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1. The double coset operator

Note: The following section is taken from [1]

For each α ∈ GL+
2 (Q), we call the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}.
a double coset. The group Γ1 acts on the double coset Γ1αΓ2 through left multiplication and
Γ2 acts through right multiplication. For the rest of the discussion, Γ1 and Γ2 will represent
congruence subgroups of SL2(Z).

In this section, we discuss how the double coset Γ1αΓ2 can be viewed as a linear map from
Mk(Γ1) to Mk(Γ2).

Lemma 1.1. Let Γ be a congruence subgroup of SL2(Z). Let α ∈ GL+
2 (Q). Then α−1Γα ∩

SL2(Z) is a congruence subgroup of SL2(Z).

Proof. There existsN1 ∈ Z+ satisfying the conditions Γ(N1) ⊂ Γ, N1α ∈M2(Z) andN1α
−1 ∈

Z. Set N = N3
1 . We see that

αΓ(N)α−1 ⊂ α(I +N3
1M2(Z))α−1 ⊂ I +N1M2(Z)

Also αΓ(N)α−1 consists of matrices with determinant 1. So we can conclude that αΓ(N)α−1 ⊂
Γ(N1). Intersecting with SL2(Z) gives us that α−1Γα ∩ SL2(Z) is a congruence subgroup.

�

Lemma 1.2. Let α ∈ GL+
2 (Q). Set Γ3 = α−1Γ1α ∩ Γ2, a subgroup of Γ2. Then left

multiplication by α
Γ2 → Γ1αΓ2 given by γ2 → αγ2

induces a natural bijection from the coset space Γ3 \ Γ2 to the orbit space Γ1 \ Γ1αΓ2. In
particular, the orbit space Γ1 \ Γ1αΓ2 is finite.

Proof. • The induced map is well defined since if γ3 = α−1γ1α ∈ Γ3, for some γ1 ∈ Γ1

and if γ2 ∈ Γ2, then αγ3γ2 = αα−1γ1αγ2 = γ1αγ2, which is equivalent to αγ2 in the
same orbit space Γ1 \ Γ1αΓ2.
• The induced map is clearly surjective since for any γ1 ∈ Γ1, γ2 ∈ Γ2, γ1αγ2 is

equivalent to αγ2 in the orbit space Γ1 \ Γ1αΓ2.
• If γ2 and γ

′
2 ∈ Γ2 map onto the same element of the orbit space, then there exists

γ1 ∈ Γ1 such that γ1αγ2 = αγ
′
2 =⇒ γ

′
2γ
−1
2 = α−1γ1α ∈ Γ3. Thus the induced map

is injective.
This proves that the induced map is bijective.

By Lemma 1.1, we have that Γ3 is a congruence subgroup. So we can say that Γ3 ⊃ Γ(N3)
for some natural number N3. Thus

Γ(N3) ⊂ Γ3 ⊂ Γ2 ⊂ SL2(Z).
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Using the surjectivity of the natural map SL2(Z) −→ SL2

(
Z
N3Z

)
, we have that Γ(N3) \

SL2(Z) has finite cardinality and this implies that Γ3 \ Γ2 (and hence Γ1 \ Γ1αΓ2) has finite
cardinality.

�

Definition 1.1. If α ∈ GL+
2 (Q), the weight k-operator takes functions f ∈ Mk(Γ1) to

functions in Mk(Γ2), namely

f [Γ1αΓ2]k =
∑
j

f [βj]k ∈Mk(Γ2),

where we write Γ1αΓ2 = ∪jΓ1βj, where we choose βj to be the orbit representatives and the
union is consequently a disjoint union.

• Since the orbit space is finite by Lemma 1.2, the sum
∑

j f [βj]k is well defined.

• If we write Γ1αΓ2 = ∪jΓ1τj, for some other choice of orbit representatives {τj}, then
for each j, there exists γj such that γjβj = τj. So f [τj]k = f [γjβj]k = (f [γj]k)[βj]k =
f [βj]k. This proves that the action of Γ1αΓ2 does not depend on the choice of the
orbit representatives.
• If γ ∈ Γ2 and if we write Γ1αΓ2 = ∪jΓ1βj for some choice of orbit representatives {βj},

then Γ1αΓ2 = Γ1αΓ2γ = ∪jΓ1βjγ. Thus {βjγ} also form a set of orbit representatives.
Thus we have

f([Γ1αΓ2]k)[γ]k = (
∑
j

f [βj]k)[γ]k =
∑
j

f [βjγ]k = f [Γ1αΓ2]k.

Thus to conclude that the action of Γ1αΓ2 takes f ∈Mk(Γ1) to an element of Mk(Γ2),
we need to show holomorphy at the cusps. If σ ∈ GL+

2 (Q), then we can write σ = r·β,
where r ∈ Q and β ∈M2(Z). Using elementary row operations, we can write β = γτ ,
where γ ∈ SL2(Z) and τ = [

a b
0 c

]
∈M2(Z) is upper triangular. Using the above observation and the fourier expansion
f(z) =

∑
n ane

2·π·i·n·z at the cusps, we can obtain a fourier expansion for f [σ]k(z) =∑
nC · ane

2·π·i·n·a·z
c . The above observation also shows that the double coset operator

takes cusp forms of Γ1 to cusp forms of Γ2.

The linear mapping induced by the double coset operator Γ1αΓ2 from Mk(Γ1) into Mk(Γ2)
is called a Hecke operator.

2. Hecke Algebras

Note: This section is taken from [3].

Let Γ and Γ
′

be two congruence subgroups and let ∆ ⊂ GL+
2 (Q) be a semigroup. We

denote by R(Γ,Γ
′
; ∆) the free Z− module generated by double cosets ΓαΓ

′
with α ∈ ∆ i.e.

R(Γ,Γ
′
; ∆) = {

∑
α∈∆

aαΓαΓ
′ |aα ∈ Z and aα = 0 except for finitely many α}.
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One particular case of interest is when Γ = Γ
′

and we write R(Γ,∆) = R(Γ,Γ
′
; ∆). In this

section, we attempt to define multiplication of elements of R(Γ,∆) so that R(Γ,∆) becomes
an algebra.

Let Γ1,Γ2,Γ3 be congruence subgroups. For two elements Γ1αΓ2 = tiΓ1αi and Γ2βΓ3 =
tjΓ2βj, we define multiplication of Γ1αΓ2 and Γ2βΓ3 by

Γ1αΓ2 · Γ2βΓ3 =
∑
γ

cγΓ1γΓ3, (1)

cγ = |{(i, j)|Γ1αiβj = Γ1γ}|,

where the summation is taken over all double cosets Γ1γΓ3 such that γ ∈ ∆. The right
hand side is a finite sum because there are only finitely many i’s and j’s. We can extend the
multiplication linearly

Lemma 2.1. The multiplication defined by Equation 1 is independent of the choice of the
representatives αi, βj and γ.

Proof. Let Z[Γ1 \ ∆] be the free Z−module generated by left-cosets Γα, (α ∈ ∆). The
correspondence Γ1αΓ2 = tiΓ1αi to

∑
i Γ1αi induces an injective Z−module homomorphism

of R(Γ1,Γ2; ∆) into Z[Γ1 \ ∆]. There is a right action of Γ2 on Z[Γ1 \ ∆]. Considering
R(Γ1,Γ2; ∆) as a Z−submodule of Z[Γ1 \∆], one then obtains that

R(Γ1,Γ2; ∆) = Z[Γ1 \∆]Γ2 .

This is because if γ2 ∈ Γ2, then Γ1αΓ2 · γ2 = Γ1αΓ2 and hence R(Γ1,Γ2; ∆) ⊂ Z[Γ1 \∆]Γ2 .
Also if ζ =

∑
α aαΓ1α ∈ Z[Γ1 \∆]Γ2 , we want to prove that ζ ∈ R(Γ1,Γ2; ∆). It suffices to

show that if aα 6= 0 and if we write Γ1αΓ2 = tiΓ1ασi, where σi ∈ Γ2, then aα = aασi for
all the coset representatives σi of Γ1 \ Γ1αΓ2. This follows automatically since σi ∈ Γ2 and
hence ζ · σi = ζ. Also since Z[Γ1 \∆] is a free Z−module, this would imply that aασi = aα.
This gives us the reverse inclusion.

Now we can define an action of the double coset Γ2βΓ3 on Z[Γ1 \∆]Γ2 , for every β ∈ ∆.
First we write Γ2βΓ3 = tjΓ2βj. The action of Γ2βΓ3 on ζ =

∑
α aαΓ1α ∈ Z[Γ1 \ ∆]Γ2 is

given as follows ∑
α

aαΓ1α · (Γ2βΓ3) =
∑
α,j

aαΓ1αβj. (2)

One can see that the action does not depend on the choice of representatives βj by an
argument similar to the one given in Definition 1.1. Writing Γ1αΓ2 = tiΓ1αi as an element
of Z[Γ1 \∆]Γ2 , we see that

(
∑
i

Γ1αi) · (Γ2βΓ3) =
∑
i,j

Γ1αiβj. (3)
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If γ3 ∈ Γ3, then we know that βiγ3’s also form coset representatives for Γ2βΓ3 and this shows
that (

∑
i Γ1αi) · (Γ2βΓ3) ∈ Z[Γ1 \∆]Γ3 = R(Γ1,Γ3; ∆). So we can write

(Γ1αΓ2) · (Γ2βΓ3) =
∑
γ

bγΓ1γΓ3. (4)

Equation 3 shows us that the action defined in Equation 4 coincides with the one defined in
Equation 1. Hence the multiplication does not depend on the choice of γ as well.

�

The Z−algebra R(Γ,∆) is called a Hecke algebra.(We omit the details required to prove
that multiplication is associative. It is not hard to prove it and the proof is along the lines
of the proof of Lemma 2.1 ) The unity in Z−algebra R(Γ,∆) is Γ.

3. Hecke operators according to [3]

There are various approaches to define Hecke operators. We focus our attention on the
definition given by Miyake in [3].

We define the following semigroups ∆0(N) and ∆1(N) of GL+
2 (Q) as follows.

∆0(N) =

{[
a b
c d

]
∈M2(Z) : c ≡ 0( mod N), (a,N) = 1, ad− bc > 0

}

∆1(N) =

{[
a b
c d

]
∈M2(Z) : c ≡ 0( mod N), a ≡ 1( mod N), ad− bc > 0

}
One primarily studies the Hecke algebra R(Γ0(N),∆0(N)) and R(Γ1(N),∆1(N)).

Γ1(N) is a normal subgroup of Γ0(N) and hence there is a natural action of Γ0(N) on
Mk(Γ1(N)). The action is defined as follows. If f ∈ Mk(Γ1(N)) and α ∈ Γ0(N), then

f → f |k[α]. Also Γ0(N)
Γ1(N)

∼= ( Z
NZ)×. Since Mk(Γ1(N)) forms a C−vector space and has an

action of a finite abelian group Γ0(N)
Γ1(N)

, we have the following direct sum decomposition

Mk(Γ1(N)) =
⊕
χ

Mk(Γ0(N), χ) (5)

where the summation runs over all Dirichlet characters mod N . We state the following useful
theorem from Miyake [3] without proof.

Theorem 3.1. R(Γ1(N),∆1(N)) is isomorphic to R(Γ0(N),∆0(N)) through the correspon-
dence

Γ1(N)αΓ1(N) −→ Γ0(N)αΓ0(N) (α ∈ ∆1(N)). (6)
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Also the correspondence defined in 6 is commutative with the natural embedding of Mk(Γ0(N), χ)
into Mk(Γ1(N)) i.e. the following diagram is commutative

Mk(Γ0(N), χ)
f //

��

Mk(Γ0(N), χ)

��
Mk(Γ1(N))

g // Mk(Γ1(N))

(7)

where f is the linear map induced by Γ0(N)αΓ0(N), g is the linear map induced by Γ1(N)αΓ1(N)
and the vertical arrows are inclusions.

5 and 3.1 suggest that perhaps it is enough to study the Hecke algebra R(Γ0(N),∆0(N))
acting onMk(Γ0(N), χ). For the sake of simplicity, we look at Hecke operators onMk(Γ0(N)),
i.e. take χ to be the trivial character.

We define elements T (n) and T (l,m) of R(Γ0(N),∆0(N)) (taken from [3]) by

T (l,m) = Γ0(N)

[
l 0
0 m

]
Γ0(N) (8)

T (n) =
∑

det(α)=n

Γ0(N)αΓ0(N), (9)

where the summation is taken over all the double cosets Γ0(N)αΓ0(N) in R(Γ0(N),∆0(N))
with det(α) = n. These are the Hecke operators that are mainly discussed in [3].

4. Modular forms of level N as functions on “Modular points”

In this section, we follow an alternative viewpoint of Modular forms of level N as given
in Lang’s book [2]. We identify modular forms of level N with respect to Γ1(N) as homoge-
neous functions on “modular points” with some properties.

We consider pairs (t, L) where L is a lattice and t is a point on the elliptic curve
C
L

, of

exact order N . The set of all such pairs is called the modular set for Γ1(N). A pair (t, L)
in the modular set is called a modular point. Let k be an integer. We denote by F1(N, k)
as the vector space of functions F on modular points (t, L), satisfying the conditions

F is homogeneous of degree −k i.e. (10)

F (λt, λL) = λ−kF (t, L), ∀λ ∈ C×

Now consider the set S1(N, k) of functions f on the upper half plane H, such that

f(γτ) = (cτ + d)kf(τ), (11)

where τ ∈ H and γ =

[
a b
c d

]
∈ Γ1(N).
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Consider the map

φ1 : F1(N, k)→ S1(N, k)

φ1(F ) = f,

f(τ) = F ([
1

N
],Z · τ ⊕ Z · 1) (12)

φ1 is well defined because if γ =

[
a b
c d

]
∈ Γ1(N), then for all τ ∈ H,

f(γτ) = F

(
[

1

N
],Z · aτ + b

cτ + d
τ ⊕ Z · 1

)
= (cτ + d)kF

(
cτ + d

N
,Z · (aτ + b)⊕ Z · (cτ + d)

)
= (cτ + d)kf(τ)

since c ≡ 0(mod N), d ≡ 1(mod N) and Z · (aτ + b)⊕ Z · (cτ + d) = Z · τ ⊕ Z · 1.
Similarly one can define

φ2 : S1(N, k)→ F1(N, k)

φ2(g) = G,

G(t,Z · w1 ⊕ Zw2) = w−k2 g(
w1

w2

). (13)

where w2 is chosen so that [w2

N
] = t. Note that such a choice of w2 is possible using the fact

that the natural map SL2(Z) −→ SL2

( Z
NZ

)
is surjective. Also if we have another lattice

Zv1⊕Zv2 = Zw1⊕Zw2 such that v2−w2

N
∈ Zw1⊕Zw2, then one can write v1 = a ·w1 + b ·w2

and v2 = c · w1 + d · w2, for some a, b, c, d ∈ Z. Also one notices that the change of

basis matrix γ =

[
a b
c d

]
∈ Γ1(N). So G(t,Z · v1 ⊕ Zv2) = v−k2 g(v1

v2
) = v−k2 g(γ w1

w2
) =

(v2)−k(c(w1

w2
) + d)kg(w1

w2
) = G(t,Z · w1 ⊕ Zw2).

Finally to prove that φ2 is well defined, one can verify that G ∈ F1(N, k) because

G(λt,Z · λw1 ⊕ Zλw2)) = (λw2)−kg

(
λw1

λw2

)
= λ−kG(Z · w1 ⊕ Zw2)).

One can also check that φ1 and φ2 are inverses to each other. Under this bijection between
F1(N, k) and S1(N, k) given by φ1 and φ2 , we obtain the following bijection

Mk(Γ1(N))←→ F(N, k) = {g ∈ F1(N, k) : τ → g(Z · τ ⊕ Z · 1) is holomorphic on h ∪∞}.
(14)
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5. Hecke operators as defined by [2]

Let L1(N) be the free vector space over Q defined by the modular points (t, L). For each
positive integer n, we define an endomorphism Tn as follows

Tn : L1(N) −→ L1(N) (15)

Tn : (t, L) −→ 1

n

∑
[L
′
:L]=n

(t,L
′
)=N

(t, L
′
).

The condition (t, L
′
) = N means that t has an exact order N with respect to the elliptic

curve
C
L′

. We now define how Tn “acts” on Mk(Γ1(N)) using the correspondence given in

equation 14. If F ∈ F(N, k)

Tn(F )(L) =
1

n

∑
[L
′
:L]=n

(t,L
′
)=N

F (t, L
′
) (16)

When we talk about Hecke operators of level 1, the modular points are simply lattices
and we can view Hecke operators as endomorphisms of the free Q vector space over lattices.
Serre in his book [5] gives the following definition of Tn as an endomorphism of the free Z
algebra over the set of lattices:

Tn(L) =
∑

[L:L′ ]=n

L
′

(17)

As an operator on the set of modular forms of level 1,

Tn(F )(L) = nk−1
∑

[L:L′ ]=n

F (L
′
) (18)

In [4], Ribet and Stein show that

Tn(F )(L) = nk−1
∑

[L:L′ ]=n

F (L
′
) =

1

n

∑
[L′′ :L=n]

F (L
′′
)

which agrees with 16.

One could also the alter the definitions of the action of Hecke operators on a lattice L and
the space of modular forms as given in 15 and 16 in terms of lattices contained in L instead
of lattices containing L as follows:

Tn((t, L)) =
∑

[L:L
′′

]=n

(nt,L
′
)=N

(nt, L
′′
). (19)
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and if F ∈Mk(Γ1(N)),

Tn(F )((t, L)) = nk−1
∑

[L:L
′′

]=n

(nt,L
′′

)=N

F (nt, L
′′
). (20)

Let us suppose that we are given lattices L and L
′

such that [L
′

: L] = n. Let L
′′

= nL
′
.

Then we have

[L : L
′′
] = n.

(t, L
′
) = N ⇐⇒ (nt, L

′′
) = N.

Using the fact that F is homogeneous of degree −k we obtain that

Tn(F )((t, L)) = nk−1
∑

[L:L
′′

]=n

(nt,L
′′

)=N

F (nt, L
′′
) =

1

n

∑
[L
′
:L]=n

(t,L
′
)=N

F (t, L
′
)

This shows us that the definitions given in 19 and 20 agree well with the definitions given
in 15 and 16 since the two different actions of Tn on Mk(Γ1(N)) agree.

6. Equivalence between the two definitions

If α =

[
a b
c d

]
∈M2(Z) and if f ∈Mk(Γ1(N)), then

(f |k[α])(z) = det(α)
k
2 (cz + d)−kf(

az + b

cz + d
). (21)

Let us say that f corresponds to F which is a function on modular points, under the bijection
given in 14. Let L = Z · w1 ⊕ Z · w2 and t = [w2

N
] ∈ C

L
.

F (α · t, α · L) = F

([
cw1 + dw2

N

]
,Z · (aw1 + bw2)⊕ Z · (cw1 + dw2)

)
(22)

= f

(
aw1 + bw2

cw1 + dw2

)
(cw1 + dw2)−k. (23)

If τ ∈ H, then let i(τ) = (
[

1
N

]
,Z · τ ⊕Z · 1). We identify the upper half plane with modular

points through the map i. For the sake of simplicity, henceforth a modular point belongs to
i(H). If F ∈ F(N) (where F(N) denotes the space of continuous complex valued functions on
modular points and by the assumption that a modular point belongs to i(H), F(N) can be
identified with H∗), we can define an action of M2(Z) if we view M2(Z) acting on functions
of modular points as follows:

F |k[α](t, L) = det(α)
k
2F (t · α,L · α). (24)
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We have the following commutative diagram

S1(N, k)
α //

��

H∗

��
F1(N, k)

α // F(N)

(25)

Here the vertical arrows are bijections and the horizontal arrows are defined by 21 and 24.
Let L = {(u, v) : u, v ∈ Z} and L0 =

{
(u, v

N
) : u, v ∈ Z

}
To prove the equivalence of the two definitions given in 8 and 20, we need to prove the

following (we fix level N and a natural number n)

• If α ∈ ∆1(N) and det(α) = n, then [L : L · α] = n, and (0, 1
N

) · α − (0, n
N

) ∈ L · α.

And (0, n
N

) is a point on C
L′

of exact order N .

• If L
′

is a lattice such that [L : L
′
] = n and (0, n

N
) is a point on C

L′
of exact order N ,

then there exists α ∈ ∆1(N) such that L · α = L
′

and (0, n
N

)− (0, 1
N

) · α ∈ L′ .
• If there exists another β ∈ M2(Z) such that L · β = L

′
and (0, n

N
) − (0, 1

N
) · β ∈ L′ ,

then there exists γ1 and γ2 ∈ Γ1(N) such that β = γ1αγ2.
• Conversely, if α, β belong to the same double coset in Γ1(N) \ ∆1(N)/Γ1(N), then
L · α = L · β and (0, 1

N
)(α− β) ∈ L · α.

Lemma 6.1. If α ∈ ∆1(N) and det(α) = n, then [L : L·α] = n, and (0, 1
N

)·α−(0, n
N

) ∈ L·α.

Proof. Let α =

[
a b
c d

]
∈ ∆1(N). Clearly [L : L · α] = n. Also (0, 1

N
) · α = ( c

N
, d
N

)). Then

(0, 1
N

) · α− (0, n
N

) = ( c
N
, d−n
N

). We want to show that ( c
N
, d−n
N

) ∈ L · α or equivalently, there
exists integers x, y such that (

c

N
,
d− n
N

)
= (x, y) ·

[
a b
c d

]
. (26)

Multiplying both sides by the inverse of α(on the right), we obtain the equivalent condition
that there exists integers x, y such that

1

n ·N
(nc, n · (1− a)) = (x, y). (27)

Since c ≡ 0(mod N) and a ≡ 1(mod N), this shows that we can find unique integers x, y
satisfying equation 26 and this proves the lemma. Also noting that 27 and 26 are equivalent,
we can conclude the next lemma. �

Lemma 6.2. Suppose α ∈ M2(Z) and det(α) = n. If (0, 1
N

) · α − (0, n
N

) ∈ L · α, then
α ∈ ∆1(N).

Lemma 6.3. Suppose α, β ∈ ∆1(N) such that det(α) = det(β) = n and γ1βγ2 = α for some
γ1, γ2 ∈ Γ1(N). Then L · α = L · β and (0, 1

N
)(α− β) ∈ L · α.

Proof. Since γ1, γ2 ∈ SL2(Z), then L ·α = L · (γ1 ·βγ2) = (L ·γ1) · (β ·γ2) = (L ·β) ·γ2 = L ·β.
Also from lemma 6.1, (0, 1

N
)− (0, n

N
) ∈ L · α = L · β =⇒ (0, 1

N
)(α− β) ∈ L · α. �

Lemma 6.4. Suppose α, β ∈ ∆1(N) such that det(α) = det(β) = n. Also suppose that
L ·α = L ·β and (0, 1

N
)(α−β) ∈ L ·α. Then there exists γ1, γ2 ∈ Γ1(N) such that γ1βγ2 = α.

9



Proof. One first uses the following lemma (Lemma 4.5.2 from [3]):

Lemma 6.5. If δ ∈ ∆0(N), then there exists positive integers l and m such that (l, N) =
1,l|m and

Γ0(N)αΓ0(N) = Γ0(N)

[
l 0
0 m

]
Γ0(N) (28)

The pair (l,m) is uniquely determined by the lattice L · α.

Since we have that L ·α = L ·β, using 6.5 we obtain that α ∼ β in Γ0(N) \∆1(N)/Γ0(N).
Also from the proof of theorem 4.5.18 in [3], one obtains that since α ∈ ∆1(N), Γ0(N)αΓ0(N) =
Γ0(N)αΓ1(N). Thus there exists γ3 ∈ Γ0(N) and γ4 ∈ Γ1(N) such that β = γ3αγ4.
Since αγ4 ∈ ∆1(N) and γ3 ∈ Γ0(N), one finds that γ3 ∈ Γ1(N) and hence α ∼ β in
Γ1(N) \∆1(N)/Γ1(N).

�

Remark 1 : Lemma 4.5.2 and Theorem 4.5.18 are taken from the book by Miyake [3].
It is not tough to follow the proof from [3] but I found it tedious to reproduce the proofs here.

Remark 2: Lemmas 6.1,6.2,6.3 and 6.4 prove the equivalence of the two definitions given
in [2] and [3].
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