? E = ellinit([0,0,0,-43,166]); ? E = ellchangecurve(E, ellglobalred(E)[2]); ? eps = ellrootno(E) %77 = 1 ? N = ellglobalred(E)[1] %78 = 26 ? L = (1+eps) * sum(n=1,100, ellak(E,n)/n * exp(-2*Pi*n/sqrt(N))) %79 = 0.6209653495490554663758626727 ? Om = E.omega[1] %80 = 4.346757446843388264631038710 ? L/Om %81 = 0.1428571428571428571428571427 ? contfrac(L/Om) %84 = [0, 7] ? 1/7.0 %85 = 0.1428571428571428571428571428 ? elltors(E) %86 = [7, [7], [[1, 0]]]Notice that in this example,
Monday's lecture will be filled with numerical examples and numerical evidence for the Birch and Swinnerton-Dyer conjecture. Wednesday's lecture will be a review for the take-home FINAL EXAM.