Algorithm for Drawing Fundamental Domains.

H. A. Verrill
http://hverrill.net/
verrill@math.ku.dk

30th January 2001

1 Introduction

The “FunDomain” Java program was mostly written in January 2000. It is a
program which computes and displays the fundamental domain of certain con-
gruence subgroups of SLy(Z) acting on the upper half plane, and allows manip-
ulation of the retulting figures. It consists of 8 java files, giving 12 classes. The
java files can be downloaded from http://hverrill.net/fundomain/java-source/.
The algorithm described below is implemented in the file RepList.java. There
are two main problems to deal with for writing this program. One is how to
find the coset representatives of the given group in SL2(Z). The other is how to
actually draw the picture. In fact more of the work went into getting the latter
part of the program to work reasonably. But since the drawing part is not so
interesting mathematically, I will not describe that here. The method of finding
the coset representatives, described below is very simple, though currently I do
not know of other methods that are significantly different. One can use a dif-
ferent fundamental domain for SL»(Z), as is done by [3], though an algorithm
for constructing the fundamental domain in that case, as described in [1] § 3.1
is essentially the same as the algorithm described below, though cleverly uses a
certain union of domains for SLs(Z) to improve matters.

One application of finding the fundamental domain of a congruence sub-
group is to give generators for the group. This feature may be included in a
future version of the java package, though currently I have only implemented
this in magma. Notes on this application are also included below. All of the
mathematics is standard. However, I recall some of the general theory below.
For more details see [5].

2 Notation

Denote by T" a congruence subgroup of SLy(Z). In the current program on the
web page, [is one of the groups ['o(N), TY(N), T'1(N), TY(N) or I'(N), for some
positive integer N. In the version which can be downloaded from the source code
part of the page, intersections of two such groups is also possible. It’s easy to

write versions for other subgroups; what changes is the definition of equivalence
(denoted ~) of coset representatives.
I use the following notation for certain elements of SLo(Z):

re(a1) s (L) - (4

Table of other notation:

congruence subgroup in SLj(Z)
A set of coset representatives of I' in SLo(Z)
The upper half complex plane
(') The completion of the quotient I'\ b
Certain fundamental domain for SL»(Z) acting on b
~ B For A, B € SLy(Z) we write A ~ B to mean AB~! € I.

R

3 Some Theory

The group SL2(Z), and any subgroup I, acts on the left on b, by:

a b az +b
Zz =
c d cz+d
A fundamental domain F for T is a region in the upper half complex plane
such that for all z € b there is exactly one element v € I' with vz € F. A
fundemental domain should be connected. There are several standard choices for

a fundamental domain for SLy(Z) here are two, pictured together with matrices
giving identifications of the edges:

[o) oo
].'
big
TN
R
¢ S ®
dkdhoh s
-1 —1/2 0 1/2 1 0 1/2 1

In the diagram elliptic points are marked. The fundamental domain on the
right is used in the program. This is the region

F={z€h|—-1/2<2<1/2, and |z| > 1, and |z| > 1 if R(z) < 0}.

The domain on the right is a better choice for certain theoretical purposes, and
this domain, and unions of this domain, were used in an algorithm described in
[3] and [1].

Since T' is a subgroup of finite index in SLy(Z), we have that SL2(Z) =
My UTMs ...T'M,, for a list of right coset representatives M; € SLy(Z). We
have h = SLy(Z)F, as a disjoint union of translates of F under the action of
SL»(Z) so

h = (CM, UTM,...TM,)F = (M, FUMFU...M,F).

This is also a disjoint union over the translates under I', so G = M1 F U M>F U
...M,F is a fundamental domain for T'.

So, to find a fundemantal domain G for T we need a list of right coset repre-
sentatives for I in SLy(Z). However, we also need to choose these representatives
so that G is connected.

For any trangle AF, the adjacent triangles correspond to translates of F by
AT, AT~', and AS, for example, in the diagram below, where triangle M F is
labeled by matrix M.

AS

AT

So, if A and B are chosen coset represenatives R, we also need that in R there
is some sequence of matrices A = M;,, M,,,...M;, = B, with M;lMZ €
{£S,T, T~} for 1 < j < k.

j+1

3.0.1 distance

Since the aim of the program is to give a connected fundamental domain that
can be nicely drawn, we want to choose representatives so that the correspond-
ing triangles are as “large” as possible, so they can be seen and don’t just end
up as small dots on the screen. In order to give a rough measure of how large
something is, I define a “distance” from I. The distance is computed recursively

from the list of coset representatives found. This is not most “accurate” defi-
nition of distance, in the sense that it’s dependent on the list constructed, but
it’s easy to compute and seems to give reasonable pictures.

Definition: First, I has distance 0 from itself. Also any 7" has distance 0
from I. For any other matrix A/;, if the distance here is d, then the distance for
M;T, M;S, and M;T~" is d + 1, unless one of these matrices has already been
enumerated and given some smaller distance.

4 The algorithm

We want to construct a list of coset represenatives R C SLy(Z), so that the
correseponding domain is connected. We will construct a sequence of lists,

Rlz{Ml}CRQC...Rn:R,

where n is the index of ' in SLy(Z). So at step i we adjoin M; to R;—1, to
obtain R;. After n steps we’re done.

As the list R is constucted, I also construct the information telling me about
the associated graph. For each element M; in the list, we want to know the
following:

Data stored for each M; € R:

Have we checked in the T direction?
Have we checked in the 7! direction?
Have we checked in the S direction?

In T direction: for which j does M;T ~ M;?
In T~ direction: for which j does M; T~ ~ M;?
In S direction: for which j does M;S ~ M;?

If MiTNMj: does MlT:M]?
If]\41‘11_1 ~ M]’Z does]\41‘11_1 = M]?
If M;S ~ M;: does M;S = M;?

What is the distance of M; from I?

Step 1. The first coset representative, M; is any choice of matrix to start with.
In practice, I usually choose M = I, but for I°(N) and T''(N) T decided to
choose M = T—LN/21 50 that the domain in this case ends up centered about 0.

Step i+1. Suppose we're at stage i + 1, having just constructed R;.
Substep 1. Pick some M; € R;.

Substep 2. Now ask the questionns about Mj:

Questions:

Have we looked in the T direction? If not do so...
Have we looked in the 7! direction? If not do so...
Have we looked in the S direction? If not do so...

Substep 3. Suppose from the previous two steps we have a matrix M;, and
we are looking in the T' direction (any other direction works in the same way).
First check through the list R; to see if there is some M}, with M;T ~ M.
If there is, update the list of data appropriately, including answering whether
M;T = My, and the data for the T~ direction of Mj,. If there is no such M
in R;, then we have a new coset representative, M;T'.

Now we can either define M;, = M;T, or we can choose some other M;; ~
M;T. In the program, to maximize the size of the picture, I look at all the
neighbours of M;T that are already listed in ;. Suppose these are My, ~
M;T?, My, ~ M;TS and M;. (Note, there are at most these three; there might
only be one or two neighbours in R;.) I pick the neighbour with largest distance
from I (as defined above), and then choose M; = My, T~ M, S, or M;T,
depending on which of the three this is. Then R;11 = R; U {M;41}, and the
list of data is updated appropriately.

Termination. If there are no directions at substep 2 for any matrix in the
list, then the algorithm terminates. A complete set of coset representatives has
been found.

4.1 More details

4.1.1 At step i + 1, substep 1, how do we decide which }M; to work
with?

This depends on exactly what your aim is. Since I want to draw pictures with
as large as possible triangles, so that they can be seen, I choose M; to have
the smallest “distance” from I. If there is more than one M; with the smallest
distance I just take the first one in the list.

4.1.2 Which order to ask the questions of step i + 1, substep 27

This depends on your aim. If you wanted to have only one representative for
each cusp, you could always ask about 7" direction first, and in the step of which
matrix to choose, you’d keep choosing the matrix you just added, and keep going
in the T direction, until this is not possible. In this case you wouldn’t really
have to store any information about the 7! direction, though this could still
be useful.

If you want to use the program for finding generators for I', it’s best to
always look in the S direction first.

My aim was to try and have the best looking “picture”, and so though I
choose the T direction first, which is a good idea when working with I'°(IV) and
I'Y(N), it doens’t seem to matter too much, because the choice I make for which
M; to work with at each step has more effect.

4.2 Cusps and Elliptic points

These can be found from the table of adjacencies. I now give a brief description
of each case and an illustrative picture of examples.

4.2.1 Cusps

For a matrix y = (), the corresponding cusp is 7 oo = £. Starting from any
M; = vin R, we can use the adjacency table to find alist M;, = M;, M,,, ... M;
with M, T ~ Mijyq for 1 < j < m, and M; T ~ M;. Then the cusp a/c has
width m.

Cusp example:
Part of a fundamental domain for I'°(6)

2 ~_T

T
Th t 2 has width 3 - .
¢ b a as W Order 3 elliptic point example:

Fundamental domain for I'°(7)

Order 2 elliptic point example:
Fundamental domain for T'°(2)

T
- 7
T
/ g 0 1
elliptic point order 2 ."['hlstpolllr.ltt. \ /
18 not elipul Two elliptic points

of order 3

4.2.2 Elliptic points of order 2

The number of elliptic points of order 2 is just the number of A; in R with
M;S ~ M;.

4.2.3 Elliptic points of order 3

To find elliptic points of order 3, start at any matrix M; in R, and use the
adjacency table to find the representatives equivalent to

M;, M;T, M;TS, M;TST, M;TSTS, M;TSTST

if this set consists of at most 2 matrices, then we have an order 3 elliptic point.

4.3 Note on Formulae

There are simple formulae for the index of these subgroups in SL»(Z), e.g.:

[SLa(Z) : To(N)]

)

p|N
1
[To(N):T1(N)] = N 1--=
: I(r-;)
I(N):T(N)] = N

where the products run over the prime divisors of V.

There are also formulae for finding the numbers of cusps and elliptic points.
However, I did not use these. For the index, there seemed little point, since the
algorithm described above terminates when a full set of coset representatives is
found. If T was not interested in the way the cosets are related then it would
probably be necessary to use these formualae. Also, using the formulae would
be a good way to specify the length of the array used in advance. So perhaps
this could be incorperated in a future version. Finding the number of cusps and
their widths, and the elliptic points from the diagram as above seemed like a
good test that the program was doing the correct thing. The number of cusps
and elliptic points was used to find the genus using the following formula:

1
g=1+ E(index — 6#cusps — 4es — 3es),

where es is the number of elliptic points of order 2, and es is the number of
elliptic points of order 3. All these formulae can be found in [5].

5 Subgroups

There are various ways of reducing the amount of work done to find a fundmental
domain, by working in stages, e.g., using the computations for I' to help in the
computations of the fundamental domain for a subgroup of T.

This has not yet been done to a great extent in the program, but is used for
the computation of I'(N) from T’y (V) as follows.

5.1 T'(N) from I')(N)
Note that I'(V) is a normal subgroup of I'; (), and that
I(N)\T1(N)=(T(N)T) 2 Z/NZ.

So we have that if R is the set of coset representatives of I'; (N), then the
following set is a set of coset representatives of I'(V):

{T'z € SLy(Z)|z € R,0<i < N}.

So, it is very easy to write a new list of coset representatives for I'(N) from
the list for T'; (V).

Next the table of adjacencies must be updated. This is necessary because
the program has the “edit” mode to allow the user to change the domain found,
and also this is needed for the application of finding a set of generators for I'(V).

Suppose r;,r; € T'1(N) and r;M ~ r;j, for M = T,T~! or S. This means
riMr;1 € I'1(N). So for some integer m, we have riTr;1 € I(N)T™. So
riTrj*lT_m € I'(N). Since I'(N) is normal in 'y (), we have TkriMrj*lT_m_k €
['(N) for any integer k. So T*r;M ~ T*+™r;. With the above set of reprsen-
tatives, we have T med (k:N)p, Af ~ T mod (’”’”’N)rj, where mod (k,N) is an
integer such that 0 < mod (k,N) < N and N|(k — mod (k,N)). Write
A B tomean AM ~ B, then to summarize, we have:

for each relation we get N relations
T N rj - . TkTi Mo mod(k—i—m)rj
in [’y (N) in (N), for 0 <k <N.

If r;M = rj, then we get TEry M = Tkrj, and also we have some other equalities,
which happen when riMr]71 =T, which gives T*r;M = T**'r; for 0 <k < N.

6 Generators for I'

Given the fundamental domain, it is then a simple matter to find generators for
I'. The easiest way to get a set of generators (which usually is too big by at
least factor of two) is just to take the set

{riMr]71|riM ~rj,Me{T,S}}.

Better sets of generators can be found from the theory of groups acting on trees,
and extracting the tree from the adjacency table. The current java program does
not make this computation, though I have written a magma program to do this.
If you are intersted in finding generators in this way see the first chapter of [2].
Another good reference is [4]. See also [3] and [1] for an approach which gives
the generators much more effectively from a certain fundamental domain.

References

[1] Chan, S.-P., Lang, M.-L., Lim, C.-H., and Tan, S.-P. Special polygons for
subgroups of the modular group and applications. Internat. J. Math. 4 (1993),
no. 1, 11-34.

[2] Dicks, Warren and Dunwoody, M. J. Groups acting on graphs, Cam-
bridge Studies in Advanced Mathematics, 17, Cambridge University Press,
Cambridge-New York, 1989.

[3] Kulkarni, R. S., An arithmetic-geometric method in the study of the sub-
groups of the modular group. Amer. J. Math. 113 (1991), no. 6, 1053-1133.

[4] Serre, J. P., Trees, Springer-Verlag, Berlin-New York, 1980.

[5] Shimura, G. Introduction to the arithmetic theory of automorphic functions,
Reprint of the 1971 original, Kan Memorial Lectures, 1, Princeton University
Press, Princeton, NJ, 1994.

