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1 Visibility of H1(K, A)

Let K be a number field. (There should be a similar theory for function
fields over a finite field.)
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1.1 Motivation and Philosophy

Suppose
0 → A → B → C → 0

is an exact sequence of abelian varieties over K. (Thus each of A, B, and C
is a complete group variety over K, whose group is automatically abelian.)
Then there is a corresponding long exact sequence of cohomology for the
group Gal(Q/K):

0 → A(K) → B(K) → C(K) → H1(K, A) → H1(K, B) → H1(K, C) → · · ·

The study of the Mordell-Weil group C(K) = H0(K, C) is popular in
arithmetic geometry. For example, the Birch and Swinnerton-Dyer conjec-
ture (BSD conjecture), which is one of the million dollar Clay Math Prob-
lems, asserts that the dimension of C(K)⊗Q equals the ordering vanishing
of L(C, s) at s = 1.

The group H1(K, A) is also of interest in connection with the BSD con-
jecture, because it contains the Shafarevich-Tate group

X(A) = X(A/K) = Ker

(

H1(K, A) →
⊕

v

H1(Kv, A)

)

⊂ H1(K, A),

where the sum is over all places v of K (e.g., when K = Q, the fields Kv

are Qp for all prime numbers p and Q∞ = R).
The group A(K) is fundamentally different than H1(K, C). The Mordell-

Weil group A(K) is finitely generated, whereas the first Galois cohomology
H1(K, C) is far from being finitely generated—in fact, every element has
finite order and there are infinitely many elements of any given order.

This talk is about “dimension shifting”, i.e., relating information about
H0(K, C) to information about H1(K, A).

1.2 Definitions

1.2.1 What are Elements of Galois Cohomology?

Elements of H0(K, C) are simply points, i.e., elements of C(K), so they
are relatively easy to “visualize”. In contrast, elements of H1(K, A) are Ga-
lois cohomology classes, i.e., equivalence classes of set-theoretic (continuous)
maps f : Gal(Q/K) → A(Q) such that f(στ) = f(σ) + σf(τ). Two maps
are equivalent if their difference is a map of the form σ 7→ σ(P )−P for some
fixed P ∈ A(Q). From this point of view H1 is more mysterious than H0.
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1.2.2 Principal Homogeneous Spaces

There is an alternative way to view elements of H1(K, A). The WC group
of A is the group of isomorphism classes of principal homogeneous spaces
for A, where a principal homogeneous space is a variety X and a map A ×
X → X that satisfies the same axioms as those for a simply transitive group
action. Thus X is a twist as variety of A, but X(K) = ∅, unless X ≈ A.
Also, the nontrivial elements of X(A) correspond to the classes of X that
have a Kv-rational point for all places v, but no K-rational point.

1.2.3 Visibility of H1(K, A)

Barry Mazur introduced the following definition in order to help unify di-
verse constructions of principal homogeneous spaces:

Definition 1.1. The visible subgroup of H1(K, A) in B is

VisB H1(K, A) = Ker(H1(K, A) → H1(K, B))

= Coker(B(K) → C(K)).

Remark 1.2. Note that VisB H1(K, A) does depend on the embedding of A
into B. For example, suppose B = B1 × A. Then there could be nonzero
visible elements if A is embedding into the first factor, but there will be no
nonzero visible elements if A is embedded into the second factor. Here we
are using that H1(K, B1 × A) = H1(K, B1) ⊕ H1(K, A).

The connection with the WC group of A is as follows. Suppose

0 → A
f
−→ B

g
−→ C → 0

is an exact sequence of abelian varieties and that c ∈ H1(K, A) is visible in B.
Thus there exists x ∈ C(K) such that δ(x) = c. Then X = π−1(x) ⊂ B is a
translate of A in B, so the group law on B gives X the structure of principal
homogeneous space for A, and one can show that the class of X in the WC
group of A corresponds to c.

1.2.4 Finiteness of the Visible Subgroup

Lemma 1.3. The group VisB H1(K, A) is finite.

Proof. By the Mordell-Weil theorem C(K) is finitely generated. The group
VisB H1(K, A) is a homomorphic image of C(K) so it is finitely generated.
On the other hand, it is a subgroup of H1(K, A), so it is a torsion group. The
lemma follows since a finitely generated torsion abelian group is finite.
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1.3 Every Element of H1(K,A) is Visible Somewhere

Proposition 1.4. Let c ∈ H1(K, A). Then there exists an abelian vari-
ety B = Bc and an embedding A ↪→ B such that c is visible in B. More-
over, B can be chosen to be a twist of a power of A.

Proof. By definition of Galois cohomology, there is a finite extension L of K
such that resL(c) = 0. Thus c maps to 0 in H1(L, AL). By a slight gen-
eralization of the Shapiro Lemma from group cohomology (which is proved
by dimension shifting; see, e.g., Atiyah-Wall in Cassels-Frohlich), there is a
canonical isomorphism

H1(L, AL) ∼= H1(K, ResL/K(AL)) = H1(K, B),

where B = ResL/K(AL) is the Weil restriction of scalars of AL back down
to K. The restriction of scalars B is an abelian variety of dimension [L :
K] · dim A that is characterized by the existence of functorial isomorphisms

MorK(S, B) ∼= MorL(SL, AL),

for any K-scheme S, i.e., B(S) = AL(SL). In particular, setting S = A we
find that the identity map AL → AL corresponds to an injection A ↪→ B.
Moreover, c 7→ resL(c) = 0 ∈ H1(K, B).

The assertion about the structure of B follows from general facts about
restriction of scalars, which won’t be proved here.

1.4 Other Results in the Context of Modularity

Usually one focuses on visibility of elements in X(A). There are a number
of other results about visibility in various special cases, and large tables
of examples in the context of elliptic curves and modular abelian varieties.
There are also interesting modularity questions/conjectures in this context.
I will not go into these further right now, except to note one example.

Motivated by the notion of visibility, I developed (with input from Mazur,
Cremona, and Agashe) computational techniques for unconditionally con-
structing Shafarevich-Tate groups of modular abelian varieties A ⊂ J1(N).
For example, if A ⊂ J0(389) is the 20-dimensional simple factor, then

Z/5Z × Z/5Z ⊂ X(A),

as predicted by the Birch and Swinnerton-Dyer conjecture. I found a few
dozen other examples like this, where the computational construction of the
Shafarevich-Tate group would be hopeless using any other known technique.
See [AS, AS02] for more details, and [CM00] for examples when dim A = 1.
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2 Visibility of Mordell-Weil Groups

2.1 Motivation and Philosophy

The previous section was about understanding elements of H1 in terms of
Mordell-Weil groups. The BSD conjecture implies the following conjecture:

Conjecture 2.1. If L(C, 1) = 0, then C(Q) is infinite.

We know by the Gross-Zagier formula that if C is an elliptic curves
over Q and ords=1 L(C, s) = 1, then C(Q) is infinite, but little more is
known toward Conjecture 2.1. More generally, the conjecture is known when
C ⊂ J0(N) and ords=1 L(C, s) = dim(C), and there are other results over
totally real number fields. People also seem to have a reasonable (but not
good enough!) understanding of X(C) when L(C, 1) 6= 0.

2.1.1 Rank > 1: A New Idea is Needed

Suppose C is an elliptic curve over Q and ords=1 L(C, s) = 2. Conjecture 2.1
asserts that C(Q) is infinite, but this is currently a difficult open problem.
Nick Katz told me at dinner once that “a new idea is needed.” It seems that
nobody knows a good analogue of Gross-Zagier for rank two elliptic curves.
(I’ve noticed that Mazur has been working on this question, in one way or
another, since I’ve been at Harvard...)

Visibility of Mordell-Weil groups is an idea I came up which might have
some relevance.

2.2 Definition

Suppose

0 → A
f
−→ B

g
−→ C → 0

is an exact sequence of abelian varieties over a number field K, with corre-
sponding long exact sequence

0 → A(K) → B(K) → C(K)
δ
−→ H1(K, A) → · · ·

of Gal(Q/K)-cohomology.

Definition 2.2. Let x ∈ C(K) and suppose m ∈ Z>0 is a divisor of order(x)
(everything divides ∞). Then x is m-visible in H1(K, A) if the order of
δ(x) ∈ H1(K, A) is divisible by m.
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Motivated by Proposition 1.4, I made the following conjecture at a talk
at MSRI in August 2000.

Conjecture 2.3 (Stein). Suppose x ∈ C(K) and m | order(x). Then there
exists an exact sequence 0 → A → B → C → 0 such that x is m-visible in
H1(K, A).

2.3 Visibility for Elliptic Curves over Q

The following theorem provides evidence for the conjecture in general.

Theorem 2.4. Let C be an elliptic curve over Q. Then Conjecture 2.3 is
true when m a prime power.

Proof. Suppose m is a power of a prime p. Let Q∞ be the cyclotomic Zp

extension of Q, so Q∞ is the Galois subfield of Q(ζpn , n ≥ 1) of index p− 1.
By [BCDT01], C is a modular elliptic curve. Rohrlich [Roh84] proved that
all but finitely many special values L(C, χ, 1) are nonzero, where χ varies
over Dirichlet characters of p-power order. Kato recently proved using his
Euler system (see, e.g., [Sch98]) that if L(C, χ, 1) 6= 0, then the χ part of
C(Q) ⊗Q is 0. Combining these two results, we see that C(Q∞) is finitely
generated.

Because C(Q∞) is finitely generated, there is an integer n such that
C(Q∞) = C(Qn). Let

B = ResQn/Q(CQn
).

Then trace induces an exact sequence

0 → A → B
f
−→ C → 0,

with A an abelian variety. Then for any integer j ≥ n we have

Im
(

δ : C(Q) → H1(Q, A)
)

∼= C(Q)/f(B(Q))

= C(Q)/ TrQj/Q(C(Qj))

= C(Q)/pj−n TrQn/Q(C(Qn))

→→ C(Q)/pj−nC(Q),

where the last map is a surjection since

TrQn/Q(C(Qn)) ⊂ C(Q).

Suppose x ∈ C(Q) has order divisible by m = pr. Then for j sufficiently
large the image of x in C(Q)/pj−nC(Q) will have order order divisible by m,
which proves the theorem.
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Remark 2.5. This theorem is probably true with the same proof with C
replaced by any modular abelian variety over Q, i.e., quotient of J1(N).
However, I’m not certain the details of the relevant theorems by Kato and
Rohrlich have all been written down in this more general case. Also, one
should investigate conjectures of Mazur about finite generatedness of C(Q∞)
for general C (see [Maz72]).

2.4 Visibility of Mordell-Weil in Shafarevich-Tate Groups

Let 0 → A → B → C → 0 be an exact sequence of abelian varieties.

Definition 2.6. Let x ∈ C(K) and suppose m ∈ Z>0 is a divisor of order(x).
Then x is m-visible in X(A) if δ(x) ∈ X(A) and the order of δ(x) ∈
H1(K, A) is divisible by m.

The following conjecture strengthens Conjecture 2.3.

Conjecture 2.7 (Stein). Suppose x ∈ C(K) and m | order(x). Then there
exists an exact sequence 0 → A → B → C → 0 such that x is m-visible in
X(A).

2.4.1 Spiced Up Version of the Conjecture

We spice the conjecture up a little by requiring in addition that A be modular
and L(A, 1) 6= 0, motivated by the fact that this is the most general class of
abelian varieties for which X(A) is known to be finite (by work of Kato).

Conjecture 2.8 (Stein). Suppose C is a modular abelian variety (i.e., C
is a quotient of J1(N) for some N). Suppose x ∈ C(K) and m | order(x).
Then there exists a modular abelian variety A with L(A, 1) 6= 0 and an exact
sequence 0 → A → B → C → 0 such that x is m-visible in X(A).

We offer the following evidence for the conjecture, which I prove in [Ste].

Theorem 2.9. Let C be the rank 1 elliptic curve y(y +1) = x(x− 1)(x+1)
of conductor 37, and let x be a generator of C(Q). Then for all primes
m < 25000 with m 6= 2, 37, Conjecture 2.8 is true.

Let f =
∑

anqn be the newform associated to C. Suppose m is one of
the primes in the theorem. Then there exists a surjective Dirichlet character
χ : (Z/`Z)∗ → µm such that L(f⊗χ, 1) 6= 0. Moreover, the A of the theorem
is the (up to isogeny) abelian variety Af⊗χ associated to f ⊗χ by Shimura,
which has dimension m − 1.
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2.4.2 Nonsquare Shafarevich-Tate Groups

A surprising observation that comes out of the proof is that

#X(A) = m · (perfect square),

so we obtain the first ever examples of abelian varieties whose Shafarevich-
Tate groups have order neither a square nor twice a square.
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