12 1. Abelian Varieties: 10/10/03 notes by W. Stein
1.5 Jacobians of Curves

1. Twill give a research talk in the modular curves seminar tomorrow (Thursday,
October 16, 3-4pm in SC 507) about the arithmetic of the Jacobian Jj(p) of
X1(p). It will fit well with this part of the course.

2. New web page: http://modular.fas.harvard.edu/calc/. Type or paste
in a MAGMA or PARI program, click a button, get the output. No need to
install MAGMA or PARI or log in anywhere.

Today we’re going to learn about Jacobians. First, some inspiring words by
David Mumford:

“The Jacobian has always been a corner-stone in the analysis of alge-
braic curves and compact Riemann surfaces. [...] Weil’s construction [of
the Jacobian] was the basis of his epoch-making proof of the Riemann
Hypothesis for curves over finite fields, which really put characteris-
tic p algebraic geometry on its feet.” — Mumford, Curves and Their
Jacobians, page 49.

1.5.1 Dwisors on Curves and Linear Equivalence

Let X be a projective nonsingular algebraic curve over an algebraically field k. A
divisor on X is a formal finite Z-linear combination 221 n; P; of closed points in
X . Let Div(X) be the group of all divisors on X. The degree of a divisor Y., n; P;
is the integer >.:", n;. Let Div’(X) denote the subgroup of divisors of degree 0.

Suppose k is a perfect field (for example, k has characteristic 0 or k is finite),
but do not require that k be algebraically closed. Let the group of divisors on X
over k be the subgroup

Div(X) = Div(X/k) = H(Gal(k/k), Div(X/k))

of elements of Div(X/k) that are fixed by every automorphism of k/k. Likewise,
let Div®(X/k) be the elements of Div(X/k) of degree 0.

A rational function on an algebraic curve X is a function X — P!, defined by
polynomials, which has only a finite number of poles. For example, if X is the
elliptic curve over k defined by y? = 23 +ax +b, then the field of rational functions
on X is the fraction field of the integral domain k[z,y]/(y* — (23 + ax + b)). Let
K (X) denote the field of all rational functions on X defined over k.

There is a natural homomorphism K (X)* — Div(X) that associates to a rational
function f its divisor

(/)= ordp(f)- P

where ordp(f) is the order of vanishing of f at P. Since X is nonsingular, the local
ring of X at a point P is isomorphic to k[[t]]. Thus we can write f = t"g(¢t) for
some unit g(t) € k[[t]]. Then R = ordp(f).

Ezample 1.5.1. If X = P!, then the function f = z has divisor (0) — (00). If X is
the elliptic curve defined by y? = x> + ax + b, then

(z) = (0,Vb) + (0, —V/b) — 200,
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and
(y) = (21,0) + (22,0) + (23,0) — 300,

where 1, 2, and z3 are the roots of 23 +ax+b = 0. A uniformizing parameter ¢ at
the point oo is x/y. An equation for the elliptic curve in an affine neighborhood of
00 is Z = X3 +aXZ?+bZ3 (where co = (0,0) with respect to these coordinates)
and z/y = X in these new coordinates. By repeatedly substituting Z into this
equation we see that Z can be written in terms of X.

It is a standard fact in the theory of algebraic curves that if f is a nonzero rational
function, then (f) € DiVO(X), i.e., the number of poles of f equals the number of
zeros of f. For example, if X is the Riemann sphere and f is a polynomial, then
the number of zeros of f (counted with multiplicity) equals the degree of f, which
equals the order of the pole of f at infinity.

The Picard group Pic(X) of X is the group of divisors on X modulo linear
equivalence. Since divisors of functions have degree 0, the subgroup PicO(X ) of
divisors on X of degree 0, modulo linear equivalence, is well defined. Moreover, we
have an exact sequence of abelian groups

0 — K(X)* — Div’(X) — Pic’(X) — 0.

Thus for any algebraic curve X we have associated to it an abelian group
Pic’(X). Suppose 7 : X — Y is a morphism of algebraic curves. If D is a di-
visor on Y, the pullback 7*(D) is a divisor on X, which is defined as follows.
If P € Div(Y/k) is a point, let 7*(P) be the sum Y eq,p@ where 7(Q) = P
and eq,p is the ramification degree of Q/P. (Remark: If ¢ is a uniformizer at P
then eq,p = ordg(¢*tp).) One can show that 7* : Div(Y) — Div(X) induces
a homomorphism Pic’(Y) — Pic®(X). Furthermore, we obtain the contravariant
Picard functor from the category of algebraic curves over a fixed base field to
the category of abelian groups, which sends X to PicO(X) and 7 : X — Y to
7 : Pic’(Y) — Pic?(X).

Alternatively, instead of defining morphisms by pullback of divisors, we could
consider the push forward. Suppose 7 : X — Y is a morphism of algebraic curves
and D is a divisor on X. If P € Div(X/k) is a point, let m.(P) = 7(P). Then 7,
induces a morphism Pic’(X) — Pic’(Y). We again obtain a functor, called the
covariant Albanese functor from the category of algebraic curves to the category
of a(u)belian groups, which sends X to Pic’(X) and 7 : X — Y to m, : Pic’(X) —
Pic’(Y).

1.5.2  Algebraic Definition of the Jacobian

First we describe some universal properties of the Jacobian under the hypothesis
that X (k) # 0. Thus suppose X is an algebraic curve over a field k£ and that
X (k) # 0. The Jacobian variety of X is an abelian variety J such that for an
extension k'/k, there is a (functorial) isomorphism J (k') — Pic®(X/k’). (I don’t
know whether this condition uniquely characterizes the Jacobian.)

Fix a point P € X (k). Then we obtain a map f : X (k) — Pic’(X/k) by sending
Q € X (k) to the divisor class of @—P. One can show that this map is induced by an
injective morphism of algebraic varieties X < J. This morphism has the following
universal property: if A is an abelian variety and g : X — A is a morphism that
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sends P to 0 € A, then there is a unique homomorphism 1 : J — A of abelian
varieties such that g = o f:

x-1-

BN

A

This condition uniquely characterizes J, since if f' : X — J’ and J’ has the univer-
sal property, then there are unique maps J — J' and J' — J whose composition
in both directions must be the identity (use the universal property with A = J
and f = g).

If X is an arbitrary curve over an arbitrary field, the Jacobian is an abelian
variety that represents the “sheafification” of the “relative Picard functor”. Look
in Milne’s article or Bosch-Liiktebohmert-Raynaud Neron Models for more details.
Knowing this totally general definition won’t be important for this course, since
we will only consider Jacobians of modular curves, and these curves always have
a rational point, so the above properties will be sufficient.

A useful property of Jacobians is that they are canonically principally polarized,
by a polarization that arises from the “8 divisor” on J. In particular, there is always
an isomorphism J — JV = Pic?(J).

1.5.3 The Abel-Jacobi Theorem

Over the complex numbers, the construction of the Jacobian is classical. It was
first considered in the 19th century in order to obtain relations between integrals
of rational functions over algebraic curves (see Mumford’s book, Curves and Their
Jacobians, Ch. 111, for a nice discussion).

Let X be a Riemann surface, so X is a one-dimensional complex manifold.
Thus there is a system of coordinate charts (Uy,ts), where t, : U, — C is a
homeomorphism of U, onto an open subset of C, such that the change of coordinate
maps are analytic isomorphisms. A differential 1-form on X is a choice of two
continuous functions f and g to each local coordinate z = = + iy on U, C X
such that f dx+ g dy is invariant under change of coordinates (i.e., if another local
coordinate patch U}, intersects U, then the differential is unchanged by the change
of coordinate map on the overlap). If v : [0,1] — X is a path and w = fdz + gdy
is a 1-form, then

o= [ (se0mony + statt. 0% ) ave

From complex analysis one sees that if v is homologous to +/, then f7 w= f"/’ w.
In fact, there is a nondegenerate pairing
H(X, QL) xHi(X,Z) — C

If X has genus g, then it is a standard fact that the complex vector space
HO(X, QL) of holomorphic differentials on X is of dimension g. The integration
pairing defined above induces a homomorphism from integral homology to the
dual V of the differentials:

®:Hy(X,Z) -V =Hom(H’(X,Q%),C).
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This homomorphism is called the period mapping.
Theorem 1.5.2 (Abel-Jacobi). The image of ® is a lattice in V.

The proof involves repeated clever application of the residue theorem.
The intersection pairing

H,(X,Z) x Hy(X,Z) — Z

defines a nondegenerate alternating pairing on L = ®(H;(X,Z)). This pairing
satisfies the conditions to induce a nondegenerate Riemann form on V', which gives
J = V/L to structure of abelian variety. The abelian variety J is the Jacobian of X,
and if P € X, then the functional w — || g w defines an embedding of X into J.
Also, since the intersection pairing is perfect, it induces an isomorphism from J to
JY.

Ezample 1.5.3. For example, suppose X = X(23) is the modular curve attached
to the subgroup I'g(23) of matrices in SLo(Z) that are upper triangular modulo 24.
Then g = 2, and a basis for Hy(X((23),Z) in terms of modular symbols is

{71/1970}7 {71/1770}7 {71/1570}7 {71/1170}
The matrix for the intersection pairing on this basis is

0O -1 -1 -1

1 0 -1 -1
1 1 0 -1
1 1 1 0

With respect to a reduced integral basis for
HY (X, Q) = 52(I'0(23)),

the lattice ®(H;(X,Z)) of periods is (approximately) spanned by

L

(0.59153223605591049412844857432 - 1.68745927346801253993135357636%*1
0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488%*1) ,

(-0.59153223605591049412844857432 - 1.68745927346801253993135357636%1
-0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488%1) ,

(-1.354338560513957662809528899804 - 1.0837716284893304295801997808568748714097*1
-0.59153223605591049412844857401 + 0.480083983510648319229045987467*1) ,

(-1.52561264891609433736216065099 0.342548176804273349105263499648)
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Lecture III: How Jacobians and Theta Functlons A

: : way that
I would like to begin by introducing Jacobians in the b4

: : m
they actually were discovered historically. Unfortunately, MY

i ' hould
knowledge of 19th-century literature is very scant SO this s

not be taken too literally. You know the story began with Abel

and Jacobi investigating general algebraic integrals
I = Sf(x)d.x

where f was a multi-valued algebraic function of X, i.e., the

solution to

glx, £(x)) = 0, g polynomial in 2 variables.

I = 5 Yy dx

where Y is a path in plane curve g(x,y) = O; or we may reformulate

So we can write I as

this as the study of integrals

w
T —

d
E%F Y)dx P,Q polynomials
1 a = S 2 J
( ) a Q AsY J ajac} € plane curve C: g(X,Y) = ')
O

of rational differentials w on plane curves C,.

The main result

is that such integrals always admit an addition theorem: i.e
. @,

there is an integer g such that if a, 1s a base point, ang

al""’ag+l are any points of C, then one can determine up to
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permutation by, .- bg € C rationally in terms of the a’s” such that
al b
bg
S w + S S W+ oo F S w, mod periods of Sw.
a
4o a a_
For instance, if C = B}, w = dx/x, then g = 1 and:
S0
{ax . g_@z ) i ax
X X X
L } 1
Iterating, this implies that for all al,---,ag,bl,---,bg € C, there are
cl,.--,cg € C depending up to permutation rationally on the a’s and

(mod periods)

™~~1Q
- W
'_l

&

+
I 1@
pC—— U
}—h

&=

1l
I ™0
) 0

&

O
O

Now this looks like a group law. Only a very slight strengthening will
lead us to a reformulation in which this most classical of all theorems
will suddenly sound very modern. We introduce the concept of an
‘algebraic group G: succinctly, this is a "group object in the

category of varieties,'" i.e., it 1is simultaneously a variety and a
group where the group law m: GXG —> G and the inverse 1i: G —> G

are morphisms of varieties. Such a G is, of course, automaéically a
complex analytic Lie group too, hence it has a Lie algebra Lie(G),

and an exponential map exp: Lie(G) —>G. Now I wish to rephrase

%

E.g.,one can find polynomials gi(x: y;a) in x, y and the coordinates of the a's such

2 ' that the b, 's are the set of all becC such that g.(b;a) =

i
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Abel's theorem as asserting that if C 1s a curve, an

differential on C, then the multi-valued function
a
a b— S W
a
e

can be factored into a composition of 3 functions :

£
ex .
C-(poles of W) *———-é—; J & 2 -Syie Jili—= =

where:

i) J is a commutative algebraic group,

3908 i a linear map from Lie J to

iii) @ is a morphism of varieties; and, in fact, if g = dim J,

then if we use addition on J to extend & to

ﬁ(g): [ (C-poles w)x-++x(C-poles w)/permutations] — J

Sg

then 4 g) 1s birational, l.e., is bijective on a

Zariski-open set.

In our example

then J = P -(0,wm)

multiplication, ang ® 1is the identity, The point is that J 1s the

object that reali t ' - Sias
3 Zes the rule by which 2 g tuples (al, ’ag)’(bli"'fb )
are "added" to form a thirg be il
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g

.le(xi) becomes a homomorphism from J to €. A slightly less fancy way
1=

to put it 1s that there is a @g: c-(poles w) —>J and a translation-

invariant differential 7) on J such that

hence

g(a)
S n (mod periods).
6(3,)

|
v/ N
&

Among the w's, the most important are those of lSt kind, 1.e.

3
without poles, and if we integrate all of them at once, we are€ led to
the most important J of all: the Jacobian, which we call Jac. From

property (iii), we find that Jac must be a compact commutative algebraic

group, i.e., a complex torus, and we want that

$: C —>Jac,

should set up a bijection:

translation-
iv) ﬁ*: [invariant l-forms
) on Jac

} [rational differentiaISle
“Lw on C w/o poles

Thus

dim Jac dim R_(C)

1

genus g of C,

To construct Jac explicitly, there are 2 simple ways:
v) Analytically: write Jac = V/L, V complex vector space,

L a lattice. Define:
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V = dual of Rl(c)

set of 4 € V obtained as periods, 1:¢>

-,
I

t(w) = Sw for some l-cycle Y on C.

Y

Fixing a base point a_ € C, define for all a € C

Note that

vr =

vi)

é6(a) =(image in V/L of any £ € V defined by

/ L(w) = S w,

where we fix a path from a_ to a.

=

since Jac is a group,

(translation—invariant) :.(cotangent sp. to Jac at a) —
l-forms on Jac 7 any a € Jac =

Algebraically: following Weil's original idea, introduce

s9c

C X, sieiX C/Sg and construct by the Riemann-Roch

theorem, a "group-chunk" structure on SgCJ l.e., a partial

group law:

m : leU2 —_— U3

U, c s9c Zariski-open,

He then showed that any such algebraic group-chunk

prolonged automatically into an algebraic group J with

g
S Uy & (some Zariski-open U4).

[ — e m—
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an important point is that g is an integrated form of the canonical map

Eg—l |
$R G discussed at length above —

vii) & 1is the Gauss map of g, i.e., for all x € c, dg(T is

x,c)

a l-dimensional subspace of Tﬁ(x) , and by translation

,Jac
this is isomorphi ' Bg-l
phic to Lie(Jac). 1If = [space of
ra ] : -1
1-dim— subsp. of Lie(Jac)], then dg: C ——ﬁﬂ? is just 9.

(Proof: this is really just a rephrasing of (iv).)

The Jacobian has always been the corner-stone in the analysis of
algebraic curves and compact Riemann surfaces. Its power lies in the

y €.9.,

fact that 1t abelianizqg the curve and 1s a‘£gification of H1

viii) via g: C — Jac, every abelian covering T: Cl —> C 1s

the "pull-back" of a unique covering p: Gl > Jac

e, Cl = C EacGl)'

Weil's construction in vi) above was the basis of his epoch-making proof
of the Riemann Hypothesis for curves over finite fields, which really
put characteristic p algebraic geometry on its feet.

There are very close connections between the geometry of the

curve C (e.g., whether or not C 1s hyperelliptic) and Jac. We want
| to describe these next in order to tie in Jac with the special cases

studied in Lecture I, and in order to "see" Jac very concretely in low

genus. The main tool we want to use is:




