequence

0→ H1(G/H,AH) inf−→ H1(G,A) res−−→ H1(H,A)→ H2(G/H,AH)→ . . .

is exact.

7 Inner automorphisms

Suppose t ∈ G. The conjugation s 7→ tst−1 is an inner automorphism of
G. This induces a morphism of pairs (G,A) → (G,A): G ← G, tst−1 ←[ s,
A→ A, a 7→ t−1a.

We obtain a homomorphism Hq(G,A) → Hq(G,A), that is, a natural
action of G on Hq(G,A).

Proposition 24. This action is trivial, that is, the map t ∈ G induces the
identity map on Hq(G,A).
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Proof. Use dimension shifting. For q = 0, consider

H0(G,A)

HomG(Z[G], A)

��

d // · · ·

HomG(Z[G], A) d // · · ·

H0(Z[G], A)

If we let f : G → G, s 7→ tst−1 and g : A → A, a 7→ t−1.a then, for φ ∈
ker(d) ⊂ HomG(Z[G], A) so that φ(1) ∈ AG, we have that

(g ◦ φ ◦ f)(1) = g(φ(t1t−1)) = t−1.φ(1) = φ(1).

Thus, the induced map on H0(G,A) is the identity.
Now let q ≥ 1 and consider the short exact sequence 0 → A → A∗ →

A′ → 0 with A∗ co-induced. We have the following functorial isomorphisms:

H1(G,A) ∼= coker(H0(G,A∗)→ H0(G,A′)),

Hq(G,A) ∼= Hq−1(G,A′), for q ≥ 2.

By induction, Hq−1(G,A′) ∼= Hq−1(G,A′) via conjugation by t, so the
proposition follows.

8 An application of inner automorphisms

Let k be a field with char(k) 6= 2. Let G = GLn(k) and A = kn, equipped
with the natural G-action.

Proposition 25. Hq(G,A) = 0 for all q ≥ 0.

Proof. Let

t =
(
−1 0
0 −1

)
∈ G.

Then we proved above that (G,A) → (G,A) induced by conjugation by t
induces the identity map Hq(G,A)→ Hq(G,A).
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But in fact it induces multiplication by −1 on A:

s = t−1st s�oo

G Goo

A // A

a � // t−1a = −a

Thus it induces the map Hq(G,A) −1−−→ Hq(G,A), and we conclude that, on
the k-vector space Hq(G,A), we have −1 = 1 and so Hq(G,A) = 0 for all
q ≥ 0.

Remark 26. In the proof we can replace G by any subgroup of GLn(k)
that contains a non-identity scalar t.

Example 27. Let E/k be an ellipctic curve and suppose that ρ̄E,p : Gk �
Aut(E[p]) is surjective. Then

Hq(Gal(k(E[p])/k), E[p]) = 0

for all q ≥ 0.

9 The restriction-inflation sequence

Proposition 28. Let H / G be a normal subgroup and A ∈ ModG. Then
we have an exact sequence

0→ H1(G/H,AH) inf−→ H1(G,A) res−−→ H1(H,A)

Proof. We check this directly on 1-cocycles, following Atiyah–Wall. We be-
gin with exactness at H1(G/H,AH), that is, the injectivity of inf. Consider
H1(G/H,AH) inf−→ H1(G,A), [f ] 7→ [f̄ ] where

G

!! !!DDDDDDDD
f̄ // A

G/H
f // AH

?�

OO
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and suppose that [f̄ ] = 0. Thus, f̄ is a coboundary and so there exists an
a ∈ A such that f̄(s) = s.a − a for all s ∈ G. Note that f̄ is constant on
each coset of H in G, and so, for all t ∈ H,

s.a− a = f̄(s) = f̄(st) = (st).a− a

hence s.a = (st).a and a = t.a, which implies a ∈ AH . Thus, f is also a
coboundary (attached to a ∈ AH), and hence [f ] = 0.

Next we show that res ◦ inf = 0, i.e., Im(inf) ⊂ ker(res). Consider the
composition

H1(G/H,AH) inf−→ H1(G,A) res−−→ H1(H,A), [f ] 7→ [f̄ ] 7→ [f̄ |H ].

But f̄ is constant on cosets of H, so f̄ |H(t) = f̄ |H(1) = 0 since f(1.1) =
f(1) + 1.f(1) = f(1) + f(1).

Finally, we prove the exactness at H1(G,A), i.e., iker(res) ⊂ Im(inf).
Consider an f : G→ A such that

H1(G,A)→ H1(H,A), [f ] 7→ [0].

Then there exists an a ∈ A such that, for all t ∈ H, f(t) = t.a−a. It follows
that [f ] = [f − φa] where φa is defined by φa(s) = s.a − a, for all s ∈ G.
Thus, we may assume that f |H = 0.

If t ∈ H, then
f(st) = f(s) + s.f(t) = f(s)

so f is constant on cosets ofH inG. Thus, f defines a function f̃ : G/H → A.
For s ∈ H, t ∈ G, we have

f(t) = f(st) = 0 + s.f(t)

and hence f(t) ∈ AH and so the image of f̃ lies in AH . Thus, [f̃ ] 7→ [f ],
completing the proof.

10 Cohomology sets

For this section, we refer to pp. 123–126 of Serré’s Local Fields. As before,
we let G be a group and A a group with a G-action. But A is no longer
assumed to be abelian.

For example, we could consider G = Gal(k̄/k) and A the points of any
algebraic group over k, e.g., GLn(k̄) or SLn(k̄).
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Definition 29. We set H0(G,A) = AG = {a ∈ A : s.a = a for all s ∈ G},
which is a subgroup of A. We define H1(G,A) as 1-cocycles modulo an
equivalence relation. Here, a 1-cocycle is a set-theoretic map G→ A, s 7→ as
such that ast = as.s(at), and we say as ∼ bs if there exists an a ∈ A with
bs = a−1.as.s(a) for all s ∈ G.

Remark 30. H1(G,A) is a pointed set, with distinguished element the
image of the 1-cocycle as = 1, i.e., the map sending the all of G to 1 ∈ A.

We have described two functors: H0(G,−) is a functor from the category
of non-abelian G-modules to the category of groups, and H1(G,−) is a
functor from the same category to the category of pointed sets. For example,
this means that a G-morphism A → B induces morphisms H0(G,A) →
H0(G,B) and H1(G,A)→ H1(G,B).

We now explain how the long exact sequence can be salvaged in the
context of non-abelian G-modules. Suppose we have a short exact sequence

1→ A
ι−→ B

ρ−→ C → 1 (†)

of non-abelian G-modules. We want to show the existence of a connecting
morphism δ : CG → H1(G,A), c 7→ [as].

Let c ∈ CG and b ∈ B such that ρ(b) = c. Then s(b) ≡ b modulo ι(A)
for all s ∈ G, since

ρ(s(b).b−1) = s(c).c−1 = cc−1 = 1.

So let as = ι−1(b−1.s(b)) ∈ A. We claim that as is a well-defined cocycle.
In order to simplify notation, let us assume A ⊂ B. Then

ast = b−1(st)(b) = b−1s(b)s(b−1t(b)) = as.s(at),

showing that as is a cocycle. Moreover, if ρ(b′) = ρ(b) = c then b′ = ba for
some a ∈ A by exactness and hence

a′s = a−1b−1s(b)s(a) = a−1ass(a) ∼ as,

which shows that as is well-defined.
If we suppose that A lies in the centre of B, so that A is abelian, we

can define H2(G,A) as before and also obtain a morphism ∆: H1(G,C)→
H2(G,A).

Proposition 31. (i) Let 1 → A
ι−→ B

ρ−→→ 1 be any exact sequence of
non-abelian G-modules. Then the sequence
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1→ H0(G,A) ι0−→ H0(G,B)
ρ0−→ H0(G,C)

δ−→ H1(G,A) ι1−→ H1(G,B)
ρ1−→ H1(G,C)

is exact.

(ii) If, moreover, A lies in the centre of B then the above exact sequence
can be extended by H1(G,C) ∆−→ H(G,A) to another exact sequence.

Proof. See book. (Serre??)

11 Long exact sequence of cohomology sets

This section is motivated by the following example. Let C be a curve de-
fined over a field k with non-abelian automorphism group Aut(C). Then
H0(Gal(k̄, k),Aut(C)) is isomorphic to the twists of C over k.

Consider a map π : X → Y of pointed sets with distinguished elements
x and y. By definition, ker(π) = π−1(y) ⊂ X.

We first revisit the connecting homomorphism δ. Suppose that 1→ A
ι−→

B
ρ−→ C → 1 is an exact sequence of non-abelian G-modules. The connecting

homomorphism is a map δ : H0(G,C)→ H1(G,A).

Proposition 32. The sequence

1→ H0(G,A) ι0−→ H0(G,B)
ρ0−→ H0(G,C)

δ−→ H1(G,A) ι1−→ H1(G,B)
ρ1−→ H1(G,C)

is exact.

Proof. We continue to identify A ⊂ B. Firstly, the sequence is exact at
H0(G,A) since ι0 is injective since AG → BG. For exactness at H0(G,B),
note that (ρ ◦ ι)(a) = 0 for all a ∈ A, so the same is true on AG and
BG. Furthermore, if b ∈ ker(ρ0) ⊂ BG then b ∈ ker(ρ) = Im(ι) = A, so
b ∈ A ∩BG = AG and hence b ∈ Im(ι0), showing that ker(ρ0) ⊂ Im(ι0).

Next, we prove exactness at H0(G,C). We can describe ρ0(BG) as the
set of c ∈ CG that lift to invariant elements of B, and ker(δ) as the set of
c ∈ CG such that as = b−1s(b) ∼ 1 in H1(G,A) whenever b 7→ c. Suppose
that c ∈ ker(δ) so that c ∈ CG and there exists b ∈ BG such that b 7→ c and
as = b−1s(b) ∼ 1. Then as is trivial if and only if as ∼ 1, i.e., there exists
an a ∈ A with

a−1b−1.s(b)s(a) = 1

17



for all s ∈ G, that is, s(ba) = ba and thus ba ∈ BG.
Then as ∼ (ba)−1s(ba) and ba ∈ BG. But a ∈ A so ρ(ba) = ρ(b) = c, so

ba 7→ c and ba ∈ BG hence c ∈ ρ0(BG).
Now, we prove exactness at H1(G,A). Suppose that ι1 sends [as] to

the trivial element of H1(G,B). Then there exists a b ∈ B such that as ∼
b−1s(b) for all s ∈ G. Thus [as] = δ(ρ(b)), which shows that ker(ι1) ⊂ Im(δ).
For the other direction, note that δ(c) is given by as = b−1s(b) for some b
such that b 7→ c. But this means that ι1(as) ∼ 1.

Finally, we prove exactness H1(G,B). First, note that as ∈ H1(G,A)
maps to s 7→ ρ1(ι1(as)) = 1, since rho◦ι = 1, showing that Im(ι1) ⊂ ker(ρ1).
For the other direction, let bs ∈ H1(G,B) such that (s 7→ ρ1(bs)) ∼ 1. Then
there exists a c ∈ C such that ρ1(bs) = c−1s(c). We may modify by a lift of
c so that ρ1(bs) = 1 for all s. It then follows that bs ∈ A for all s, so that
[bs] ∈ Im(ι1).

12 Homology

In this section, we let G be a group, A an abelian G-module and set DA =
〈s.a− a : a ∈ A, s ∈ G〉, a subgroup of A.

We first observe that DA is in fact a G-module,

t.(s.a− a) = t.s.a− t.a = (tst−1).(t.a)− t.a ∈ DA.

Thus, A/DA is also a G-module, with trivial G-action.

Definition 33. We define H0(G,A) = A/DA, which is the largest quotient
of A with trivial G-action. For q ≥ 1, we also let

Hq(G,A) = TorZ[G]
q (Z, A)

so that Hq(G,−) are the left-derived functors of H0(G,−).

Given a short exact sequence 0→ A→ B → C → 0, as before we obtain
a long exact sequence

· · · → H1(G,A)→ H1(G,B)→ H1(G,C)
δ−→ H0(G,A)→ H0(G,B)→ H0(G,C)→ 0.

Example 34. For any group G, we have H1(G,Z) = G/G′, the abelianisa-
tion of G, where G′ = 〈aba−1b−1 : a, b ∈ G〉 is the commutator subgroup.
See Serre §VII.4 for a proof.
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13 Tate cohomology groups

The Tate cohomology groups naturally relate homology and cohomology,
and make several results much more natural.

Suppose that G is a finite group and let A be a G-module. We define
the norm element, linking homology and cohomology, by

N =
∑
s∈G

s.

This induces a map N : A → A, a 7→ N(a) =
∑

s∈G s.a, which is in fact a
G-module homomorphism, since

t
∑
s∈G

s.a =
∑
s∈G

(ts).a =
∑
s∈G

(st).a,

noting that st and ts range over the same elements of G for s ∈ G.
We define the augmentation ideal as

IG = (s− 1 : s ∈ G) ⊂ Z[G].

Lemma 35. (i) IGA ⊂ ker(N), which we will also denote A[N ].

(ii) Im(N) ⊂ AG.

Proof. We use that, for fixed s ∈ G and variable t ∈ G, st ranges over all
elements of G as t does:

(i)
N((s− 1).a) =

(∑
t∈G

t
)
.(s− 1).a =

(∑
t∈G

ts−
∑
t∈G

t
)
.a = 0.

(ii)
s.N(a) = s.

∑
t∈G

t.a =
∑
t∈G

(st).a =
∑
t∈G

t.a = N(a).

This induces the aforementioned link between homology and cohomology
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as follows:

A

��

N //

**UUUUUUUUUUU A

H0(G,A) N∗ // H0(G,A)
?�

OO

��
Ĥ0(G,A) = ker(N∗)

?�

OO

Ĥ0(G,A) = coker(N∗)

A[N ]/IGA
0 // AG/N(A)

Proposition 36. If A is induced then Ĥ0(G,A) = 0.

Proof. The assumption that A is induced means that A ∼=
⊕

s∈G s.X
∼=

Z[G]⊗ZX, where X ≤ A is a subgroup. This is easy to see since G is finite.
Thus, each a ∈ A can be expressed uniquely as

a =
∑
s∈G

s.xs, xs ∈ X

Now a ∈ AG if and only if all xs are equal if and only if a = N(xs). This
shows that AG = N(A), as claimed.

Remark 37. If A is induced, we also have that Ĥ0(G,A) = 0. The proof
of this statement will appear on the problem sheet.

Definition 38. We define the Tate cohomology groups as follows:

Ĥq(G,A) = Hq(G,A), q ≥ 1

Ĥ0(G,A) = AG/N(A)

Ĥ−1(G,A) = A[N ]/IGA

Ĥ−q(G,A) = Hq−1(G,A), q ≥ 2

Remark 39. The functor Ĥ0(G,−) is not left exact.

Proposition 40. Given a short exact sequence of G-modules 0 → A →
B → C → 0, we have the long exact sequence

· · · → Ĥ−2(G,C)→ Ĥ−1(G,A)→ Ĥ−1(G,B)→ Ĥ−1(G,C)

→ Ĥ0(G,A)→ Ĥ0(G,B)→ Ĥ0(G,C)

→ Ĥ1(G,A)→ Ĥ1(G,B)→ Ĥ1(G,C)→ Ĥ2(G,A)→ · · ·

20



Proof. We have the following commutative diagram of exact sequences:

Ĥ−2(G,C)

∼=
��

Ĥ−1(G,A) //
� _

��

Ĥ−1(G,B) //
� _

��

Ĥ−1(G,C)� _

��
H1(G,C)

��

//

77oooooo
H0(G,A)

N∗A
��

// H0(G,B)

N∗B
��

// H0(G,C)

N∗C
��

// 0

0 // H0(G,A)

����

// H0(G,B)

����

// H0(G,C)

����

// H1(G,A)

Ĥ0(G,A) // Ĥ0(G,B) // Ĥ0(G,C)

88pppppp

which yields a connecting homomorphism Ĥ−1(G,C) → Ĥ0(G,A) by the
Snake Lemma.

Fact 41. (i) Every G-module A embeds in a G-module A∗ such that

Ĥq(G,A∗) = 0

for all q ∈ Z.

(ii) Every G-module A is a quotient of some G-module A∗ such that

Ĥq(G,A∗) = 0

for all q ∈ Z.

This is extremely useful, see p. 129 of Serre.
We continue with the assumption that G is a finite group and that A is

a G-module. In this lecture, we will obtain the following results, each valid
for every q ∈ Z:

(i) Ĥq(G,A) is killed by |G|;

(ii) if A is finitely generated then Ĥq(G,A) is finite;

(iii) if S ≤ G is a Sylow p-subgroup, then we have an injection

res : Ĥq(G,A)(p)→ Ĥq(S,A),

where Ĥq(G,A)(p) denotes the p-primary subgroup.

So far we do not have the tools to prove these facts!

21



14 Complete resolution of G

Recall our earlier definition of P•, giving a free Z[G]-resolution of Z. Dualis-
ing this by defining P ∗i = HomZ(Pi,Z) over Z, not Z[G], we obtain a second
exact sequence

· · · // P2
// P1

// P0
ε // Z // 0

0 // Z ε∗ // P ∗0 // P ∗1 // P ∗2 // · · ·

We extend this to negative indices by setting P−n = P ∗n−1. Thus, we obtain
a long exact sequence

. . .→ P2 → P1 → P0 → P−1 → P−2 → . . .

called a complete resolution.

Proposition 42. Ĥq(G,A) is the q-th cohomology group of the complex
and we have an exact sequence

· · · ← Hom(P1, A)← Hom(P0, A)← Hom(P−1, A)← Hom(P−2, A)← · · · .

Proof. In the case q ≥ 1, this follows immediately from the definition.
Suppose now that q ≤ −2. By definition, Hn(G,A) is the nth homology

of the complex P•⊗Z[G]A, i.e., the standard complex, although any projective
resolution of Z will work. But for a finitely generated free Z[G]-module B,

B ×A ∼−→ Hom(B∗, A), c× a 7→ (f 7→ f(c).a),

where B∗ = Hom(B,Z), is an isomorphism of Z[G]-modules. So we obtain
an isomorphism τ

τ : B ⊗Z[G] A = (B ⊗A)/IG.(B ⊗A) ∼−−→
N∗

(B ⊗A)G

→ Hom(B∗, A)G = HomG(B∗, A),

which can be verified using the identities b⊗s.a = s−1.b⊗a, s.b⊗s.a = b⊗a,
and (s − 1).(b ⊗ a) = s.b ⊗ s.a − b ⊗ a. Moreover, we note that N∗ is an
isomorphism since B ⊗Z A is induced, which is the case because B is free
and the tensor product is formed over Z. Thus

HomG(P−n, A) = HomG(Hom(Pn−1,Z), A) ∼= Pn−1 ⊗Z[G] A

and the result follows since we are computing cohomology of the same com-
plex.

For the cases q = 0 and q = 1, see Cassels–Fröhlich, p. 103.
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Recall the technique of dimension shifting : given an exact sequence 0→
A′ → A∗ → A → 0, where A∗ is an induced G-module, say of the form
Z[G]⊗Z A, then, for all q ∈ Z,

Ĥq(G,A) ∼−→
δ
Ĥq+1(G,A′).

Taking H ≤ G allows us to define the restriction map for all q ∈ Z via
the following commutative diagram

Ĥq(G,A′)
res //

∼=
��

Ĥq(H,A′)

Ĥq−1(G,A)
res // Ĥq−1(H,A)

15 Corestriction

For homology, a morphism of pairs

G′

�
�
�

// G

�
�
�

A′ Aoo

induces a homomorphism Hq(G′, A′)→ Hq(G,A).
Thus, for H → G we obtain a homomorphism Hq(H,A) → Hq(G,A)

for all q. It follows that, for an exact sequence 0 → A → A∗ → A′ → 0 as
above, we have the following commutative diagram for all q ∈ Z

Ĥq(G,A)
∼ // Ĥq−1(G,A′)

Ĥq(H,A)

cores

OO

∼ // Ĥq−1(H,A′)

cores

OO

Proposition 43. • The homomorphism res : Ĥ0(G,A) → Ĥ0(H,A) is
given by the homomorphism AG/N(A) → AH/N(A), induced by the
inclusion AG → AH .

• The homomorphism res : Ĥ−1(G,A) → Ĥ−1(H,A) is induced by the
homomorphism N ′G/H : A/IG(A) → A/IH(A) sending the image of a
to
∑
s−1
i .a, where the si ∈ G are chosen such that G/H =

⋃
si.H.
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• The homomorphism cores : Ĥ0(H,A) → Ĥ0(G,A) is induced by the
homomorphism NG/H : AH/NH(A) → AG/NG(A) where NG/H(a) =∑
si.a.

Proof. See Cassels–Fröhlich.

Proposition 44. For all q ∈ Z,

coresG/H ◦ resH : Ĥq(G,A)→ Ĥq(G,A)

and the composition cores ◦ res is multiplication by [G : H].

Proof. We check this for q = 0; the general result will then follow by dimen-
sion shifting.

Ĥ0(G,A) = AG/N(A)

res

��
Ĥ0(H,A) = AH/N(A)

cores

YY

where the restriction map is induced by AG ⊂ AH and the co-restriction
map is induced by NG/H(a) =

∑
si.a, where the si are coset representatives

of H in G. Observe that, for a ∈ AG,

cores(res(a)) =
[∑

si.a
]

= n.a

where n = [G : H].

Corollary 45. (i) Ĥq(G,A) is killed by |G|, for all q ∈ Z.

(ii) If A is finitely generated then Ĥq(G,A) is finite for all q ∈ Z.

(iii) Suppose S ≤ G is a Sylow p-subgroup, that is, |S| = pn | |G| but
pn+1 - |G|. Then Ĥq(G,A)(p)→ Ĥq(S,A), for all q ∈ Z.

Proof. (i) Take H = {1} ≤ G above and note that Ĥq(H,A) = 0 for all
q ∈ Z.

(ii) This is a calculation of Ĥq(G,A) using the standard resolution. One
shows that Ĥq(G,A) is finitely generated, but since every element is
killed by |G|, it follows that it is finite.
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(iii) We use the composition of maps

Ĥq(G,A)
res

44
Ĥq(S,A)

cores
tt

Suppose |G| = pnm and let x ∈ Ĥq(G,A) be an element of order
a power of p. Then (cores ◦ res)(x) = 0 = m · x, thus x = 0 and
res(x) = 0.

16 Cup Product

We will define and construct the cup product pairing on Tate cohomol-
ogy groups and describe some of its basic properties. The main references
are §7 of Atiyah-Wall, §VIII.3 of Serre’s Local Fields, Washington’s paper
Galois Cohomology (in Cornell-Silverman-Stevens), and §7 of Tate’s Galois
Cohomology (PCMI). The cusp product is absolutely central to Galois co-
homology, in that many of the central theorems and constructions involve
various types of duality results, which involve cup products at their core.

16.1 The Definition

Let G be a finite group.

Theorem 16.1. There is a unique family of “cup product” homomorphisms

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗B)

a⊗ b 7→ a ∪ b,
for all p, q ∈ Z and G-modules A,B, such that:

(i) Cup product is functorial in A,B, e.g., if A → A′, B → B′ are G-
module homomorphisms, then we have a commutative diagram (with
vertical maps that I have not typeset below):

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗B)

Ĥp(G,A′)⊗ Ĥq(G,B′)→ Ĥp+q(G,A′ ⊗B′)

(ii) When p = q = 0 the cup product is induced by the natural map

AG ⊗BG → (A⊗B)G.

(iii) A natural compatibility statement that allows for dimension shifting
and ensure uniqueness (see Cassels-Frohlich or Serre for the exact
statement).
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16.2 Existence

Let Pn be a complete resolution of G, e.g., Pn could be the standard resolu-
tion:

Pn =

{
Z[Gn+1] if n ≥ 0,
Hom(P|n|−1,Z) if n < 0.

Recall that this fit together to form an exact sequence of free G-modules:

· · · d−−→ P2
d−−→ P1

d−−→ P0
d−−→ P−1

d−−→ P−2
d−−→ · · · .

Moreover, we have

Ĥq(G,A) = Hq(HomG(P∗, A))

is the qth cohomology of the complex HomG(P∗, A). In particular

Ĥq(G,A) =
ker(HomG(Pq, A)→ HomG(Pq+1, A))
im(HomG(Pq−1, A)→ HomG(Pq, A))

.

To prove that the family of cup product morphisms exist, we will con-
struct a G-module homomorphism from the complete resolution with certain
properties.

Proposition 16.2. There exist G-module homorphisms

ϕp,q : Pp+q → Pp ⊗Qq

for all p, q ∈ Z such that

(i) ϕp,q ◦ d = (d⊗ 1) ◦ ϕp+1,q + (−1)p(1⊗ d) ◦ ϕp,q+1, and

(ii) (ε⊗ε)◦ϕ0,0 = ε, where ε : P0 → Z is defined by ε(g) = 1 for all g ∈ G.

Assume that the proposition has been proved. Then we define the cup
product explicitly on the level of cochains as follows. Let

f ∈ HomG(Pp, A), g ∈ HomG(Pq, B)

be cochains (so elements of the kernel of d). Define the cochain

f ∪ g ∈ HomG(Pp+q, A⊗B)

by
f ∪ g = (f ⊗ g) ◦ ϕp,q.
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Lemma 16.3. We have

f ∪ g = (df) ∪ g + (−1)pf ∪ (dg).

Corollary 16.4. If f, g are cochains, then:

(i) f ∪ g is a cochain

(ii) f ∪ g only depends on the classes of f and g.

We conclude that we have a well-defined homomorphism

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗B).

Proposition 16.5. Condition (ii) of Theorem 16.1 is satisfied.

Proof. This uses from Proposition 16.2 that (ε⊗ ε) ◦ ϕ0,0 = ε.

It remains to construct the maps ϕp,q. These maps are constructed in
a natural way in terms of the standard complete resolution Pn mentioned
above, as follows. First note that if q ≥ 1, then P−q = P ∗q−1 = Hom(Pq−1,Z)
has a Z-module basis consisting of all (g∗1, . . . , g

∗
q ), where (g∗1, . . . , g

∗
q ) maps

(g1, . . . , gq) ∈ Pq−1 to 1 ∈ Z, and every other basis element of Pq−1 to 0.
The map d : P−q → P−q−1 is then

d(g∗1, . . . , g
∗
q ) =

∑
s∈G

q∑
i=0

(−1)i(g∗1, . . . , g
∗
i , s
∗, g∗i+1, . . . g

∗
q ).

and d : P0 → P−1 is given by d(g0) =
∑

s∈G s
∗.

If p ≥ 0 and q ≥ 0, then

ϕp,q(g0, . . . gp+q) = (g0, . . . , gp)⊗ (gp, . . . gp+q),

and if p, q ≥ 1 then

ϕ−p,−q(g∗1, . . . , g
∗
p+q) = (g∗1, . . . g

∗
p)⊗ (g∗p+1, . . . , g

∗
p+q),

and similar definitions in other cases, when one of p, q is positive and the
other is negative. (Again, see Cassels-Frohlich for more details.) The moral
of all this is that one can construct the cup product by simply following your
nose.
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16.3 Properties

Proposition 16.6. The cup product has these properties:

(i) (a ∪ b) ∪ c = a ∪ (b ∪ c)

(ii) res(a ∪ b) = res(a) ∪ res(b)

(iii) cores(a ∪ res(b)) = cores(a) ∪ b.

The above properties are proved by proving them when p = q = 0, then
using dimension shifting.

Finally, notice that if A ⊗ B → C is a G-homomorphism, then cup
product induces

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,C).

See Tate’s paper Galois Cohomology for an explicit description of the
cup product for p, q ≥ 0 on cocycles, which would make computation of the
cup product of classes represented by cocycles explicit.

16.4 Cohomology of a Cyclic Group

Suppose that G = 〈s〉 is a finite cyclic group. In this section we give a quick
summary of the basic facts about Ĥq(G,A).

Let Ki = Z[G] and define maps d : Ki+1 → Ki by multiplication by s−1
if i is even and multiplication by N =

∑
t∈G t if i is odd. Then

· · · d−→ Ki
d−→ Ki−1

d−→ Ki−2
d−→ · · ·

is a complete resolution of G, since

ker(T ) = Z[G]G = N(Z[G]) = image(N),

and since Ĥ0(G,Z[G]) = 0,

ker(N) = IGZ[G] = image(T ).

Then HomG(K•, A) is

· · · ← A
N←− A T←− A N←− · · · .
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Proposition 16.7. For every integer q we have

Ĥ2q(G,A) ∼= Ĥ0(G,A) = AG/N(A)

and
Ĥ2q+1(G,A) ∼= Ĥ−1(G,A) = ker(NA)/IG(A).

If n = #G, then we have

Ĥ2(G,Z) ∼= Ĥ0(G,Z) ∼= ZG/N(Z) = Z/nZ.

Theorem 16.8. Cup product by a generator of Ĥ2(G,Z) induces an iso-
morphism

Ĥq(G,A)
∼=−−−−−→ Ĥq+2(G,A)

for all q ∈ Z and all G-modules A.

For the proof, see Cassels-Frohlich, Section 8.

17 Galois Cohomology

In this course we have developed a foundation for group cohomology. The
goal for the rest of the course (about 15 lectures), is to see some applications
of group cohomology to Galois theory and algebraic number theory that are
important to understanding contemporary research in number theory. For
the rest of the course, our group will always be the Galois G of an extension
of fields, and our module A will “arise in nature”, equipped with a natural
action of G. The main topics are Galois cohomology of abelian varieties,
the Brauer group of a field, local and global duality, and étale (and other)
cohomology which generalizes the idea of Galois cohomology to bases other
than fields. This part of the course requires more background in number
theory.

Excellent references include the many articles with the title Galois Co-
homology, such as Tate’s, Washington’s, etc.

17.1 The Definition

Let K be a field, e.g., a number field such as Q( 3
√

2), a finite field such as F9,
a p-adic field such as Q11, or a function such as F7(t) or C(u, v). Let L/K be
a finite separable Galois extension of K with Galois group G = Gal(L/K).
For any G-module A, let

Hq(L/K,A) = Hq(Gal(L/K), A), for q ≥ 0
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and
Ĥq(L/K,A) = Ĥq(Gal(L/K), A), for all q ∈ Z.

We call A a Galois module.

17.2 Infinite Galois extensions

John Tate pioneered the study of Hq(L/K,A) when L/K is infinite. When
L is infinite, let

Hq(L/K,A) = lim−→
M

Hq
(
M/K, AGal(L/M)

)
,

where the injective limit is over all finite Galois extensions M of K contained
in L, and the maps are the inflation maps. We will often write

A(M) = AGal(L/M),

motivated by similar notation for the group of rational points on an elliptic
curve.

When K ⊂M ⊂M ′, we have a morphism of pairs

(Gal(M/K), A(M))→ (Gal(M ′/K), A(M ′)),

given by the natural map Gal(M ′/K) → Gal(M/K) and the inclusion
A(M) ↪→ A(M ′), which defines

Hq(M/K,A(M)) inf−−→ Hq(M ′/K,A(M ′)).

When q = 1, the inf-res sequence is exact, so all of the maps used to define
the above injective limit are injections, and we can think of H1(L/K,A)
as simply being the “union” of the groups H1(M/K,A(M)), over all finite
Galois M . When q > 1, (presumably) the above inflation maps need not be
injective.

Finally, we let
Hq(K,A) = Hq(Ksep/K,A).

With this notation, the inf-res sequence is

0→ H1(M/K,A(M)) inf−−→ H1(K,A) res−−→ H1(M,A).

The correct topology on the group Gal(L/K) is the one for which the
open subgroups are the subgroups Gal(L/M) for M any finite Galois exten-
sion of K.
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Exercise 17.1. Use the axiom of choice to show that there exists a finite
index normal subgroup of Gal(Q̄/Q) that is not open. [Hint: Consider the
compositum of infinitely many distinct quadratic extensions of Q. Their
Galois group is

∏
F2. The ideal ⊕F2 in

∏
F2 contains a maximal ideal I.

Consider the inverse image of I in Gal(Q̄/Q).]

We always equip A with the discrete topology.

Proposition 17.2. Fix topologies on Gal(L/K) and A as above. Then
Hq(L/K,A) is the group of continuous cocycles modulo coboundaries.

Proof. We first show that if [f ] ∈ Hq(L/K,A) then f is continuous. By
definition we have [f ] ∈ Hq(M/K,A(M)) for some finite Galois extension
M/K. Since the natural restriction map Gal(L/K)q → Gal(M/K)q is con-
tinuous and both Gal(M/K) and A(M) are discrete, we conclude that the
composite map f is continuous.

Next suppose f : Gal(L/K)q → A is a continuous cocycle. Because A
has the discrete topology, the inverse image of 0 ∈ A is an open set. From
the cocycle condition, the inverse image of 0 is a subgroup as well. Thus f
factors through some finite Galois extension M , Gal(L/K)q → Gal(M/K)q,
hence [f ] is defined by an element of Hq(M/K,A(M)).

17.3 Some Galois Modules

The following are all examples of G = Gal(L/K)-modules:

(i) The groups A = Z and A = Q/Z with the trivial action.

(ii) The additive group A = (L,+) of L.

(iii) The multiplicative group A = L∗ of L.

(iv) When n ≥ 2, the non-commutatative G-modules A = GLn(L) and
SLn(L).

(v) When L is a number field, the ring of integers OL, the units O∗L, and
the class group Cl(OL) are all G-modules.

(vi) For E an elliptic curve defined over K, the group A = E(L) of L-
rational points.

(vii) The group B(L), where B ia an abelian variety over K.

(viii) If S is any (commutative) group scheme over K, then A = S(L) is a
(commutative) G-module.
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(ix) For any integer n and any (commutative) A elsewhere in this list, the
group A[n] of elements of order dividing n is a G-module.

(x) The p-adic Tate module Tatep(A) = lim←−A[pn] associated to an abelian
variety A.

17.4 The Additive and Multiplicative Groups of a Field

We recall some basic facts from Galois theory. Suppose L/K is a finite Galois
extension of fields, which means that # Aut(L/K) = [L : K], or equivalently,
L is the splitting field of a single irreducible separable polynomial f ∈ K[x].
We write Gal(L/K) = Aut(L/K).

Proposition 17.3. Let L/K be any Galois extension of fields. Then for all
q ∈ Z,

Ĥq(L/K,L) = 0.

Proof. Without loss, we may assume that L is a finite extension of K, since
otherwise, we use the result on each finite subextension and take the limit.
Since L/K is finite separable, by the normal basis theorem from Galois
theory, there exists α ∈ L such that, letting Kβ denote the 1-dimensional
K-vector space spanned by β, we have

L =
⊕

σ∈Gal(L/K)

Kσ(α) ∼= K ⊗Z Z[Gal(L/K)]. (17.1)

But then L is induced, from which the conclusion follows.

Proposition 17.4. Let L/K be any Galois extension of fields. Then

H1(L/K,L∗) = 0.

Proof. As above, we may assume that L/K is a finite extension. Suppose
f : Gal(L/K)→ L∗ is a 1-cocycle. For any c ∈ L, consider the sum

b =
∑

σ∈Gal(L/K)

f(σ)σ(c).

If b = 0 for all c, then the elements of Gal(L/K) are linearly dependent. But
in view of Equation (17.1), this would imply that the conjugates of a normal
basis element α would generate a field of degree < [L : K], a contradiction.
Thus there exists c ∈ L with b 6= 0. Then for any σ ∈ Gal(L/K), we have

0 6= σ(b) =
∑
τ

σ(f(τ))στ(c) =
∑
στ

f(σ)−1f(στ)στ(c) = f(σ)−1b,

so f(σ) = bσ(b)−1, hence f is a coboundary.
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Theorem 17.5 (Hilbert’s Theorem 90). Suppose Gal(L/K) is finite cyclic,
with generator σ. If α ∈ L∗ has norm 1, then there exists β ∈ L∗ such that
α = β/σ(β).

Proof. Recall that when G is a finite cyclic group and A is a G-module, then

H1(G,A) ∼= ker(NA)/IG(A).

By Proposition 17.4, we have H1(L/K,L∗) = 0, so the kernel of norm on L∗

equals the image of 1 − σ ∈ Z[Gal(L/K)]. Thus α, which is in the kernel
of the norm, is of the form (1 − σ)β = β/σ(β) for some β. (Note that the
group ring is written additively, which is why minus changes to inverse.)

Remark 17.6. Here is an amusing consequence of Theorem 17.5. Let L =
Q(i) and K = Q. Then α = a + bi ∈ Q(i) has norm 1 if and only if
a2 + b2 = 1, i.e., (a, b) is a rational point on the unit circle. Theorem 17.5
asserts that there is β = c+ di such that

a+ bi =
β

σ(β)
=
c+ di

c− di
=

(c+ di)2

c2 + d2
=
c2 − d2

c2 + d2
+

2cd
c2 + d2

i.

This recovers the standard parameterization of rational points on the unit
circle.

Later we will study the Brauer group of a field K

Br(K) = H2(K, (Ksep)∗),

which can be very large and subtle.

18 Kummer Theory

18.1 Kummer Theory of Fields

Kummer theory is concerned with classifying the abelian extensions of ex-
ponent n of a field K, assuming that K contains the nth roots of unity. It’s
a generalization of the correspondence between quadratic extensions of Q
and non-square squarefree integers.

Let n be a positive integer, and let K be a field of characteristic prime to
n. Let L be a separable closure of K. Let µn(L) denote the set of elements
of order dividing n in L.

Lemma 18.1. µn(L) is a cyclic group of order n.
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Proof. The elements of µn(L) are exactly the roots in L of the polynomial
xn − 1. Since n is coprime to the characteristic, all roots of xn − 1 are in L,
so µn(L) has order at least n. But K is a field, so xn−1 can have at most n
roots, so µn(L) has order n. Any finite subgroup of the multiplicative group
of a field is cyclic, so µn(L) is cyclic.

Consider the exact sequence

1→ µn(L)→ L∗
x 7→xn

−−−−−→ L∗ → 1

of GK = Gal(L/K)-modules. The associated long exact sequence of Galois
cohomology yields

1→ K∗/(K∗)n → H1(K,µn(L))→ H1(K,L∗)→ · · · .

We proved that H1(K,L∗) = 0, so we conclude that

K∗/(K∗)n ∼= H1(K,µn(L)),

where the isomorphism is via the δ connecting homomorphism. If α ∈ L∗,
we obtain the corresponding element δ(α) ∈ H1(K,µn(L)) by finding some
β ∈ L∗ such that βn = α; then the corresponding cocycle is σ 7→ σ(β)/β ∈
µn(L).

As a special case, consider n = 2 and K = Q. Then we have µ2(Q̄) =
{±1}, on which GQ acts trivially. Recall that H1(G,A) = Hom(G,A) when
G acts trivially on A. Thus

Q∗/(Q∗)2 ∼= Hom(GQ, {±1}),

where the homomorphisms are continuous. The set of squarefree integers
are representative elements for the left hand side of the above isomorphism.
The right hand side is the set of continuous homomorphisms ϕ : GQ →
{±1}. To give such a nontrivial homorphism ϕ is exactly the same as giving
a quadratic extension of Q. We thus recover—in a conceptual way—the
standard bijection between quadratic fields and squarefree integers 6= 1,
which is one of the basic facts one learns in a first algebraic number theory
course.

We generalize the above construction as follows. Suppose µn ⊂ K, i.e.,
all the nth roots of unity are already in K. Then we have

K∗/(K∗)n ∼= Hom(GK ,Z/nZ), (18.1)
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where as usual the homomorphisms are continuous. We associate to a homo-
morphism ϕ : GK → Z/nZ an extension LH of K, where H = ker(ϕ), and
by Galois theory, Gal(LH/K) ∼= image(ϕ) ⊂ Z/nZ. Conversely, given any
Galois extension M/K with Galois group contained in Z/nZ, there is an as-
sociated homorphism ϕ : GK → Gal(M/K) ⊂ Z/nZ. Define an equivalence
relation ∼ on Hom(GK ,Z/nZ) by ϕ ∼ ψ if ker(ϕ) = ker(ψ) (equivalently,
ϕ = mψ for some integer m coprime to n). Then we have a bijection

Hom(GK ,Z/nZ)/∼
∼=−−→ { Galois extensions M/K with Gal(M/K) ⊂ Z/nZ }.

Using Equation 18.1 along with the explicit description of δ mentioned
above, we thus see that the Galois extensions of K with Gal(M/K) ⊂ Z/nZ
are the extensions of the form K( n

√
α) for some α ∈ K∗. An element σ ∈

Gal(M/K) acts by n
√
α 7→ n

√
α
b for some b, and the map Gal(M/K) ⊂ Z/nZ

is σ 7→ b.
The above observation is Kummer theory: There is a conceptually

simple description of the exponent n abelian extensions of K, assuming that
all nth roots of unity are in K. Of course, understanding K∗/(K∗)n well
involves understanding the failure of unique factorization into primes, hence
understanding the unit group and class group of the ring of integers of K
well.

When the nth roots of unity are not in K, the situation is much more
complicated, and is answered by Class Field Theory.

Remark 18.2. A concise general reference about Kummer theory of fields
is Birch’s article Cyclotomic Fields and Kummer Extensions in Cassels-
Frohlich. For a Galois-cohomological approach to Class Field Theory, see
the whole Cassels-Frohlich book.

18.2 Kummer Theory for an Elliptic Curve

Let n be a positive integer, and let E be an elliptic curve over a field K
of characteristic coprime to n, and let L = Ksep. We mimic the previous
section, but for the GK-module E(L) instead of L∗. Consider the exact
sequence

0→ E[n]→ E
[n]−−→ E → 0.

Taking cohomology we obtain an exact sequence

0→ E(K)/nE(K)→ H1(K,E[n])→ H1(K,E)[n]→ 0.
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Unlike the above situation where H1(K,L∗) = 0, the group H1(K,E)[n] is
often very large, e.g., when K is a number field, this group is always infinite.

In Kummer theory, we obtained a nice result under the hypothesis that
µn ⊂ K. The analogous hypothesis in the context of elliptic curves is that
every element of E[n] is defined over K, in which case

H1(K,E[n]) ≈ Hom(GK , (Z/nZ)2),

where we have used that E[n](L) ≈ (Z/nZ)2, which is a standard fact about
elliptic curves, and as usual all homomorphisms are continuous. Another
consequence of our hypothesis that E[n](K) = E[n] is that µn ⊂ K; this
later fact can be proved using the Weil pairing, which is a nondegenerate
GK-invariant map

E[n]⊗ E[n]→ µn.

As above, we can interpret the elements ϕ ∈ Hom(GK , (Z/nZ)2) (modulo
an equivalence relation) as corresponding to abelian extensions M of K such
that Gal(M/K) ⊂ (Z/nZ)2. Moreover, we have upon fixing a choice of basis
for E[n], an exact sequence

0→ E(K)/nE(K)→ Hom(GK , (Z/nZ)2)→ H1(K,E)[n]→ 0,

or, using Kummer theory from the previous section,

0→ E(K)/nE(K)→ (K∗/(K∗)n)2 → H1(K,E)[n]→ 0.

Another standard fact about elliptic curves—the (weak) Mordell-Weil theorem—
is that when K is a number field, then E(K)/nE(K) is finite. Thus when
E[n](K) = E[n] , we have a fairly explicit description of H1(K,E)[n] in
terms of K∗ and E(K). This idea is one of the foundations for using descent
to compute Mordell-Weil groups of elliptic curves.

If we restrict to classes whose restriction everywhere locally is 0 we obtain
the sequence

0→ E(K)/nE(K)→ Sel(n)(E/K)→X(E/K)[n]→ 0.

Here

Sel(n)(E/K) = ker

(
H1(K,E[n])→

⊕
all v

H1(Kv, E)

)
,

and

X(E/K) = ker

(
H1(K,E)→

⊕
all v

H1(Kv, E)

)
.
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When K is a number field, it is possible to describe Sel(n)(E/K) so explic-
itly as a subgroup of (K∗/(K∗)n)2 that one can prove that Sel(n)(E/K) is
computable.

Theorem 18.3. Given any elliptic curve E over any number field K, and
any integer n, the group Sel(n)(E/K) defined above is computable.

It is a major open problem to show that E(K) is computable. A positive
solution would follow from the following conjecture:

Conjecture 18.4 (Shafarevich-Tate). The group X(E/K) is finite.

Conjecture 18.4 is extremely deep; for example, it is a very deep (hun-
dreds of pages!) theorem when E/Q has “analytic rank” 0 or 1, and is not
known for even a single elliptic curve defined over Q with analytic rank ≥ 2.

Example 18.5. Consider an elliptic curve E over Q of the form y2 =
x(x − a)(x + b), so that all the 2-torsion of E is Q-rational. As above, we
obtain an exact sequence

0→ E(Q)/2E(Q)→ ((Q∗)/(Q∗)2)2 → H1(Q, E)[2]→ 0.

From this diagram and the fact that E(Q)/2E(Q) is finite, we see that
H1(Q, E)[2] is infinite. Moreover, given any pair (α, β) of nonzero ratio-
nal numbers, we can write down an explicit Galois cohomology class in
H1(Q, E)[2], and given any rational point P ∈ E(Q) we obtain a pair of
rationals in ((Q∗)/(Q∗)2)2.

19 Brauer Groups

This lecture is about Brauer groups.
Reference: Chapter X of Serre’s Local Fields.

19.1 The Definition

Let k be a field, and fix a separable closure ksep of k.

Definition 19.1. The Brauer group of k is

Brk = H2(k, (ksep)∗).

The Brauer group of a field is a measure of the complexity of the field.
It also plays a central role in duality theorems, and in class field theory.
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19.2 Some Motivating Examples

(i) Let E be an elliptic curve over k and n a positive integer coprime to
char(k). Consider the Weil pairing

E[n]⊗ E[n]→ µn.

Cup product defines a map

H1(k,E[n])⊗H1(k,E[n])→ H2(k, µn).

The inclusion µn ↪→ (ksep)∗ defines a homomorphism

H2(k, µn)→ H2(k, (ksep)∗) = Brk .

We thus have a pairing on H1(k,E[n]) with values Brk. It would thus
be very handy to understand Brauer groups better.

(ii) If A is a simple abelian variety over k, then R = End(A) ⊗ k is a
division algebra over k. Its center is an extension F of k, and R is a
central simple F -algebra. As we will see later, the isomorphism classes
of central simple F -algebras are in natural bijection with the elements
of BrF . It would thus be very handy, indeed, to understand Brauer
groups better.

19.3 Examples

Recall that ifG is a finite cyclic group andA is aG-module, then Ĥ2q(G,A) ≈
Ĥ0(G,A) and Ĥ2q+1(G,A) ≈ Ĥ1(G,A), a fact we proved by explicitly writ-
ing down the following very simple complete resolution of G:

· · · → Z[G] s−1−−→ Z[G] N−→ Z[G] s−1−−→ Z[G] N−→ Z[G]→ · · · ,

where N =
∑
si is the norm.

Proposition 19.2. The Brauer group of the field R of real numbers has
order 2.

Proof. We have C = Rsep, and G = Gal(C/R) is cyclic of order 2. Thus

BrR = H2(G,C∗) ∼= Ĥ0(G,C∗) ≈ (C∗)G/NC∗ ∼= R∗/R∗+ ∼= {±1}.
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Lemma 19.3. Suppose G is a finite cyclic group and A is a finite G-module.
Then

#Ĥq(G,A) = #Ĥ0(G,A)

for all q ∈ Z, i.e., #Ĥq(G,A) is independent of q.

Proof. Since, as was mentioned above, Ĥ2q(G,A) ≈ Ĥ0(G,A) and Ĥ2q+1(G,A) ≈
Ĥ1(G,A), it suffices to show that #Ĥ−1(G,A) = #Ĥ0(G,A). Let s be a
generator of G. We have an exact sequence

0→ AG → A
s−1−−−→ A→ A/(s− 1)A→ 0.

Since every term in the sequence is finite,

#AG = #(A/(s− 1)A).

Letting NG =
∑
si be the norm, we have by definition an exact sequence

0→ Ĥ−1(G,A)→ A/(s− 1)A NG−−−→ AG → Ĥ0(G,A)→ 0.

The middle two terms in the above sequence have the same cardinality, so
the outer two terms do as well, which proves the lemma.

Proposition 19.4. If k is a finite field, then Brk = 0.

Proof. By definition,

Brk = H2(k, k̄∗) = lim−→
F

H2(F/k, F ∗),

where F runs over finite extensions of k. Because G = Gal(F/k) is a fi-
nite cyclic group, Lemma 19.3 and triviality of the first cohomology of the
multiplicative group of a field together imply that

# H2(F/k, F ∗) = #Ĥ1(F/k, F ∗) = 1.

Example 19.5. The following field all have Brk = 0.

(i) Let k be any algebraically or separably closed field. Then Brk = 0,
obviously, since ksep = k.

(ii) Let k be any extension of transcendance degree 1 of an algebraically
closed field. Then Brk = 0. (See §X.7 of Serre’s Local Fields for
references.)
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(iii) Let k be the maximal unramified extension Kur of a local field K with
perfect residue field (e.g., the maximal unramified extension of a finite
extension of Qp). Then Brk = 0. (See §X.7 of Serre’s Local Fields for
references.)

(iv) Let k be any algebraic extension k of Q that contains all roots of unity
(thus k is necessarily an infinite degree extension of Q). Then Brk = 0.

The following theorem is one of the main results of local class field theory.

Theorem 19.6. Let k be a local field with perfect residue field (e.g., a finite
extension of Qp). Then Brk ∼= Q/Z.

The following theorem is one of the main results of global class field
theory.

Theorem 19.7. Let k be a number field, and for any place v of k, let kv be
the completion of k at v, so kv is a p-adic local field, R, or C. We have a
natural exact sequence

0→ Brk →
⊕
v

Brkv

(xv) 7→
P
xv−−−−−−−→ Q/Z→ 0,

We obtain the map to Q/Z by using Theorem 19.6 to view each Brkv as
Q/Z, and we view BrR = 1

2Z/Z.

19.4 Brauer Groups and Central Simple Algebras

Definition 19.8. Let k be a field. Then a central simple k-algebra is a finite
dimensional k-algebra A that satisfies any one of the following equivalent
conditions:

(i) A has no nontrivial two-sided ideals, and A has center k.

(ii) The algebra Ak̄ = A⊗k k̄ is isomorphic to a matrix algebra over k.

(iii) There is a finite extension F/k such that AF is isomorphic to a matrix
algebra over F .

(iv) A is isomorphic to a matrix algebra over a division algebra D with
center k.

We say that two central simple k-algebras are equivalent if the corre-
sponding division algebras D in (iv) above are k-isomorphic. Tensor product
endows the set of equivalence classes of central simple k-algebras with the
structure of abelian group.
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Theorem 19.9. The group Bk of equivalence classes of central simple k-
algebras is isomorphic to the Brauer group Brk.

The proof of Theorem 19.9 is somewhat involved. We will content our-
selves with sketching some of the main ideas; in particular, we will explicitly
construct the homomorphism Bk → Brk, but will not prove that it is an
isomorphism (the argument, which uses descent, is given in Serre’s Local
Fields).

Fix a finite Galois extension F of k and let B(n, F/k) be the set of
equivalence classes of central simple k-algebras A such that AF ≈ Mn(F ),
where Mn(F ) is the algebra of n× n matrices over F . Then B is the union
of all B(n, F/k) over all n and F .

Given A ∈ B(n, F/k), let ϕ : AF → Mn(F ) be a fixed choice of isomor-
phism. Define a set-theoretic map

f : Gal(F/k)→ AutF (Mn(F )) ≈ PGLn(F )

by
f(s) = ϕ−1 ◦ s(ϕ) = ϕ−1 ◦ s ◦ ϕ ◦ s−1

Then
[f ] ∈ H1(F/k,PGLn(F )),

where this H1 is a cohomology set (!).

Proposition 19.10. The above construction A 7→ [f ] defines a bijection
between B(n, F/K) and H1(F/k,PGLn(F )).

(The above proposition is proved in Serre’s Local Fields.)
Consider the exact sequence

1→ F ∗ → GLn(F )→ PGLn(F )→ 1.

There is a well-defined connecting homorphism

H1(F/k,PGLn(F ))→ H2(F/k, F ∗).

Since H2(F/k, F ∗) inf−→ Brk, we thus obtain a natural map

B(n, F/K)→ Brk .

This induces the claimed isomorphism B → Brk.
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20 Galois Cohomology of Abelian Varieties

20.1 Principal Homogenous Spaces for Abelian Varieties

See also Pete Clark’s http://math.uga.edu/~pete/wcnotes.pdf.
An abelian variety A over a field k is a projective group variety, i.e., a

projective variety that is equipped with a group structure A × A → A and
1A : k → A. Perhaps the first basic theorem about abelian varieties is that
their group structure is commutative. We will not prove this here, since
it requires too much algebraic geometry (for a complete proof readable by
anybody who has read Hartshorne’s Algebraic Geometry, see Milne’s Abelian
Varieties article in Cornell-Silverman).

A principal homogenous space for an abelian variety A over a field k is a
variety X over k and a morphism ι : A ×X → X that satisfies the axioms
of a simply transitive group action.

If F is any field such that X(F ) 6= ∅, then AF ≈ XF , so we can view
the principal homogenous spaces for A as twists of A as algebraic varieties
(not as abelian varieties). Two principal homogenous spaces are equivalent
if there is a morphism X → Y such that natural compatibility holds.

Given principal homomogenous spaces X and Y , the Baer sum defines
a new principal homogenous space. Define an action of A on X × Y by
(a, x × y) = (a, x) × (−a, y). The Baer sum of X and Y is the quotient of
X × Y by this action. The diagonal action a.(x × y) = ax × ay then gives
the Baer sum the structure of principal homogeneous space for A.

The collection of isomorphism classes of principal homomogenous spaces
for a fixed abelian variety A over k equipped with Baer sum is an abelian
group, called the Weil-Chatalet group of A, and denoted WC(A/k).

Theorem 20.1 (Lang-Tate, 1958). There is a natural isomorphism WC(A/k)→
H1(k,A).

Sketch of Proof. Given a principal homogenous space X for A, we construct
an element of H1(k,A) as follows. Since X is a variety of positive dimension,
there is a finite extension of k such thatX(F ) 6= ∅. Fix a choice of P ∈ X(F ).
For a ∈ A and x ∈ X, write a+x for the image of (a, x) under the principal
homogenous space map A×X → X. Define a map f : Gk → A by sending
σ ∈ Gk to

σ(P )− P

which means “the unique element a ∈ A such that

a+ P = σ(P ).
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The map f is a 1-cocycle because

f(σ) + σf(τ) = σ(P )− P + σ(τ(P )− P ) = σ(τ(P ))− P = f(στ),

where we have used the axioms that the principal homogenous space struc-
ture satisfy.

Conversely, constructing a principal homogenous space from a cycle f , is
called “descent of the base field”. The idea is that we find a finite extension
F such that f |GF

= 0, i.e., an extension that splits f . Then the data
of (AF , fGF

) is “descent datum”, which determines an algebraic variety X
over k. See Serre Algebraic Groups and Class Fields, Section ???, for more
details.

Example 20.2. If A has dimension 1 then A is an elliptic curve. The
principal homogenous spaces X for A are genus 1 curves with Jac(X) = A.
If A is defined over a number field k, then the nonzero elements of X(A)
are in bijection with the set of equivalence classes of principal homogenous
spaces X such that X(kv) 6= ∅ for all places v of k, yet X(k) = ∅. Thus
X(A) measures the obstruction to a local-to-global principal.

20.2 Galois Cohomology of Abelian Varieties over Finite
Fields

Let A be an abelian variety over a finite field k.
The following theorem was proved by Lang in 1956. A more modern

prove is given in the first few sections of Chapter VI of Serre’s Algebraic
Groups and Class Fields. Note that Lang actually proved a more general
result about algebraic groups.

Theorem 20.3 (Lang, 1956). Let A be any connected algebraic group over
a finite field (e.g., an abelian variety). Then H1(k,A) = 0.

Proof. The following proof is based on what Pete Clark posted in the notes
mentioned above. This proof has the advantage that it uses techniques that
fit very nicely in the context of the rest of this course.

It suffices to show that H1(k,A)[n] = 0 for every positive integer n. The
Kummer sequence associated to 0→ A[n]→ A→ A→ 0 is

0→ A(k)/nA(k)→ H1(k,A[n])→ H1(k,A)[n]→ 0.

It thus sufficies to prove that

#(A(k)/nA(k)) = # H1(k,A[n]).
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We have an exact sequence of finite abelian groups

0→ A(k)[n]→ A(k)
[n]−→ A(k)→ A(k)/nA(k)→ 0.

Thus
#A(k)[n] = #(A(k)/nA(k)),

so now we just have to show that

# H1(k,A[n]) = #A(k)[n].

We have
#Ĥ0(F/k,A(F )[n]) = #Ĥ1(F/k,A(F )[n])

for all finite extensions F of k. In particular let F be any extension of
k(A[n]) of degree divisible by n. Because the norm map is multiplicative in
towers, we have

TrF/k(A[n]) = Trk(A[n])/k(TrF/k(A[n])(A[n])) = Trk(A[n])/k([n]A[n]) = Trk(A[n])/k(0) = 0.

Thus
Ĥ0(F/k,A[n](F )) = A(k)[n]/TrF/k(A[n]) = A(k)[n],

where here we write Tr instead of the usual “norm” to denote the element∑
σi, where Gal(F/k) = 〈σ〉. Thus for all finite extensions of M/F , we have

#Ĥ1(M/k,A[n](M)) = #A(k)[n].

By taking compositums, we see that every extension of k is contained in a
finite extension of F , so

# H1(k,A[n]) = # lim−→
M/F

Ĥ1(M/k,A[n]) = #A(k)[n].

This proves the theorem.

Remark 20.4. When A is an elliptic curve the Hasse bound and Theo-
rem 20.1 imply the theorem. Indeed, any X ∈WC(A/k) is a genus 1 curve
over the finite field k, hence

|#X −#k − 1| ≤ 2
√

#k.

It follows that #X ≥ #k + 1− 2
√

#k > 0.

We have the following incredibly helpful corollary:
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Corollary 20.5. If 0 → A → B → C → 0 is an exact sequence of abelian
varieties over a finite field k, then 0 → A(k) → B(k) → C(k) → 0 is also
exact.

Proof. The cokernel of B(k)→ C(k) is contained in H1(k,A) = 0.

Example 20.6. Suppose E is an optimal elliptic curve quotient of J =
J0(N) and p - N is a prime. Then for any integer n ≥ 1, the induced
natural map

J(Fpn)→ E(Fpn)

is surjective. If E[`] is irreducible, one can use Ihara’s theorem to also
prove that J(Fp2)ss(`)→ E(Fp2)(`) is surjective, where J(Fp2)ss is the group
generated by supersingular points.

Corollary 20.7. We have Hq(k,A) = 0 for all q ≥ 1. (In fact, we have
Ĥq(k,A) = 0 for all q ∈ Z.)

Proof. Suppose F is any finite extension of the finite field k. Then Gal(F/k)
is cyclic, so by a result we proved before (lecture 13), we have

#Ĥq(F/k,A(F )) = #Ĥ1(F/k,A(F )) = 1

for all q ∈ Z.

Corollary 20.8. If F/k is a finite extension of finite fields, and A is an
abelian variety, then the natural trace map

TrF/k : A(F )→ A(k)

is surjective.

Proof. By Corollary 20.7 and the definition, we have

0 = Ĥ0(F/k,A(F )) = A(k)/TrF/k(A(F )).

Let A be an abelian variety over a number field K, and v a prime of
K, with residue class field k = kv. The Néron model A of A is a smooth
commutative group scheme over the ring OK of integer of K with generic
fiber A such that for all smooth commutative group schemes S the natural
map

A(S)→ A(SK)
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is an isomorphism. Reducing modulo v we have an exact sequence

0→ A0
k → Ak → ΦA,v → 0, (20.1)

where A0
k is the connected component that contains the identity and ΦA,v

is a finite flat group scheme over k, called the component group of A at v.

Proposition 20.9. For every integer q, we have

Ĥq(k,Ak) = Ĥq(k,ΦA,v).

Proof. Take Galois cohomology associated to the exact sequence (20.1), and
use Corollary 20.7.

21 Duality

WARNING: For the rest of this book, we’re going to let k̄ denote a sepa-
rable closure of k, since it’s much easier notation to work with (I’ll go back
and change the notation above later).

Let k be a field and k̄ a choice of separable closure of k.

21.1 Duality over a Local Field

Let M be any Gk = Gal(k̄/k)-module and set

M̂ = Hom(M, k̄∗),

which we give the structure of (left) Gk-module by

(g.ϕ)(a) = g(ϕ(g−1a)).

To see that this gives M̂ a Gk-module structure, note that if g, h ∈ GK ,
then

((gh).ϕ)(a) = (gh)(ϕ((gh)−1a)) = (gh)(ϕ(h−1g−1a))

and
(g.(h.ϕ))(a) = g((h.ϕ)(g−1a)) = g(h(ϕ(h−1g−1a))).

Theorem 21.1 (Tate Local Duality). Let k be a local field and M a finite
Gk-module of order coprime to the characteristic of k. Then for r = 0, 1, 2,
the cup product pairing

Hr(k,M)×H2−r(k, M̂)→ H2(k, k̄∗) ∼= Q/Z

is nondegenerate. Also Hq(k,M) = 0 for q ≥ 3.

The proof of this theorem is beyond the scope of this course, since it
requires developing too much general machinery. See [Ser97] for complete
details.
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21.1.1 Example: n-torsion on an elliptic curve

Let k be a local field and M = E[n] the points of order n on an elliptic curve
over k. The Weil pairing is a nondegenerate perfect pairing

E[n]⊗ E[n]→ µn,

hence defines a Gk-isomorphism E[n] ∼= Ê[n]. Thus for r = 0, 1, 2, we obtain
nondegenerate pairings

Hr(k,E[n])×H2−r(k,E[n])→ Q/Z.

For r = 0, the nondegenerate pairing is

E(k)[n]×H2(k,E[n])→ Q/Z,

which thus allows us to compute

H2(k,E[n]) ∼= Hom(E(k)[n],Q/Z) ≈ E(k)[n].

For r = 1, the pairing is

H1(k,E[n])×H1(k,E[n])→ Q/Z. (21.1)

Thus given any element x ∈ H1(k,E[n]) we obtain a homomorphism

ϕx : H1(k,E[n])→ Q/Z,

and ϕx = 0 if and only if x = 0.
Tate also proved the following related duality theorem, which gives a

very nice way to think about the Galois cohomology of an abelian variety
over a local field. Let A be an abelian variety over a local field k, and let
A∨ denote tha dual abelian variety. When A has dimension 1 or when A is
the Jacobian of a curve, then A∨ ∼= A.

Theorem 21.2 (Tate). We have Hq(k,A) = 0 for q ≥ 2. Moreover, there
is a canonical pairing

H0(K,A∨)×H1(K,A)→ Q/Z,

which induces an isomorphism (of discrete groups)

H1(K,A)
∼=−−→ Hom(A∨(K),Q/Z).

(All homs are continuous.)
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The following proposition is proved using formal groups; it’s Proposition
VII.6.3 in [Sil92].

Proposition 21.3. Suppose E is an elliptic curve over a finite extension k
of Qp and let R be the ring of integers of k. Then E(k) contains a subgroup
of finite index that is isomorphic to (R,+).

For simplicity, assume that R = Zp. Then we have an exact sequence

0→ Zp → E(Qp)→M → 0,

where M is a finite group. Applying the Hom(−,Q/Z) (continuous homo-
morphisms) Pontryagin duality gives an exact sequence

0→ Hom(M,Q/Z)→ Hom(E(Qp),Q/Z)→ Hom(Zp,Q/Z)→ 0.

We have
Hom(Zp,Q/Z) ∼= Qp/Zp,

where the isomorphism sends ϕ : Zp → Q/Z to ϕ(1) ∈ Qp/Zp ⊂ Q/Z. Thus
we have an exact sequence

0→ F → H1(Qp, E)→ Qp/Zp → 0,

where F is a finite group. So that’s what cohomology of an elliptic curve
over a local field looks like:

The group H1(Qp, E) has a lot of elements of order a power of
p, and not much else.

21.2 Duality over a Finite Field

Let k be a finite field. Then the dualizing module is Q/Z with trivial action
(not k̄∗ as above), and we define

M∗ = Hom(M,Q/Z).

Theorem 21.4. For every finite module M and r = 0, 1, cup product in-
duces a nondegenerate pairing

Hr(k,M)×H1−r(k,M∗)→ Q/Z.
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22 A Little Background Motivation for Étale
Cohomology

22.1 Schemes

Schemes are algebraic-geometric objects that generalize the notion of variety
and, like manifolds, are built by glueing together special types of objects
called affine schemes. The category of commutative rings is equivalent (via
a contravariant functor) to a subcategory of the category of schemes, so
schemes generalize the notion of commutative rings.

Affine schemes X = Spec(R) are geometric objects attached to commu-
tative rings. Here X is a locally ringed topological space. The set of points
of X is the set of prime ideals of the ring R. The closed sets for the (Zariski)
topology on X are the subsets

V (I) = {p ∈ X : I ⊂ p}

attached to ideals I ⊂ R. To say that X is locally ringed means that there
is a sheaf OX of rings on X, i.e., a certain type of functor from the category
of open subsets of X to the category of rings. In particular, if U = X−V (I)
is an open set with I prime, then

OX(U) = RI

is the localization of R at I, which is obtained by adjoining to R the inverses
of the multiplicatively closed subset all elements of R not in I.

Example 22.1. Let X = Spec(K), where K is a field. Then there is exactly
one prime ideal, the 0 ideal, so #X = 1, i.e., X is a point. The structure
sheaf is OX(X) = K.

Example 22.2. Let X = Spec(Zp), where Zp is the ring of p-adic integers.
Then as a set X = {(0), (p)}, since Zp has exactly two prime ideals. There
are two nonempty open sets: X itself and U = {(0)} = X − V ((p)). We
have OX(X) = Zp and OX(U) = R(p) = Zp, since everything not in (p) is
already invertible in Zp. One interesting thing about Spec(Zp) is that the
natural quotient homomorphism Zp → Fp induces a morphism of schemes:

Spec(Fp) ↪→ Spec(Zp).

Example 22.3. The multiplicative group Gm is the scheme

Gm = Spec(Z[X,Y ]/(XY − 1)).

It has a group scheme structure, in that there is a multiplication map Gm×
Gm → Gm and an identity section Spec(Z)→ Gm.
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22.2 Étale Cohomology

Inspired by Serre’s introduction of homological techniques into Algebraic
Geometry, Grothendieck introduced the idea of étale cohomology in 1958.
He was partly motivated by a desire to more deeply understand and prove
Weil’s conjectures, which imply the function field analogue of the Riemann
Hypothesis (Deligne did indeed prove these conjectures in the 1970s using
étale cohomology). Étale cohomology gives a precise meaning to

Hq
ét(X,F),

where X is a scheme and F is a “sheaf for the étale site on X”, which is a
generalization of the notion of module (and also related to the notion of sheaf
for the Zariski topology on X). An example of a scheme is X = Spec(K),
where K is a field, in which case étale sheaves are in bijection with GK-
modules, and

Hq
ét(X,F) = Hq

ét(Spec(K),F) = Hq(K,F(K̄))

is just the usual concrete notion of Galois chomology that we now know and
love.

Thus étale cohomology is an extremely powerful and natural generaliza-
tion of Galois cohomology.

Remark 22.4. If you know sheaf cohomology in the context of algebraic ge-
ometry and the Zariski topology on a scheme (e.g., chapter 3 of Hartshorne’s
book Algebraic Geometry), then you’ll find the following interesting:

“The reason that the Zariski topology does not work well is that
it is too coarse: it has too few open sets. There seems to be
no good way to fix this by using a finer topology on a general
algebraic variety. Grothendieck’s key insight was to realize that
there is no reason why the more general open sets should be
subsets of the algebraic variety: the definition of a sheaf works
perfectly well for any category, not just the category of open
subsets of a space. He defined étale cohomology by replacing
the category of open subsets of a space by the category of étale
mappings to a space: roughly speaking, these can be thought of
as open subsets of finite unbranched covers of the space. These
turn out (after a lot of work) to give just enough extra open sets
that one can get reasonable cohomology groups...”

– the Wikipedia article on étale cohomology
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23 Étale Cohomology over a DVR

As mentioned above, étale cohomology of Spec(K), when K is a field, is the
same thing as Galois cohomology over K. Perhaps the simplest example in
which étale cohomology is not just usual Galois cohomology is the case when
X = Spec(R) is the spectrum of a discrete valuation ring. In this section,
we study this case in explicit detail.

23.1 Discrete Valuation Rings

A local ring is a ring with a unique maximal ideal, and a discrete valuation
ring (DVR) is a local principal ideal domain. We letR be a discrete valuation
ring (DVR) with field of fractions K and perfect residue field k. Any DVR
is equipped with a valuation v : K → Q such that R = {α ∈ K : v(α) ≥ 0}.

Example 23.1. We give some examples and non-examples of DVR’s:

(i) For example, we could take R = Zp with p-adic valuation, K = Qp,
and k = Fp. This choice of R is a (topologically) complete local ring.

(ii) We could take
R = Z(p) =

{a
b
∈ Q : p - b

}
⊂ Q

with its p-adic valuation, K = Q and k = Fp. Note that this R is not
complete, though R is a local ring.

(iii) We could take R = Fp[[t]], the ring of power series in t, andK = Fp((t))
and k = Fp.

(iv) The ring Z with a p-adic valuation is not a DVR, since it has more
than one maximal ideal.

(v) The ring R = Fp(t)[[X]] does not have perfect residue field, so isn’t
allowed as one of the R’s.

23.2 Galois Groups associated to DVR’s

Let K̄ be a separable closure of K and extend the valuation v of R to K̄.
Let the subscript of v denote completion with respect to v. Let Kur be the
maximal unramified extension of K contained in K̄. The decomposition
group is

Gv = Gal(K̄v/Kv) ⊂ Gal(K̄/K),
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the inertia group is
Iv = Gal(K̄v/K

ur
v ) ⊂ Gv,

and we set
Gk = Gal(k̄/k).

A standard fact, which one proves in a first course in algebraic number
theory, is that we have a natural exact sequence

1→ Iv → Gv → Gk → 1.

(The nontrivial part is that Gv → Gk is surjective.)

23.3 Galois Modules over a DVR

For any GK-module M , let M0 = M Iv , which is a Gk = Gv/Iv-module.
Following [Maz73] (Mazur, Notes on Étale Cohomology of Number Fields,

1973, extracted from a course he once gave at Orsay in France), we define
the category of Galois modules over R as follows. The objects are diagrams

N
ϕ−−→M,

where N is a Gk-module, M is a GK-module, and ϕ is a homomorphism of
abelian groups that sends N into M0 ⊂M , and when viewed as a map of N
into M0 is a homomorphism of Gk-modules. A morphism is a commuting
square

N
ϕ //

��

M

��
N ′

ψ // M ′

We will also frequently write the above diagram as a tuple

(M,N,ϕ),

where of course ϕ : N →M satisfies the above conditions.
In Section 24.3 we will define the category of “abelian sheaves on the

étale site over Spec(R)”.

Theorem 23.2. There is a natural equivalence of categories between the
category SR of triples (M,N,ϕ) and the category of “abelian sheaves for the
étale topology on Spec(R)”.
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Thus studying cohomology in the category SR of Galois modules over R
is exactly the same as studying étale cohomology of abelian sheaves on the
étale site over Spec(R). However, it is more explicit and concrete.

Example 23.3. Let M be any GK-module and let N = M0 and id : N ↪→
M be the natural inclusion. Then (M,M0, id) is a Galois module over R.

Example 23.4. Let A be any abelian group equipped with trivial Galois
action, and set N = M = A above and ϕ the identity map. In terms of
a triple, we write this element of SR as (A,A, 1A). We call such a Galois
module constant. For example, we denote by Z the Galois module obtained
in this way by taking A = Z.

Example 23.5. Let

U = {α ∈ (Kur)∗ : v(α) = 0}

be the group of units in the ring of integers of the maximal unramified
extension Kur of K. Then

Gm,R = (K̄∗, U, id).

is a Galois module, since (K̄∗)0 = (Kur)∗ contains U .

23.4 The Natural Functors

In order to better understand SR, we introduce several natural functors. We
define the following functors:
pullbacks:

i∗ : (M,N,ϕ) 7→ N ; j∗ : (M,N,ϕ)→M ;

push forward:

i∗ : N 7→ (0, N, 0); j∗ : M 7→ (M,M0, id).

extension by zero over a closed point:

j! : M 7→ (M, 0, 0)

sections with support on a closed point:

i! : (M,N,ϕ) 7→ ker(ϕ)

Thus we have defined functors as follows:

i∗ : SR → Sk, j∗ : SR → SK , i∗ : Sk → SR,
j∗ : SK → SR, j! : SK → SR, i! : SR → Sk.

The functors i∗, i∗, j∗, j! are exact, and j∗ and i! are left exact.
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23.5 Cohomology of Galois Modules over a DVR

Let Z be the Galois module from Definition 23.4 and let F be any Galois
module. In this section, we define

Hq(R,F )

for Galois modules F over a DVR R. This is our first generalization of
Galois cohomology in the direction of étale cohomology.

Definition 23.6 (Cohomology over a DVR). Let

Hq(R,F ) = ExtqSR
(Z, F )

Letting
ΓR(F ) = HomSR

(Z, F ),

we have
ExtqSR

(Z, F ) = (RqΓR)(F ),

where Rq denotes the qth right derived functor of the left exact functor ΓR.
Thus to compute Hq(R,F ) we find a resolution of either Z or F in the cate-
gory SR of Galois modules over R, then apply the appropriate Hom functor
in the category SR and take the (co-)homology of the resulting complex.

The following result generalizes Hilbert’s theorem 90, and also empha-
sizes how étale cohomology and Galois cohomology can differ.

Theorem 23.7. We have

Hq(R,Gm,R) =

{
R∗ if q = 0,
0 otherwise.

24 The Étale Topology

See §III.3 of Hartshorne for the following general definition of étale morphism
f : X → Y of schemes: f is étale if it is smooth of relative dimension 0. Since
“smooth” and “relative dimension” take some work to define, we will instead
give a more concrete definition. By Corollary I.3.16 in Milne’s published
book [Mil80], we may define étale as follows.

Definition 24.1. A morphism f : X → Y of schemes is étale if for every
x ∈ X, there exists open affine neighborhoods V = Spec(C) of x and U =
Spec(A) of y = f(x), and polynomials P, b ∈ A[t] with P monic, such that

C ≈ A[t, u]/(P, bu− 1),

with P ′ a unit in C. (Here the map A→ C is induced by f .)
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Figure 24.1: Typical Result of Google Image Search for “Étale”

Thus locally on rings, any étale morphism is obtained by adjoining an
element and inverting an element to remove any ramified primes.

Example 24.2. Let X = Spec(Z[i, 1/2]) and Y = Spec(Z). Then the map
Z ↪→ Z[i, 1/2] induces an étale morphism X → Y , since taking P = t2 + 1
and b = 2t, we have

Z[i, 1/2] ∼= Z[t, u]/(t2 + 1, 2tu− 1),

and P ′ = 2t is a unit in Z[t, u]/(t2 + 1, 2tu− 1). Note that if we took b = 1
instead of b = 2, then P ′ would not be a unit. More generally, if P is any
squarefree monic polynomial, then Z[t, u]/(P, P ′ · tu− 1) is étale over Z.

An incredibly useful fact about étale morphisms is that they are “closed
under base extension”, in the sense of the following theorem:

Theorem 24.3. If f : X → Y is étale and g : Z → Y is any morphism of
schemes at all, then the map f ′ : Z ×Y X → Z obtained by fiber product is
étale.

Z ×Y X //

f ′

��

X

f

��
Z

g // Y

Proof. Hartshorne.

Remark 24.4. It is frequently the case in algebraic geometry that interest-
ing classes of morphisms are “closed under base extension”.
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Example 24.5. Suppose R is a DVR with fraction field K and residue class
field k. Suppose L is any finite seperable extension of K. Then the morphism
Spec(L) → X = Spec(R) induced by R ↪→ K ⊂ L is an étale morphism.
To see this, in Definition 24.1, take V = Spec(K), which is an affine open
subset of X = Spec(R), as {(0)} is open, and the map Spec(K) ↪→ Spec(R)
has image {(0)}. Since L is finite separable, we have L = K[t]/(P ) for some
polynomial P with 0 6= P ′ ∈ L.

24.1 Special Cases of Interest

Suppose X = Spec(R), where R is a Dedekind domain, DVR, or field.
Suppose R ⊂ E is an extension (with E of the same type as R, e.g., Dedekind
domain, DVR, or field) with E finitely generated as an R-module. In case
R is a Dedekind domain, suppose 0 6= b ∈ E and let

R′ = Eb = E[1/b]

be the localization of E away from b. Geometrically

Spec(Eb) = Spec(E)− { finitely many points },

where the omitted points are the prime ideals that contain b, i.e., those that
divide the ideal generated by b. Then the extension R ⊂ R′ induces an étale
morphism Spec(R′)→ X if and only if every prime of R′ is unramified over
R.

If R is a field, then Spec(E) → X is étale if and only if E is a finite
separable extension of R (note that E just has to be a product of fields).
WhenR and E are both DVR’s, then Spec(E)→ X is étale if E is unramified
over R.

24.2 Étale Coverings

For X = Spec(R), let Ét(X) denote the category of all schemes Y/X where
the structure morphism Y → X is étale.

An étale covering of an object Y in Ét(X) is a collection {Ui
fi−→ Y } of

Ui ∈ Ét(X) such that the union of the images equals Y , i.e.,

Y =
⋃
i

fi(Ui).

Example 24.6. Let Y = X = Spec(Z), let U1 = Z[i][1
2 ] and U2 = Z[ζ3][1

3 ].
Then U1 → Y and U2 → Y are étale morphisms and {U1, U2} is an étale
covering of Y .
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24.3 Étale Sheaves

Definition 24.7 (Étale Site on X). The (small) étale site on X is the
category Ét(X) with “topology” given by étale coverings.

Definition 24.8 (Étale Presheaf). An étale presheaf on X is a contravariant
functor P from Ét(X) to the category of abelian groups.

Thus P associates to each étale morphism f : Y → X an abelian group
P (Y ). Moreover, if Y → Y ′ is a morphism of objects in Ét(X), there is a
corresponding morphism of abelian groups resY,Y ′ : P (Y ′) → P (Y ), which
we think of as “restriction maps”.

Example 24.9. Suppose G is a commutative group scheme over a scheme
X. Define a functor on Ét(X) by sending a scheme Y/X to the abelian
group

G(Y ) = HomÉt(X)(Y,G) (scheme morphisms over X).

Then this functor is an étale presheaf. As a concrete example, we can take
G to be the multiplicative group scheme Gm, the additive group scheme
Ga, or the Néron model A over X = Spec(R) of an abelian variety A over
Spec(K).

Definition 24.10 (Étale Sheaf). An étale sheaf on X is a presheaf P such
that for all covers {Ui → U} of all objects U ∈ Ét(X), the sequence

P (U)→
∏
i

P (Ui)→
∏
i,j

P (Ui ×U Uj)

is exact. Here, the first morphism sends a section s ∈ P (U) to the sequence
(resUi,U (s))i. The second map sends si ∈ P (Ui) to the tuple of differences

resUi×UUj ,Ui(s)− resUi×UUj ,Uj (s) ∈ P (Ui ×U Uj)

Thus P is a sheaf if it is completely determined by its restriction to a
covering, and any compatible family of sections on a covering arises from a
global section.

Let SX denote the category of all étale sheaves on X.

Theorem 24.11. If G is a commutative group scheme over a scheme X
(see Example 24.9 above) then the presheaf defined by G is in fact a sheaf
for the étale site on X.

Proof. See [Mil80, Cor. 1.7, page 52].
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24.4 Direct and Inverse Image Functors

Suppose π : X ′ → X is a morphism of schemes. Then π induces a functor

Ét(X)→ Ét(X ′),

that sends an étale morphism Y → X to its base change Y ×X X ′ → X ′:

Y ×X X ′ //

��

Y

��
X ′ // X

Next we define the direct image functor πp on presheaves. Given an
étale presheaf P ′ on X ′ we obtain an étale presheaf πp(P ′) on X, which for
U ∈ Ét(X), is given by

(πp(P ′))(U) = P ′(UX′).

Here UX′ = U ×X X ′ is the fiber product, which is an étale cover of X ′:

UX′ //

��

U

��
X ′ // X

We continue to fix an étale morphism f : X ′ → X. Given an étale
presheaf P on X, the inverse image functor πp associates to P an étale
presheaf P ′ = πp(P ) on X ′. By abstract nonsense, the functor πp is com-
pletely determined by the assertion that it is the adjoint of πp, i.e.,

Hom(πp(P ), Q) ≈ Hom(P, πp(Q)),

where the homsets are in the categories of étale presheaves for X ′ and X,
respectively. Explicitly, for U ′ ∈ Ét(X ′)

(πp(P ))(U ′) = lim−→
U

P (U),

where the limit is over all commuting squares

U ′ //

��

U

��
X ′ // X
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with U → X in Ét(X). Note that these are merely commuting squares; we
do not require that U ′ = X ′ ×X U . (See [Mil80, pg. 57] for more details
about the precise meaning of this direct limit, e.g., what the maps are.)

Proposition 24.12. Both πp and πp are exact functors.

Proof. See [Mil80, II.2.6, pg. 59].

24.5 Stalks

Let X be a scheme and x ∈ X a point of the underlying topological space
of X, so there is an affine open subset U = Spec(A) ⊂ X such that x
corresponds to a prime ideal p ⊂ A. The field associated to x is k(x) =
Frac(A/p), and we let x̄ = Spec(k̄), where k̄ is a fixed choice of separable
closure of k(x). The inclusion k(x) ↪→ k̄ induces a scheme map

x̄
ux−−−−−→ X.

The functor F 7→ F (x̄) is an equivalence of categories between the cate-
gory of étale sheaves on x̄ and the category of abelian groups.

Let P be an étale presheaf on X. The stalk of P at x̄ is

Px̄ = (upxP )(x̄)

From the definition of upx, we see that

(upxP )(x̄) = lim−→P (U)

where the limit is over all commutative triangles

U

��

x̄oo

ux����������

X

with U ∈ Ét(X). (Think of these as the “open sets U that contain x”.)
The following proposition asserts that any question about an étale sheaf

can be attacked by instead studying the stalks of the sheaf. This is why
sheaves are much better to work with than presheaves.

Proposition 24.13. Let F be an étale sheaf on X. Then for U ∈ Ét(X),
a section s ∈ F (U) is completely determined by the stalks sx̄ of s at all
points x̄.
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Proof. Suppose s, s′ are two sections and sx̄ = (s′)x̄ for all x̄. Then (s−s′)x̄ =
0 for all x̄, so [Mil80, Prop. II.2.10, pg. 60] implies that s−s′ = 0. The proof
of Proposition II.2.10 in Milne is just an easy application of the definitions
and sheaf property.

The Galois group Gk(x) = Gal(k̄/k(x)) acts on the abelian group Px̄, so
the stalk Px̄ is an element of a Galois module. In light of Proposition 24.13,
sections of étale sheaves are thus “compatible” families of elements of all of
the natural Galois modules attached to the points x ∈ X.

Example 24.14. SupposeX = Spec(R) with R a DVR with fraction fieldK
and perfect residue field k. Then as a set X = {p, (0)} has two points xp = p

and x0 = (0). If P is an étale sheaf on X, then the stalks of P are M = Px̄0

and N = Px̄p , which are GK and Gk-modules, respectively. This defines the
M and N in the equivalence of categories between the category SR of triples
(M,N,ϕ) and the category of étale sheaves on X. The map ϕ then encodes
the compatibility alluded to above; see Section 26.2 for precisely how ϕ is
defined.

Using stalks one proves the following theorem (see [Mil80, Thm. II.2.11,
pg. 61]) via a construction involving direct and inverse image functors to
reduce to the case of stalks:

Theorem 24.15. For any étale presheaf P on X, there is an étale sheaf
a(P ) on X (called the étale sheafification of P ) and a morphism ϕ : P →
a(P ) such that for any sheaf F and morphism ϕ′ : P → F there is a unique
map ψ : a(P )→ F making the following diagram commute:

P
ϕ //

ϕ′

��>>>>>>>> a(P )
ψ

}}zzzzzzzz

F

24.6 Pullback and Pushforward of Étale Sheaves

Suppose π : X ′ → X is a morphism of schemes. If F ′ is an étale sheaf on
X ′, then the pushforward of F ′ is the sheaf

π∗(F ′) = πp(F ′),

which is an étale sheaf on X. If F is an étale sheaf on X, then the pullback
is the sheaf

π∗(F ) = a(πp(F )),
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which is an étale sheaf on X ′. These are adjoint functors, which means that
in the appropriate categories of étale sheaves we have

Hom(F, π∗(F ′)) ∼= Hom(π∗(F ), F ′).

The functor π∗ is exact and π∗ is left exact. In general, π∗ is not right exact
(even though πp is).

25 Étale Cohomology

Before definining étale cohomology, we recall an import theorem. Recall
that an object I in an abelian category C is injective if the contravariant
functor HomC(−, I) is exact. Suppose that C has enough injectives, i.e., for
every object X in C there is a monomorphims X → I for some injective I.

Theorem 25.1. If f : C → D is any left exact functor, then there is an
essentially unique collection of right derived functors Rif : C → D such that

(i) R0f = f ,

(ii) (Rif)I = 0 if I is injective and i ≥ 1,

(iii) Long exact sequences: if 0→ A→ B → C → 0 is exact, then there is
a long exact sequence

· · · → (Rif)B → (Rif)C δ−→ (Ri+1f)A→ (Ri+1f)B → · · · .

Theorem 25.2. Let X be any scheme. The category of étale sheaves on X
has enough injectives.

Proof. The following proof is from [Mil80, §III.1]. Let ux : x̄ → X be a
geometric point of X. The category Sx̄ of étale sheaves on x̄ is isomorphic
to the category Ab of abelian groups, so has enough injectives. Let F ∈ SX
be an étale sheaf, and choose for each x ∈ X an embedding u∗xF ↪→ F ′x of
u∗xF into an injective sheaf. Define

F ∗ =
∏
x∈X

(ux)∗u∗xF

and
F ∗∗ =

∏
x∈X

(ux)∗F ′x.

Then the canonical maps F → F ∗ and F ∗ → F ∗∗ are both monomorphisms,
and F ∗∗ is an injective object because products of injective objects are in-
jective.
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Let X be a scheme and consider étale sheaves F on X. The global
sections functor SX → Ab

Γ(X,−) : F 7→ F (X)

is left exact.

Definition 25.3 (Étale Cohomology). The Étale cohomology groups Hi(Xét, F )
are the right derived functors of the global sections functor. Thus

Hi(Xét,−) = RiΓ(X,−).

26 Galois Modules and Étale Sheaves

For essentially the rest of this course, we will only consider the the spectrums
of DVR’s and fields. For a scheme X, we continue to let SX denote the
category of étale sheaves on X. For a ring R we let SR denote the category
of Galois modules over R, which is a category of triples (M,N,ϕ) that we
have only defined when R is a field or DVR (with perfect residue field).

26.1 The Spectrum of a Field

Let K be a field and X = Spec(K). Suppose F ∈ SX is an étale sheaf. If
M/K is a finite separable extension, then Spec(M)→ X is an étale covering,
and F (Spec(M)) is defined. The only other étale coverings are of the form
(disjoint union) ∐

Spec(Mi)→ Spec(K),

which by the sheaf condition are completely determined by the groups
F (Spec(Mi)).

Define a functor SX → SK by associating to an (abelian) étale sheaf
F ∈ SX the GK-module

lim−→
M/K

F (Spec(M)),

where the limit is over all finite field extensions M of K contained in K̄ (the
separable closure).

Theorem 26.1. The above functor is an equivalence of categories between
SSpec(K) and SK .

Proof. See [Mil80, Thm. 1.9, pg. 53] or [Maz73, Example 1, pg. 532] This
can be proved by defining a functor in the other direction SK → SSpec(K),
and being careful about what happens with morphisms.

62



Remark 26.2. The above functor SSpec(K) → SK is just the functor that
associates to a sheaf F its stalk at the point of Spec(K) (see Section 24.5).

26.2 The Spectrum of a DVR

In this section, we revisit and make more explicit Theorem 23.2, which we
restate as follows. Recall that SR denotes the category of triples (M,N,ϕ)
where M is a GK-module, N is a Gk-module and ϕ : N → M0 = M Iv is a
Gk-module homomorphism (where Iv is the inertia group).

Let X = Spec(R) and consider the category SX of étale sheaves on X.
Define a functor SX → SR by

F 7→ (MF , NF , ϕF ),

as follows.

• Define MF : The open immersion

j : Spec(K) ↪→ X

induces by pullback a functor j∗ : SX → SSpec(K). We describe this
functor explicitly as follows. If F ∈ SX and L/K is a finite extension
(with L contained in K̄), then j∗(F )(Spec(L)) = F (Spec(L)), where
Spec(L) ∈ Ét(X) via the composition

Spec(L)→ Spec(K)
j−→ X.

We define MF to be the GK-module obtained by the composition of
functors,

SX
j∗−→ SSpec(K)

∼=−−→ SK ,

where j∗ is as above and and the functor SSpec(K) → SK is the equiv-
alence of categories from Theorem 26.1. Thus

MF = lim−→
L/K as above

F (Spec(L)).

• Define NF : Let

NF = lim−→
L/K unramified

F (Spec(OL)),
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where L runs through all finite extensions of K contained in Kur, and
OL is the integral closure of R in L, i.e., the ring of integers of L.
We regard NF as a Gk ∼= Gal(Kur/K)-module since Gal(Kur/K) acts
naturally and compatibly on each group F (Spec(OL)), since F is a
functor.

• Define ϕF : The morphism ϕF is induced by the restriction maps on
sheaves

F (Spec(OL))→ F (Spec(L)),

which are induced by the inclusion Spec(L) ↪→ Spec(OL).

Remark 26.3. The Galois modulesMF andNF can alternatively be defined
using stalks (see Example 24.14).

Theorem 26.4. The functor F 7→ (MF , NF , ϕF ) is an equivalence of cate-
gories.

Proof. See [Maz73, pg. 533], where Mazur in turn cites “the decomposition
lemma”.
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27 Étale Cohomology over a DVR

Our immediate goal is to master étale cohomology over a DVR, by under-
standing various exact sequences, some of which relate étale cohomology to
Galois cohomology.

As usual, let R be a DVR with perfect residue field k and field of fractions
K, and let X = Spec(R). Let F ∈ SR be a Galois module over R, which
we can equivalently view as an étale sheaf in SX by Theorem 26.4. Also, we
continue to let

i : Spec(k) ↪→ X and j : Spec(K)→ X

denote the natural closed embedding and open immersion, respectively,
which induce many functors (see Section 23.4): i∗, j∗, i∗, j∗, j!, i!, the functors
i∗, i∗, j

∗, j! are exact, and j∗ and i! are left exact.

Proposition 27.1. We have an exact sequence of étale sheaves

0→ j!j
∗F → F → i∗i

∗F → 0. (27.1)

Proof. View F as the triple (M,N,ϕ). Using the definitions of the functors
in the sequence from Section 23.4, we see that the sequence in the statement
of the proposition is:

0 // 0 //

��

N //

ϕ

��

N //

��

0

0 // M // M // 0 // 0.

Since each row is exact, the claim follows.

The long exact sequence associated to (27.1) is:

· · · → Hr(R, j!j∗F )→ Hr(R,F )→ Hr(R, i∗i∗F )→ · · · (27.2)

Thus it would be extremeley helpful if we could better understand both

Hq(R, j!j∗F ) = Hq(R, (M, 0, 0))

and
Hq(R, i∗i∗F ) = Hq(R, (0, N, 0)).

You might hope that Hq(R, (M, 0, 0)) is Hq(K,M) and Hq(R, (0, N, 0)) is
Hq(k,N), but this is WRONG in general. However, there are relationships,
which we can make precise using compact étale cohomology.
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Recall that
Hq(R,F ) = ExtqSR

(Z, F ),

since

HomSR
(Z, F ) = HomSR

((Z,Z, id), (M,N,ϕ)) = NGk = F (R) = Γ(X,F ).
(27.3)

We use the above observation about how Hq is defined to motivate the
introduction of “compact cohomology”, which will help us to better under-
stand the cohomology of j!j∗F and i∗i

∗F . Note that if Z is the constant
sheaf in Sk, then

i∗Z = (0,Z, 0).

Definition 27.2 (Compact Cohomology). Define the compact étale coho-
mology groups by

Hq
comp(R,F ) = ExtqSR

(i∗Z, F ).

Because there is a long exact sequence of Ext groups, we have a long exact
sequence of compact cohomology, etc. (i.e., the Hq

comp(R,−) are derived
functors). However, the best part is that there is a relative cohomology
exact sequence.

Proposition 27.3. Let F ∈ SR be any sheaf. Then we have an exact
sequence

· · · → Hq
comp(R,F )→ Hq(R,F )→ Hq(K, j∗F )→ · · ·

Proof. In this proof, we write Ext = ExtSR
. We also let Z denote the

constant sheaf in either Sk and SR, with the context making which clear.
By Proposition 27.1, we have an the exact sequence

0→ j!j
∗Z→ Z→ i∗i

∗Z→ 0

in the category SR. Apply the Extq(−, F ) functor to this exact sequence, to
obtain a long exact sequence

· · · → Extq(i∗i∗Z, F )→ Extq(Z, F )→ Extq(j!j∗Z, F )→ · · ·

We have i∗i∗Z = i∗Z, so Extq(i∗i∗Z, F ) = Hq
comp(R,F ), and of course by

definition Extq(Z, F ) = Hq(R,F ).
It thus remains to show that

Extq(j!j∗Z, F ) ∼= Hq(K, j∗F ). (27.4)
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Since j!j∗Z = (Z, 0, 0), we have

HomSR
(j!j∗Z, F ) = HomSR

((Z, 0, 0), (M,N,ϕ))
∼= HomSK

(Z,M) = H0(K,M) ∼= H0(K, j∗F ).

Also, recall that the functor j∗ is exact (see, e.g., [Maz73, pg. 525] or just
note that this is easy to see from the definition in terms of triples). The
functor

F → Hq(K, j∗F )

is thus a delta functor (since j∗ is exact and Hq(K,−) is a delta functor), and
for q = 0 the above functor agrees with HomSR

(j!j∗Z,−). By uniqueness
of derived functors we have compatible isomorphisms as in (27.4), at least
as long as we show that j∗ sends injectives to acyclics!, which we do in the
next paragraph. In fact, we will show that if I is injective, then j∗I is also
injective.

Claim: j∗ preserves injectives. Suppose I = (M,N,ϕ) is an injective
element of SR, so HomSR

(−, I) is exact. Suppose 0→M0 →M1 →M2 → 0
is an exact sequence in SK . Consider the exact sequence

0→ j!(M0)→ j!(M1)→ j!(M2)→ 0.

Then the sequence

0→ HomSR
(j!(M2), I)→ HomSR

(j!(M1), I)→ HomSR
(j!(M0), I)→ 0

is exact (since I is injective). But for a = 0, 1, 2,

HomSR
(j!(Ma), I) = Hom((Ma, 0, 0), (M,N,ϕ)) ∼= HomSK

(Ma,M) ∼= HomSR
(Ma, j

∗I).

(In fact, we have just proved that j! and j∗ are adjoint functors.) Thus

0→ HomSK
(M2, I)→ HomSK

(M1, I)→ HomSK
(M0, I)→ 0

is exact, as required.

We introduced Hq
comp(R,F ) because it is useful for computing the coho-

mology of certain sheaves in SR. For example, it nails down shreaks:

Proposition 27.4. For any GK module M and any q ≥ 1, we have

Hq
comp(R, j!M) ∼= Hq−1(K,M).

and
Hq(R, j!(M)) = 0.
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Proof. If we take F = j!M in Proposition 27.3, then we see that the second
assertion that for all q ≥ 0, we have Hq(R, j!M) = 0, implies the first
assertion about Hq

comp. First, we start with q = 0. We have j!M = (M, 0, 0),
so as in (27.3),

H0(R, j!M) = Γ(Spec(R), (M, 0, 0)) = Hom(Z, (M, 0, 0)) = 0.

Recall that the functor j! is exact (as asserted in Section 23.4). As Mazur
remarks on [Maz73, pg. 529], “one is tempted to use that j! is exact, and that
H0(R, j!) is the zero functor. However, one must check that j!I is acyclic for
cohomology over R, whenever I is injective”. Thus, at this point, as in the
proof of Proposition 27.3, it suffices to show that if I ∈ SK is injective, then
Hq(R, j!I) = 0. To do this, consider the exact sequence in SR:

0 // 0 //

��

I0 //

ϕ

��

I0 //

��

0

0 // I // I // 0 // 0,

which we may alternatively write as

0→ j!I → j∗I → i∗i
∗j∗I → 0, (27.5)

We first establish that this is an injective resolution of j!I.
Claim: j∗ preserves injective. Suppose I ∈ SK is injective and 0 →

F0 → F1 → F2 → 0 is an exact sequence in SR. The functor j∗ is exact,
so 0 → j∗F0 → j∗F1 → j∗F2 → 0 is an exact sequence in SK . By our
hypothesis that I ∈ SK is injective, the sequence

0→ Hom(j∗F2, I)→ Hom(j∗F1, I)→ Hom(j∗F0, I)→ 0

is exact. Because j∗ and j∗ are adjoint, the sequence

0→ Hom(F2, j∗I)→ Hom(F1, j∗I)→ Hom(F0, j∗I)→ 0

is exact. Thus j∗I is injective.
WARNING: In [Maz73, pg. 529] Mazur says in the proof that “the thing

to check is that i∗ preserves injectives”. (See Remark 27.7 below.) Fortu-
nately, something close enough is true:

Claim: i∗i∗j∗I is injective. The claim is that the functor on SR,

F 7→ Hom(F, i∗i∗j∗I)
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is exact. Using that i∗ and i∗ are adjoint, and writing F = (M,N,ϕ), we
have

Hom(F, i∗i∗j∗I) ∼= Hom(i∗F, i∗j∗I) ∼= Hom(N, I0).

The functor i∗ is exact, so it suffices to show that the functor

N → Hom(N, I0)

on Gk = Gv/Iv-modules is exact, assuming I is an injective GK-module and
recalling that I0 = IIv is the submodule fixed by the inertia group. Suppose
0 → N0 → N1 → N2 → 0 is an exact sequence of Gv/Iv-modules. Viewing
it as an exact sequence of Gv-modules, we see that

0→ Hom(N2, I)→ Hom(N1, I)→ Hom(N0, I)→ 0 (27.6)

is exact, since I is injective. However, since each Ni is fixed by Iv, the above
homomorphisms all have image in I0, i.e., Hom(Na, I) ∼= Hom(Na, I

0). Thus
the sequence (27.6) with each I replaced by I0 is exact in the category of
Gk-modules, which proves the claim.

Finally, we compute Hq(R, j!I) using (27.5). We have

H0(R, j∗I) = Hom(Z, (I, I0, id)) = (I0)Gk ,

and
H0(R, i∗i∗j∗I) = Hom(Z, (0, I0, 0)) = (I0)Gk .

Since j∗I and i∗i
∗j∗I are injective, for q ≥ 1 we have

Hq(R, j∗I) = Hq(R, i∗i∗j∗I) = 0.

The long exact sequence associated to (27.5), then implies that Hq(R, j!I) =
0 for q ≥ 0.

Proposition 27.5. For any Gk-module N and all q, we have

Hq
comp(R, i∗N) ∼= Hq(k,N).

Proof. Recall that the functor i∗ is exact and is adjoint to the functor i∗,
which is exact, so we have

Hom(i∗X,Y ) = Hom(X, i∗Y ),

hence i∗ preserves injectives (this is exactly the same argument as in some
of the claims above). Thus

Hq
comp(R, i∗N) = ExtqSR

(i∗Z, i∗N) = ExtqSk
(Z, N) = Hq(k,N).
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The following theorem “computes” étale cohomology over R in terms of
Galois cohomology over k. Think of this theorem as saying “étale cohomol-
ogy over a DVR is just unramified Galois cohomology.”

Theorem 27.6. Let F = (M,N,ϕ) ∈ SR. Then for all q ≥ 0, we have a
functorial isomorphism

Hq(R,F ) ∼= Hq(k, i∗F ) = Hq(k,N).

This isomorphism is induced by the natural map

Hq(R,F ) ∼= Hq(R, i∗i∗F ) ∼= Hq
comp(R, i∗i∗F )

= ExtqSR
(i∗Z, i∗i∗F ) ∼= ExtqSk

(Z, i∗F ) = Hq(k, i∗F ),

which we can alternatively write as

Hq(R, (M,N,ϕ)) ∼= Hq(R, (0, N, 0)) ∼= Hq
comp(R, (0, N, 0))

= ExtqSR
((0,Z, 0), (0, N, 0)) ∼= ExtqSk

(Z, N) = Hq(k,N).

Proof. Consider again the canonical exact sequence (27.1)

0→ j!j
∗F → F → i∗i

∗F → 0.

By Proposition 27.4, we have Hq(R, j!(j∗F )) = 0 for all q, so

Hq(R,F ) ∼= Hq(R, i∗i∗F )

for all q. Now apply the relative cohomology exact sequence (Proposi-
tion 27.3) to the sheaf i∗i∗F , to obtain an exact sequence

· · · → Hq
comp(R, i∗i∗F )→ Hq(R, i∗i∗F )→ Hq(K, j∗i∗i∗F )→ · · ·

We have
j∗i∗i

∗F = j∗i∗N = j∗(0, N, 0) = 0.

Thus for all q,
Hq(R, i∗i∗F ) ∼= Hq

comp(R, i∗i∗F ).

By Proposition 27.5, we have

Hq
comp(R, i∗i∗F ) ∼= Hq(k, i∗F ) = Hq(k,N).

Thus combining the above we get that for all q,

Hq(R,F ) ∼= Hq(R, i∗i∗F ) ∼= Hq
comp(R, i∗i∗F ) ∼= Hq(k,N),

as claimed.
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Remark 27.7. If i∗ preserves injectives, then Theorem 27.6 would follow
more easily, by comparing two δ functors. Maybe i∗ does preserve injectives
– Mazur sort of claims this on [Maz73, pg. 529]. Note that i∗ is merely
left adjoint to i!, not i∗. Actually, if i∗ were right adjoint to a functor,
that functor would probably have to be something like N 7→ (N,N, id),
where GK acts on the second factor through the natural homomorphism
GK ∼= Gv → Gv/Iv ∼= Gk. The functor c : N 7→ (N,N, id) does seem to be
an exact functor from Sk to SR, and it seems that

Hom(c(A), B) = Hom(A, i∗B),

which would show that i∗ preserves injectives. This would thus also prove
Theorem 27.6.

We have thus mastered étale cohomology over a DVR, at least assuming
we know everything about Galois cohomology...

28 The Multiplicative Group over a DVR

Consider the element Gm,R ∈ SR given by

U ↪→ K̄∗,

where U is the group of units in the ring of integers of Kur, viewed as a
Gk = Gv/Iv-module. To get a better sense for Gm,R, note that we have an
exact sequence in SR:

0 // U //

��

(Kur)∗ v //

��

Z //

��

0

0 // K̄∗ // K̄∗ // 0 // 0,

which we write as

0→ Gm,R → j∗Gm,K → i∗Z→ 0.

Theorem 28.1. We have

Hq(R,Gm,R) =

{
R∗ if q = 0
0 otherwise.
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We also have

Hq
comp(R,Gm,R) =



0 if q = 0
Z if q = 1
0 if q = 2
Q/Z if q = 3
0 if q ≥ 4.

Proof. By Theorem 27.6, we have

Hq(R,Gm,R) ∼= Hq(k, U) = Hq(Kur/K,U).

The computation of the Galois cohomology group Hq(k, U) then follows from
local class field theory, using the exact sequence

0→ U → (Kur)∗ v−→ Z→ 0, (28.1)

For example, applying Gk = Gal(Kur/K)-cohomology to the short exact
sequence (28.1) we get

0→ R∗ → K∗ � Z→ H1(k, U)→ H1(Kur/K, (Kur)∗) = 0,

where we use that the valuation map K∗ → Z is surjective. Thus

H1(k, i∗Gm,R) = H1(k, U) = 0.

The compact cohomology can similarly by computed by diagram chases.

Note for comparison that

Hq(k, k̄∗) =

{
k∗ if q = 0
0 otherwise,

and

Hq(K, K̄∗) =


K∗ if q = 0,
0 if q = 1,
Q/Z if q = 2,
0 if q ≥ 3.
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29 Étale Cohomology of Abelian Varieties

Let A be an abelian variety over K. Recall that the Néron model A of A
over R is a smooth commutative group scheme over the ring OK of integer of
K with generic fiber A such that for all smooth commutative group schemes
S the natural map

A(S)→ A(SK)

is an isomorphism (this last statement is called the Néron mapping prop-
erty).

In terms of sheaves, the Néron model is simply the pushforward of the
sheaf in SK defined by the abelian variety A:

Proposition 29.1. We have A = j∗A as sheaves on the étale site over R.

Proof. Suppose U ∈ Ét(X) is an étale morphism. Then U → X is smooth,
since étale is by definition “smooth of relative dimension 0.” Then by defi-
nition (see Section 24.6),

(j∗A)(U) = A(U ×X Spec(K)) = A(UK) ∼= A(U),

where we use the Néron mapping property.

Thus the deep theorem that Néron models exists is really the theorem
that the sheaf j∗A ∈ SR is representable by a smooth group scheme.

Proposition 29.2. We have

H1(R,A) ∼= H1(Kur/K,A(Kur)).

Proof. By Theorem 27.6, we have

H1(R,A) ∼= H1(k,A(R)) ∼= H1(Kur/K,A(Kur))

by the Néron mapping property and identification of Gk and Gv/Iv.

Taking special fibers, we have a canonical “connected-étale” exact se-
quence

0→ A0
k → Ak → ΦA → 0,

where ΦA is the component group of Ak. In fact, one can show that

H1(R,A) ∼= H1(k,ΦA),

which has the same order as ΦA(k).
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Next suppose A is an abelian variety over Q (say), Mazur does computa-
tions with H1(Z,A) in the appendix to Rational Points on Abelian Varieties
with values in Towers of Number Fields. Let

Σ = Ker

(
H1(Q, A)→

⊕
p<∞

H1(Qp, A)

)
,

so X ⊂ Σ and the quotient Σ/X is a 2-group. We have an exact sequence

0→ A0 → A→ ΦA → 0,

where ΦA is the component group of A (at all primes at once).

Theorem 29.3 (Mazur). The natural map i : H1(Z,A) → H1(Q, A) is an
inclusion, and i sends the image of H1(Z,A0) isomorphically onto Σ.

Thus we have a long exact sequence

0→ Σ→ H1(Z,A)→ H1(Z,ΦA)→ H2(Z,A0)→ . . .

The upshot is that H1(Z,A) is basically X(A/Q), up to a power of 2 and
Tamagawa numbers. It is thus an object that combines X and something
involving component groups.
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