CONTENTS

Chapter I. Introduction

Chapter II. Modular symbol algorithms

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

Modular Symbols and Homology

2.1.1  The upper half-plane, the modular group and cusp forms
2.1.2  The duality between cusp forms and homology
2.1.3 Real structure

2.1.4 Modular symbol formalism

2.1.5 Rational structure and the Manin-Drinfeld Theorem
2.1.6  Triangulations and homology

M-symbols and I'g(NV)

Conversion between modular symbols and M-symbols
Action of Hecke and other operators

Working in H*(N)

Modular forms and modular elliptic curves

Splitting off one-dimensional eigenspaces

L(f,s) and the evaluation of L(f,1)/Q(f)

Computing Fourier coefficients

Computing periods |

Computing periods II: Indirect method

Computing periods III: Evaluation of the sums
Computing L) (f,1)

Obtaining equations for the curves

Computing the degree of a modular parametrization
2.15.1 Modular Parametrizations

2.15.2 Coset representatives and Fundamental Domains
2.15.3 Implementation for I'¢(INV)

Appendix to Chapter II. Examples

Example 1. N =11
Example 2. N =33
Example 3. N =37
Example 4. N =49

Chapter III. Elliptic curve algorithms

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8
3.9

Terminology and notation

The Kraus-Laska—-Connell algorithm and Tate’s algorithm
The Mordell-Weil group I: finding torsion points

Heights and the height pairing

The Mordell-Weil group II: generators

The Mordell-Weil group III: the rank

The period lattice

Finding isogenous curves

Twists and complex multiplication

Chapter IV. The tables

Table 1. Elliptic curves

Table 2. Mordell-Weil generators
Table 3. Hecke eigenvalues

Table 4. Birch—Swinnerton-Dyer data
Table 5. Parametrization degrees

Bibliography

101

104
109
255
264
313
362

374



CHAPTER 1

INTRODUCTION

Introduction to the First (1992) Edition

This book is in three sections. First, we describe in detail an algorithm based on modular
symbols for computing modular elliptic curves: that is, one-dimensional factors of the Jacobian
of the modular curve Xy(N), which are attached to certain cusp forms for the congruence
subgroup I'g(N). In the second section, various algorithms for studying the arithmetic of
elliptic curves (defined over the rationals) are described. These are for the most part not new,
but they have not all appeared in book form, and it seemed appropriate to include them here.
Lastly, we report on the results obtained when the modular symbols algorithm was carried
out for all N < 1000. In a comprehensive set of tables we give details of the curves found,
together with all isogenous curves (5113 curves in all, in 2463 isogeny classes!). Specifically,
we give for each curve the rank and generators for the points of infinite order, the number of
torsion points, the regulator, the traces of Frobenius for primes less than 100, and the leading
coefficient of the L-series at s = 1; we also give the reduction data (Kodaira symbols, and local
constants) for all primes of bad reduction, and information about isogenies.

For N < 200 these curves can be found in the well-known tables usually referred to as
“Antwerp IV” [2], as computed by Tingley [67], who in turn extended earlier tables of curves
found by systematic search; our calculations agree with that list in all 281 cases. For values of
N in the range 200 < N < 320 Tingley computed the modular curves attached to newforms
for T'o(N) only when there was no known curve of conductor N corresponding to the newform:
these appear in his thesis [67] but are unpublished. As in [2], the curves E we list for each N
have the following properties.

(1) They have conductor N, as determined by Tate’s algorithm [65].

(2) The coefficients given are those of a global minimal model for E, and these coefficients
(or, more precisely, the ¢4 and cg invariants) agree with the numerical values obtained
from the modular calculation to several decimal places: in most cases, depending on
the accuracy obtained—see below—differing by no more than 1073°.

(3) Their traces of Frobenius agree with those of the modular curves for all primes p < 1000.

We have also investigated, for each curve, certain numbers related to the Birch—Swinnerton-
Dyer conjecture. Let f(z) be a newform for I'g(/V) with rational Fourier coefficients, and F the
elliptic curve defined over Q attached to f. The value of L(f, 1) is a rational multiple of a period
of f, and may be computed easily using modular symbols (see [37] and Section 2.8 below). We
have computed this rational number in each case, and find that it is always consistent with
the Birch—Swinnerton-Dyer conjecture for E. More specifically, let Q(f) be the least positive
real period of F' and Q(f) = 2Q0(f) or Qo(f) according as the period lattice of f is or is not
rectangular. Then we find that L(f,1)/Q(f) = 0 if (and only if) the Mordell-Weil group E(Q)

n the first edition, these numbers were given as 5089 and 2447 respectively, as the curves of conductor 702
were inadvertently omitted.
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2 I. INTRODUCTION

has positive rank, and when E(Q) is finite we find in each case that

L(f, Hcp Q)25

p|N

with § € N (in fact S = 1 in all but four cases: S = 4 in three cases and S = 9 in one case).
This is consistent with the Birch—-Swinnerton-Dyer conjecture if the Tate-Shafarevich group
IIT is finite of order S. (Here ¢, is the local index [E(Q,) : Eo(Q))]; see [58, p.362].) When
L(f,1) = 0, we compute the sign w of the functional equation for L(f,s), and verify that
w = +1 if and only if the curve has even rank. More precisely, we also compute the value of
L) (f,1), where 7 is the rank, the regulator R, and the quotient

LO1) [ (de) R

1
S =
) |E<Q)tors’2

(f,
rhQ(f
In all but the four cases mentioned above we find that S = 1 to within the accuracy of the
computation.

Our algorithm uses modular symbols to compute the 1-homology of T'o(N)\H* where H™ is
the extended upper half-plane {z € C : Im(z) > 0} U {co} UQ. While similar in some respects
to Tingley’s original algorithm described in [67], it also uses ideas from [37] together with some
new ideas which will be described in detail below. One important advantage of our method,
compared with Tingley’s, is that we do not need to consider explicitly the exact geometric shape
of a fundamental region for the action of I'g(IN) on H™: this means that highly composite N
can be dealt with in exactly the same way as, say, prime N. Of course, for prime N there are
other methods, such as that of Mestre [43], which are probably faster in that case, though not
apparently yielding the values of the “Birch-Swinnerton-Dyer numbers” L(f,1)/Q(f). There
is also a strong similarity between the algorithms described here and those developed by the
author in his investigation of cusp forms of weight two over imaginary quadratic fields [12],
[13], [15]. A variant of this algorithm has also been used successfully to study modular forms
for I'o(N) with quadratic character, thus answering some questions raised by Pinch (see [48]
or [49]) concerning elliptic curves of everywhere good reduction over real quadratic fields. See
[14] for details of this, and for a generalization to I'y(N): one could find cusp forms of weight
two with arbitrary character using this extension of the modular symbol method, though at
present it has only been implemented for quadratic characters, as described in [14].

It is not our intention in this book to discuss the theory of modular forms in any detail,
though we will summarize the facts that we need, and give references to suitable texts. The
theoretical construction and properties of the modular elliptic curves will also be excluded,
except for a brief summary. Likewise, we will assume that the reader has some knowledge
of the theory of elliptic curves, such as can be obtained from one of the growing number of
excellent books on the subject. Instead we will be concentrating on computational aspects,
and hope thus to complement other, more theoretical, treatments.

In Chapter 2 we describe the various steps in the modular symbol algorithm in detail. At
each step we give the theoretical foundations of the method used, with proofs or references to
the literature. Included here are some remarks on our implementation of the algorithms, which
might be useful to those wishing to write their own programs. At the end of this stage we have
equations for the curves, together with certain other data for the associated cusp form: Hecke
eigenvalues, sign of the functional equation, and the ratio L(f,1)/Q(f).

Following Chapter 2, we give some worked examples to illustrate the various methods.

In Chapter 3 we describe the algorithms we used to study the elliptic curves we found using
modular symbols, including the finding of all curves isogenous to those in the original list.
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These algorithms are more generally applicable to arbitrary elliptic curves over Q, although
we do not consider questions which might arise with curves having bad reduction at very large
primes. (For example, we do not consider how to factorize the discriminant in order to find
the bad primes, as in all cases in the tables this is trivially achieved by trial division). Here
we compute minimal equations, local reduction types, rank and torsion, generators for the
Mordell-Weil group, the regulator, and traces of Frobenius. This includes all the information
published in the earlier Antwerp IV tables. The final calculations, relating to the Birch—Swin-
nerton-Dyer conjecture, are also described here; these combine values obtained from the cusp
forms (specifically, the leading coefficient of the expansion of the L-series at s = 1, and the real
period) with the regulator and local factors obtained directly from the curves. Thus we can
compute in each case the conjectural value S of the order of III, the Tate-Shafarevich group.

Finally, in Chapter 4 we discuss the results of the computations for N < 1000, and introduce
the tables which follow.

All the computer programs used were written in Algol68 (amounting to over 10000 lines
of code in all) and run on the ICL3980 computer at the South West Universities Regional
Computing Centre at Bath, U.K.. The author would like to express his thanks to the staff of
SWURCC for their friendly help and cooperation, and also to Richard Pinch for the use of his
Algol68 multiple-length arithmetic package. At present, our programs are not easily portable,
mainly because of the choice of Algol68 as programming language, which is not very generally
available. However we are currently working on a new version of the programs, written in a
standard version of the object-oriented language C++, which would be easily portable. The
elliptic curve algorithms themselves are currently (1991) available more readily, in a number
of computer packages.? In particular, the package apecs, written in Maple and available free
via anonymous file transfer from Ian Connell of McGill University, will compute all the data
we have included for each curve. (A slightly limited version of apecs, known as upecs, runs
under UBASIC on MS-DOS machines). There are also elliptic curve functions available for
Mathematica (Silverman’s Elliptic Curve Calculator) and in the PARI/GP package. These
packages are all in the process of rapid development.

An earlier version of Chapter 2 of this book, with the tables, has been fairly widely circulated,
and several people have pointed out errors which somehow crept in to the original tables. We
have made every effort to eliminate typographical errors in the tables, which were typeset
directly from data files produced by the programs which did the calculations. Where possible,
the data for each curve has been checked independently using other programs. Amongst those
who have spotted earlier errors or have helped with checking, I would like to mention Richard
Pinch, Harvey Rose, Ian Connell, Noam Elkies, and Wah Keung Chan; obviously there may
still be some incorrect entries, but these remain solely my responsibility.

Introduction to the Second (1996) Edition

Since the first edition of this book appeared in 1992, some significant advances have been
made in the algorithms described and in their implementation. The second edition contains an
account of these advances, as well as correcting many errors and omissions in the original text
and tables. We give here a summary of the more substantial changes to the text and tables.

Of course, the most significant theoretical advance of the last four years is the proof by
Wiles, Taylor—Wiles and others of most cases of the Shimura—Taniyama—Weil conjecture, which
almost makes the word “modular” in the title of this book redundant. However, the only effect
the new results have on this work are to guarantee that every elliptic curve defined over the
rationals and of conductor less than 1000 is isomorphic to one of those in our Table 1.

2See the end of the introduction for more on obtaining these packages.



4 I. INTRODUCTION

Chapter 2. Section 2.1 has been completely rewritten and expanded to give a much more
coherent, self-contained, and (we hope) correct account of the theoretical background to the
modular symbol method. The text here is based closely on some unpublished lecture notes
of the author for a series of lectures he gave in Bordeaux in 1995 at the meeting “Etat de la
Recherche en Algorithmique Arithmétique” organized by the Société Mathématique de France.

In Section 2.4, we give a self-contained treatment of the method of Heilbronn matrices for
computing Hecke operators, similar to the treatment by Merel in [42], as this now forms part
of our implementation.

In Section 2.10, we give a new method of computing periods of cusp forms, as described
in [18], which is as efficient as the “indirect” method; this largely makes the indirect method
redundant, but we still include it in Section 2.11. Also in Section 2.11, we include some
tricks and shortcuts which we have developed as we pushed the computations to higher levels,
which can greatly reduce the computation time needed to find equations for the curves of
conductor N, at the expense of not necessarily knowing which is the so-called “strong Weil”
curve in its isogeny class.

Section 2.14 has been rewritten to take into account the results of Edixhoven on the Manin
constant (see [21]), which imply that the values of ¢4 and ¢g which we compute for each curve
are known a priori to be integral. This means that the values we compute are guaranteed
to be correct, and eliminates the uncertainty previously existing as to whether the curves we
obtain by rounding the computed values are the modular elliptic curves they are supposed to
be.

Section 2.15 is entirely new: we show how to compute the degree of the modular parametriza-
tion map ¢: Xo(N) — E for a modular elliptic curve of conductor N, using our version (see
[17]) of a method of Zagier [69]. This method is easy to implement within the modular sym-
bol framework, and we have added it to our programs, so that we now compute the degree
automatically for each curve we find.

The appendix to Chapter 2, containing worked examples, now includes the Heilbronn matrix
method, and also illustrates some of the tricks mentioned in Section 2.11.

Implementation changes. The implementations of all the algorithms described here have
been completely rewritten in C++, to be easily portable. We use the GNU compiler gcc for
this. For multiprecision arithmetic we use either the GNU package 1ibg++ or the package
LiDIA. For solving the systems of linear equations giving the relations between M-symbols,
we use sparse matrix routines which not only reduce memory requirements, but also speed
up that part of the computations considerably. These routines were written by L. Figueiredo
specifically for his work on imaginary quadratic fields (see [24]) which in turn built on the
author’s work in [12] and [13].

Chapter 3. In Section 3.1 we give simpler formulae for recovering the Weierstrass coefficients
of a curve from the invariants ¢4 and cg; this enables us to simplify the Kraus—Laska—Connell
algorithm slightly. In Section 3.4 we give a slightly improved formula for the global canonical
height, and include this as a separate algorithm. Section 3.5 now contains references to other
bounds between the naive and canonical heights, and other methods for the infinite descent
step, but without details.

The main changes in this chapter are to Section 3.6 on two-descent algorithms. On the
one hand, we give a better explanation of the theoretical basis for these algorithms, making
the account more self-contained (though we do not include all proofs). We have also moved
the discussion on testing homogeneous spaces for local and global solubility forward, as this is
common to the two main algorithms (general two-descent and two-descent via 2-isogeny). On
the other hand, several parts of the algorithm have been subject to major improvements over
the last few years, thanks to collaboration with P. Serf, S. Siksek and N. P. Smart, and these
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are now included. Notable here are the syzygy sieve in the search for quartics, the systematic
use of group structure in the 2-isogeny case, and the use of quadratic sieving in searching for
rational points on homogeneous spaces. We also simplify the test for equivalence of quartics
and the process of recovering rational points on the curve from points on the homogeneous
spaces. Many of these improvements are from the author’s paper [20], which contains some
proofs omitted here.

Implementation changes. As with the modular symbol algorithms, we have rewritten all
the elliptic curve algorithms in C++. In the case of the program to find isogenies, which is very
sensitive to the precision used, we have written an independent implementation in PARI/GP;
using this we have a check on the isogeny computations which gave the isogenous curves listed
in Table 1. (The standard precision version of this program, while much faster, does miss
several of the isogenies, for reasons given in Section 3.8.)

Versions of our algorithms will shortly become generally available in two forms. First, the
package LiDIA (a library of C++ classes for computational number theory, developed by the
LiDIA group at the Universitdt des Saarlandes in Germany) will include them in a coming
release. Secondly, the package MAGMA is also in the process of implementing the algorithms.

In addition to these packages and those mentioned in the original Introduction, we should
also mention the package SIMATH, developed by H. G. Zimmer’s research group in Saarbriicken,
which also has a large collection of very efficient elliptic curve algorithms.

See the end of this Introduction for how to obtain more information on these packages.

Chapter 4 and Tables. The two main changes in the tables are to include all the data
for N = 702 in Tables 1-4 and include the new Table 5 giving the degree of the modular
parametrization for each strong Weil curve. The omission of level 702 in the first edition is hard
to explain; in our original implementation and file structure, it was not possible to distinguish
between a level which had run successfully, but with no rational newforms found, and a level
which had not yet run. The original runs were done as batch jobs on a remote mainframe
computer, with manual record-keeping to keep track of which levels had run successfully. Our
current implementation is much more robust in this respect. We are grateful to Henri Cohen
who first discovered this error on comparing our data with his own tables (of modular forms of
varying weight and level, computed by him together with Skoruppa and Zagier). The omission
was also noted by Jacques Basmaji of Essen, who recomputed Table 3 independently.

The new implementation finds the newforms at each level in a consistent order. In the
original runs, the order in which the newforms were found changed as the program developed.
Unfortunately, we did not recompute the earlier levels with the final version of the program
before publishing the first edition of the tables, and the identifying letter for each newform
given in the tables has now become standard. Hence our current implementation reorders the
newforms during output to agree with the order as originally published (this is necessary for
147 levels in all, the largest being 450).

Also concerning the order and naming of the curves: the convention we normally use is that
in each isogeny class the first curve is the strong Weil curve whose period lattice is exactly
that of the corresponding newform for I'g(/N), such as 11A1 for example. In precisely one
case, an error caused the first curve listed in class 990H to be not the strong Weil curve but a
curve isogenous to it. The strong Weil curve in this class is in fact 990H3 and not 990H1. In
the notation of Section 2.11, the correct values of [T and m™ to obtain the strong Weil curve
990H3 are 13 and 8, but for some reason we had used the value m™* = 24 which leads to the
3-isogenous curve 990H1.

In Table 1, the other corrections are: N = 160 has the Antwerp codes corrected, and 916B1
has a spurious indication of a non-existent 3-isogeny removed.

In Table 2, we include the generators for the curves of conductor 702 and positive rank, and
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again correct the Antwerp code for curve 160A1. We also give the generator of 427C1 correctly
as (—3,1) rather than (—3,0) as previously, and for 990H we give the generator (—35,97) of
the strong Weil curve 990H3 rather than a generator of 990H1 as before.

In Table 3, as well as inserting the data for N = 702, we correct the eigenvalues for N = 100
which had been given incorrectly.

In Table 4, we insert the data for NV = 702 and also for 600E—-600I which had been omitted
by mistake. Moreover, for N = 990 we give the data for 990H3 instead of 990H1 as before, as
this is the strong Weil curve (the only difference being that €2 has been multiplied by 3 and R
divided by 3).

Extension of the Tables. Using our new implementation of the algorithms of Chapter 2, we
have extended the computations of all modular elliptic curves up to conductor 5077 (chosen
as the smallest conductor of a curve of rank 3). We have also computed in each case the other
data tabulated here for conductors up to 1000. For reasons of space, we cannot print extended
versions of the tables: as there are 17598 newforms (or isogeny classes) and a total of 31586
curves up to 5077, this would have made this book approximately six times as thick as it is at
present!

Instead, the data for curves whose conductors lie in the range from 1001 to 5077 (and beyond,
as they become available) may be obtained by anonymous file transfer from the author’s ftp
site at ftp://euclid.ex.ac.uk/pub/cremona/data.

Finally, many thanks to those who have told me of misprints and other errors in the First
Edition, including J. Basmaji, G. Bailey, B. Brock, F. Calegari, J. W. S. Cassels, T. Kagawa,
B. Kaskel, P. Serf, S. Siksek, and N. Smart. Apologies to any whose names have been omitted.
Extra thanks are also due to Nigel Smart, who read a draft of Chapter 3 of the Second Edition,
and made useful suggestions.

web and ftp sites

More information on the packages mentioned above, and in most cases the packages them-
selves, can be obtained from the following web and ftp sites. Apart from MAGMA they are all
free.

apecs (for Maple): ftp://math.mcgill.ca/pub/apecs
Elliptic Curve Calculator (for Mathematica):
ftp://gauss.math.brown.edu/dist/EllipticCurve

LiDIA: http://www-jb.cs.uni-sb.de/LiDIA

MAGMA: http://www.maths.usyd.edu.au:8000/comp/magma
mwrank: ftp://euclid.ex.ac.uk/pub/cremona/progs
PARI/GP: ftp://megrez.math.u-bordeaux.fr/pub/pari
SIMATH: http://emmy.math.uni-sb.de/ simath

upecs (for UBASIC): ftp://math.mcgill.ca/pub/upecs

Links to all of these can be found at

http://www.maths.ex.ac.uk/ cremona/packages.html.



CHAPTER 1I

MODULAR SYMBOL ALGORITHMS

In this chapter we describe the modular symbol method in detail. First, in Sections 2.1
to 2.5, we describe the use of modular symbols and M-symbols to compute the homology space
H1(Xo(N),Q) and the action of the Hecke algebra, for an arbitrary positive integer N. At
this stage it is already possible to identify rational newforms f, and obtain some information
about the modular elliptic curves Ey attached to them: these are introduced in Section 2.6.
To obtain equations for the curves Fy we compute their period lattices: the methods used for
this stage occupy most of the remaining sections of the chapter. The final section 2.15 shows
how to compute the degree of the associated map ¢ : Xo(N) — Ey.

To illustrate the methods, we also give some worked examples in an Appendix to the chapter.

2.1 Modular Symbols and Homology

2.1.1. The upper half-plane, the modular group and cusp forms.
Let ‘H denote the upper half-plane

H={z=z+iyecC|y>0},

and H* = HUQU{oo} the extended upper half-plane, obtained by including the cusps QU{oo}.
The group PSLy(R) acts on H* via linear fractional transformations:

a b az+b
o2 ———;
c d cz+d’
these are the isometries of the hyperbolic geometry on H, for which geodesics are either half-
lines perpendicular to the real axis R, or semicircles perpendicular to R.

The modular group I' = PSLy(Z) is a discrete subgroup of PSLy(RR) (in the topology induced
from SL(2,R) C M>(R) = R*), and acts discontinuously on H, in the sense that for each z € H
the orbit I'.z is discrete. Note that the cusps Q U {oo} form a complete T'-orbit.

The elements S = ((1) _01) : z+> —1/z (of order 2) and T' = é 1
infinite order) generate I'. This fact, and the related fact that a fundamental region for the
action of I' on H is given by the set F defined by

zr— z+1 (of

1
(2.1.1) F={z=uz+iyeH|la < 51421},

are standard and will not be proved here. Both results depend essentially on the fact that Z
is Euclidean.

Let G be a subgroup of I' of finite index e. Then G also acts discretely on H. A funda-
mental region for G on H is given by UM,;.F, where the M; (for 1 < i < e) are right coset
representatives for G in I'.

7



8 II. MODULAR SYMBOL ALGORITHMS

Let X¢ = G\'H" denote the quotient space; this may be given the structure of a compact
Riemann surface. Around most points the local parameter is just z, but more care is needed
about the “parabolic points” or cusps, and the “elliptic points” which have non-trivial stabi-
lizers in the I-action. These elliptic points for G (if any) are in the I'-orbits of i (stabilized by
S of order 2), and of p = (1 + 1/=3)/2 (stabilized by T'S of order 3). See the books of Lang
[32], Shimura [55] or Knapp [28] for details of the Riemann surface construction.

Let g denote the genus of the surface X¢; as a real manifold!, X is a g-holed torus. We
will be concerned with the explicit computation of the 1-homology H;(Xqg,Z), which is a
free Z-module of rank 2g. (See Subsection 2.1.2 below for a brief review of homology). This
homology will be expressed in terms of “modular symbols”, defined below. We must also
explain the connection between homology, modular forms, and elliptic curves. First we review
the definition of cusp forms.

The space of cusp forms of weight 2 for G will be denoted by S3(G) . These cusp forms are
holomorphic functions f(z) for z € H which satisfy

(1)  f|M = f for all M € G, where

(e )= (53),

a b
c d

Thus, since (cz +d)~2 = (d/dz)(M(z)) for M = ( ), we have, for all M € G,

F(M(2))d(M(z)) = f(z)dz.

(2)  f(2) behaves nicely at the cusps. The significance of this condition is that, by (1), a cusp
form of weight 2 for G is the pull-back of a (holomorphic) differential on the Riemann surface
G\'H, of which X¢ is the compactification after adding the (finitely many) G-inequivalent
cusps, and we want this differential to be holomorphic on the whole of X. In future we will
identify cusp forms of weight 2 for G with holomorphic differentials on X¢. From standard
Riemann surface theory, we then know that S2(G) is a complex vector space of dimension g.

We can make explicit the condition that f(z)dz is holomorphic at the cusp oo (for the other
cusps, see one of the references on the theory of modular forms). The stabilizer of oo in T is
the infinite cyclic subgroup generated by T'; if h is the least positive integer such that T" € G,
then clearly we have

Stab(co) NG = <Th> :

and every f € S3(G) has a Fourier expansion of the form
(2.1.2) f(z) = Z a,e?™im=/h
n=1

with coefficients a,, € C. The integer h is called the width of the cusp oo; for G = T'o(N), the
case we will be most interested in, we have h = 1, since T' € I'o(NN).

IStrictly speaking, X is not a manifold unless G has no elements of finite order, because of the branching
over the elliptic points. However this will make no difference in practice and we may safely ignore it.
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2.1.2. The duality between cusp forms and homology.

The basis for our method is the explicit computation of the homology (specifically, the
rational 1-homology) of the Riemann surface X¢. This is useful for various reasons. On the
one hand, this gives us a very explicit vector space on which Hecke operators act, which is
isomorphic (or more strictly, dual) to the space of cusp forms. Thus by computing homology
and the Hecke action on it, we are indirectly also able to obtain information about the space of
cusp forms. The Fourier coefficients of the cusp forms are determined by their Hecke eigenvalues
(see Section 2.6), so we obtain these indirectly as eigenvalues of Hecke operators acting on
homology. Secondly, in order to actually compute the elliptic curves attached to these cusp
forms, we need to know their periods, which are obtained by integrating the corresponding
differentials around closed paths on the surface X; since two paths give the same period (for
all forms) if and only if they are homologous (essentially by Cauchy’s Theorem on X¢), it is
clear that to determine the whole period lattice we will also require an explicit knowledge of
the homology of X¢.

The integral homology H;(Xq,Z) is most easily defined geometrically: it is the abelian group
obtained by taking as generators all closed paths on X, and factoring out by the relation that
two closed paths are equivalent (or homologous) if one can be continuously deformed into the
other. If the genus of the surface Xq is g, this gives a free abelian group of rank 2g: roughly
speaking, the surface is a g-holed torus, and there are two generating loops around each hole.
To determine this homology group in practice, one triangulates the surface, so that every path
is homologous to a path along the edges of the triangulation. Now the generators are the
directed edges of the triangulation, modulo relations given by the sum of the edges around
each triangle being homologous to zero. A typical element of Hi(Xg,7Z) will then be given
as a Z-linear combination of these directed edges. In Subsection 2.1.6 below, we will make
this very explicit: there will be one edge of the triangulation for each coset of G in I', and
the triangle relations will be expressed algebraically in terms of the coset action of I'. This
description will entirely algebraicize the situation, in a way which is then easy to implement
on a computer.

For any other ring R, the homology with coefficients in R is obtained simply by tensoring
with R:

H1<XG;R> = H1<XG;Z> Kz R.

Explicitly, one just takes R-linear combinations of the 2¢g generators of the Z-module H, (Xg, Z)
(“extension of scalars”); the result is then an R-module. In what follows we will only need to
take R=Q, R=R, and R=C.

Let H1(Xg,R) = H1(X¢,Z) ®z R, which is a real vector space of dimension 2g. Abstractly,
this space is obtained by formal extension of scalars from H;(Xqg,Z); but we can be more
concrete, if we introduce the notion of modular symbols.

First let a,, 3 € H™ be points equivalent under the action of G, so that 8 = M («) for some
M € G. Any smooth path (for instance, a geodesic path) from « to # in H* projects to a
closed path in the quotient space X, and hence determines an integral homology class in
H,(Xq,Z), which depends only on o and 3 and not on the path chosen, because H" is simply
connected. (In fact, the class depends only on M: see (5) in Proposition 2.1.1 below). We
denote this homology class by the modular symbol {a, 3}, or simply {«, 3} when the group
G is clear from the context.

Conversely, every integral homology class v € H;(X¢g,Z) can be represented by such a
modular symbol {«, 5}. Also, if f € S3(G) then the integral

/727Tif(z)dz = 2mi /j f(2)dz
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is well-defined, since f(z) is holomorphic, and will be denoted either as (v, f) or as I¢(a, ).
The (complex) value of such an integral is called a period of the cusp form f, or of the associated
differential 27if(z)dz.

Let fi, fa, ..., fy be a fixed basis for S2(G), so that the differentials 27if;(2)dz are a basis
for the holomorphic differentials on Xqg. Also let 71, 72, ..., 724 be a fixed Z-basis for the
integral homology H1(Xg,7Z). Then we may form the 2g x g complex period matriz

Q= (wjr) = (v, fx)) -

By standard Riemann surface theory, the 2g rows of €2 are linearly independent over R, and so
their Z-span is a lattice (discrete subgroup) A of rank 2¢g in C9. The quotient J(G) = C9/A is
the Jacobian of X¢; it is an abelian variety of dimension g.

The symbols {c, B} give C-linear functionals S2(G) — C via f — If(c, 3). We may identify
Hy(X¢g,R) with the space of all C-linear functionals on S3(G) as follows: given an element
v € H1(X¢,R), we can write v uniquely in the form

29
j=1

with coefficients ¢; € R. Define (v, f) = Z?i 1 65 (74, f). Then the corresponding functional is
f — (7, f). Conversely, given a functional w: S3(G) — C, the vector (w(f1),w(f2),... ,w(fy)) €
CY may be expressed uniquely as an R-linear combination of the rows of §2, so there exist real
scalars ¢; (1 < j < 2g) such that

w(f) :ch (Vi> )

for all f € S3(G); then w(f) = (v, f) where v = Z?il c;v; € Hi(Xa,R).

In particular, let «, 5 € H™ be arbitrary (not necessarily in the same G-orbit); then the
functional f — If(«, 3) corresponds to a unique element v = Z?il c;v; € Hi(Xag,R), and we
define the modular symbol {a, f}¢ € H1(Xg,R) to be this element. Clearly this definition
agrees with the earlier one in the special case where § = M («) for some M € G; indeed, this
case holds if and only if all ¢; € Z.

By the field of definition of an element v € H;(Xg,R) we mean the field generated over
Q by its coefficients ¢; (with respect to the Z-basis for the integral homology, as above). For
example, 7 is rational (has field of definition Q) if and only if v € H;(Xg, Q).

We now have an R-bilinear pairing

(2.1.3) SQ(G) X Hl(Xg,R) — C

given by
(F2) = () = [ 2mif(z)as

2l
which gives an exact duality between the two spaces on the left if we view So(G) as a real
vector space of dimension 2¢g by restriction of scalars from C to R.

To interpret this as a duality over C, we can give H1(X¢, R) the structure of a vector space
over C (of dimension g) as follows. Given v € Hq(X¢g,R) and ¢ € C, we define ¢y to be that
element of Hi (X, R) which satisfies (¢, f) = (v, cf) for all f € S2(G); in other words, ¢y
is the element corresponding to the functional f +— ¢ (v, f). Now the map (f,~v) — (v, f) is
C-bilinear, and the dual pairing (2.1.3) between homology and cusp forms is an exact duality
over C.
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2.1.3. Real structure.

For suitable groups G we can restrict the duality described above to a duality between real
vector spaces of dimension g. This has important implications for explicit computations, where
a halving of the dimension (from 2g to g) gives a significant saving of effort.

Let J = (_1 0). We say that a subgroup G of I' is of real type if J normalizes G.

0 1
Explicitly, let M = (a ") € G; then 1M J = ( a b
’ c d ’ —c d
type when M € G <= M* € G. This will be true, in particular, for the congruence
subgroups T'g(N) and T'1 (V) of most interest to us.

For z € H set z* = —Z. Then a trivial calculation shows that w = M(2) <= w* = M*(z*);
it follows that, for G of real type, the map z — z* induces a well-defined map on the quotient
X¢, and hence also on homology, via {«, 8} — {a*, 3*}. Clearly this is an R-linear involution
on Hi(Xg,R). Hence we obtain a decomposition into +1 and —1 eigenspaces for *:

) = M~, say, and G is of real

Hy(Xg,R) = Hff (Xg,R) ® Hi (X, R).

REMARK. The involution * also acts on the integral homology H;(X¢,Z), and we may set
HY(Xq,7) = HE (Xq,R)NH (X g, Z). However the direct sum H; (Xq,Z) ® H; (Xa,Z) will
in general have finite index in Hy(X¢,Z).

We now define dually an involution, also denoted *, on the space S3(G) where G is of real
type. For a holomorphic function f on H, we set f*(z) = f(2*). Then f* is also holomorphic
on H, and the following facts are easily verified:

(1) If f has Fourier expansion f(z) = > a,q¢™ (where ¢ = exp(2miz/h) as in (2.1.2) above),
then f*(z) = > @,q". In other words, the Fourier coefficients of f* are the conjugates of those
of f.

(2) For M €T, we have f* | M = (f | M*)*.

(3) (v )= /) forall f, 7.

As a formal consequence of fact (2), we immediately see that, for G of real type, the map
f — f*is an R-linear map from Sy(G) to itself, which is an involution. Denote by So(G)r the
R-subspace of S2(G) fixed by this involution, which by fact (1) consists of those cusp forms
with real Fourier coefficients. Then dimg(S2(G)r) = g, and S3(G)r spans S2(G) over C.

For nonzero f € So(G)r we have (from fact (3)):

<’77 f) ER = v E Hf—(XGvR)u
and also
(v, f) € iR <= v e H; (Xg,R).
Moreover, multiplication by ¢ on Hi(X¢g,R) interchanges the “real” and “pure imaginary”
eigenspaces Hi (X, R) since
YEH < (y./)eR  V[ESH(G)r
> (i, f) €iR  Vf e S (G)r
<~ 1ye Hy.
It follows that dim H;" (Xg,R) = dim H; (Xg,R) = g.

Also, since the period (7, f) is real for v € H; and f € S3(G)g, the duality over C we had
earlier now restricts to a duality over R:

(2.1.4) So(G)r x H{ (Xg,R) — R.
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It follows that the real vector spaces S2(G)gr and H; (Xg,R) of dimension g are dual to each
other. We will exploit this duality (which also respects the action of Hecke and other operators,
see below), as we will compute H;(Xqg,R) explicitly in order to gain information about the
cusp forms in S5(G). Also, this duality is crucial in the definition of modular elliptic curves.

2.1.4. Modular symbol formalism.
We will need the following simple properties of the modular symbols {«, }.

ProposITION 2.1.1. Let o, 8,7 € H*, and let M, My, My € G. Then
1) Aa,a}=0;

) H{a, By +{B,a} =0;

) a8y +{B, 7} + {v,a} =0;

) {MavMﬁ}G:{avﬂ}G;
5) Ao, Ma}e ={8, MB}ea;

) Ao, MiMsale = {a, Miata + {a, Maats;

) Ao, Male € Hi(Xg,Z).

PrROOF. Only (5) and (6) are not quite obvious. For (5), write {a, Ma} = {a, B} + {6, MG} +
{MpB, Ma}, using (2) and (3); now the first and third terms cancel by (4). For (6), we have
{a, M1 Mo} = {a, Mya} + { Mo, My Msa} = {a, Mya} + {a, Moo} using (4). O

COROLLARY 2.1.2. The map M +— {a,Ma}q is a surjective group homomorphism G —
Hy(Xq,Z), which is independent of o € H".

The kernel of this homomorphism contains all commutators and elliptic elements (since the
latter have finite order, and the image is a torsion-free abelian group), and also all parabolic
elements: for if M € G is parabolic, it is a conjugate of T and hence fixes some a € Q U {0},
so M — {a, Ma} = 0. In fact, the kernel is generated by these elements, but we will not prove
that here.

2.1.5. Rational structure and the Manin-Drinfeld Theorem.

We have seen that every element v of Hy(X¢g,Z) has the form {a, Ma} with M € G and
a € H* arbitrary; usually we take o to be a cusp, so that 7 is a path between G-equivalent
cusps. It is not clear in general what is the field of definition of a modular symbol {«, 5} for
which « and (8 are both cusps. However, when G is a congruence subgroup, this is answered
by the Manin-Drinfeld Theorem.

A congruence subgroup of I' is a subgroup G such that membership of G is determined by
means of congruence conditions on the entries of a matrix in I'. A moment’s thought shows that
this is equivalent to the condition that for some positive integer N, G contains the principal
congruence subgroup T'(N), which is defined to be the subgroup of I' consisting of matrices
congruent to the identity modulo N. The least such NN is called the level of G.

The most important congruence subgroups are I'(IV) itself;

FO(N):{<Z 2) el |c=0 (modN)};

and

Fl(N):{<Z Z) el |c=0,a=1 (modN)}.

We can now state the Manin-Drinfeld Theorem.
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THEOREM 2.1.3. (Manin, Drinfeld) Let G be a congruence subgroup of the modular group T'.
Then for all pairs of cusps a, 3 € H* we have

{Oé,ﬁ}c € Hl(X(;,Q).

In particular, the modular symbol {0, 00} is rational; the denominator of this element is
very important in many ways.

Thus the rational homology H;(Xg,Q) is generated by paths between cusps (since it is
generated by the integral homology), and conversely every path between cusps is rational. We
will see later how to use this fact to develop an algorithm for computing the rational homology.

The proof of the Manin-Drinfeld Theorem involves the use of Hecke operators: see the
Remark in Section 2.9 for a sketch of this argument in the case of I'g(N). Using Hecke
operators, we can also prove that the space of cusp forms So(G) has a Q-structure, namely a
basis consisting of forms with rational Fourier coefficients (when G is a congruence subgroup).
This is related to the fact that the modular curve X, which as a Riemann surface is certainly
an algebraic curve over C, can in fact be given the structure of an algebraic curve over the
field of algebraic numbers Q (and even over the Nth cyclotomic field, if G has level N). This
rational structure is crucial to the construction of modular elliptic curves, to ensure that we
obtain elliptic curves defined over Q. For further details, see the books of Lang [32] and Knapp
[28].

The duality between cusp forms and homology does not descend entirely to Q, however,
because even if f € S3(G) has rational Fourier coefficients and v € Hq(Xg,Q), the period
(v, f) will not be rational. Rationality questions for periods of modular forms have been
studied extensively, notably by Manin, but we will not go into this further here.

2.1.6. Triangulations and homology.

From now on we will assume that G is a congruence subgroup, so that the rational homology
of X¢ is precisely the homology generated by paths between cusps.

We will compute the homology of X by first triangulating the upper half-plane H™, using
a tessellation of hyperbolic triangles, and then passing to the quotient. This will give us a very
explicit triangulation of the surface X, using which we can write down explicit generators
and relations for its 1-homology.

For M € T let (M) denote {M(0), M(c0)}, viewed as a path in H™; this is the image
under M of the imaginary axis {0,00}. These geodesic paths form the oriented edges of a
triangulation of H* whose vertices are the cusps QU {oco}. Explicitly, there is an edge from oo
to n for all n € Z, and an edge between rational numbers a/c and b/d such that ad — bc = 1.
The triangles of the triangulation are images under M € I of the basic triangle 7 with vertices
at 0, 1 and oo and edges (I), (T'S), ((T'S)?). We denote by (M) the image of this triangle
under M, which has vertices M (0), M (1) and M (o) and edges (M), (MTS) and (M (TS)?).
This representation of the triangles is unique except for the relation

(M) = (MTS) = (M(TS)?).

Also, triangles (M) and (M S) meet along the edge (M), since (MS) = —(M) (the negative
sign indicating reverse orientation).

We will use the symbol (M) to denote the image of the path (M) in the quotient X, and
also its image in the rational homology. The geometric observations of the previous paragraph
now give us the following 2- and 3-term relations between these symbols:

(M) + (MTS)g + (M(TS)*)a =0

(2.1.5) (M)e + (MS)G =0
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We also clearly have the relations

(2.1.6) (M'M)g = (M)g

for all M’ € G, so we may use as generators of the rational homology the finite set of symbols
(M;)a, (1 <i<e), where as before My, ..., M, are a set of right coset representatives for G
in I'.

Let C(G) be the Q-vector space with basis the formal symbols (M)g for each M in T,
identified by the relations (2.1.6), so that dim(C(G)) =e=[I'": GI.
Let B(G) be the subspace of C(G) spanned by all elements of the form

(M)g + (MS)a,
(M) + (MTS)g + (M(TS)*)c.

Let Cy(G) be the Q-vector space spanned by the G-cusps [a]g for & € Q U {co} (so that
[a]le = [l < [ = M(«) for some M € G). Define the boundary map 0: C(G) — Cy(QG)
by

o((M)g) = [M(0)la = [M(0)]e

and set Z(G) = ker(9). Note that B(G) C Z(G), by a trivial calculation using the facts that
S transposes 0 and oo while T'S cycles 0, 1 and cc.

Finally we define H(G) = Z(G)/B(G). The crucial result, due in this form to Manin [37,
Theorem 1.9], is that this formal construction does in fact give us the rational homology of
Xgi

THEOREM 2.1.4. H(QG) is isomorphic to Hi(Xg,Q), the isomorphism being induced by
(M)g — {M(0), M(c0)}c-

We may thus use the symbol (M)¢ either as an abstract symbol obeying certain relations,
or to denote an element of Hi(X¢g,Q), without confusion. In future, as the subgroup G will be
fixed, we will omit the subscript on these symbols and blur the distinction between (M) as a
path in the upper half-plane and (M)q as representing an element of the rational 1-homology
of X, G-

Note that the form of the relations between the generating symbols (M) does not depend at
all on the specific group G. In particular we do not have to consider explicitly the shape of a
fundamental region for the action of G on H*, or how the edges of such a region are identified.
This represents a major simplification compared with earlier approaches, such as that used by
Tingley [67]. In order to develop this result into an explicit algorithm for computing homology,
we need to have a specific set of right coset representatives for the subgroup G of I', and also
to have a test for G-equivalence of cusps. These are purely algebraic problems which can easily
be solved for arithmetically defined subgroups G such as congruence subgroups. Observe that
from this point on, we do not have to do any geometry at all.

One final remark before we specialize to the case G = I'g(N): every path between cusps
may be expressed as a finite sum of paths of the form (M) with M € I'. Writing {«, 8} =
{0, 8} — {0, a}, it suffices to do this for modular symbols of the form {0, a}. Let

p—2 0 p_

1
2.1.7 p-2 O p1_ 1
( ) g2 1 g1 O

Po _Po P1 P2 Pk
1 o0 a1 ¢ 4

denote the continued fraction convergents of the rational number a. Then, as is well-known,

Djqj—1 — Pj-14; = (—1)71 for -1 <5<k
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Hence
k k

k
218 ey = 3 {EE B ST 0, 3(0) = 30 ()

b
j=—1 %—1 QJ j=—1 —

(=1)7"'p; pj—a
where M; = ((—1)j_1qj C];—l .

2.2 M-symbols and I'g(V)
We now specialize to the case G = I'g(N):

To(N) = {(Z‘ 2) €T |c=0 (mod N)}.
The index of I'g(IV) in I is given (see [55, Proposition 1.43]) by

TN =NJ[(1+p7).
p|N

Define H(N) = H(I'¢(N)) and Xo(N) = Xp,(n). After Theorem 2.1.4, we will identify
H(N) with Hy(Xo(N),Q) by identifying (M) with {M(0), M (c0)}.
The next lemma is used to determine right coset representatives for I'o(N) in T

aj b
i dj

(1)  The right cosets To(N)My and To(N)Msy are equal;

(2) c1dy = cod; (mod N);

(3)  There exists u with ged(u, N) =1 such that ¢1 = ucy and d; = udy (mod N).

PrOOF. We have
-1 a1d2 — b102 *
M1M2 o (Cldg — d102 CLle — b261> ’

PROPOSITION 2.2.1. For j =1,2 let M; = ) e I'. The following are equivalent.

which is in I'g(V) if and only if ¢1ds — dica = 0 (mod N). Thus (1) and (2) are equivalent.
Also, if (1) holds, then from det(M;M; ') = 1, we deduce also that ged(u, N) = 1, where
u = asdy — bacy. Now

Ucy = a2d102 — 526162
= aqdac; — bacacy since dyco = dacq (mod N)
= since asds — bocy =1

and udy = dy similarly. Conversely, if ¢; = ucy and di = udz (mod N) with ged(u, N) = 1,
then the congruence in (2) follows easily. [

On the set of ordered pairs (¢, d) € Z? such that ged(c,d, N) = 1 we now define the relation
~, where

(221) (Cl,dl) ~ (Cg,dg) <= c1do = cod; (mod N)

By Proposition 2.2.1, this is an equivalence relation. The equivalence class of (¢,d) will be
denoted (c : d), and such symbols will be called M-symbols (after Manin, who introduced them
in [37]). The set of these M-symbols modulo N is P1(N) = PY(Z/NZ), the projective line
over the ring of integers modulo N.

Notice that in an M-symbol (c : d), the integers ¢ and d are only determined modulo N,
and that we can always choose them such that ged(c,d) = 1.

Proposition 2.2.1 now implies the following.
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PROPOSITION 2.2.2. There exist bijections

PY(N) «— [I': To(N)] «— {(M) : M € [I': To(N)]}
given by

(2.2.2) (c:d) & M = (Z Z) (M) = {b/d,a/c}

where a,b € Z are chosen so that ad —bc =1. [

Note that a different choice of a,b in (2.2.2) has the effect of multiplying M on the left by a
power of T" which does not change the right coset of M, or the symbol (M), since T" € I'g(IV)
for all N.

The right coset action of I' on [I' : I'o(V)] induces an action on P!(NV):

(2.2.3) (c:d) (p q) = (ep+dr:cq+ds).

ros

In particular, we have

(2.2.4) (c:d)S = (d:—c) and (c:d)T = (c:c+d).
The boundary map d now takes the form

(2.2.5) d: (c:d)— [a/c] —[b/d].

In order to compute ker(d), we must be able to determine when two cusps are I'g(INV)-
equivalent. This is achieved by the following result.

PROPOSITION 2.2.3. For j = 1,2 let aj = p;/q; be cusps written in lowest terms. The
following are equivalent:

(1)  as = M(ay) for some M € T'o(N);

(2) g2 =uq; (mod N) and ups = p; (mod ged(qr, N)), with ged(u, N) = 1.

(3)  s192 = s2qn (mod ged(qiqe, N)), where s; satisfies pjs; =1 (mod ¢;).

PrROOF. (1) = (2): Let M = (]\C;C Z) € I'o(N); Then pa/q2 = (ap1 +bq1)/(Nepr + dqq),
with both fractions in lowest terms. Equating numerators and denominators (up to sign) gives
(2), with u = +d, since ad =1 (mod N).

(2) = (1): Here we use Proposition 2.2.1. Assume (2), and write p1s) — q17] = pass —
goro = 1 with s|,7],82,70 € Z. Then p1s] = 1 (mod ¢;) and pasys = 1 (mod ¢2). Also
ged(qr, N) = ged(ge, N) = Ny, say, since g2 = ug; (mod N). Now upy = p; (mod Ng) implies
usy = s2 (mod Ny), so we may find x € Z such that urq; = us]—s2 (mod N). Set s; = sj—zq1
and r; = 1} —ap;. Then p1s; — @11 = 1 and now us; = s2 (mod N). By Proposition 2.2.1,

there exists M € I'g(IV) such that <§§ Zi) =M (Iq)i Zi), and so M(p1/q1) = p2/q2 as

required.
(1) <= (3): As before, solve the equations p;s; — g;r; = 1 for j = 1,2. Set M; =

Z;J Z]), so that M;(oo) = a;, and MaM; '(ay) = ap. This matrix is in To(N) if and only
S
if g2s1 — q1s2 = 0 (mod N). The most general such matrix is obtained by replacing s; by
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s} = s1+xqi, and it follows that o1 and « are equivalent if and only if we can solve for x € Z
the congruence

0= Q28/1 — @182 = @281 — 152 + £q1q2  (mod N),
which is if and only if the congruence in (3) holds. [

Henceforth, we can therefore assume that H(N) is given explicitly in terms of M-symbols.
Certain symbols will be generators, and each M-symbol (¢ : d) will be expressed as a Q-linear
combination of these generating symbols, by means of the 2-term relations

(2.2.6) (c:d)+(=d:c)=0
and 3-term relations
(2.2.7) (c:d)+(c+d:—c)+(d:—c—d)=0.

These are just the relations (2.1.5) expressed in terms of M-symbols, using (2.2.4).

Implementation. We make a list of inequivalent M-symbols as follows: first, list the symbols
(c:1) for 0 < ¢ < Nj; then the symbols (1:d) for 0 < d < N and ged(d, N) > 1; and finally a
pairwise inequivalent set of symbols (¢ : d) with ¢|N, ¢ # 1, N, ged(e,d) = 1 and ged(d, N) > 1.
(The latter symbols do not arise when N is a prime power.)

To speed up the looking up of M-symbols in the list, we have found it extremely worthwhile
to prepare at the start of the program a collection of lookup tables, containing for example
a table of inverses modulo N. We also used a simple “hashing” system, so that given any
particular symbol (¢ : d) we could quickly determine to which symbol in our standard list it is
equivalent. While this preparation of look-up tables may seem rather trivial, in practice it has
had a dramatic effect, speeding up the mass computation of Hecke eigenvalues a,, (see Section
2.9) by a factor of up to 50.

Using the 2-term relations (2.2.6) we may identify the M-symbols in pairs, up to sign. This
immediately halves the number of generators needed. Then the 3-term relations (2.2.7) are
computed, each M-symbol being replaced by plus or minus one of the current generators, and
the resulting equations solved using integer Gaussian elimination. At the end of this stage we
have a list of r (say) “free generators” from the list of M-symbols, and a table expressing each
of the M-symbols in the list as a QQ-linear combination of the generators. In practice, we store
Z-linear combinations, keeping a common denominator d; separately; however, by judicious
choice of the order of elimination of symbols, in practice this denominator is very frequently 1.

Next we compute the boundary map 6 on each of the free generators, using (2.2.5). We
have a procedure based on Proposition 2.2.3 to test cusp equivalence. Hence we do not have
to compute in advance a complete list of inequivalent cusps. Instead, we keep a cumulative
list: each cusp we come across is checked for equivalence with those in the list already, and is
added to the list if it represents a new equivalence class. We found this simpler to implement
than using a standard set of pairwise inequivalent cusps, as in [37, Corollary 2.6].

We thus compute a matrix with integer entries for the linear map d, and by a second step
of Gaussian elimination can compute a basis for its kernel, which by definition is H(NN). This
basis is stored as a list of 2¢g integer vectors in Z" over a second common denominator ds.
(Here g is the genus of Xo(NV), so that dim H(N) = 2g.) We may arrange (by reducing the
basis suitably) that whenever a linear combination of M-symbols (represented as a vector in
Z") is in ker(d), then its coefficients with respect to the basis are given by (a subset of) 2g
components of these vectors, divided by the cumulative common denominator d;ds.

From now on we will regard elements of H () as being given by vectors in Z29 in this way.
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2.3 Conversion between modular symbols and M-symbols

As noted above, each M-symbol (¢ : d) has a representative with ged(e,d) = 1, and cor-

responds to the right coset representative M = (CCL Z in I', where ad — bc = 1. The
isomorphism of Theorem 2.1.4 thus becomes
(2.3.1) (c:d)— {b/d,a/c}.

The modular symbol on the right of (2.3.1) is independent of the choice of a and b with

ad — bc = 1, since ((1) }) € I'o(N) for all N, and so

{o, Btrovy ={a+k, B+ U}y

for all k, l in Z and «, B in H*.

Conversely each modular symbol {«, 3} with o and 8 in Q U {oc} can be expressed, using
continued fractions, as a sum of modular symbols of the special form (M) = {M(0), M (c0)}
with M € T', hence as a sum of M-symbols (c : d), and finally as a linear combination of the
generating M-symbols.

Using the notation introduced above in Subsection 2.1.6, if g9 = 1, ¢q1, ..., qr are the
denominators of the continued fraction convergents to the rational number « as in (2.1.7), in
terms of M-symbols we have

k

(2.3.2) {0,0} =) ((-1)'q;: qj-1)

Jj=1

since the first two terms in (2.1.8) cancel out. Note that it is only the denominators of the
continued fraction convergents which are used.

2.4 Action of Hecke and other operators

For each prime p not dividing N, the Hecke operator T}, acts on modular symbols {c, 3}
via

R e N Y I

(2.4.1) r mod p
B a+r B+r
_{pavpﬁ}+rmzc)c1p{ p ) D }

This action induces a linear map from H (N) to itself, provided that p does not divide N, which
we again denote by T),.
There are also Hecke operators, which we also denote T),, acting on the space S

(N) =
S2(T'o(NN)) of cusp forms of weight 2 for I'g(IV). First recall that 2 x 2 matrices M = (CCL Z)

with ad — bc > 0 act on functions f(z) on the right via

ad — be az+b
f— f|M where (f‘M)(z) = (cz+d)2 f (cz-—i-i—d> .
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A form of weight 2 for some group G will satisfy f|M = f for all M € G. This action extends
by linearity to an action by formal linear combinations of matrices. The Hecke operator T}, is

defined by
p O = 1 r
[0 0)
=0

158 (247
(f!Tp)(Z)pr(pZHZ—)Zf( )

so that

A standard result is that 7, does act on S2(N), provided that p + N. (There are similar
operators U, for primes p dividing IV, but we will not need these).

These matrix actions on S3(N) and H(N) are compatible, in the sense that they respect
the duality between cusp forms and homology:

{a, B}, fIM) = ({Ma, MB}, f)

since

d({az+b ad — be
cz+d

dz - (cz +d)?2’

and so

8 B ad— be Mp
/ (f|M)(Z)dz:/ ﬁf(M(z))dz:/ f(w)dw.

Thus, in particular,

<{a’ﬁ}7f |Tp> = <Tp{a7ﬁ}af> .

Secondly, for each prime ¢ dividing N there is an involution operator W, acting on H(N) and

S3(N). We recall the definition. Let ¢* be the exact power of ¢ dividing N, and let z,y, z, w
(0%

be any integers satisfying ¢®*zw — (N/q%*)yz = 1. Then the matrix W, = (3\[: quw)

has determinant ¢ and normalizes I'g(/N) (modular scalar matrices). Thus W, induces an

action on H(N) and S3(N), which is an involution since W2 € To(N) (modulo scalars), and is

independent of the values z,y, 2z, w chosen. The product of all the W, for ¢ dividing N is the

Fricke involution Wy, coming from the transformation z — —1/Nz, with matrix ( ](\)[ _01 )

The operators T}, for primes p not dividing N and W, for primes ¢ dividing N together
generate a commutative (Q-algebra, called the Hecke algebra and denoted T. Moreover, each
operator is self-adjoint with respect to the so-called Petersson inner product on S5(NV), and so
there exist bases for So(IN) consisting of simultaneous eigenforms for all the T}, and W, with
real eigenvalues. (See [1, Theorem 2] or [32, Corollary 2 to Theorem 4.2].) Similarly, the action
of T on H(N) ® R can also be diagonalized.

Finally, recall from Subsection 2.1.3 that the transformation z — z* = —2z on H commutes
with the action of T'o(/N) and hence also induces an involution on H(N) which we denote x.
This operator commutes with all the T, and W, which thus preserve the eigenspaces H*(N)
and H~(N). Moreover, HT(N) and H~ (N) are isomorphic as modules for the Hecke algebra
T. It follows that in order to compute eigenvalues of Hecke operators, we can restrict our
attention to H*(N). This has some practical significance, as we elaborate in the next section.
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Implementation. To compute the matrices giving the action of each of these operators on
H(N) we may proceed as follows. We convert each of the generating M-symbols to a modular
symbol as in Section 2.3. To compute a T},, we apply (2.4.1) to each, reconvert each term on the
right of (2.4.1) to a sum of M-symbols using (2.3.2), and hence express it as a Z29-vector giving
it as a linear combination of the generating M-symbols. This gives one column of the 2g x 2g
matrix. Similarly with W, and Wy. Computing the matrix of * is easier, as we can work
directly with the M-symbols, on which * acts via (¢ : d) — (—c: d). These integer matrices are
in fact dids times the actual operator matrices (where d; and dy are the denominators which
may have arisen earlier as a result of the Gaussian elimination steps). Obviously this must
be taken into account when we look for eigenvalues later; however, for simplicity of exposition
we will assume from now on that this denominator dids is 1. We use the convention that the
space is represented by column vectors, with operator matrices acting on the left.

Heilbronn matrices. There is an alternative approach to computing the 77, based on so-
called Heilbronn matrices of level p. These were described by Mazur in [38], and their applica-
tion to give an algorithm for computing the Hecke action on homology in terms of M-symbols
was given by Merel in his paper [42]. We will describe our own version of this method, which
is easy to implement; our approach differs slightly from, and is a little simpler than, that of
Merel’s paper [42].

Since with this method one acts directly on the M-symbols, one avoids the conversion to
and from modular symbols. This makes the method faster in practice, particularly as we may
precompute the Heilbronn matrices for all the small primes p (say p < 30) for which we need
to compute the matrix of T}, in order to split off one-dimensional eigenspaces from H(N).

From the definition in (2.4.1), the action of T, is expressed as the sum of the actions on
modular symbols, on the left, of p+1 matrices of determinant p, namely (g (1)) and (é ;)
for » modulo p. The following result shows how each of these acts on M-symbols directly, via
an action on the right.

PROPOSITION 2.4.1. Let p be a prime not dividing N and (c : d) an M-symbol for N. The
action on (c: d) of the p+ 1 matrices appearing in (2.4.1) is as follows.

(1)
(& a-om-rio(s 2).

(2) Forr € Z, let M; € T for 0 < i < k be the matrices constructed from the continued
fraction convergents to r/p as in (2.1.8), so that

T
My(0) = 0o, M;(0) = My(co), ..., Mpu(0)=Mj_1(c0), Mj(co) =
Set M! = (g _17”) M;S for 0 <i < k. Then

((1) ;>(c:d):§:(c;d)M;.

PROOF. In each case we first solve ad — bc = 1 for integers a,b and apply the appropriate
matrix to the modular symbol {b/d,a/c}.
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(1) Since pt N we may assume by the Chinese Remainder Theorem that ¢ is a multiple of p,

sy e= e Now it = (5 ) < (5 0) (2 2) (5 0) erana
(o 0)=temn=ca—on={Z50= (1 1) {20}

(2) By construction of the M;, we have
k k .
>o(04) = Y- (040, 1)) = {0, .
i=0 i=0

Given an M-symbol (¢ : d), we will show how to choose a and b which satisfy ad — bc = 1 and

=G ()6 y) er
éwMiS):M{%’“}:(M(é ;)):(G} ;) (Z Z)):(é ;) {%%}

Now we show that suitable values of a and b exist. Replacing d by d + N if necessary, we
may assume that c¢r Z d (mod p). Given an arbitrary solution to ad — be = 1, solve for ¢ the

congruence
(cr—d)t=(b+dr)—r(a+cr) (mod p).

Replacing (a,b) by (a + ct,b + dt) we then still have ad — bc = 1 and now

(b+dr) —r(a+cr)=pb

/
with & € Z, and a simple calculation shows that M = (a ;CTC g E rc) has the desired
properties.
Since the bottom row of MM;S is (pc: d —rc)M;S = (¢ : d) <]5 _1T) M;S = (c: d)M],

the result follows. O

Hence for each prime p there exists a finite set R, of matrices in M3(Z) with determinant p,
called the Heilbronn matrices of level p, such that the Hecke operator T}, acts on M-symbols

(c:d)— Z (c:d)M.

MER,
The usual definition of the set R, (for an odd prime p not dividing V) is as follows: R, is the
set of matrices (;, ;f/g) € M5(Z) with determinant xz’ +yy’ = p, and either (i) z > |y| > 0,

' > |y'| >0, and yy' > 0; or (ii) y = 0, and |y’| < 2’/2; or (iii) ¥’ = 0, and |y| < x/2. This
description, while closer to the original definition by Heilbronn and used by both Mazur and
Merel, is not so easy to use in practice. One can show that the matrices in this definition may
be constructed using the continued fraction expansions of r/p for » modulo p, and this leads
to the presentation we have given here.
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For example, for the first few primes we have
- 0 2 0 2 1 10
- 2/°\0 1)°\0 1)’\1 2 ’
0 3 1 10 3 0 3 -1 -1 0
3/’\0 1/)’\1 3)’\0 1/)’\0 1 /)’\ 1 -3 ’
0 5 2 2 1 10 5 1 10 5 0
5/°\0 1/)’\1 3/)’\3 5/)’\0 1/)’\1 5/)’\0 1)’
5 —1 -1 0 5 —2 -2 1 1 0
o 1 )’\1 =5)’\0 1 )’\1 =3)’\-3 5 ’
To compute the complete set R, for any prime p we may use the following algorithm.
Effectively, we are computing the continued fraction expansions of each rational r/p with

denominator p, and recording the matrices denoted M. in the preceding Proposition. In line 3
of the algorithm, the loop is over a complete set of residues r modulo p, such as —p/2 < r < p/2.

S = O

Ry

R3
and

Rs

(
(
(

S =

Algorithm for computing Heilbronn matrices

INPUT: p (a prime).
OUTPUT: the Heilbronn matrices of level p.
1. BEGIN
2. QOUTPUT (1 0 ;
0 p
3. FOR r MODULO p DO
4. BEGIN
5. xl=p; x2=-r; y1=0; y2=1; a=-p; b=r;
6 OUTPUT (X1 XQ);
yl y2
7 WHILE b#0 DO
8 BEGIN
9. g=nearest_integer(a/b);
10. c=a-b*q; a=-b; b=c;
11. x3=q*x2-x1; x1=x2; x2=x3;
12. y3=q*xy2-yl; yl=y2; y2=y3;
13. ourpur (X1 *2
yl y2
14. END
15. END
16. END

For example, take p = 7 and » = 3. The continued fraction convergents linking oo to 3/7
are

| w

1
0. —
00, 727

with associated unimodular matrices

0 1 1 0 -3 1
MO_(—l O), M1—<2 1), and M2—<_7 2)
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The matrices M/ constructed in Proposition 2.4.1 are then

Mg):(g _13> M{:(_lg :;) and Mg:@ g)

These are (up to sign) the same as the matrices output by lines 3—14 of the algorithm when
p="7andr=3.

2.5 Working in H*(N)

Recall that HT(N) is the +1 eigenspace for the operator *:z — —Z acting on H(N) =
H{(Xo(N),Q). We would like to work in HT(N) to compute the action of the Hecke algebra
T, since there are obvious savings in computation time and storage space achieved by working
in a space with half the dimension of H(N). To do this, note that H*(N) = H(N)/H~(N)
(as vector spaces). We can thus compute H*(N) in terms of M-symbols by including extra
2-term relations

(2.5.1) (c:d)=(—c:d)
between the M-symbols. We must also identify the cusp equivalence classes [a] and [a*] = [—¢q/]
for a € Q.

Effectively we are replacing I'g(N) by the larger group

m = {(CCL Z) |a,b,c,d € Z,ad — bc = £1,¢ =0 (mod N)} = (T'o(N), J)

which still acts discretely on H* via

O it —be = 41,
a b cz+d
c d) 7 azZ+b
— if ad — bc = —1;
cz+d

in particular, J = (_01 (1)) sends z to z* = —Z, giving the action of *x. Hence, in effect,
1% = ([o(N),*), and H(N) = Hl(F/o?]V)\H*,Q). (A similar procedure is possible for
other subgroups G of T of real type.)

As a further saving, use of the extra relation (2.5.1) enables us to cut out half the 3-term
relations (2.2.7), as follows. Using (2.5.1) on the second and third terms of (2.2.7) yields

(c:d)+(c+d:c)+(d:c+d)=0.

Also, (2.5.1) and (2.2.6) together imply

Hence relation (2.2.7) for (d : ¢) now gives the same information as (2.2.7) for (c : d), and
can be omitted. Geometrically, the triangles which determine the 3-term relations have been
identified in pairs by the action of the larger group, since the effect of the transformation J is
to fold the upper half-plane in two along the imaginary half-axis.
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Implementation. We modify the procedure of Section 2.2 in three ways: taking the 2-term
relations (2.2.6) and (2.5.1) together we may identify M-symbols in sets of four (instead of
two), up to sign, at the first stage of elimination. Then in the second stage we have only half
the number of 3-term relations to consider, as noted above, and each can be expressed in terms
of half the number of current generators: so we have half the number of equations in half the
number of variables to solve, giving a four-fold saving in space and time. Finally, in computing
ker(d) we must use a wider notion of cusp equivalence, since for o, f € Q,

a=L0 (modIy(N)) <= a==x5 (mody(V)).

Working in H1(N) is sufficient for the first stage of our algorithm, when we want to find
certain cusp forms in Se(N), since HT (N)®gC = S3(N), both as vector spaces and as modules
for the Hecke algebra T. Hence eigenvectors in H () correspond to eigenforms in Sy (V).
Since these eigenforms (or, more accurately, newforms—see the next section) have Fourier
expansions in which the Fourier coefficients are determined by their Hecke eigenvalues, we can
determine these coefficients indirectly by computing explicitly the action of the Hecke algebra
T on HT(N).

2.6 Modular forms and modular elliptic curves

Let S3(N) denote, as above, the space of cusp forms of weight 2 on I'g(N). Forms f(z) €
S2(N') have Fourier expansions of the form

f(z) =) aln, f)e*™=,
n=1

with coefficients a(n, f) € C. The corresponding differentials 27if(z)dz are (the pullbacks
of) holomorphic differentials on the Riemann surface Xo(N). Hence S2(N) is a complex
vector space of dimension g, where g is the genus of X((N), and 2¢g = dim H (V). Moreover,
S2(N) = S3(N)g ®g C where S3(N)g is the subset of S3(V) consisting of forms f(z) with
rational Fourier coefficients a(n, f). This rational structure on S3(N) is a consequence of the
deep fact that Xo(N) may be viewed as the complex points of an algebraic curve defined over
Q; it may also be proved using Hecke operators and the duality with homology.

We are interested here in “rational newforms” f: that is, forms f which have rational Fourier
coefficients a(n, f), are simultaneous eigenforms for all the Hecke operators, and which are also
“newforms” in the sense of Atkin and Lehner (see [1]). We briefly recall the definition.

For each proper divisor M of N and each g € S3(M), the forms g(Dz) for divisors D of N/M
are in So(N). The subspace S$'4(N) of So(N) spanned by all such forms is called the space of
oldforms. There is also an inner product on So(IN), called the Petersson inner product, with
respect to which the Hecke operators are self-adjoint (Hermitian). Define S3°V(N) to be the
orthogonal complement in So(N) of SS'4(N) with respect to the Petersson inner product. The
restriction of the Hecke algebra T to S5°%(NN) is semisimple; S5V () has a basis consisting of
simultaneous eigenforms, and these eigenforms are called newforms.

In general, newforms come in conjugate sets of d > 1 forms with eigenvalues generating an
algebraic number field of degree d. The periods of such a set of conjugates {f} form a lattice
A of rank 2d in C%, and hence an abelian variety A = C?/A, which is defined over Q. Here
we will only be interested in the case d = 1, where the Hecke eigenvalues and hence Fourier
coefficients of f are rational (in fact integers, being eigenvalues of integral matrices and hence
algebraic integers). We will call such a form f a rational newform. Thus a rational newform
f has an associated period lattice A ¢:

Ap={{e,B}, f) |a,B€H" =3 (mod ['y(N))}



2.7 SPLITTING OFF ONE-DIMENSIONAL EIGENSPACES 25

which is a discrete rank 2 subgroup of C. Then E; = C/Ay is an elliptic curve, the modular
elliptic curve attached to f. Moreover it is known that E¢ is defined over Q, has conductor
N, and has L-series L(E¢,s) =) a(n, f)n™° where f =) a(n, f) exp(2minz). (See [64], [55],
and [7] for proofs of these statements, and [28] for a fuller discussion.)

The Fourier coefficients a(n, f) of a newform f(z) = > a(n, f)exp(2minz) are obtained

from the Hecke eigenvalues of f as follows (see [1]). Firstly, for a newform f we always have
a(1l, f) # 0, and we normalize so that a(1, f) = 1. Then:

If p is a prime not dividing N, and f |1}, = a,f, then a(p, f) = ap.
If ¢ is a prime dividing N, and f |W, = ¢,f with ¢, = £1, then
—€q if q2 'f N7

(2.6.1) a(q, f) = { 0 it 2|

For prime powers, we have the recurrence relation

(2.6.2) a(™t, ) =alp, fla@", ) = dn(ppalp™™ ", f)  (r>=1)
where 5 1 i1V,
n(p) = { 0 if p|N.

Finally, for composite indices we have multiplicativity: a(mn, f) = a(m, f)a(n, f) when m
and n are relatively prime.

With this background we may now make more precise what we mean by “computing the
modular elliptic curves of conductor N”. We do the following;:

(1) Compute the space H(N) in terms of M-symbols and their relations.

(2) Compute the action of sufficient Hecke operators W, and T}, on H*(N) to determine
the one-dimensional eigenspaces with rational eigenvalues; by duality, we now know
the rational newforms in S2 (V). Oldforms can be recognized, since in any systematic
computation we will have already found them at some lower level M dividing .

(3) Find a Z-basis for the period lattice Ay, for each rational newform f, computing the
generating periods to high precision.

(4) Given a Z-basis for A, compute the coefficients of an equation for the attached elliptic
curve Fy.

(5) As well as the period lattice of the curves Es, we can also compute the rational number
L(E¢,1)/QUEy) (exactly) and the real value L(Ef,1) (approximately). Also, when
L(E¢,1) = 0 we can also determine the order of vanishing of L(Ey,s) at s = 1,
giving the analytic rank r of E;, and the value of the derivative L") (FE, 1), which is
important in view of the Birch—Swinnerton-Dyer conjecture; we will discuss the latter
computations in a later section.

This is the program which we wish to carry out, and have in fact carried out for all N < 5077.
In sections 2.7-2.14 we discuss steps (2)—(5) in more detail.

2.7 Splitting off one-dimensional eigenspaces

Having computed a representation of H*(N) in terms of M-symbols, we now wish to identify
the one-dimensional eigenspaces with rational integer eigenvalues for all the Hecke operators.
For each eigenspace we will later need a dual basis vector in order to compute the projection
of an arbitrary vector onto the eigenspace. Explicitly, we identify H*(N) with Q¢ via our
M-symbol basis, representing each cycle as a column vector; each operator matrix acts on the
left. Elements of the dual space will then be represented as row vectors. Projection onto a
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one-dimensional eigenspace is then achieved by multiplying on the left by the appropriate row
vector, which is defined up to scalar multiple by its being a simultaneous left eigenvector of
each matrix. In our implementation, we do not distinguish between row and column vectors,
and our linear algebra routines are designed to give right eigenvectors, so in practice all we do
is find simultaneous eigenvectors for the transposes of the operator matrices. Projection (of
a column vector) is then achieved by taking the dot product with the appropriate dual (row)
vector. These remarks seem fairly trivial, but we need to be completely explicit if we are to
implement these ideas successfully.

We wish to compute as few T}, as possible at this stage, to save time; we will have a much
faster way of computing many Hecke eigenvalues later (see Section 2.9), once the eigenspaces
have been found.

We also need to identify “oldclasses”: these are also common eigenspaces for all the T),
(though not for all the W, see below) but have dimension greater than 1. In order to recognize
and discard oldforms as early as possible, we can create a cumulative database of the number
of newforms and the first few Hecke eigenvalues (including all W-eigenvalues) of each newform
at each level. If we proceed systematically through the levels N in order, we will thus always
know about the newforms at levels M dividing N but less than N.

An alternative approach might be possible here, in which we use further operators at level N,
such as the Uy of [1], to eliminate all but newforms. We have not devised such a scheme which
works in full generality; the advantage would be that each level could then be treated in isola-
tion, independently of lower levels, but this was not necessary in our systematic investigations
which resulted in the tables in this volume.

Before starting to split H T (NN) we have the following data: the number of rational newforms
g in Sy(M) for proper divisors M of N; and for each such g, the W-eigenvalue ¢, for all primes ¢
dividing M and the T -eigenvalue a,, for several primes p not dividing N. Each form g generates
an “oldclass” in S3(INV): a subspace of forms which have the same eigenvalue a,, for all primes p
not dividing N. A basis for this oldclass consists of the forms g(Dz) for all positive divisors D
of N/M; hence its dimension is d(N/M), the number of positive divisors of N/M. The forms
in the oldclass do not necessarily, however, have the same W -eigenvalue for primes ¢ dividing
N. We now proceed to find these eigenvalues explicitly.

To simplify the following exposition, observe that the W, operators may be defined for
¢z Y
Nz q%w of
determinant ¢® where ¢* || N; for if in fact ¢ { N, then a = 0, so that W, € I'o(N) and
fIW, = f for all f € So(N). Thus in such a case, W, reduces to the identity.

We first consider the case where N/M is a prime power.

all primes g, not just those dividing the level IV, using the matrices W, =

LEMMA 2.7.1. Let g be a newform in So(M), let | be a prime with g|W; = eg, and let
N = ¢° M where q is also prime. Thus g determines an oldclass of dimension 8+ 1, spanned
by the forms gi(2) = ¢'g(q'z) € So(N), for 0 <i < .
(1) Ifl#q, then g;|W; = €g; for all i;
(2) Ifl=gq, then ¢g; |W, = egp_i.

In case (1), all members of the oldclass have the same W,-eigenvalue € as g, so € has
multiplicity B+1 (as an eigenvalue of Wi acting on this oldclass). In case (2), the e-eigenspace
for Wy has dimension [(2+4 3)/2] (that is, $(3+ 1) if B is odd, or (8 + 2) if B is even).

PROOF. Suppose I* || M. In case (1) we have [* || N also. Let WZ(N) = (lNi loz‘/w)’ with

det VVZ(N) = [*. Then for 0 < i < 3 we have

¢ 0 (N) _ o) (¢F 0
(5 1) m=m (47)
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where WI(M) = ( Mlqﬁx_lz l%‘g)) also has determinant {“. Hence
g W Zg|(7 0w
S 0 1 t

_ o (¢ 0

= (1)
_ ¢ 0\ _
o )

a+p
w = 1. w a+p (N) g "z Y .
In case (2), when ¢ I, we have ¢ || N. Let W' = ( N qo‘+f8w> with

det Wq(N) = ¢®*tP. Then for 0 < i < 3 we have

¢ 0\ o) _ oy (47700
(4 3)we—wpo (17

“Tr oy
Mz qa+,6’fiw
(N)

minant ¢%*. Hence g; ‘Wq(N) = egp—; as required. As a basis for the e-eigenspace for Wy

(modulo scalar matrices, which act trivially), where Wq(M) = ( ) has deter-

we may take the forms g; + gs—; for 0 < i < /2, and for the (—¢)-eigenspace, g; — gg—; for
0 <i < (/2. Hence the multiplicities are as stated. [

Using this result we can easily extend to the general case by induction on the number of
prime divisors of N/M, giving the following result.

PROPOSITION 2.7.2. Let g be a newform in So(M) where M | N. Write N/M = H,’;Zl qiﬂi, 50
that the oldclass in So(N) coming from g has dimension d(N/M) = [](1 + ;).

(1)  For every prime q not dividing N/M, the Wy-eigenvalue of every form in the oldclass is
the same as that of g.

(2)  Suppose g|W,, =¢eig for1 <i<k. Let

LBi+1) if B is odd,
(2.7.1) ni = %(ﬁz +2) if B; is even and €; = +1,

%ﬁi if B; is even and g; = —1,
and put n; =1+ B; —n;, so that [[(n] +n;) =T[(B; +1) = d(N/M). If (61,69, ...,06k) is
any k-vector with each §; = %, then the subspace of oldforms in the oldclass on which Wy, has
6.
o0

eigenvalue ; for 1 <1 < k has dimension Hle n;

Hence we are able to compute from our database a complete set of “sub-oldclasses” —that is,
subspaces of oldclasses which have the same eigenvalues for all the operators T} and W,—with
their dimensions.

Having thus computed a list of sub-oldclasses with their dimensions, W-eigenvalues and
first few T)-eigenvalues, we now proceed to find “new” one-dimensional rational eigenspaces
of HT(N) as follows. We consider each prime in turn, starting with the ¢ which divide N,
then moving on to the p which do not divide N, computing W, or 7T, as appropriate. For
each, we consider all possible integer eigenvalues (¢, = £1 for Wy, and a, with |a,| < 2\/p
for 7)) and restrict all subsequent operations to each nonzero eigenspace in turn. At any
given stage we have a subspace of H*(N) on which all the operators so far considered act as
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scalars. Comparing with the oldform data we can tell whether this subspace consists entirely
of oldforms: if so, we discard it. If not, and the subspace is one-dimensional, we have found
a rational one-dimensional eigenspace corresponding to a newform. We then record a basis
vector and a list of the (prime—eigenvalue) pairs needed to isolate this subspace. Otherwise we
proceed recursively to the next prime and the next operator.

At the end of this stage of the computation in H T (N), we have found the number of rational
one-dimensional “new” eigenspaces in H' (), or equivalently, the number of rational newforms
in So(NN). For each we have a dual (integer) eigenvector, which we will use to compute a large
number of Hecke eigenvalues in Section 2.9.

Implementation. In preparation for splitting off the one-dimensional eigenspaces of H+(N)
we compute the matrices of all the W-operators acting on H*(N), and store their transposes.
We also collect from the “oldform database” information about the newforms at all levels M
dividing and less than N. For each oldclass we must compute the eigenvalue multiplicities for
each W, using the formula (2.7.1) above.

The splitting itself is done recursively. At the general stage, at depth n, we have the following
data:

e a particular subspace S of HT(N) (initially the whole of HT(N));

e a list of n primes (starting with the ¢ dividing N, and initially empty);

e a list of eigenvalues, one for each of the primes in the list.
Here S is precisely the subspace of HT(N) on which the first n operators have the given
eigenvalues.

Given this data, the recursive procedure does the following:

(1) check whether S consists entirely of oldforms, by comparing the list of eigenvalues
which determine S with those of each “suboldclass”; if so, terminate this branch;

(2) otherwise, if dim.S = 1 then store the (single) basis vector for S in a cumulative list
and terminate;

(3) otherwise, take the next operator T in sequence (computing and storing its matrix if
it has not been used before) and compute the matrix T of its restriction to S; for
all possible eigenvalues a of T, compute the kernel of T's — al; if non-trivial, pass
the accumulated data, together with this kernel as a new working subspace, to the
procedure at the next depth.

This procedure has been found to work extremely efficiently in practice. The only practical
difficulty is the possibility of overflow during Gaussian elimination; it was found that the early
use of W-operators was an efficient way of avoiding this for as long as possible. However, for
larger values of N we were forced to abandon single-precision integer arithmetic for the linear
algebra at this stage, and instead use a modular method, working in Z/PZ for some large
prime P, instead of in Z. Alternatively, one could use multiprecision arithmetic, but this is
likely to be slower.

In all subsequent calculations in H+(N), we will be interested only in the one-dimension-
al eigenspaces corresponding to rational newforms. To enhance the speed we now change
the main M-symbol lookup tables: each vector in the table is replaced by the vector of its
projections onto each of the subspaces, computed simply by taking the dot product with each
dual eigenvector.

For each one-dimensional rational eigenspace found, we also compute the eigenvalue ¢ of
the Fricke involution Wy, which is the product of all the W, involutions. The significance of
this is that w = —e is the sign of the functional equation of the L-series L(f,s) attached to
the newform f (see [64] and the next section).
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2.8 L(f,s) and the evaluation of L(f,1)/Q(f)

Attached to each newform f in So(N) there is an L-function L(f,s), defined as follows via
Mellin transform:

(28.1) L) = T [ i)

—
This gives an entire function of the complex variable s. Substitute the Fourier expansion
f(z) =>27° a(n, f)exp(2minz) and integrate term by term; provided that Re(s) > 3/2 (for
convergence), we obtain a representation of L(f,s) as a Dirichlet series:

(2.8.2) L(f.s) =Y Q(Z;f).

This L-function is one of the key links between the newform f and the modular elliptic curve
E¢ defined in Section 2.6 by its periods. First of all, the multiplicative relations satisfied by
the coefficients a(n, f), given above in Section 2.6, are equivalent to the statement that the
Dirichlet series in (2.8.2) has an Euler product expansion:

(2.8.3) i o

=TI —at, P> +p2) " T] @ —alp. o) "

pIN p|N

This is exactly the form of the L-function of an elliptic curve of conductor N defined over Q,
and in fact the fundamental result (see [7], though partial results were known considerably
earlier) is that

(2.8.4) L(f,s) = L(Ey, s).

Thus (2.8.1) provides an analytic continuation to the entire plane of the L-function attached
to the curve Ey, such as is conjectured to exist for all elliptic curves E defined over Q.

Instead of the function L(f,s) defined above by (2.8.1), it is sometimes convenient to use
the variant with extra ‘infinite’ Euler factors:

(2:8.5) A(J.s) = N2 L)L) = [ VR,

Thus for Re(s) > 3/2 we have

A(f,s) = N*/%(2m)~ i

The functions L(f,s) and A(f,s) also satisfy functional equations relating their values at
s and 2 — s. For since f is an eigenform for the Hecke algebra T, it is in particular an
eigenform for the Fricke involution Wy. Suppose that f|Wxy = enf with ey = +1: that
is, f(—=1/(Nz)) = enNz2f(z). With z = iy/V/N this gives f(i/yv'N) = —eny>f(iy/VN).
Hence the substitution of 1/y for y in (2.8.5) yields the functional equation

(2.8.6) A(f,2—s) = —enA(f,s)

(note the change of sign). In view of (2.8.4), this gives a functional equation for L(Ey, s) too,
of the form conjectured for all elliptic curves over Q.
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From (2.8.6), we deduce that L(f,1) = A(f,1) = 0 when ey = +1; more generally, L(f,s)
has a zero of odd order when ey = +1, and a zero of even order (or no zero) when ey = —1.
The significance of this is that the Birch—-Swinnerton-Dyer conjectures predict that the order
of the zero of L(FE, s) is equal to the rank of F(Q), for an elliptic curve E defined over Q. Thus
we will be able to compare this order with the rank of the modular curves E¢, once we have
found their equations explicitly.

The Birch—Swinnerton-Dyer conjectures also predict the value of L(E,1)/Q(FE), which in
the case of our modular curve E = Ey is L(f,1)/Q(f), where Q(f) is a certain period of f.
We now discuss the relationship between L(f, 1) and the periods of f (by which we will always
mean the periods of the differential 27if(2)dz).

Substituting s = 1 into the Mellin transform formula (2.8.1), we obtain

(2.8.7) L(f1) = —2ri /Owo f(2)dz = — ({0,060}, f) .

The modular symbol {0, 00} is in the rational homology, so that L(f,1) is a rational multiple
of some period of f. To find the rational factor, we use the trick of “closing the path” (see [38,
page 286] or [37]).

For each prime p not dividing N we have, by (2.4.1),

Tp({o? OO}) = {07 OO} + Z{k/p, OO} = (1 +p){07 OO} + Z{k/pa 0},
k=0 k=0

and hence
(2.8.8) (14+p—1T,)-{0,00} = i{o, k/p}.
k=0

Let a, be the T)-eigenvalue of f, so that T},f = a,f. Integrating the differential 27if(z)dz
along both sides of (2.8.8) gives

p—1

(2.8.9) (1+p—ap) - ({0,00}, f) =D ({0.k/p}. f).

k=0

Since p does not divide N, each modular symbol {0, k/p} on the right of (2.8.9) is integral:
that is, in H1(Xo(N),Z). Thus the right-hand side of (2.8.9) is a period of f. It is even a real
period, since

<{07 ]{J/p}, f> = <{07 —ki/p}, f> = <{07 (p - ]{?)/p}, f> :

Let Qo(f) denote the least positive real period of f, and set

(f) = { 2Q0(f) if the period lattice of f is rectangular,

Qo(f) otherwise.

Thus Q(f)/Q(f) is the number of components of the real locus of the elliptic curve Ef. Also
note that in each case, Q(f) is twice the least real part of a period of f. This is useful since, as
we are working in H1(N), we can only (at this stage) determine the projection of the period
lattice Ay onto the real axis.
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In both cases, (2.8.9) becomes

(2.8.10) L(f,1) _ _ n(pf)

Qf)  20+p—ap)’
where n(p, f) is an integer. Note that 1 + p — a,, is non-zero, since, by well-known estimates,
lap| < 24/D.

Formula (2.8.10) is significant in several ways. On the one hand, let E; be the modular
elliptic curve attached to f as above. Then L(Ef,1) = L(f,1), and Qo(f) = Qo(E}), the least
positive real period of Ef. Thus, once we know a, and n(p, f) for a single prime p, we can
evaluate the rational number L(Ef,1)/Q(Ey), whose value is predicted by the Birch-Swinner-
ton-Dyer conjecture for E¢. In particular, we should have L(f,1) = 0 if and only if F((Q) is
infinite. In the tables we give the value of L(f,1)/Q(f) for each rational newform f computed,
and observe that the value is consistent with the Birch-Swinnerton-Dyer conjecture in each
case.

Secondly, having computed the right-hand side of (2.8.10) for a single prime p, we may (if
L(f,1) # 0) use the fact that n(p, f)/(14+p—a,) is independent of p to compute the eigenvalue
a, quickly for other p, by computing n(p, f). This is discussed in the next section.

2.9 Computing Fourier coefficients

For each one-dimensional rational eigenspace of H T (NN) we will need to know many Fourier
coefficients a(n, f) of the corresponding newform f(z) = > a(n, f)exp(2minz). These are
obtained from the Hecke eigenvalues by the recurrence formulae given in Section 2.6. We
already have the eigenvalue ¢, of each W, operator, and at least one eigenvalue a,, for the
smallest prime pg not dividing N, which we recorded as we found the one-dimensional eigen-
spaces earlier.

It remains to compute a large number of the Hecke eigenvalues a,, for primes p not dividing
N. If L(f,1) # 0 then the most efficient method is to use (2.8.10). First we compute n(po, f)
from the right-hand side of (2.8.8). (This integer is nonzero if and only if L(f,1) # 0, by
(2.8.10)). For other primes p we then have

np, f)  n(po, f)

20+p—ap) 2(14po—ap,)’

and hence
n(p, £)(1+po — ap,)

n(p07 f)

The integers n(p, f) may be computed by expressing the right-hand side of (2.8.8) as a
linear combination of the M-symbols which generate H+(N), and then projecting onto the
one-dimensional subspace corresponding to f: here we take the dot product with the dual
eigenvector computed previously, normalized so that its components are relatively prime inte-
gers. The integer this produces is then actually too big by a scaling factor dyds, where d; and
ds are the denominators defined in Section 2.2; this factor can be ignored at this stage, where
it cancels out in the computation of a,, but must be included when we need the actual ratio
L(f,1)/Q(f) from (2.8.10).

If L(f,1) = 0 then a variation of this method may be used. For a € Q we have

ap=1+p—

(2.9.1) k=0

= {O,pOé} + ki::o {07 - ;— k} - (p+ 1){0,(1}
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If p does not divide N and o = n/d with ged(d, N) = 1 then [0] = [pa] = [(a + k)/p] for all
k, so that the right-hand side of (2.9.1) lies in the integral homology H;(Xo(V),Z). Hence we
can express it as an integral linear combination of the generating M-symbols. Projecting onto
the rational one-dimensional subspace of H*(N) corresponding to f, we find that

(2.9.2) Re ({a, 00}, f) _ n(a,p, f)

Q(f) 2(14p—ap)

for some integer n(c, p, f), where the left-hand side is independent of p. Thus we can compute
each a, from n(a,p, f), given a,, and n(a, po, f), provided that the latter in nonzero.

It is slightly simpler to use a modular symbol of the form {0,a} here instead of {a, o0},
since (for suitable ) this will be integral. However the formula analogous to (2.9.1) has more
terms of the form {0, 5} on the right, so this is slower in practice.

REMARK. Equation (2.9.1) and the remarks following it show that the modular symbol {«a, 0o}
lies in the rational homology H1(Xo(NV), Q) provided that the denominator of « is coprime to
N. More generally, for an arbitrary rational number «, the right-hand side of (2.9.1) will be
integral provided that p =1 (mod N); this proves that {a,c0} € H1(Xo(N),Q) in all cases,
which is the Manin-Drinfeld Theorem (Theorem 2.1.3) for I'o(N).

Implementation. In practice we only use the first method if L(f,1) # 0 for all the rational
newforms f in S3(V). Otherwise we find a rational « such that n(«, pg, f) # 0 for all f, where
po is the smallest prime not dividing N.

We have already discussed computation of the integers n(p, f). The n(«, p, f) are computed
similarly by expressing the right-hand side of (2.9.1) in terms of the generating M-symbols and
projecting onto each eigenspace. Note that the term {0, a} of (2.9.1) need only be computed
once.

The Hecke eigenvalues which we have computed are stored in a data file for use both in
subsequent steps of the calculations at level N, and also as part of the cumulative database
which will be accessed when levels which are multiples of N are reached.

The exact number of a, needed depends on N, and on the form f, and will not be known
until the numerical calculation of periods is carried out in the next phase. Our strategy here
was first to compute a, for all p up to some predetermined bound (we used all p < 1000 for
N <200, p < 2000 for 200 < N < 400, and p < 3000 for 401 < N < 1000). We may also store
extra information, so that if more eigenvalues are needed later, these can be computed without
having to repeat the time-consuming steps described in Sections 2.1-2.7. Specifically, we may
store the following: the M-symbols which generate H*(N); a table giving each M-symbol as
a linear combination of these generators; a basis for ker(d); and a (dual) basis vector for each
rational one-dimensional eigenspace.

Recapitulation. At this point we have completed the first phase of the computation at level
N, in which we have been working in the space H*(N). To summarize, we know

(1) the number of rational newforms f in S2(N); and, for each f,
(2) the sign w of the functional equation for L(f, s);

(3) the ratio L(f,1)/Q(f);

(4) all W,-eigenvalues ¢, of f;

(5) a large number of T)-eigenvalues a,, of f.

In particular, we know the number of modular elliptic curves Ey of conductor N (up to
isogeny); for each curve, we know the sign of its functional equation and whether or not its
L-series vanishes at s = 1.

All computations carried out so far are exact and algebraic. In addition, we can also in
this first phase compute approximations to the value L(f,1) (when it is non-zero) and to the
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period Q(f), though we do not know at this stage whether Q(f)/Q0(f) = 1 or 2. In other
words, we can compute the projection of the period lattice Ay onto the real axis. Of course,
this is insufficient information from which to construct the curve Ey.

In the second phase, which we describe in Sections 2.10-2.14, we compute the period lattice
Ay of each rational newform f, and hence obtain an (approximate) equation for the curve
C/Ay.

These “analytic” quantities (periods) will necessarily be computed approximately, by sum-
ming certain infinite series whose coefficients involve the Fourier coefficients of f (see below).
In order to achieve sufficient accuracy, we may have to compute many thousands of these
Fourier coefficients, and it is therefore necessary to have efficient ways of doing this, such as
the method described in this section.

2.10 Computing periods I

In order to compute the full period lattice A for each rational newform f found earlier, we
have to work in the full space H(N). By working in H*(N) we could only compute the real
period Qo(f). Although we could also compute the least imaginary period Qi (f) by working
similarly in H~(N) (which would be slightly faster), the lattice spanned by Q(f) and Qi (f)
may have index 2 in Ay. Hence from now on we work in H(N).

We begin by computing H (V) using M-symbols as in Section 2.2 (omitting relations (2.5.1)).
Let 1, Y2, ... , Y24 be a Z-basis for Hy(Xo(N),Z) (and hence also a Q-basis for H(N)). Using
this basis we will identify H(N) with the space of rational column vectors, and dual vectors
will be represented by row vectors. Next we read from the data file (created during the first
phase) the number of rational newforms and, for each, the eigenvalues a, and ¢,. For each
form f we now compute two integer dual (row) eigenvectors with eigenvalues a, and g, for
all p and ¢: one, v, with eigenvalue +1 for the * operator, and one, v, with eigenvalue
—1. This is much faster than repeating the splitting step described in Section 2.7, since we
already know the eigenvalues which determine each one-dimensional eigenspace. As before, the
eigenvectors v we compute must be dual eigenvectors, since we will use them for projecting
onto the eigenspaces in question.

Let & € H¥(N) (respectively) be eigenvectors with the same eigenvalues as v*, such that
vyt = vy = 1. We view 7* as column vectors in Q%9 by expressing them as linear
combinations of the basis 71, ¥, ... , 724 for H(N). Thus the product v*~* is the product of
a row vector by a column vector: essentially a dot product. Set z = (v, f) and y = —i (y~, f)
(so that z,y € R). We do not actually compute these vectors y* in practice; they are only
needed for this exposition, as they determine the real numbers x and y. Moreover, although
the eigenvectors v* which we do use are only determined up to a scalar multiple, we shall see
that this choice does not (as it should not) affect the specific period lattice we obtain.

Let v = Z?g: 1 ¢j77; be an arbitrary integral cycle in H(NN). We identify v with the column
vector with component c¢;. Then we have

(2.10.1) (v ) =TT+ ()L ) = W)z + ()i

The period lattice Ay is the set of all such integral periods (v, f). To determine a Z-basis
for Ay we proceed as follows. Write vt = (a1, a9,... ,a2,) and v~ = (by,ba,... ,ba,) with
a;,b; € Z. Then as a special case of (2.10.1) we have

<7ja f> = a;xr + b]yl,

since vty; = a; and v™y; = b;. Hence Ay is spanned over Z by the 2g periods (v;, f) =
ajz + bjyi. Let A be the Z-span in Z? of the 2g pairs (a;,b;), and let (A1, 1), (A2, p2) be a
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Z-basis for A. Then we find that

Ay ={(v,f)|v€ H(N)} = Zw; + Zws,

where
(2.10.2) Wi = \jx + iyt (1=1,2).

Thus w; and wy form a Z-basis for Ay.

We may compute (A1, p1) and (Mg, p2) from v* and v~ using the Euclidean algorithm in Z.
In fact it is easy to see that there are only two possibilities, since v+ are determined within the
subspace they generate by being the +1 and —1 eigenvectors for an involution. Normalize v
so that each is primitive in Z29; that is, ged(ay, ... ,azs) = ged(by, ... ,bey) = 1. In the first
case (which we will call “Type 17), vt = v~ (mod 2), and we may take (A1, 1) = (2,0) and
(A2, p2) = (1,1), so that wy = 2z and wy = x + yi. In this case Q(f) = Qo(f) and the elliptic
curve has negative discriminant.

In the second case (“Type 2”), when v™ and v~ are independent modulo 2, we will be able
to take (A1, 1) = (1,0) and (A2, pu2) = (0,1), so that wy = = and we = yi. In this case the
period lattice is rectangular, Q(f) = 2Q¢(f), and the elliptic curve has positive discriminant.

It remains to compute the real numbers x and y. We describe two methods: the first
computes periods directly, while the second computes them indirectly by computing L(f®y, 1)
for suitable quadratic characters x. The latter method is in certain cases more accurate (in
that fewer a, are needed for the same accuracy) but cannot be used when N is a perfect square,
as we shall see below.

Observe that the cycles ¥+ do not enter into the calculations directly, but are merely used
to define z and y. Also, if either v+ or v~ is replaced by a scalar multiple of itself, then ~*
and 7~ (and hence = and y) are scaled down by the same amount, but A; and p; are scaled
up. In particular, it is no loss of generality to assume that v* are primitive integer vectors.
Thus (2.10.2) defines wy and we unambiguously, as generators of the full period lattice of f.

Direct method. The simplest method is essentially the same as that used by Tingley in [67].
Using a recent improvement (see [18]), this method can now be made to converge as well as
the indirect method described later.

From (2.10.1) it suffices to compute (v, f) for a single cycle v such that vt~ and v~ are
both nonzero; then by taking real and imaginary parts we can solve (2.10.1) for x and y and
compute the periods w; and wy from (2.10.2). (In some cases it may be better in practice
to use two different cycles, one for the real period and one for the imaginary period, but for
simplicity we will assume that this is not the case. )

We denote by If(c, 3) the integral I¢(c, 8) = f 2mif(z)dz, and set If(a) = If(cv,00). Let
M € TI'g(N); since f is holomorphic, the period integral If(c, M(«)) is independent of the
basepoint «, and can be expressed as I¢(a) — Iy(M(a)). We will denote this period of f by
P;(M). Note that any cycle v € H(N) can be expressed as {o, M («a)} for a suitable matrix
M € Tg(N), and then (v, f) = P¢(M). The map M — P;(M) is (by Corollary 2.1.2) a group
homomorphism from I'g(N) to the additive group of complex numbers, whose image is the
period lattice Aj.

Our basic tool for computing periods is the following easy result.

PROPOSITION 2.10.1. Let zg = xg+1iyo € H, so that yo > 0. Let f be a cusp form of weight 2
with Fourier coefficients a(n, f). Then

(2.10.3) I1(20) = /OO omif(z Z

20

27rin:r0 6—27rny0
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PROOF. Using the Fourier expansion f(z) = > a(n, f) exp(2winz), we can integrate term-
by-term over a vertical path from 2z to co to obtain the result. The term-by-term integration
is justified since the series converges absolutely, since |a(n, f)| < n and yo > 0. O

We can sum the series (2.10.3) to obtain an approximation to I(zp), provided that we have
sufficiently many Fourier coefficients a(n, f). The important point to notice is that this series
is a power series in exp(—27yo) (with bounded coefficients since |a(n, f)| < n for all n), so will
converge best when g is large (or at least, not too small).

a b
cN d
to compute the associated period Py(M) = I;(a) — If(M () of f. How should we choose a?
If « has large imaginary part, then M («) will tend to have a small imaginary part; we would
like to maximize both of these simultaneously. The simplest solution, used by Tingley in his
thesis [67] for the original computations of modular elliptic curves?, is to choose

Suppose we are given a matrix M = € I'o(N), where a,b,c,d € Z, and we wish

g :
a= C;Z, so that M(a) = aC;LVz.

Thus both o and M («) have imaginary part (¢cN)~!. (Note that, by replacing M by —M if
necessary, we may assume that ¢ > 0; we are not interested in M with ¢ = 0 since these are
parabolic, and hence have zero period.) Hence we obtain the following.

a b

PROPOSITION 2.10.2. Let f € So(IN). Then, for all M = (cN J

Py (M) is given by

) € I'g(N), the period

(2.10.4) Pr(M) = Ip(a) — I;(M(a)),
where o € 'H is arbitrary. Taking o = _C‘i\}%, we have:
—d+1i a+1
Py(M)=1 -1
(M) f( CN> f(CN)
(2.10.5) 0

a<n7 )6—27Tn/cN <627rina/cN _ e—?ﬂ'ind/cN)

To use this result, we take a rational number b/d with denominator d coprime to N, solve
ad —bcN =1 for a and ¢, and set M = (CC]LV Z) The integral cycle v = {0,b/d} should
have the properties that v*+ and v~ are both nonzero; also, since yo = 1/(N¢) with ¢ > 0
we should also choose b/d so that ¢ is as small as possible, to speed convergence in the series
(2.10.5). This series converges adequately quickly for small N, but when N increases we
require too many terms in order to obtain the periods to sufficient precision. (Not only does it
take longer to sum the series when we use more terms, but more significantly, computing the
coefficients a(n, f) by modular symbols becomes more expensive as n increases.)

The series (2.10.5) is a power series in exp(—2w/cN) for some small positive integer c; at
best we might hope to use ¢ = 1 and have a power series in exp(—27/N). We can improve this,
however, to give a better formula which involves power series in exp(—27/ dv N ) for a small
positive integer d. This greatly improves the convergence of the series.

2and also used in the first edition of this book
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In order to do this, we make use of the fact that the newform f is an eigenform for the
Fricke involution Wy, which for brevity we will here denote simply W. Thus (as in Section
2.8 above) we have

f(z) =e (S W)(z)

where ¢ = +1 is the Fricke eigenvalue. By changing variables in the integrals, we see that

(2.10.6) 14 (W (0). W(8)) = I (@, ) = < Ip(e B).

In particular, if § = W(«a) we obtain I¢(a, W(«a)) = —elf(o, W(a)), so that when € = +1
we have I¢(a, W(a)) = 0 for all .

Assume we are in this case (¢ = +1). Then in any period integral, we may replace an
endpoint a with W («) without affecting the value of the integral. In particular,

Pr(M) = Iy(a, M(a)) = I;(W(a), M()).
Setting a = di/(v/N — ¢Ni) we find that
M(a):g+d\;ﬁ and W(a):§+d\jﬁ’

which both have the same imaginary part 1/ dv/'N. (We may assume that d > 0, again by

replacing M by —M if necessary.) Hence Pr(M) = I;(W(a)) — Iy(M(cv)) = I5(5 + ﬁ) —

I f(% + ﬁ), where both integrals converge relatively well.
When ¢ = —1, we can obtain a slightly more complicated result which is just as good in
practice. Combining both cases gives the following.

PROPOSITION 2.10.3. Let f € So(N), such that f | W = ef with e = £1. Then for all

a b . .
M = (CN d) € I'o(N) the period Ps(M) is given by

(2.10.7) Pp(M) = (1= e)I;(i/VN) +el;(W(a)) — I;(M(a)),

where o € H is arbitrary. Taking o = M~(4 + d\;ﬁ>’ so that W (a) = § + ﬁ, we have

Py(M) = (1—¢)I;(i/VN) +el; (§ + ﬁ) — s (% * d\jﬁ)

(2.10.8) o
_ Z a(?’t, f) ((6 B 1>6727rn/\/ﬁ + 6727rn/d\/ﬁ (627rinb/d o 6627Tinc/d>> )
n=1

n

Proor. Using W (i/v/N) =i/v/'N, we simply compute:

Iy(a, M(@)) = I, i/VN) + I;(i/VN, W (@) + I;(W (), M(a))
= eI (W(a), i/VN) + I (i/VN, W (@) + I;(W(a), M(a))
= (1 - &)(I;(/VN) — I;(W (@) + Ip(W(e) — I;(M(a))
= (1= )L (i/VE) + eIy (W(w) — I;(M(a))

which establishes (2.10.7). Then (2.10.8) follows from (2.10.3), using the value of a defined
before. [
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Note that the term (1 — ¢)I;(i/v/N), which appears in (2.10.7), is equal to —L(f,1), by
(2.11.1) below. Hence this term is zero unless the analytic rank of f is zero.

When we use this method for computing the periods, before proceeding to the next stage
we store the following data:
type, M, vy, 07 7.

Here type = 1 or 2 denotes the lattice type, M is a matrix in I'g(N) such that v = {0, M(0)},
and the integers v+ and v~ are nonzero. Then we will be able to compute the periods from
stored data quickly without having to recompute H(N) or the eigenvectors v*. We compute
the period P¢(M) using (2.10.8), set & = Re(P(M))/vty and y = Im(Pf(M))/v™ 7 from
(2.10.1), and take the period lattice Ay to be the lattice with Z-basis 2z, x + yi (if type 1)
or x, yi (if type 2). If we later find that we need greater accuracy here, then after computing
more a,, we can obtain more accurate values for the periods w; and wy very quickly, without
having to repeat the expensive calculation in H(N).

2.11 Computing periods II: Indirect method

The idea here is to compute §2(f) indirectly by computing L(f,1) and dividing by the
ratio L(f,1)/Q(f), which we know from (2.8.10). If L(f,1) = 0, and in any case to find the
imaginary period, we can use the technique of twisting by a quadratic character y, since the
value L(f®x, 1) is a rational multiple of a real or imaginary period of f (depending on whether
X(—1) = +1 or —1), and is non-zero for suitable Y.

We are also interested in the value of L(f, 1) for its own sake, in relation to the Birch—Swin-
nerton-Dyer conjecture for the modular curve Fy. We will return to this, and the method of
computing L) (f,1) for r > 0, in Section 2.13.

If L(f,1) # 0, then we may compute L(f, 1) accurately from (2.8.7) as follows. Let ey = £1
be the eigenvalue of the Fricke involution Wy on f. Then in the notation of the previous section,
using (2.10.6) and W (i/v/N) = i//N:

L(f,1) = —/ omif(2)dz = I;(00,0)
0

(2.11.1) = I;(00,i/VN) + If(i/VN,0)

= I;(00,i/VN) +enI;(i/VN, o)

= (EN - 1)If(i/\/]v).
Thus if L(f,1) # 0, then necessarily ey = —1, and in this case L(f,1) = —2I;(i/v/N). Using
Proposition 2.10.1 then gives the following result.
PROPOSITION 2.11.1. If f(2) =Y 0", a(n, f)exp(2minz) € S2(N) and f|Wn = —f then

(2.11.2) L(f,1) =2 i A1) e (—2mm V).

n

REMARK. If in (2.11.1) we split the range of integration at Ai/v/N for some positive real
number A (instead of taking A = 1) then we obtain the more general formula

L(f,1)= Z a(:z; /) (exp(—ZwAn/\/]v) — &N exp(—27rn/A\/N)) ,
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where the right-hand side is independent of A. This can be useful in situations where we
do not know the value of ey, since we can evaluate this expression for two values of A, say
A =1and A = 1.1, and check that the values obtained are approximately the same. For only
one of the two possible values of ey will this happen. This idea is due to H. Cohen (see [9,
Section 7.5]).

More generally, let [ be an odd prime not dividing N, and x the quadratic character modulo [.
Define

WE

(f@x)(z) = p_ x(n)a(n, f) exp(2minz)

n=1

and ‘
L @) = T ™ [ (o 06 S

then for Re(s) > 3/2 we can integrate term-by-term to obtain

L(f®x,s) ZX

Suppose, as above, that f|Wy =exnf. Then f ® x is in So(NI?), and

(f@x)[Wree =x(—=N)enf ®x

(special case of equation (14) in [64]). Hence we can immediately generalize Proposition 2.11.1
to obtain the following.

PROPOSITION 2.11.2. Let f be as above. Letl be an odd prime not dividing N. If x(—N) =en
then L(f ® x,1) = 0, while if x(—N) = —en, then

(2.11.3) Lif®x,1) = 253 Mexp(—%ﬂl/lm).

The values L(f ® x,1) are related to the periods of f by a formula similar to (2.8.10). Let
g(x) be the Gauss sum attached to x: if I = 1 (mod 4) then y(—1) = +1 and g(x) = VI, while
if | =3 (mod 4) then y(—1) = —1 and g(x) = iVI. If we set I* = x(—1)I then in all cases we
have g(x) = V1*. By [64, equation(12)] we have

f®x=@§x<—k>f'<é V).

k=0

Hence

L(f®x,1) == ({0,00}, f ® x)

:_@ZM—MGO»O@H\G 17>>

= IS () (ke f1.00)
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where

-1
= x(k){0.k/1}.
k=0

Here we have used the identity »_ x(k) = 0. Since [ does not divide N, the cycle ~; is in the
integral homology. Thus for each prime [ not dividing 2N we can define an integral period

P(lhf):</717f>7

and we have shown that

P(l, f) = VI*L(f ® x,1).

Clearly (v1)* = x(—1)v, since {0,k/1}* = {0,—k/l}. So, if x(—1) = +1, then v, € HT(N),
hence P(l, f) is an integer multiple of the real period Qq(f), and thus of the form m™ (I, f)x
for some integer m™* (I, f) . So, provided that m™ (I, f) # 0, we have

_ s Lfex1)  Pf)
(2.11.4) =1 ) S i

In practice, if we express 7, as a linear combination of the basis cycles v; and thus view it as
a column vector, then m™ (I, f) = vt,.

Similarly, if x(—1) = —1then~y;, € H=(N), and P(l, f) = m~ (I, f)yi, where m~ (I, f) = v~y
is an integer, so that if m™ (I, f) # 0 then

(2.11.5) y=viZioxl)  PlJ)
m=(,f)  im=(1,f)

Assuming that N is not a perfect square, we find the smallest primes [T =1 (mod 4) and
[= =3 (mod 4) (not dividing N) such that m* = m*(I*, f) and m~ = m~(l", f) are non-
zero. A necessary (but not sufficient) condition for this to be true is that for the associated
quadratic characters, x1(—N) = x2(—N) = —en; for if x(—N) = ex then the sign of the
functional equation for L(f ® x,s) is —1, and hence L(f ® x,1) = 0. Suitable primes always
exist, provided that N is not a perfect square, by a theorem of Murty and Murty (see [44]).
We then compute L(f ® x;,1) for j = 1,2 from (2.11.3), obtain z and y from (2.11.4) and
(2.11.5), and finally substitute in (2.10.2) as before to obtain the periods w; and ws.

If N is a square, however, then x(—N) = x(—1) for all primes [ not dividing 2/V; hence we
will only be able to find the real period this way if ey = —1, and only the imaginary period if
eny = +1. Rather than seek a way round this difficulty we always use the “direct” method to
compute the periods when N is square.

To assist convergence in (2.11.3) we clearly want to choose [ as small as possible. It is a
simple matter to estimate the error obtained in truncating the series (2.11.3) for L(f ® x, 1) at
a certain point n = nyax. In practice we may use this to estimate the number of eigenvalues a,,
needed to obtain the desired accuracy. However, to save time, we did not in all cases compute
this many a,, if the computed values of ¢4 and cg (see Section 2.14) were close to integers, and
when rounded led us to the coefficients of an elliptic curve of conductor N.

Note that, apart from the numerical evaluation of the periods P(I*, f) (using the series
(2.11.3) for L(f ® x,1)), all these computations are purely algebraic: we express the cycles
~; in terms of our homology basis using continued fractions, and take the dot products of the
resulting column vectors with our dual eigenvectors v+ to obtain the integers m*.

The result of this algebraic computation consists of the following data for each rational
newform f: primes {* congruent respectively to +1 modulo 4; nonzero integers m®; and the
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type (1 or 2) of the lattice. As in the direct method, before proceeding we store the following
data for each newform f:
type, It,mt, 17, m".

To compute the lattice from this data set of five integers, we compute the periods P(I*, f)
using formula (2.11.3), divide by m* respectively to obtain x and y, and take A ¢ to be the
lattice with Z-basis 2z, x+yi (if type 1) or z, yi (if type 2). In practice we store just these five
integers, and recompute the periods when we need them. In particular, if at the first attempt
we are unable to compute the integer invariants c4, cg of the curve Ey to sufficient precision
to recognize them, then we will return to H*(N) in order to compute more Hecke eigenvalues,
and then recompute the periods to greater precision without having to recompute H(N).

Tricks and shortcuts.

In fact, the data [t and m™ can be computed earlier in the first H*(N) phase, since they
only depend on the real projection of the period lattice. Hence we can already compute the
real period x from the data we have from the first phase. Moreover, it is easy to find a suitable
prime [~ once we know the Hecke eigenvalues of f, by numerically computing P(I, f) for several
primes [ = —1 (mod 4) until we find a value which is clearly non-zero.

It follows that the only purpose of the extremely expensive second phase of the computation,
working in H(N), is to determine the integer factor m~ and the type of the lattice. An
alternative approach, which we have used systematically for larger levels (N > 3200), is simply
to guess the value of m™ by trying each positive integer m in turn. For each m > 1 we set
y = P(I7, f)/m and test the two possible lattices (one of each type). If either lattice has
approximate integer invariants ¢4 and cg, and the rounded integral values are valid invariants
of an elliptic curve over Q, and the resulting curve has conductor N, then we store for later
use the successful value m™ of m and the type, and consider the curve E} we have found as a
possible candidate for the actual modular elliptic curve E.

The curves £y and E} are certainly isogenous; they even have the same real period. In many
cases, the curve E} has no rational isogenies; in such a case we can conclude that Fy = E}
with no ambiguity. In any case, we can compute the isogeny class of curves isogenous to E}
via rational isogenies, and the only loss is that we do not always know exactly which curve in
the class is the “strong Weil curve” Ey. (A further disadvantage is that we cannot compute
the degree of the modular parametrization of Ey, as this requires knowledge of H(N): see
Section 2.15 below.)

The great advantage of this method is that in only a few seconds computation time, as
soon as we have a rational newform, we can (almost always) write down an associated curve
E}; before this was implemented, it could take many hours of computation time to determine
H(N), find the eigenvectors v*, and hence determine the factor m™ and the lattice type, before
we could compute Ey.

Finally we discuss some variants of the trick just described.

1. We may use the same trick to find [T and m™ if we have not computed them earlier. Then
we are obtaining the period lattice and equation of the curve using only the Fourier coefficients
of f (i.e. the coefficients of the L-series of the curve); the sign of the functional equation; and
the conductor N. No modular symbol information at all is needed in this case. In fact, one
may even guess the sign of the functional equation if all one has is the L-series; see the remark
after Proposition 2.11.1.

2. Let I3 and I3 be two primes = —1 (mod 4) for which —N has the correct quadratic
character, so that P(ly, f) and P(l3, f) are both not trivially zero. We may compute the periods
P(l;, f); assume that these are nonzero (or use different primes /;). We know that there exist
nonzero integers m; such that P(l;, f) = mjyi for j = 1,2. Therefore P(ls, f)/P(l1, f) =
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ms/my, and we may compute a floating point approximation to this rational number. In
practice (provided we have many Fourier coefficients, and the primes [; are small) we will be
able to recognize this rational number (say by using continued fractions). Its denominator is
a factor of the unknown integer m;. If we do this for several different values of I (with the
same [1) then the least common multiple of the denominators may give us a nontrivial factor
of my, and then in our search for the exact value we may restrict to multiples of this factor.
This is useful in practice.

3. Another possibility, which we have not implemented, is to compute H~(N) in order to
determine m~ exactly, as we do m™ from H™(N). This would be no harder than the original
computation of H*(N), and in fact it would be easier to find the eigenvector corresponding
to each newform f, since we already know its eigenvalues. The result would be that we would
have computed exactly all the data we need in a shorter time than would be required for
computing H(N), except for the type of the lattice. Then the only ambiguity is that we would
not know the type, and would have to try both types to see which results in a curve with
integral coefficients. If both types succeeded (as does happen), we would only know the curve
E¢ up to a 2-isogeny.

2.12 Computing periods III: Evaluation of the sums

The results of the previous two sections express the periods of a rational newform f(z) =
> a(n, f)exp(2minz), and the value L(f, 1), in terms of various infinite series, each of the form
> a(n, f)e(n). In each case the factor ¢(n) is a simple function of n, but the coefficient a(n, f)
must be computed more indirectly from the a(p, f) for prime p as in Section 2.9.

In practice we will know a(p, f) for the first few primes, say p < pmax. An elegant and
efficient recursive procedure for summing a series of the form > a(n)c(n) over

n:1<n <nmax, and p/n = p < pmax},
1<n< d <p

with a(n) defined in a similar recursive manner, was described in [5, pages 27-28]. This method
has the advantage of minimizing the number of multiplications involved and the number of
a(n) which must be stored. Also, if some a(n) = 0 then there is a whole class of integers m for
which a(m) = 0 that the procedure avoids automatically. Although in our program this part
of the computation was not critical for either time or storage space, we found this algorithm
to be very useful. It may also be applied in other similar situations for other kinds of modular
forms: we have ourselves used it in [14], with cusp forms of weight 2 for I'y(N), and also in
our work over imaginary quadratic fields.

To evaluate such a sum, assume that the array p[i] hold the first pmax primes p;, and that
the array ap[i] holds the coefficients ap[i] = a(p;) for p; < pmax. We can evaluate the sum
a(n)c(n) over all n < nmax all of whose prime divisors are less than or equal to pmax with the
following pseudo-code.

Algorithm for recursively computing a multiplicative sum

BEGIN
Sum = c(1);
FOR i WHILE p[i] < pmax DO
BEGIN
add(pl[i],i,ap[i],1)
END
END

~N O O WN e



42 II. MODULAR SYMBOL ALGORITHMS

(Subroutine to add the terms dependent on p)

subroutine add(n,i,a,last_a)
1. BEGIN

2. IF a=0 THEN jO = i ELSE Sum = Sum + axc(n); jO = 1 FI;
3. FOR j FROM jO TO i WHILE p[jl*n < nmax DO

4. BEGIN

5. next_a = axapl[j];

6. IF j=i AND (N # O (mod p[jl)) THEN

7. next_a = next_a - p[jl*last_a

8. FI;

9. add(p[jl*n,j,next_a,a)

10. END

11. END

Here the recursive function add(n,i,a,last_a) is always called under the following conditions:
(i) p; = pl[i] is the smallest prime dividing n = n; (ii) a = a(n); (iii) last_a = a(n/p;). The
procedure for n calls itself with pn in place of n, for all primes p < p;, having first computed
next_a = a(pn) using the recurrence formulae from Section 2.6; if a(n) = 0 then only p = p;
need be used, since then a(pn) = a(p)a(n) = 0 for all p < p;.

2.13 Computing L") (f, 1)

In investigating the Birch-Swinnerton-Dyer conjecture for the modular curves Ey we will
need to compute the numerical value of the rth derivative L) (E;, 1) = L") (f,1), where r is
the order of L(f,s) at s = 1. This integer r is sometimes called the ‘analytic rank’ of the curve
Ey, since it is also, according the the Birch-Swinnerton-Dyer conjecture, the rank of Ef(Q).
Following earlier work with examples of rank 0 and 1, this computation was carried out by
Buhler, Gross and Zagier in [6], for the curve of conductor 5077 and rank 3. Their method
works in general, and we describe it here.

Recall the definition of A(f,s) from Section 2.8:

(28.5) AJ8) = NP2 T() L) = [ flin/ VR ay,
Let the Wy-eigenvalue of f be . Using f(—1/Nz) = eNz?f(z) we obtain
Mps) = [ RV (= et dy

(from which the functional equation (2.8.6) follows immediately). Differentiating k& times with
respect to s gives

API(f,5) =/1 fliy/VN)(logy)* (y°= — e(=1)*y'~*) dy,
so at s = 1 we have

AB(f,1) = (1 - (~1)ke) / " F iy W) log y)*dy.
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Trivially this gives A®)(f,1) = 0 if e = (—1)*. In particular, since A" (f,1) # 0, by definition
of r, we must have (—1)" = —e so that r is even if and only if ¢ = —1. Hence setting k = r,
we have

A1) =2 [ flay/ Vo) dy
(2.13.1) =2 Z a(n, f) /100 exp(—2mny/VN)(log y)"dy

If » = 0, of course, we recover the formula

A(f,1) Z nf exp(—27n/VN)

n=1

which agrees with (2.11.2) since A(f,1) = (vV/N/27)L(f,1). Now assume that r > 1. Integrat-
ing (2.13.1) by parts gives

) = T{TN Z a(n, f) /OO eXp(_27Tny/\/N)(logy)T_1%'

n 1

A (f,1

n=1
Since A(f,s) vanishes to order 7 at s = 1 we have L (f,1) = (2rr/v/N)A)(f,1), and hence
the following result.

PROPOSITION 2.13.1. Let f be a newform in So(N) with Wi -eigenvalue €, and suppose that
the order of L(f,s) at s =1 is at least r, where e = (—1)""L. Then

(2.13.2) LO(f,1) = 27! f: a(iz /) G(%)

where

1 g 14y
Gr(x)zm/l e "(logy) 1?-

In order to evaluate the series in (2.13.2) we may use the summation procedure of the
preceding section, provided that we are able to compute the function G, (z). When r = 1,
G1(z) is the exponential integral | loo e~ "¥dy/y, which may be evaluated for small = (say x < 3)
by the power series

(2.13.3) Gi(z) = (log— —7)

where ~y is Euler’s constant 0.577.... For larger = (say = > 2) it is better to use the continued
fraction expansion
e—{l?
G1 (.’L‘) = 1
T+
1+ !
N 2
x
1+ .
3
T+

1+ ...
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To generalize the series (2.13.3) for G1(x), we observe that the functions G, (z) satisfy the
functional equations G.(x) = (—1/x)G,—1(x), with Go(z) = e~ . It follows that

oo

1 _1 n—r
G.(z) = Pr(log ;) + Z %xn
n=1 )

where P,(t) is a polynomial of degree r satisfying P/(¢) = P,_1(t) and Py(t) = 0. From our
earlier expression for G1(x) we see that P;(t) = ¢ — . In general P,.(t) = Q,(t — ) where

Qi(t) =t;
_ 1 ”2.

Qslt) = =65+ 1 -

6 12 3
1y 2 5 C(3) d _
Qu(t) = 51t T ogt 3 ' 1600
1 w2 ¢(3) () ((3)n?
t) = —° + —¢3 — t2 t— - :
@s(t) 1200 T 72 6 © T 160 5 36

For N < 5077 we always found that » < 2, and determining the value of r in such cases
is easy. Certainly » = 0 if and only if L(f,1) # 0, which can be determined algebraically
by (2.8.10). When L(f,1) = 0 and € = 4+1 we know that r is odd; by computing L'(f,1) to
sufficient precision using (2.13.2) we could verify that L’(f,1) # 0, so that » = 1. Similarly,
when L(f,1) =0 and € = —1, we know that r is even and at least 2, and we could check that
r = 2 by computing L”(f,1) to sufficient precision to be certain that L”(f,1) # 0.

In higher rank cases we have the problem of deciding whether L*)(f, 1) = 0, since no
approximate calculation can by itself determine this. The first case where this occurs is for
N = 5077, the rank 3 case considered in [6]. Here one finds that L’(f,1) = 0 to 13 decimal
places using (2.13.2) with 250 terms; then it is possible to conclude that L'(f, 1) = 0 exactly,
by applying the theorem of Gross and Zagier concerning modular elliptic curves of rank 1 (see
[25] or [26]) which relates the value of L'(f,1) to the height of a certain Heegner point on E.
In this case no point on E has sufficiently small positive height, and one can therefore deduce
that L'(f,1) = 0, so that ~ > 3. Finally the value of L&®)(f,1) can be computed numerically
and hence shown to be non-zero (approximately 1.73 in this case). See [6] for more details.
Using more recent work of Kolyvagin (see [29]) this argument can be simplified, since it is now
known that when L(f,s) has a simple zero at s = 1, the curve E; has rank exactly 1. But in
this case £y has rank 3 (computed via two-descent, though finding three independent points
of infinite order is easy and shows that the rank is at least 3), so again the analytic rank must
be at least 3, and is therefore exactly 3 as before.

The results of Kolyvagin in [29] imply that when L(f, s) has a zero of order r = 0 or 1 at
s =1 then® the rank of F is exactly 7. For the tables we also verified that the rank of F¢(Q)
was r directly in almost all cases (the exceptions being curves where the coefficients were so
large that the two-descent algorithm, described in the next chapter, would have taken too long
to run). These results apply to all but 18 of the rational newforms f we found at levels up to
1000. The remaining cases all had r = 2 (determined as above) and we verified that the rank
of E¢(Q) was 2 in each case. For a summary of the ranks found in the extended computations
to N = 5077, see Chapter IV.

3In fact, Kolyvagin’s result in the rank 0 case was conditional on a certain technical hypothesis, which
was later proved independently by Murty and Murty and by Bump, Friedberg and Hoffstein. See [44]. The
analogous hypothesis in the rank 1 case was already known as a consequence of a theorem of Waldspurger. The
rank 0 result was previously proved in the case of complex multiplication by Coates and Wiles.
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2.14 Obtaining equations for the curves

So far we have described how to compute, to a certain precision, the periods w; and ws
which generate the period lattice Ay of the modular curve Ey = C/A; attached to each
rational newform f in S2(N). Now we turn to the question of finding an equation for E.

Set 7 = wj/wy. Interchanging w; and wy if necessary, we may assume that Im(7) > 0.
By applying the well-known algorithm for moving a point in the upper half-plane H into the
usual fundamental region for SL(2,Z) we may assume that |Re(7)| < 1/2 and |7| > 1, so that
Im(7) > +/3/2. One merely replaces (wy,ws) by (W — nwa,ws) for suitable n € Z and (wy,ws)
by (—ws,w1) until both conditions are satisfied. In practice one must be careful about rounding
errors, as it is quite possible to have both |7| < 1 and | — 1/7| < 1 after rounding, which is
liable to prevent the algorithm from terminating.

Set ¢ = exp(2miT). Then the lattice invariants c4(= 12¢2) and cg(= 216g3) are given by

o\ * > n3qm 27\ ° > ndq"
2.14.1 =|— 1+24 =(— 1—-504
( ) ey (w2> < + 07;1_(]71) and cg <w2) 50 nz_:ll—qn

(see, for example, [31, p.47]). Since |¢| = exp(—27Im(7)) < exp(—7v/3) < 0- 005, these series
converge extremely rapidly. Thus, assuming that w; and ws are known to sufficient precision,
we can compute ¢4 and cg as precisely as required.

Since E is defined over Q, the numbers ¢4 and cg are rational, but there is no simple reason
why they should be integral. Fortunately, a result of Edixhoven (see [21]) states that in fact
they are integral. Hence, provided that we have computed the periods and then c4 and cg to
sufficient precision, we will be able to recognize the corresponding exact integer values.

This only presents practical difficulties when ¢4 and cg are large, since standard double
precision arithmetic only yields around 16 decimal places. In several cases this means that we
can recognize cq, but the last digit or digits of ¢4 are undetermined. One obvious way round
these difficulties is to use multiprecision arithmetic, though the resulting programs are slower,
which can be an important consideration when large numbers of curves are being processed.
In these situations, we are helped by the fact that we know that ¢4 and cg are the invariants
of an elliptic curve of conductor N. This implies the following congruence conditions (see [30],
[10] or Section 3.2 below):

(1) ¢ — ¢ = 1728A, where A is a non-zero integer divisible by the primes dividing N;
(2) for primes p > 5 which divide N, we have p | ¢y <= p|cs < p*| N;

(3) c6 9 (mod 27);

(4) either ¢cg = —1 (mod 4), or ¢4 =0 (mod 16) and ¢g = 0,8 (mod 32).

Note that in condition (1) we should not assume that A is only divisible by the “bad primes”
which divide N, since we do not know that ¢4 and cg are the invariants of a minimal model.
However, Edixhoven’s result does bound the non-minimality, and in practice all the equations of
curves we have constructed are minimal, verifying the conjecture (Manin’s “c = 1” conjecture)
that this should always be the case. Conditions (2)—(4) do assume minimality at the relevant
primes.

Since c4 tends to be smaller than cg, the common situation is that we know ¢4, but may
need to use the above congruence conditions to help us find ¢ in case it has more than 16
digits.

Given integral invariants cy, cg satisfying (1), (3) and (4) above, the coefficients of a standard
Weierstrass equation for the curve may be obtained as follows (see Section 3.1), where all
divisions are exact:
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by = —cg mod 12 € {—5,... ,6};
by = (b3 — c4)/24;

b = (—bj + 36baby — cg)/216;

a1 = b mod 2 € {0,1};

as =bg mod 2 € {0,1};

ag = (by —a1)/4;

ay = (by — ajas)/2;

ag = (bg — az)/4.

Having the coefficients [a1, as, a3, a4, ag] of a curve E, we may apply Tate’s algorithm (see
Section 3.2 below) to check that E has conductor N. We also check whether this model for F
is minimal. These conditions do hold for all the cases we have computed to date (N < 5077).
We also verify in each case that the traces of Frobenius of Ey and E for all primes under
1000 agree in each case, and in nearly all cases (see the previous section) that the rank of E,
computed via two-descent, agrees with the ‘analytic rank’ of E¢. Finally, we can compute all
curves isogenous to F over Q: see Section 3.8 for one way to do this. This final list of curves
will, according to the Shimura—Taniyama—Weil conjectures, contain all elliptic curves defined
over Q with conductor N (up to isomorphism). At the time of writing* this has been proved
(by Wiles and Taylor, following Ribet, Frey and others) provided that N is divisible by neither
4 nor 25.

Our computations do not give any verification of the Shimura—Taniyama—Weil conjecture,
since if there did exist elliptic curves over Q which were not modular, then we would simply
not find them. We could only verify the conjecture if we had an independent method for listing
all curves of conductor N, up to isogeny. For example, this has been done

e when N is a power of 2 (Ogg) or of the form 293 (Coghlan, see [2, Table 4]);

e when N = 11 (by Agrawal, Coates, Hunt and Van der Poorten, using the theory of Baker;
and independently by Serre, using a variant of Faltings’s method based on quartic fields [54]);

e for certain prime values of N (see [4]).

Our results are compatible with those of Brumer and Kramer in [4] for curves of prime con-
ductor under 1000.

The algorithms we used to study these curves E further will be the subject of the next

chapter.

2.15 Computing the degree of a modular parametrization

The modular elliptic curves we have shown how to construct in this chapter can be para-
metrized by modular functions for the subgroup I'g(N) of the modular group I' = PSL(2,7Z).
Equivalently, there is a non-constant map ¢ from the modular curve Xo(N) to E. In the
paper [17], we presented a method of computing the degree of such a map ¢ for arbitrary
N. Our method is derived from a method of Zagier in [69]; by using those ideas, together
with the modular symbol and M-symbol techniques which have been used above, we are able
to derive an explicit formula for deg(yp) which is in general much simpler to implement than
Zagier’s, for arbitrary subgroups of finite index in I". To implement this formula one needs
to have explicit coset representatives for the subgroup, but it is not necessary to determine
an explicit fundamental domain for its action on the upper half-plane H. In particular, it is

4Qctober 1996
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simple to implement for I'g(N) for arbitrary N, in contrast with Zagier’s formula which is only
completely explicit for N prime.

In this section we present the algorithm described in [17]. For more details and proofs, see
[17]. Worked examples are given in the appendix to this chapter, and results for N < 1000
may be found in Chapter IV.

2.15.1. Modular Parametrizations.

Let G be a congruence subgroup of the modular group I' = PSL(2,Z). The quotient
X = X¢g = G\H" is a Riemann surface, and an algebraic curve defined over a number field,
and is called a modular curve.

An elliptic curve E defined over Q is called a modular elliptic curve if there is a non-
constant map ¢: Xg — FE for some modular curve Xg. The pull-back of the (unique up
to scalar multiplication) holomorphic differential on E is then of the form 27if(z)dz, where
f € S2(G). According to the Shimura—Taniyama—Weil conjecture, this should be the case for
every elliptic curve defined over Q, with G = I'o(IN), where N is the conductor of E. Moreover,
the cusp form f should be a newform in the usual sense.

We will suppose that we are given a cusp form f € S3(G). Since the differential f(2)dz is
holomorphic, the function

20— If(20) = 27m'/ f(2)dz

is well-defined for zg € H* (independent of the path from zy to 0o). Also, for M € G, the
function
M(ZO)
M|—>Pf(M):If(zg)—[f(M(zg)):27ri/ f(z)dz
zZ0
is independent of zp, and defines a function P;: G — C which is a group homomorphism. The

image Ay of this map will, under suitable hypotheses on f which we will assume to hold, be a
lattice of rank 2 in C, so that Ey = C/Ay is an elliptic curve. Hence Iy induces a map

0: X =G\H" — Ey =C/A;
z mod G — I¢(z) mod Ajy.

The period map Py: G — Ay is surjective (by definition) and its kernel contains all elliptic
and parabolic elements of G. We may write Ay = Zw; + Zw, with Im(wy/w;) > 0. Then

Pf(M) = nl(M)wl +n2(M)WQ

where n1,no: G — Z are homomorphisms. These functions are explicitly computable in terms
of modular symbols as seen in earlier sections. Alternatively, given sufficiently many Fourier
coeflicients of the cusp form f(z) we may evaluate the period integrals I¢(z) (using the formula
(2.10.8), for example) to sufficient precision that (assuming that the fundamental periods wq
and ws are also known to some precision) one can determine the integer values of ni(M)
and no(M) for any given M € G. The latter approach is used in [69]. The advantage of
the modular symbol approach is that exact values are obtained directly, and that it is not
necessary to compute (or even know) any Fourier coefficients of f. On the other hand, it
becomes computationally infeasible to carry out the modular symbol computations when the
index of G in I is too large, whereas the approximate approach can still be used, provided that
one has an explicit equation for the curve E to hand, from which one can compute the periods
and the Fourier coefficients in terms of traces of Frobenius (assuming that E is modular and
defined over Q). This method was used, for example, to compute deg(y) for the curve of rank 3
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with conductor 5077, in [69]; we verified the value obtained (namely 1984) using our modular
symbol implementation.

The special case we are particularly interested in is where G = I'g(IV) and f(z) is a normal-
ized newform for I'y(/N). Then the periods of 27if(z) do form a suitable lattice Ay, and the
modular elliptic curve Ey = C/Ay is defined over Q and has conductor N.

In order to compute the degree of the map ¢: X — Ey, the idea used in [69] is to compute
the Petersson norm || f|| in two ways. The first way involves deg(y) explicitly, while the second
expresses it as a sum of terms involving periods, which can be evaluated as above.

PROPOSITION 2.15.1. Let f(2) be a cusp form of weight 2 for G as above, and p: X — E the
associated modular parametrization. Then

4m?|| f]]* = deg(p) Vol (Ey).

REMARK. In terms of the fundamental periods wi, wy of Ey, the volume is given by Vol(Ey) =
IIm (wiws)|. More generally, if w, w’ € Ay, with w = n;(w)w; + ne(w)we and W' = ny (W )wy +
na(w’)ws, then (up to sign) we have

1(w) ni(W)

Im (@ww') = Vol(Ey) - ZQEW )|

2.15.2. Coset representatives and Fundamental Domains.

Let S = <[1) _01) and T' = (é i
and T'S has order 3. Let F be the usual fundamental domain for I" defined above in (2.1.1),
and 7 the “ideal triangle” with vertices at 0, 1 and co. Recall from Section 2.1 that (M)
denotes the transform of 7 by M for M € T', which is the ideal triangle with vertices at the
cusps M (0), M(1) and M(oc0). These triangles form a triangulation of the upper half-plane

H, whose vertices are precisely the cusps Q U {oo}. Recall that

) be the usual generators for I', so that S has order 2

(M) = (MTS) = (M(TS)?)

but that otherwise the triangles are distinct. The triangle (M) has three (oriented) edges;
these are the modular symbols (M), (MTS) and (M(TS)?).

Assume, for simplicity, that G has no non-trivial elements of finite order, i.e., no conjugates
of either S or T'S. (This assumption is merely for ease of exposition; in fact, it is easy to see
that elliptic elements of G contribute nothing to the formula in Theorem 2.15.4 below in any
case.) Choose, once and for all, a set S of right coset representatives for G in I", such that
M e S = MTS € §; this is possible since, by hypothesis, G contains no conjugates of T'S.

Let S’ be a subset of S which contains exactly one of each triple M, MTS, M(TS)?, so
that S = S'US'TSUS'(TS)2. Then a fundamental domain for the action of G on H is given
by

MeS'

In general, this set need not be connected, but this does not matter for our purposes: it can be
treated as a disjoint union of triangles, whose total boundary is the sum of the oriented edges
(M) for M € S.

The key idea in the algebraic reformulation of Zagier’s method is to make use of the coset

action of I" on the set S. We now introduce notation for the actions of the generators S and
T.
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Action of S. For each M € S we set M S = s(M)o(M), where s:S — G is a function and
0:S — § is a permutation. Since S? is the identity, the same is true of o, and s(o(M)) =
s(M)~1. For brevity we will write M* = o(M), so that M** = M for all M € S. (This
conflicts with an earlier use of the notation M* in Section 2.1, but this should not cause
confusion.)

Note that the triangles (M) and (M S) are adjacent in the triangulation of H, since they
share the common side (M) = {M(0), M(c0)} = —(M S). However, since in general we do not
have MS € S, in the fundamental domain F¢ for G it is the triangles (M) and (M*) which
are glued together by the element s(M) € G which takes (M*) to —(M) (the orientation is
reversed).

Action of T. Similarly, for M € S we set MT = t(M)7(M) with t¢(M) € G and 7(M) € S.
The permutation 7 of § plays a vital part in what follows. The following lemma will not be
used later, but is included for its own interest as it explains the geometric significance of this
algebraic permutation.

LEMMA 2.15.2.
(a)  Two elements M and M’ of S are in the same T-orbit if and only if the cusps M (o) and
M'(00) are G-equivalent; hence the number of T-orbits on S is the number of G-equivalence

classes of cusps.
(b)  The length of the T-orbit containing M € S is the width of the cusp M (o) of G.

PROOF. (a) M and M’ are in the same T-orbit if and only if My = M'T'M~! € G for some
J, which is if and only if MyM (co0) = M’(c0), since the stabilizer of oo in T' is the subgroup
generated by T'.

(b) The length of the orbit of M is the least k > 0 such that MT*M ! = (MTM_l)k € G,
which is the width of the cusp M(o0), since the stabilizer of M (oc) in T' is generated by
MTM~. O

Thus there is a one—one correspondence between the orbits of 7 on & and the classes of
G-inequivalent cusps, with the length of each orbit being the width of the corresponding cusp.
In each 7-orbit in S, we choose an arbitrary base-point M, and set M;y; = 7(M;) for
1 < j <k, where k is the length of the orbit and My = M. Thus M;T = t(M;)M;41, so
that
MT? = t(M)t(Ma) ... t(M;)Mjqq.

In particular, M;T* = MyM;, where My = t(My)t(M>)...t(M;) € G. Since M is parabolic
and Py is a homomorphism, we obtain the following.

LEMMA 2.15.3.

> Prt(M;)) = 0.

j=1

Write M < M’ if M and M’ are in the same 7-orbit in S, and M precedes M’ in the fixed
ordering determined by choosing a base-point for each orbit. In the notation above, M < M’
if and only if M = M, and M’ = M; where 1 <i < j <k.

We can now state the main results of this section.

THEOREM 2.15.4. Let f be a cusp form of weight 2 for G with associated period function
P; : G — C. Then (the square of)) the Petersson norm of f is given by

11" = 8% Y Im(Pp(t(M)) Py (¢(M))).

M<M’
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Here the sum is over all ordered pairs M < M’ in S which are in the same orbit of the
permutation T of S induced by right multiplication by T

Combining this result with Proposition 2.15.1, we immediately obtain our explicit formula
for the degree of the modular parametrization.

THEOREM 2.15.5. With the above notation,

desls) = vy 3 WEEODAONN) =5 3

ny(((M)) (M)
na(t(M))  na(t(M’))

Hence to compute deg(y), we only have to compute the right coset action of T" on an explicit
set S of coset representatives for GG in I', and evaluate the integer-valued functions n; and no
on each of the matrices (M) for M € S. In the case of I'g(NV), these steps can easily be carried
out using M-symbols, and we will give some further details below.

REMARKS. 1. The formula given in Theorem 2.15.5 expresses deg(p) explicitly as a sum which
can be grouped as a sum of terms, one term for each cusp, by collecting together the terms
for each T-orbit. It is not at all clear what significance, if any, can be given to the individual
contributions of each cusp to the total.

2. The form of our formula is identical to the one in [69]. However, we stress that in [69],
the analogue of our coset action 7 is defined not algebraically, as here, but geometrically, as
a permutation of the edges of a fundamental polygonal domain for G (and dependent on the
particular fundamental domain used). Then it becomes necessary to have an explicit picture of
such a fundamental domain, including explicit matrices which identify the edges of the domain
in pairs. This is only carried out explicitly in [69] in the case G = I'g(N) where N is a prime. In
our formulation, the details are all algebraic rather than geometric, which makes the evaluation
of the formula more practical to implement. Also, we have the possibility of evaluating the
functions n; and ne exactly using modular symbols, instead of using numerical evaluation of
the periods, which reduces the computation of deg(y) entirely to linear algebra and integer
arithmetic.

2.15.3. Implementation for I'y(N).
We now discuss the case G = I'g(N) in greater detail, using M-symbols to represent the

coset representatives. The right coset action of I' on P}(N) is given by (2.2.4), so we have
olc:d)=(c:d)S=(d:—c)and 7(c:d) = (¢:d)T = (c: c+d).

LEMMA 2.15.6. The length of the T-orbit of (¢ : d) is N/ ged(N, c?).

PROOF. 7¥(c:d) = (c:d) <= (c:kc+d) = (c:d) < cd=c(kc+d) (mod N) <=
ke =0 (mod N) <= k=0 (mod N/gcd(N,c?)). O

In earlier sections, it was immaterial exactly which coset representatives were used, or in
practice which pair (c,d) € Z? was used to represent the M-symbol (c : d). For the application
of Theorem 2.15.5, however, we must ensure that our set is closed under right multiplication
by T'S, where (¢ : d)T'S = (c+d : —c), unless (c : d) is fixed by T'S, which is if and only if
2+ cd+d?> =0 (mod N). Thus each M-symbol (c : d) will be represented by a specific pair
(c,d) € Z? with ged(c,d) = 1, in such a way that our set S of representatives contains the
pairs (c+d, —c) and (—d, ¢+ d) whenever it contains (¢, d), unless (¢ : d) is fixed by T'S. (Even
when working with pairs (¢, d) € Z? we will identify (c,d) and (—¢, —d).)

Fixing these triples of pairs (c¢,d) corresponds to fixing the triangles (M) which form a
(possibly disconnected) fundamental domain for I'g(N). If M = z Z), the pair (c,d)
corresponds to the directed edge {M(0), M(c0)} = {b/d,a/c}. For this reason, we will refer
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to the pairs (c,d) as edges, and the triples of pairs as triangles. Right multiplication by
TS corresponds geometrically to moving round to the next edge of the triangle, while right
multiplication by S corresponds to moving across to the next triangle (M*) adjacent to the
current one. The 7-action is given by composing these, taking (¢ : d) (or edge {b/d, a/c}) to the
symbol (¢ : d)T = (¢: ¢+ d) with corresponding edge {(a + b)/(c+ d),a/c}, up to translation
by an element of I'g(N). Note how in this operation the endpoint at the cusp M(oco) = a/c is
fixed, in accordance with Lemma 2.15.2 above.

We may therefore proceed as follows. For each orbit, start with a standard pair (¢, d), chosen
in an M-symbol class (¢ : d) not yet handled. Apply T to obtain the pair (¢,c + d). If this
pair is the standard representative for the class (¢ : ¢ 4+ d), we need take no action and may
continue with the orbit. But if (¢,c+d) = (r, s), say, with (r,s) € S, then we must record the

“gluing matrix”
a a+b\ [(p ¢ -
M:(c c+d) (7“ s) € To(N),

where ad — bc = ps — qr = 1, whose period Py(M) will contribute to the partial sum for
this orbit. When this happens, we say that the orbit has a “jump” at this point. Different
choices for a, b, p and ¢ only change M by parabolic elements, and so do not affect the period
P (M). We continue until we return to the starting pair, and then move to another orbit,
until all M-symbols have been used. As checks on the computation we may use Lemmas 2.15.2
and 2.15.6: the length of the orbit starting at (c, d) can be precomputed as N/ ged(N, ¢?), and
the number of orbits is the number of I'g(V)-inequivalent cusps.

A worked example for the case N = 11 is included in the appendix to this chapter.



CHAPTER III

ELLIPTIC CURVE ALGORITHMS

3.1 Terminology and notation

For reference in the following sections, we collect here the notation, terminology and formulae
concerning elliptic curves which we will use throughout this chapter.
An elliptic curve E defined over Q has an equation or model of the form

(3.1.1) E: y? 4+ a1zy + asy = 25 + asx? 4+ asx + ag

where the coefficients a; € Q. We call such an equation a Weierstrass equation for E, and
denote this model by [a1, a9, as,aq,as]. We say that (3.1.1) is integral or defined over Z if all
the a; are in Z. From these coefficients we derive the auxiliary quantities

by = a% + 4as,

by = ajaz + 2ay,

bg = a% + 4ag,

bg = a%ag — ai1a3aq + 4asag + agag — ai,
the invariants

cy = b3 — 24by,

c6 = —bj + 36byby — 216bg,
the discriminant

A = —b2bg — 8b3 — 27b2 + bobybs,
and the j-tnvariant

j=ci/Ah,
which are related by the identities

4bg = bobg — b3  and  1728A = ¢} — 2.

The discriminant A must be non-zero for the curve defined by equation (3.1.1) to be non-
singular and hence an elliptic curve. The j-invariant is (as its name suggests) invariant under
isomorphism; elliptic curves with the same j are called twists: they are isomorphic over an
algebraic extension, but not necessarily over Q. The invariants ¢4 and cg are sufficient to
determine E up to isomorphism (over Q) since E is isomorphic to

Y2 = X3 - 27¢, X — 5dcg.

The most general isomorphism from E to a second curve E’ given by an equation of the
form (3.1.1), which we usually think of as a change of coordinates on F itself, is T'(r, s, t,u),
given by
(312> x=u2x'+r
o y=u3y’—|—su2x’—|—t

62
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where 7, 5,t € Q and u € Q*. The effect of T'(r, s, t,u) on the coefficients a; is given by

ual = aj +2s

u?aly = ay — sa; +3r — s

(3.1.3) uiah = az +ra; + 2t

u‘laﬁL = a4 — saz + 2ras — (t +rs)a; + 3r® — 2st

2

uSal = ag + rag + rlay + 13 — taz — t* — rtay

so that

uld, = ¢y, uScl = cg, u?A’=A and j =j.

The transformations 7°(0, 0, 0, u) we will refer to as scaling transformations; these have the effect
of dividing each coefficient a; by v, and similarly for each of the other quantities, according
to its weight. Here a;, b; and ¢; have weight ¢, while A has weight 12 and j has weight 0.
By applying 7'(0,0,0,u) for suitable u we can always transform to an integral model; all the
invariants are then integral, except (possibly) for j. Among such integral models, those for
which the positive integer |A| is minimal are called global minimal models for E. We will give
in the next section a simple algorithm for finding such a model, given the invariants c4 and cg of
any model. Clearly, isomorphisms between minimal models must have u = £+1 and r, s,t € Z.
We may normalize so that aq,a3 € {0,1} and ay € {—1,0, 1}, by suitable choice of s, r and ¢
(in that order), as may be seen from (3.1.3). Such an equation will be called reduced, and it is
not hard to show that it is unique: the only transformation other than the identity 7°(0, 0,0, 1)
from a reduced model to any another reduced model is the transformation 70, —ay, —ag, —1),
which takes any model to itself; this is just the negation map (z,y) — (z,y — a1z — a3) from
the curve to itself. Thus every elliptic curve F defined over Q has a unique reduced minimal
model. This fact makes it very easy to recognize curves: in Table 1 we give the coefficients of
such a model for each of the curves there.

Given integers ¢4 and cg, two questions arise: is there a curve over Q with these invariants,
and is it minimal? Clearly we must have ¢§ — ¢z = 1728A with A # 0. A solution to the first
problem is given by Kraus in Proposition 2 of [30], which states the following.

PROPOSITION 3.1.1. Let ¢4, cg be integers such that A = (c3 —c2)/1728 is a non-zero integer.
In order for there to exist an elliptic curve E with a model (3.1.1) defined over Z having
mvariants cq and cg, it 1s necessary and sufficient that

(1) ¢ Z49 (mod 27);
(2) either c¢ = —1 (mod 4), or ¢4 =0 (mod 16) and cg = 0,8 (mod 32).

The conditions of Proposition 3.1.1 will be referred to as Kraus’s conditions. If we are given
integers ¢4 and cg satisfying these conditions, we can recover the coefficients a; of the reduced
model of the curve with ¢4 and cg as invariants, using the formulae already given in Chapter 2,
Section 14, which we repeat here for convenience:

by = —cg mod 12 € {—5,... ,6};
by = (b3 — ca)/24;

be = (—b3 + 36babs — c6)/216;

a; = b mod 2 € {0,1};

as =bg mod 2 € {0,1};

as = (b — ay)/4;

ay = (by — ajas)/2;

ag = (bg — az)/4.
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To see this, we may assume that we are seeking coefficients of a reduced model; then by €
{—4,-3,0,1,4,5}, and we have —cg = b3 = by (mod 12). The rest is easy; provided that c4
and cg satisfy Kraus’s conditions, all the divisions will be exact.

In the following section we answer the second question by giving an algorithm for computing
the reduced coefficients of a minimal model for any curve E, given either integral invariants
satisfying Kraus’s conditions, or any integral model for . We simply determine the maximal
integer u such that ¢j = c4/u* and c§ = cg/u® satisfy Kraus’s conditions, and then compute
the reduced coefficients a) from these. As with many questions concerning elliptic curves, most
of the work goes into determining the powers of 2 and 3 which divide w.

We will assume without further discussion that on any given curve F, points may be added
and multiples taken, using standard formulae. The Mordell-Weil group of all rational points
on F will be denoted E(Q) as usual. If n is a positive integer, we denote by E(Q)[n] the
subgroup of rational points of order dividing n, which is the kernel of the multiplication map
from E to itself.

3.2 The Kraus—Laska—Connell algorithm and Tate’s algorithm

In this section we give two algorithms. The first was originally given by Laska in [34],
and finds a minimal model for a curve F, starting from an integral equation. Essentially the
algorithm was to test all positive integers u such that u~*c4 and u~%cg are integral, to see if they
are the invariants of a curve defined over Z. Using Kraus’s conditions (see Proposition 3.1.1
above), this procedure can be simplified, since it is possible to compute in advance the exponent
d, of each prime p in the minimal discriminant, and hence compute u at the start. The usual
formulae then give the coefficients a; of the reduced model. Our formulation of the resulting
algorithm over Z is similar to that given in [10], where more general rings are considered: in
particular an explicit algorithm is given there for finding local minimal models over arbitrary
number fields, and hence global minimal models where they exist. Over Z, the algorithm is
extremely simple.

In the pseudocode below,

ord(p,n) gives the power of the prime p which divides the non-zero integer n;

floor(x) gives the integral part of the real number x;

a mod p gives the residue of a modulo p lying in the range —%p <a< %p; in particular,
when p = 2 or 3 this gives a residue in {0,1} or {—1,0, 1} respectively. Also inv(a,p) gives
the inverse of a modulo p, assuming that gcd(a,p)=1.

The Laska—Kraus—Connell Algorithm

INPUT: c4, c6 (integer invariants of an elliptic curve E).
OUTPUT : al, a2, a3, a4, a6 (coefficients of a reduced minimal model for E).
1. BEGIN

2. A=(c43-c62)/1728;

(Compute scaling factor u)

3. u=1; g-= gcd(c62,A);

4. p-list = prime_divisors(g);
5. FOR p IN p_list DO

6. BEGIN

7. d = floor(ord(p,g)/12);
8. IF p=2 THEN

9.

a = c4/2(4*d) mod 16; b = 66/2(6*d) mod 32;
10. IF (b mod 4 75 -1) AND NOT (a=0 AND (b=0 OR b=8))
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11. THEN 4 = d-1

12. FI

13. ELIF p=3 THEN IF ord(3,c6)=6%d+2 THEN d = d-1 FI
14. FI;

15. u = u*pd

16. END;

(Compute minimal equation)

17. c4 = c4/u4; c6 = c6/u6;

18. b2 = -c6 mod 12; b4 = (b22-c4)/24; b6 = (—b23+36*b2*b4—c6)/216;
19. al = b2 mod 2;

20. a3 = b6 mod 2;

21. a2 = (b2-al)/4;

22. a4 = (b4-alx*a3)/2;

23. a6 = (b6-a3)/4

24. END

Next we turn to Tate’s algorithm itself. The standard reference for this is Tate’s ‘letter to
Cassels’ [65], which appeared in the Antwerp IV volume [2]. There is also a full account in the
second volume of Silverman’s book [61, Section IV.9]. It may be applied to an integral model
of a curve E and a prime p, to give the following data:

e The exponent f, of p in the conductor N of E (see below);

e the Kodaira symbol of E at p, which classifies the type of reduction of E at p (see [47] or
[61, Section IV.9]); these are: 1y for good reduction; I,, (n > 0) for bad multiplicative reduction;
and types I, II, ITI, IV, II*, III* and IV* for bad additive reduction.

e the local index ¢, = [E(Q,) : E°(Q,)], where E°(Q),) is the subgroup of the group E(Q,)
of p-adic points of E, consisting of those points whose reduction modulo p is non-singular.
(That this index is finite is implied by the correctness of the algorithm, as observed by Tate
in [65].)

In addition, the algorithm detects whether the given model is non-minimal at p, and if so,
returns a model which is minimal at p. Thus by applying it in succession with all the primes
dividing the discriminant of the original model, one can compute a minimal model at the same
time as computing the conductor and the other local reduction data. In practice this makes
the Laska—Kraus—Connell algorithm redundant, though much simpler to implement and use if
all one needs is the standard model for a curve E.

The conductor N of an elliptic curve E defined over Q is defined to be

N:prp
p

where f, = ord,(A) + 1 —n, and n, is the number of irreducible components on the special
fibre of the minimal Néron model of E at p. This Néron model is a more sophisticated object
than we wish to discuss here (see [47] or [61] for details): one has to consider E as a scheme
over Spec(Z,), and then resolve the singularity at p, to obtain a scheme whose generic fibre is
E/Q, and whose special fibre is a union of curves over Z/pZ. In terms of a minimal model for
E over Z, all may be computed very simply except when p = 2 or p = 3 as follows:

Jp=0ifp TA;

fp=1ifp| Aand ptcy (then n, = ord,(A));

fp>2if p| A and p | ¢4; moreover, f, =2 in this case when p # 2, 3.

To obtain the value of f, in the remaining cases, and to obtain the Kodaira symbol and the
local index ¢),, we use Tate’s algorithm itself.
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In [65], the algorithm is given for curves defined over an arbitrary discrete valuation ring.
To apply it to a curve defined over the ring of integers R of a number field K at a prime ideal p,
one would in general have to work in the localization of R at p; here we can work entirely over
Z, since Z is a principal ideal domain. We have added to the presentation in [65] the explicit
coordinate transformations T'(r, s,¢,u) which are required during the course of the algorithm
to achieve divisibility of the coefficients a; by various power of p. In practice one would ignore
the transformations which had taken place while processing each p, unless a scaling by p had
taken place on discovering that the model was non-minimal. The most complicated part of
the algorithm is the branch for reduction type I, , where one successively refines the model
p-adically until certain auxiliary quadratics have distinct roots modulo p. This requires careful
book-keeping. The presentation given here closely follows our own implementation of the
algorithm, which in turn owes much to an earlier Fortran program written by Pinch. The
following sub-procedures are used:

compute_invariants computes the b;, ¢; and A from the coefficients a;. Note that c4, cg
and A do not change unless a scaling is required, since all other transformations have u = 1.

transcoord(r,s,t,u) applies the coordinate transformation formulae of the previous sec-
tion to obtain new values for the a; and other quantities. All calls to this procedure have u = 1
except when rescaling a non-minimal equation. In each case we first compute suitable values
of r, s and t; usually this requires a separate branch if p =2 or p = 3.

quadroots(a,b,c,p) returns TRUE if the quadratk:congruenaaaxQ—%bx-+c:EEO (mod p)
has a solution, and FALSE otherwise. This is used in determining the value of the index c,.

nrootscubic(b,c,d,p) returns the number of roots of the cubic congruence 3+ bx? +cx +
d =0 (mod p).

Tate’s Algorithm

INPUT: al, a2, a3, a4, a6 (integer coefficients of E); p (prime).
QUTPUT: Kp (Kodaira symbol)

fp (Exponent of p in conductor)

cp (Local index)

1. BEGIN
2. compute_invariants(b2,b4,b6,b8,c4,c6,A);
3. n = ord(p,A);

(Test for type 1)
4. IF n=0 THEN Kp = "IO"; fp = 0; cp = 1; EXIT FI;

(Change coordinates so that p | as,aq, ag)

5. IF p=2 THEN

6. IF p|b2

7. THEN r = a4 mod p; t = r*(1+a2+a4)+a6 mod p

8 ELSE r = a3 mod p; t = r+ad mod p

9. FI

10. ELIF p=3 THEN

11. IF p|b2 THEN r = -b6 mod p ELSE r = -b2*b4 mod p FI;
12. t = al*r+a3 mod p

13. ELSE

14. IF p|c4 THEN r = -inv(12,p)*b2 ELSE r = -inv(12xc4,p)*(c6+b2*c4) FI;
15. t = -inv(2,p)*(al*r+a3l);

16. r=rmod p; t =t mod p

17. FI;
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18. +transcoord(r,0,t,1);
(Test for types I, 11, III, IV)
19. IF p)[c4 THEN

20. IF quadroots(l,al,-a2,p) THEN cp = n ELIF 2|n THEN cp = 2 ELSE cp = 1 FI;
21. Kp = "In"; fp = 1; EXIT
22. FI;

23. IF p2fa6 THEN Kp
24. IF p3fb8 THEN Kp
25. IF pSfb6 THEN

"II"; fp = n; cp = 1; EXIT;
"ITI"; fp = n-1; cp = 2; EXIT;

26. IF quadroots(1l,a3/p,-a6/p2,p) THEN cp = 3 ELSE cp = 1 FI;
27. Kp = "IV"; fp = n-2; EXIT

28. FI;

(Change coordinates so that p | a1,az; p* | as,as; p° | ag)

29. IF p=2

30. THEN s = a2 mod 2; t = 2*x(a6/4 mod 2)

31. ELSE s = -al*inv(2,p); t = -a3*inv(2,p)

32. FI;

33. transcoord(0,s,t,1);
(Set up auziliary cubic T3 + bT? + T +d)

34. b = a2/p; c = a4/p2; d = a6/p3;
35. w = 27%d2-b2xc2+4xbS*d-18*bkckd+axcS;
36. x = 3*kc-b2;

(Test for distinct roots: type If)

37. 1IF pfw THEN Kp = "I*0"; fp = n-4; cp = l+nrootscubic(b,c,d,p); EXIT
(Test for double root: type I, )

38. ELIF p{x THEN

(Change coordinates so that the double root is T =0)

39. IF p=2 THEN r = c ELIF p=3 THEN r = b*c ELSE r = (b*c-9*d)*inv(2*x,p) FI;
40. r = p*x(r mod p);

41. transcoord(r,0,0,1);

(Make a3, a4, ag repeatedly more divisible by p)

42, m=1; mx = p2; my = p2; cp = 0;

43. WHILE cp=0 DO

44 . BEGIN

45. xa2 = a2/p; xa3d = a3/my; xad = a4/(p*mx); xa6 = a6/(mx*my) ;

46. IF pf(xa32+4*xa6) THEN

47. IF quadroots(1l,xa3,-xa6,p) THEN cp = 4 ELSE cp = 2 FI

48. ELSE

49. IF p=2 THEN t = my*xa6 ELSE t = my*((-xa3*inv(2,p)) mod p) FI;
50. transcoord(0,0,t,1);

51. my = my*p; m = m+l;

52. xa2 = a2/p; xa3 = a3/my; xad = a4/(p*mx); xa6 = a6/(mx*my) ;
53. IF pf(xa42-4*xa2+xa6) THEN

54. IF quadroots(xa2,xa4,xa6,p) THEN cp = 4 ELSE cp = 2 FI
55. ELSE

56. IF p=2 THEN r = mx*(xa6%*xa2 mod 2)
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57. ELSE r = mx*(-xa4*inv(2*xa2,p) mod p)
58. FI;

59. transcoord(r,0,0,1);

60. mx = mx*p; m = m+l

61. FI

62. FI

63. END;

64. fp = nm-4; Kp = "I*m"; EXIT

65. ELSE

(Triple root case: types II*, IIT*, IV* or non-minimal)
(Change coordinates so that the triple root is T =0)

66. IF p=3 THEN rp = -d ELSE rp = -b*inv(3,p) FI;

67 . r = p*(rp mod p);

68. transcoord(r,0,0,1);

69. x3 = a3/p?; x6 = a6/p%;

(Test for type IV*)

70. IF pf(x32+4%x6) THEN

71. IF quadroots(1,x3,-x6,p) THEN cp = 3 ELSE cp = 1 FI;
72. Kp = "IV#"; fp = n-6; EXIT

73. ELSE

(Change coordinates so that p3 | az, p° | ag)

74. IF p=2 THEN t = x6 ELSE t = x3*inv(2,p) FI;

75. t = -p2*(t mod p);

76. transcoord(0,0,t,1);

(Test for types IIT*, II*)

7. IF p*fad4 THEN Kp = "III*"; fp = n-7; cp = 2; EXIT
78. ELIF p6{a6 THEN Kp = "IIx"; fp = n-8; cp = 1; EXIT
79. ELSE

(Equation non-minimal: divide each a; by p* and start again)

80. transcoord(0,0,0,p); restart

81. FI

82. FI

83. END

In Table 1 we will give the local reduction data for each curve at each ‘bad’ prime (dividing
the discriminant of the minimal model). We also give the factorization of the minimal discrim-
inant and of the denominator of j, as in the earlier tables. To save space we omit the ¢4 and
ce invariants, which are easily computable from the coefficients a;.

3.3 Computing the Mordell-Weil group I: finding torsion points

In this and the next three sections we will discuss the question of determining the Mordell-
Weil group E(Q) of rational points on an elliptic curve E defined over Q. This group is finitely
generated, by Mordell’s Theorem, and hence has the structure

E@Q) =TxF
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where T is the finite torsion subgroup F(Q)ors of F(Q) consisting of the points of finite order,
and F' is free abelian of some rank r > 0:

F=7".

The problem of computing E(Q) thus subdivides into several parts:

e computing the torsion T

e computing the rank r;

e finding r independent points of infinite order;

e computing a Z-basis for the free part F.

A related task is to compute the regulator R(E(Q)) (defined below); for this and for the
latter two steps we will also need to compute the canonical height B(P) of points P € E(Q),
and hence the height pairing E(P, Q).

In this section we will treat the easiest of these problems, that of finding the torsion points.
In fact, these can be found as a byproduct of the more general search for points on the curve,
since their naive height can be bounded (see the remark before Lemma 3.5.2). However, it is
also useful to have a self-contained method for determining the torsion.

Using the fact that E(R) is isomorphic either to the circle group S! (when A < 0) or to
St x Cy (when A > 0), where O} denotes a cyclic group of order k, together with the fact that
all finite subgroups of S are cyclic, we see that T is isomorphic either to C}, or to Ca, x Cs for
some k > 1, the latter only being possible when A is positive. The number of possible values
of k is finite: by a theorem of Mazur [39],[40], a complete list of possible structures of 7" is

Cy for 1<k<10 or k=12
Cor x Cy for 1<k <A4.

To determine the torsion subgroup of an elliptic curve defined over Q, we may use a form
of the Lutz—Nagell Theorem. (The situation is more complicated over number fields other
than @, on account of the ramified primes.) The first step is to find a model for the curve in
which all torsion points are integral. For this it suffices to complete the square (if necessary)
to eliminate the zy and y terms, at the expense of a scaling by u = 2. Then for P = (z,y)
a torsion point, we can use the fact that both P and 2P are integral to bound y. For the
first step, the following result may be found in [33, Section III.1] and [28, Theorem 5.1]. The
original form of this result, due independently to Lutz [36] and Nagell [46], was for curves of
the form 3% = 22 + ax + b, with no z? term. While such an equation may be obtained by
completing the cube, this would involve a further scaling of coordinates, and so would lead
to larger numbers. If a; = ag = 0 we can apply the following result directly; otherwise, put
a = by, b =8bsy and ¢ = 16bg.

PROPOSITION 3.3.1. Let E be an elliptic curve defined over Q, given by an equation
(3.3.1) yP=f(z)=a>+ar® +bx+c

where a,b,c € Z. If P = (x,y) € E(Q) has finite order, then xz,y € Z.
Next we bound the y coordinate of a torsion point P = (x,y) (see [33, Theorem 1.4]).

PROPOSITION 3.3.2. Let E be as in (3.3.1). If P = (z1,y1) has finite order in E(Q) then
either y1 = 0 or y3 | Ag, where

Ao = 276 + 4a3c + 4b® — a®b? — 18abe.
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PROOF. If 2P = 0 then y; = 0, since —P = (x1, —y1). Otherwise 2P = (x3, y2) with 22,92 € Z
by Proposition 3.3.1. Using the addition formula on E we find that 22, + x5 = m? — a where
m = f’(x1)/2y; is the slope of the tangent to E at P. Hence m € Z, so that y; | f’(x1). Using
y? = f(x1), this implies that y$|Ag, since

Ag = (—27f(z) + 54c + 4a® — 18ab) f(z) + (f'(x) + 3b — o) f'(x)?. O

This gives us a finite number of values of y to check; for each, we attempt to solve the cubic
for x € Z, to obtain all torsion points on E. Note that we are actually determining all points
P such that both P and 2P are integral (in the possibly scaled model for E), which includes
all torsion points, but may also include points of infinite order. To determine whether a given
integral point has finite or infinite order, we simply compute multiples mP successively until
either mP = 0, in which case P has order m, or mP is not integral, in which case P has infinite
order. This does not take long, as the maximum possible order for a torsion point is 12 by
Mazur’s theorem. If we find points of infinite order at this stage we keep a note of them for
later use (see Section 3.5).

The quantity Ag is related to the discriminant A of the curve (3.3.1) by A = —16Ay. If this
is large, there may be many values of 3¢ to check when we apply the preceding Proposition to
determine the torsion on a given curve. It is possible to save time by using a further result,
which states that for an odd prime p of good reduction (that is, p { 2A), the reduction map
from E(Q)tors to E(Z/pZ) is injective. For more details, and worked examples, see either [58,
Section VIIL.7] or [28, Section V.1].

If we want to know the structure of 7" and not just its order, note that from Mazur’s theorem
the only ambiguous cases are when 7" has order 4k = 4, 8 or 12 and A > 0; we can always tell
apart the groups Cy, and Cy x (5 as the former has only one element of order 2 while the
latter has three, and this number is the number of rational (integer) roots of f(x).

To solve the cubic equations f(z) = y? for z, given y, we use the classical formula of Cardano
(see any algebra textbook) to find the complex roots (which we also need in computing the
periods in section 3.7 below), and if any of these are real and close to integers we check them
using exact integer arithmetic. Testing all divisors of the constant term can be too time-
consuming, as it involves factorization of the numbers y? — ¢ which may be very large.

Here is the algorithm in pseudocode; for simplicity we only give it for curves with no xy or
y terms; in the general case, one works internally with points on a scaled model (including the
calculation of the order), converting back to the original model on output. Since we know in
advance that no point will have order greater than 12, when computing the order of a point
we simply use repeated addition until we reach a non-integral point or the identity 0. The
subroutine order (P) returns 0 for a point of infinite order. Also: square_part(A) returns
the largest integer whose square divides A; integer _roots returns a list of the integer roots
of a cubic with integral coefficients; and integral (x) tests whether its (rational) argument is
integral.

Algorithm for finding all torsion points

INPUT: a,b,c (integer coefficients of a nonsingular cubic).
OUTPUT: A list of all torsion points on y2=X3 2

1. BEGIN

A=27%c2+4xa3*c+4*b3-a2xb2-18*akrbkc;
y-list=positive_divisors(square_part(A)) U {0};
FOR y IN y_list DO

BEGIN

+ax“+bx+c, with orders.

g WwN
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6. x_list=integer_roots (x3+axx? +b*X+c—y2) ;
7. FOR x IN x_list DO

8. BEGIN

9. P=point (x,y);

10. n=order (P) ;

11. IF n>0 THEN OUTPUT P,n FI

12. END

13. END

14. END

(Subroutine to compute order of a point)
SUBROUTINE order (P)

1. BEGIN

2. n=1; Q=P;

3. WHILE integral(x(Q)) AND Q#0 DO
4. BEGIN

5. n=mn+tl; Q = Q+P

6. END;

7. 1IF Q#0 THEN n=0 FI;

8. RETURN n

9. END

3.4 Heights and the height pairing

In this section we will show how to compute the canonical height A(P) of a point P € E(Q),
and hence the height pairing

hP,Q) = = (h(P + Q) — h(P) — h(Q)).

N | —

We will use this in the following section to find dependence relations among finite sets of
points of infinite order, when we are computing a Z-basis {Pi,...,P.} for the free abelian
group E(Q)/T. Also, the regulator R(FE) is given by the determinant of the height pairing
matrix:

R(E) = |det(h(P;, P;}))|.

The canonical height & is a real-valued quadratic form on E (Q). It differs by a bounded amount
(with a bound dependent on E but not on the point P) from the naive or Weil height h(P).
For a point P = (z,y) = (a/c?,b/c3) € E(Q) with a,b,c € Z and ged(a,c) = 1 = ged(b, ), the
latter is defined to be

h(P) = log max{|al, c*}.

Now the canonical height may be defined as A(P) = lim,_,o 4~ "h(2"P), but this is not
practical for computational purposes. For the theory of heights on elliptic curves, see [58,
Chapter VIII|. Later (in the next section) we will need an explicit bound on the difference
between h(P) and h(P).

The height algorithms in this section are taken from Silverman’s paper [59]. The global

height h(P) is defined as a sum of local heights:

(3.4.1) h(P)=">_ hy(P).

p<oo
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Here the sum is over all finite primes p and the ‘infinite prime’ oo coming from the real
embedding of Q. (Over a general number field, there would in general be several of these
infinite primes, including complex ones, and the local heights need to be multiplied by certain
multiplicities: see [59]).

A remark about normalization': the canonical height must be suitably normalized. In the
literature there are two normalizations used, one of which is double the other and is the one
appropriate for the Birch-Swinnerton-Dyer conjecture (resulting in a regulator 2" times as
large). In Silverman’s paper he uses the other (smaller) normalization. Thus all the formulae
here are double those in the paper [59].

The following proposition, which is Theorem 5.2 of [59] (for curves over general number
fields) specialized to the case of a curve defined over Q, also applies to a curve defined over Q,
and to a point P = (z,y) € E(Q,). In the proposition, we refer to the functions o and 3
defined on E by

Yo (P) =2y + a1z + ag, and Y3 (P) = 3zt + by + 3bsx? + 3bgx + bs:

thus, 1 vanishes at the 2-torsion points of E and 13 at the 3-torsion.

PROPOSITION 3.4.1. Let E be an elliptic curve defined over Q given by a standard Weierstrass
equation (3.1.1) which is minimal at p, and let P = (x,y) € E(Q).
(a) If

01“dp(3x2 + 2a2z + a4 —a1y) <0 or ord,(2y + a1z + az) <0

then
hy,(P) = max{0, —ord,(x)} log p.

(b)  Otherwise, if ord,(cs) = 0 then set N = ord,(A) and M = min{ord,(v2(P), 3 N}; then

M(M — N)

ilp(P) = N

log p.

(c) Otherwise, if ord,(3(P)) > 3ord, (12 (P)) then

~

hy(P) = —%ordp(wg(P)) log p.

(d) Otherwise

iy (P) = — o, (65 (P)) log.

The first case in Proposition 3.4.1 covers primes p where the point P has good reduction
(including all primes where E has good reduction, as well as those where the reduced curve
is singular but P does not reduce to the singular point). In the other three cases, P has
singular reduction, and the reduction of E at p is multiplicative, additive of types IV or IV*,
and additive of types III, IIT* and I, respectively.

Hence for each point P, the local height izp (P) = 0 if p divides neither the discriminant A
nor ¢, where ¢? is the denominator of the z-coordinate of the point P. In all cases, in(P)
is a rational multiple of log(p). The total contribution from the primes dividing ¢ in the
global height h(P) is therefore (from case (a) of the Proposition) simply 2log(c), and we have

T am grateful to Gross for explaining this to me, after I found that apparently the two sides of the Birch—
Swinnerton-Dyer conjecture disagreed by a factor of 27!
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the following formula, better for practical computation than (3.4.1) since we do not have to
factorize c:

~

(3.4.2) h(P) = hoo(P) +2l0g(c) + > hy(P).
p|A,pfc

This formula appears in [62], where it is shown how to compute h(P) using little (or no)
factorization of A, which can be useful in certain situations. We refer the reader to [62] for
details.

An algorithm for computing the local height at a finite prime p is given by the following:

Silverman’s algorithm for computing local heights: finite primes

INPUT: al, a2, a3, a4, a6 (integer coefficients of a minimal model for FE).
x,y (rational coordinates of a point P on F).
p (a prime).

OUTPUT: the local height of P at p.

1. BEGIN

2. compute_invariants(b2,b4,b6,b8,c4,A);

3. N = ord(p,A);

4. A = ord(p,3*x2+2*a2*x+ad-al+y);

5. B = ord(p,2*y+al*x+a3);

6. C = ord(p,3*x%+b2%x3+3+ba*x2+3*b6+x+b8) ;

7. M = min(B,N/2);

8. IFA<O0ORB < O THEN L = max(0,-ord(p,x))

9. ELSE IF ord(p,c4)=0 THEN L = Mx*(M-N)/N

10. ELSE IF C > 3*B THEN L = -2%B/3

11. ELSE L = -C/4

12. FI;

13. RETURN Lxlog(p)

14. END

We must also compute the local component of the height at the infinite prime, hoo (P).
The method here originated with Tate, but was amended by Silverman in [59] to improve

convergence, and to apply also to complex valuations. Tate in [66] expressed o (P) as a series
1 oo
hoo(P) = log |z| + 1 204—?1%
n—=

where the coefficients ¢,, are bounded provided that no point on E(R) has z-coordinate zero.
Of course, over R one can shift coordinates to ensure that this condition holds, but the resulting
series can have poor convergence properties, and this trick will not work over C. Silverman’s
solution is to use alternately the parameters z and =’ = x + 1, switching between them (and
between the two associated series ¢, and ¢}) whenever |z| or |z’| becomes small (less than
1/2). The series of coefficients c¢,, is obtained by repeated doubling of the point P, working
with ¢ = 1/z or t/ = 1/’ as local parameter. The result is a new series of the above type in
which the error in truncating before the Nth term is O(4=), with an explicit constant. In
fact (see [59, Theorem 4.2]) the error is less than 1107¢, giving a result correct to d decimal

places, if
N > —-d+ L + — log(7+ = log H + E log max{1, |A|71})
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where

H = max{4, ’bgl, 2|b4|,2’b6|, |b8|}

The last term vanishes for curves defined over Z, since then we have |A| > 1.

In the algorithm which we now give, the quantities b2’, b4’, b6’ and b8’ are those
associated with the shifted model of E with 2/ = x4+ 1; the switching flag beta indicates which
model we are currently working on; mu holds the current partial sum; f holds the negative
power of 4.

Silverman’s algorithm for computing local heights: real component

INPUT: al, a2, a3, a4, a6 (integer coefficients of a minimal model for FE).
x (x-coordinate of a point P on FE).
d (number of decimal places required).

OQUTPUT: the real local height of P.

1. BEGIN

2. compute_invariants(b2,b4,b6,b8);

3. H = max(4,|b2],2%|bd]|,2%|b6], |b8]);

4. D2’ = b2-12; b4’ = Db4-b2+6; b6’ = b6-2%xb4+b2-4; b8’ = b8-3*b6+3*b4-b2+3;
5. N = ceiling((5/3)*d + (1/2) + (3/4)*log(7+(4/3)*log(H)));
6. IF |x|<0.5 THEN t = 1/(x+1); beta = 0 ELSE t = 1/x; beta = 1 FI;
7. mu = -logltl; £ = 1;

8. FORn =0 TO N DO

9. BEGIN

10. f = f/4;

11. IF beta=1 THEN

12. w = bE¥tE+2xbart3+b2xt2+4xt;

13. z = 1-baxt2-2xb6xt3-b8xt?;

14. ZW = z+w

15. ELSE

16. W = b6’ *tE+2kba 7 xt3+b27 xt 244t ;

17. z = 1-bd’*t2-2%b6’ *xt3-b8 ¥t ?;

18. ZW = Z-W

19. FI;

20. IF |wl < 2%]|z]|

21. THEN mu = mu+f*xloglzl|; t = w/z

22. ELSE mu = mut+f*xloglzwl|; t = w/zw; beta = 1-beta

23. FI

24. END;

25. RETURN mu

26. END

Finally, to compute the global height iL(P), we simply add to the infinite local height ha (P)
the finite local heights h,(P) for all primes p dividing either A or the denominator of z(P).
Using (3.4.2) this leads to the following algorithm.
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Algorithm for computing global canonical heights

INPUT: al, a2, a3, a4, a6 (integer coefficients of a minimal model for FE).
P=(x,y) (a rational point P on FE).
OUTPUT: the global canonical height h(P) of P.

1. BEGIN

2. A= discr(al,a2,a3,a4,ab);
3. d = denom(x);

4. h = real height(P) + log(d);
5. p-list = prime_divisors(A);
6. FOR p IN p_list DO

7. BEGIN

8. IF pfd THEN h = h + local height(p,P) FI
9. END;

10. RETURN h

11. END

3.5 The Mordell-Weil group II: generators

In this section we will show how we look for rational points of infinite order on an elliptic
curve . In compiling the tables, we usually knew the rank r in advance so that we knew how
many independent points to expect to find (and only looked for such points when we knew
that > 0); however, this procedure is also useful as an open-ended search when we do not
know the rank, as obviously it can provide us with a lower bound for 7.

The procedure divides into two parts. First, we have a searching routine which looks for
points up to some bound on the naive height (equivalently, some bound on the numerator and
denominator of the z-coordinate). As this routine finds points, it gives them to the second
routine, which has at each stage a Z-basis for a subgroup A of E(Q)/T" initially A = 0. This
second routine uses the height pairing to determine one of three possibilities: the new point
P may be independent of those already found and can then be added to our cumulative list
of independent points; the rank of A is thus increased by 1. Secondly, P may be an integral
combination of the current basis (modulo torsion) and can then be ignored. Finally, if a
multiple kP of P is an integral combination of the current basis for some k£ > 1, we can find a
basis for a new subgroup A which contains the old A with index k. Even when we know the
rank 7 in advance, we do not stop as soon as we have a subgroup A of rank r, since A might still
have finite index in F(Q)/T. To close this final gap we use explicit bounds for the difference
between the naive and canonical heights, such as Silverman’s result (Proposition 3.5.1) below.

The algorithm we use for the second procedure is a very general one, which can be used in
many other similar situations; for example, as part of an algorithm for finding the unit group
of a number field, where the first routine somehow finds units. Our algorithm is essentially the
same as the ‘Algorithm for enlarging sublattices’ in the book by Pohst and Zassenhaus [50,
Chapter 3.3].

A rational point P on E (given by a standard Weierstrass equation) may be written uniquely
as P = (z,y) = (a/c?,b/c?) with integers a, b, and ¢ satisfying ged(a,c) = ged(b,c) = 1 and
¢ > 1. The naive or Weil height of P is h(P) = logmax{|a|,c?}. Initially, we find the point of
order 2 in F(R) with minimal z-coordinate x; this gives a lower bound for the z-coordinates
of all real points on E. We then search for points P with naive height up to some bound B
by looping through positive integers ¢ < exp(B/2) and through a coprime to ¢ in the range?

2If E(R) has three points of order two, with x-coordinates o < z1 < 2, then we also omit those a for
which 221 < a < c2xs.
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max{c’xg, —exp(B)} < a < exp(B). Given a and ¢, we attempt to solve the appropriate
quadratic equation for b € Z. To speed up this procedure, we use a quadratic sieve: for
each denominator ¢ we precompute for about 10 auxiliary sieving primes p the residue classes
modulo p to which a must belong if the equation for b is to be soluble modulo p. Each candidate
value of a can then first be checked to see if it is admissible modulo each sieving prime before
the more time-consuming step of attempting to solve for b. This improvement to the search
results in a major time saving in most cases, though for most of the curves in our tables on
which we expected to find points of infinite order, such a point was found very quickly anyway.
(In some cases we had already found such a point during the search for torsion points.) In
practice it may be better to use composite moduli for the sieving.

Each point P found by this search is passed to the second procedure, which tests whether
it has infinite order, discarding it if not. At the general stage we will have k independent
points P; for 1 < i < k (initially £ = 0) which generate a subgroup A of rank k, and will have
stored the k x k height pairing matrix M = (h(P;, P;)) and its determinant R. Now we set
Pi+1 = P and compute il(Pi,Pk_H) for i < k + 1 to obtain a new height pairing matrix of
order k+ 1. If the determinant of this new matrix is non-zero, the new point is independent of
the previous ones and we add it to the current list of generators, increment k, replace R by the
new determinant, and go on with the point search. If the new determinant is zero, however,
we use the values h(P;, P) to express Px11 as a linear combination of the P; for i < k, with
approximate real coefficients: in fact we have

a1Py +asPy+ ...+ apPi + agy1Prr1 =0 (modulo torsion)

where for 1 <i < k+ 1 the coefficient a; is the (i, k+ 1) cofactor of the enlarged matrix, which
we will have stored during the computation of the new determinant. In particular, agy; is (up
to sign) the previous value of R, and hence is non-zero. Next we find rational approximations to
these floating-point coefficients a; (using continued fractions, or MLLL if available), and clear
denominators to obtain a new equation of the same form with coprime integer coefficients a;,
which we can check holds exactly. In this relation we still have ax11 # 0 (the first k& points
are independent). The simplest case now is when ax;1 = +1, for then Px; is redundant and
can be discarded. Similarly, if a; = +1 for some ¢ < k, then we may discard P;, replacing it
by Ppi1, and gaining index |ax11|. In general let a; be the minimal non-zero coefficient (in
absolute value); if |a;| > 1, we find a coefficient a; not divisible by a; (which must exist since
the coefficients are coprime) and write a; = a;q + b where 0 < b < |a;|. Now since

a; Py + a;P; = a;P; + (aiq + b)P; = a;i(P; + qF;) + bF;

we may replace the generator P; by P; + qP;, replace the coefficient a; by b (which is smaller
than |a;|), and replace i by j. After a finite number of steps we obtain a minimal coefficient
a; = 1 and can discard the current generator P;, leaving a new set of k£ independent generators
which generate a group larger than before by a finite index equal to the original value of |agy1].

In this way, we will be able to find a Z-basis for the subgroup A of the Mordell-Weil group
(modulo torsion) which is generated by the points of naive height less than the bound B. Often
we know the rank r of our curve in advance, so that we can increase B until A has rank 7.
Then A has finite index in F(Q), and we must enlarge it to give the whole of E(Q). There are
various methods one can use here, all of which rely on having explicit bounds for the difference
between the naive and canonical heights on the curve E. The simplest general bound here is
a result of Silverman (see [60]). One can certainly often obtain better bounds for individual
curves, and there are also more complicated results which apply in general and which usually
give much better bounds, such as the main result of [57].
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For simplicity we will only give Silverman’s version of the bound. In the following proposi-
tion,® the height of a rational number a/b with ged(a,b) = 1 is h(a/b) = log max{|al, |b|}, and
log™ (z) = logmax{1, ||} for = € R.

PROPOSITION 3.5.1. Let E be an elliptic curve defined by a standard Weierstrass equation
over Z, with discriminant A and j-invariant j. Set 2* = 2 if by # 0, or 2* =1 if by = 0.
Define

(log |A| + log+(j)) + log ™ (b /12) + log(2*).

=

n(E) =

Then for all P € E(Q),

—%h(j) — w(E) —1.922 < h(P) — h(P) < u(E) + 2.14.

This result is easiest to apply in the rank 1 case, as follows. Suppose we have a rational point
P of infinite order on E, of height A(P). If P is not a generator it is a multiple P = kQ (modulo
torsion) of some generator (), where k > 2, so that iL(Q) < iﬁ(P) By the preceding proposition
we can bound the naive height of ) and adjust the bound B in our search accordingly. If a
further search up to this bound finds no more points, then P was a generator after all; otherwise
we are sure to find a generator.

Similar techniques are possible in higher rank situations, using estimates from the geometry
of numbers. See the papers [70] and [57] for more details.

We may also remark that since P has finite order if and only if fL(P) = 0, the proposition
implies that all torsion points have naive height h(P) < Lh(j) + p(E) + 1.922, giving us
another way of finding all the rational torsion points.

For the general case, the following simple result* may be used.

LEMMA 3.5.2. Let B > 0 be such that
S ={Pec EWQ)|hP)< B}

contains a complete set of coset representatives for 2E(Q) in E(Q). Then S generates E(Q).

PROOF. Let A be the subgroup of F(Q) modulo torsion generated by the points in S. Suppose
that A is a proper subgroup; then we may choose @ € E(Q) — A with lAz(Q) minimal, since h
takes a discrete set of values. By hypothesis, there exist P € A and R such that Q = P + 2R;
certainly R ¢ A, so that H(R) > E(Q) by minimality. Now using the fact that h is quadratic
and non-negative we obtain a contradiction:

N — DN~

h(P) = =(h(Q + P) + h(Q — P)) — h(Q)

h(2R) — h(Q

v

)
= 2h(R) — h(Q) > h(Q) > B. O

We have two ways of using this in practice. First of all, it is possible to obtain from the
two-descent procedure which we use to determine the rank (see the next section), a set of coset
representatives for E(Q) modulo 2E(Q). Computing the heights of these points we can find

3When referring to [60], recall that our h is double Silverman’s; also, the constant 1.922 appearing here is
a (normalized) correction, due to Bremner, of the constant in Silverman’s paper.
4 Attributed in [60] to Zagier, it is also exercise 5 on page 84 of Cassels’ book [8].
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a B for which the Lemma holds, to which we add the maximum difference between naive and
canonical heights from the preceding proposition to get a bound on the naive heights of a set
of generators.

Alternatively, assuming that we know the rank r, we first run our search until we find r
independent points P;. Now it is easy to check whether a point P is twice another: if any
subset of the P; sums to 2Q) for some ) we replace one of the P; in the sum by ) and gain
index 2. After a finite number of steps (since we are in a finitely-generated group) we obtain
independent points which are independent modulo 2, and proceed as before.

Again, we have only presented here the most straightforward strategies for enlarging a set
of r independent points in E(Q) to a full Z-basis; this is a topic of active research, with new
ideas being developed rapidly: see the paper [57] for some recent advances.

Putting the pieces together, we can determine a set of generators for E(Q) modulo torsion,
and then compute the regulator, provided that we know its rank. If we do not know the rank,
we at least can obtain lower bounds for the rank. Together with the torsion points found in
section 3.3, we will have determined the Mordell-Weil group E(Q) explicitly. Computing the
rank is the subject of the next section.

3.6 The Mordell-Weil group III: the rank

For an elliptic curve E defined over the rationals, the rank of the Mordell-Weil group E(Q) is
by far the hardest of the elementary quantities associated with E to compute, both theoretically
and in terms of implementation. Strictly speaking, the two-descent algorithms we will describe
are not algorithms at all, as they are not guaranteed to terminate in all cases. One part of the
procedure involves establishing whether or not certain curves of genus one have rational points,
when they are known to have points everywhere locally (that is, over R and over the p-adic
field Q, for all primes p): there is no known algorithm to decide this in general. Moreover,
even without this difficulty, for curves with large coefficients and no rational points of order
two, the general two-descent algorithm takes too long to run in practice. For simplicity, we
will refer to the procedures as rank algorithms, although their output in certain cases will be
bounds on the rank rather than its actual value.

We originally decided to implement a general two-descent procedure in order to check that
the modular curves we had computed did have their rank equal to the analytic rank, which
we knew, as described in the previous chapter. This was a somewhat thankless task, as it
involved a large programming effort, and a large amount of computer time to run the resulting
program, in order to verify that approximately 2500 numbers did in fact have the values 0, 1
or 2 which we were already sure were correct. Since the project started, the major theoretical
advances by Kolyvagin, Rubin and others meant that all the cases of rank 0 or 1 were known
anyway, which left just 18 cases of conjectured rank 2 to verify. In the end we were able to
verify these cases, and to check all but a few dozen of the rank 0 or 1 curves; we also obtained
extra information by the two-descent procedure, such as the 2-rank of the Tate-Shafarevich
group III, and a set of coset representatives for E(Q)/2E(Q).

Since the original implementation, the algorithm has been much improved in many ways
(notably the syzygy sieve in the search for quartics, the systematic use of group structure in the
2-isogeny case, and the use of quadratic sieving in searching for rational points on homogeneous
spaces: see below for details). Our program mwrank,® based on the algorithm, now works well
on a much larger set of curves, including some of fairly high rank such as a curve of Fermigier
[23] with rank 13 and 2-torsion (see the example below), and several curves with no 2-torsion
and ranks 6, 7 and 8. However, curves with extremely large coefficients, such as Nagao’s curve
of rank (at least) 21 (see [45]), are beyond the reach of this algorithm owing to the enormous

5 Available from the author’s ftp site: see the Introduction for details.
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search regions required. One can also use the program mwrank to find points on curves which
are too large to find by the search methods of the previous section.

We will not describe here the theory of two-descent, which is the basis of the algorithm, in
great detail. Roughly speaking, one has an injective homomorphism from F(Q)/2E(Q) into a
finite elementary abelian 2-group, the 2-Selmer group, and attempts to determine the image;
if this has order 2¢ then the rank of F(Q) is t, t — 1 or t — 2 according to whether the number
of points of order 2 in E(Q) is 0, 1 or 3 (respectively). This procedure applies to arbitrary
curves, and is called general two-descent. When E has a rational point P of order two, there
is a rational 2-isogeny ¢ : £ — E’ = E/(P) and a dual isogeny ¢’ : E/ — E. We may then
proceed differently, using a procedure we call two-descent via 2-isogeny: we embed each of
E'/¢(E) and E/¢'(E') into finite subgroups of Q*/(Q*)?2, which are easy to write down. This
is in contrast to the general two-descent, where one has to work hard to find the Selmer group
itself. A full description of two-descent can be found in the standard references such as the
books by Silverman [58], Husemoller [27], Knapp [28], or Cassels [8], but the descriptions given
there are only easy to apply when F has all its 2-torsion rational. For the general case where
there are no rational points of order 2, the main reference is one of the original papers [3] by
Birch and Swinnerton—Dyer on their Conjecture, and we followed that paper closely in writing
the first version of our program. More detail on the invariant theory, which has resulted in
substantial improvements to the general two-descent algorithm, can be found in the paper [20];
a very full description of the algorithm, together with its extension to real quadratic number
fields (see also [19]), can be found in Serf’s thesis [52].

Both algorithms involve the classification of certain curves, associated with the given ellip-
tic curve E, called principal homogeneous spaces. These are twists of E: curves of genus 1
isomorphic to E over an extension field, but not (necessarily) over Q itself; they need not have
rational points, so need not themselves be elliptic curves. When they do have rational points,
these map to rational points on E; the maps H — FE are called 2-coverings and have degree
4 (in the general two-descent) or 2 (in the 2-isogeny descent). The homogeneous spaces which
arise in both algorithms have equations of the form

(3.6.1) H: y? =g(z) = ax* + br® +ca® + dr +e

where g(x) is a quartic polynomial with rational coefficients. For brevity we will usually refer
to these principal homogeneous spaces simply as quartics. The invariants I and J of g(x) (see
below for their definition) are related to the invariants ¢4 and cg of either E or the 2-isogenous
curve E’. In the case of descent via 2-isogeny, g(z) will in fact be a quadratic in z2. We will be
interested in whether the quartic H has points over QQ or one of its completions, the p-adics Q,,
or the reals R. Such a point will either be an affine point (x,y) satisfying the equation (3.6.1),
or one of the two points at infinity on the projective completion of H, which are rational if
and only if a is a square.

In all cases, a quartic with a (global) rational point (z,y) will lead to a rational point on
the original curve F, and the set of all the rational points thus obtained will cover the cosets
of 2E(Q) in E(Q); thus we will be able to determine the rank of E(Q), and at the same time
obtain a set of points which generates a subgroup of the Mordell-Weil group E(Q) of odd,
finite index. Quartics with no global rational point which are everywhere locally soluble arise
from non-trivial elements in the Tate—Shafarevich group of E (or of E’); if these exist, we will
only obtain upper and lower bounds for the rank. This is because we currently have no general
procedure for proving that a quartic with no rational points does have none. In practice,
moreover, it is often impossible to distinguish between such a quartic and one with rational
points which are all very large, and hence outside the search region; this happens when a curve
has some very large generators, and in such cases also we may only be able to give bounds for
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the rank. Further work on these questions is clearly needed, and is currently the focus of much
active research.

Since the covering maps H — E have degree 2 or 4, the rational points on H tend to be
smaller (in the sense of naive height) than the rational points they map to on F; this makes
them easier to find by search. Here is an example of this: the curve y? = 23 — 673 has rank 2,
with generators P; = (29,154) and Py = (33989323537/61761%, —1384230292401340/617613).
The second generator, which would take a very long time to find by searching on the curve
itself, is obtained from the rational point (z,y) = (191/97,123522/972) on the quartic with
coefficients (a,b,c,d,e) = (—2,4,—24,164, —58). This is much easier to find: our program
takes less than a second to find the rank and both generators of this curve (but in this time
it does not prove that they are generators, only that they generate a subgroup of finite odd
index in the Mordell-Weil group).

Before we describe the two main two-descent algorithms, we will present algorithms for
determining local solubility and for attempting to determine global solubility of a quartic
equation such as (3.6.1), as these are used in both the algorithms.

Checking local solubility.

Here we present an algorithm for determining the local solubility of a curve of the form
(3.6.1), where g(x) is a square-free quartic polynomial with integer coefficients. It is easy to
generalize this algorithm in two ways: firstly, one might be interested in polynomials of higher
degree (when studying curves of higher genus, for example); secondly, working over a general
number field K, one would replace the p-adic field Q, here with the appropriate completion
of K. These extensions are quite straightforward.

Solubility at the infinite prime (that is, over the reals) is easily determined. If g(z) has a
real root then it certainly takes positive values, so that H has real points; if g(z) has no real
roots, then the values of g(x) have constant sign, and we merely have to check that a > 0.

Regarding the finite primes, we first observe that there are only a finite number which need
checking in each case, for if p is an odd prime not dividing the discriminant of g, then H
certainly has points modulo p which are nonsingular and hence lift to p-adic points. For the
other primes, we present an algorithm first given in [3].

It suffices to determine solubility in Z, for either g(z) or g*(z) = ex* + dz3 + cz? + bx + a,
and in the latter case we may assume x € pZ,. Given x;, modulo p¥, one tries to lift to a p-adic
point (z,y) with = x, (mod p¥). In [3], conditions are given for this to be possible; more
precisely, one of three possibilities may occur (given k and xy): either a lifting is definitely
possible, and we may terminate the algorithm with a positive result; or it is definitely not
possible, and we reject this value of x; or it is impossible to decide without considering xy
modulo a higher power of p. The test for this lifting is given below in the two subroutines called
lemma6 and lemma7, named after the corresponding results in [3]. This leads to a recursive
algorithm which is guaranteed to terminate since in any given case there is an exponent k£ such
that it is possible® to determine p-adic solubility by considering solubility modulo p*. All this
is an exercise in Hensel’s Lemma; the prime p = 2 needs to be considered separately. For the
details, we refer to the pseudocode below, or to [3]. Further information on local solubility
may be found in [56] and [57].

Here is the pseudocode for these algorithms. Note that for any given elliptic curve, all the
homogeneous spaces considered will have the same discriminant as the curve (up to a power
of 2), so that in practice we would not need to factorize the discriminant of each quartic.

6In fact, if & > ordp(disc(g)), and also k > 2 when p = 2, then the third possibility cannot occur in
algorithms lemma6 and lemma?.
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Algorithm for determining local solubility of a quartic

INPUT: a, b, ¢, d, e (integer coefficients of a quartic g(x))
OUTPUT: TRUE/FALSE (solubility of y2=g(x) in R and in @Q, for all p)
1. BEGIN

2. IF NOT R_soluble(a,b,c,d,e) THEN RETURN FALSE FI;

3. IF NOT Qp-soluble(a,b,c,d,e,2) THEN RETURN FALSE FI;

4, A = discriminant(a,b,c,d,e);

5. p-list = odd_prime factors(A);

6. FOR p IN p_list DO

7. BEGIN

8. IF NOT Qp_soluble(a,b,c,d,e,p) THEN RETURN FALSE FI

9. END;

10. RETURN TRUE

11. END

(Subroutine for determining real solubility)
SUBROUTINE R_soluble(a,b,c,d,e)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))
QUTPUT: TRUE/FALSE  (solubility of y2=g(x) in R)

1. BEGIN

2. IF a>0 THEN RETURN TRUE FI;

3. x.list = real_roots(a*x4+b*X3+c*x2+d*x+e=O);

4. TIF length(x_1list)>0 THEN RETURN TRUE FI;

5. RETURN FALSE

6. END

(Subroutine for determining p-adic solubility)
SUBROUTINE Qp-soluble(a,b,c,d,e,p)

INPUT: a, b, ¢, d, e (integer coefficients of a quartic g(x))
P (a prime)

QUTPUT: TRUE/FALSE  (solubility of y2=g(x) in Q,)

1. BEGIN

IF Zp_soluble(a,b,c,d,e,0,p,0) THEN RETURN TRUE FI;
IF Zp_soluble(e,d,c,b,a,0,p,1) THEN RETURN TRUE FI;
RETURN FALSE

END

g W N

(Recursive Zy-solubility subroutine)
SUBROUTINE Zp_soluble(a,b,c,d,e,x k,p,k)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))
P (a prime)
xk (an integer)
k (a non-negative integer)
OUTPUT: TRUE/FALSE (solubility of y2=g(x) in Z,, with x=xk (mod p*))
1. BEGIN
2. 1IF p=2
3. THEN code = lemma7(a,b,c,d,e,x k,k)
4. ELSE code = lemma6(a,b,c,d,e,x k,p,k)
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5 FI;

6. IF code=+1 THEN RETURN TRUE FTI;
7. IF code=-1 THEN RETURN FALSE FI;
8 FOR t = 0 TO p-1 DO

9

. BEGIN
10. IF Zp_soluble(a,b,c,d,e,X_k+t*pk,p,k+1) THEN RETURN TRUE FI
11. END;
12. RETURN FALSE
13. END

(Zy, lifting subroutine: odd p)

SUBROUTINE lemma6(a,b,c,d,e,x,p,n)

1. BEGIN

gx = a*x4+b*x3+c*x2+d*x+e;

IF p.adic_square(gx,p) THEN RETURN +1 FI;
gdx = 4*a*x3+3*b*X2+2*c*x+d;

1 = ord(p,gx); m = ord(p,gdx);

IF (1>m+n) AND (n>m) THEN RETURN +1 FI;
IF (1>2*n) AND (m>n) THEN RETURN O FI;

RETURN -1

END

© 00 NO O WN

(Zy lifting subroutine)
SUBROUTINE lemma7(a,b,c,d,e,x,n)

1. BEGIN

2. gx = a*x4+b*x3+c*x2+d*x+e;

3. IF p.adic_square(gx,2) THEN RETURN +1 FI;

4. gdx = 4*a*x3+3*b*X2+2*c*x+d;

5. 1 = ord(p,gx); m = ord(p,gdx);

6. gxodd = gx; WHILE even(gxodd) DO gxodd = gxodd/2;

7. gxodd = gxodd (mod 4);

8. IF (1>m+n) AND (n>m) THEN RETURN +1 FI;

9. IF (n>m) AND (1=m+n-1) AND even(l) THEN RETURN +1 FI;
10. IF (n>m) AND (1=m+n-2) AND (gxodd=1) AND even(l) THEN RETURN +1 FI;
11. IF (m>n) AND (1>2*n) THEN RETURN O FI;

12. IF (m>n) AND (1=2*n-2) AND (gxodd=1) THEN RETURN O FI;
13. RETURN -1

14. END

A few further remarks on these algorithms: firstly, only trivial changes need to be made to
the algorithms Qp_soluble and Zp_soluble to make them apply to more general equations of
the form y? = g(x) where g(z) is a non-constant squarefree integer polynomial. This is relevant
for work on curves of higher genus, and was observed by S. Siksek. Secondly, extensions to
more general p-adic fields are also useful in studying curves over number fields, and again the
extensions of Lemma 6 and Lemma 7 in [3] are not difficult. See the theses [56] and [52] for
details of such extensions.

Lastly, D. Simon observed that in our application of the algorithms lemma6 and lemma7, we
only care whether there is a solution, not necessarily that there is a solution congruent to the
given z (mod p*); hence line 6 of subroutine lemma6 and line 8 of subroutine lemma7 can both
be replaced by:

IF 1>2%m THEN RETURN +1 FI.



3.6 THE MORDELL-WEIL GROUP III: THE RANK 83

Checking global solubility.

To determine whether an equation (3.6.1) has a rational point is much harder than the
corresponding local question. All we can do at present is search (efficiently) for a point up to
a certain height, after checking that there is no local obstruction. The only satisfactory way
known at present to decide on the existence of rational points on these homogeneous spaces is
to carry out so-called higher descents; as mentioned above, this is the subject of current work
(see [63], for example), and we will not consider it further here.

Our strategy is to look first for a small rational point, using a very simple procedure with
low overheads; if this fails, we check for local solubility; if this passes, we start a much more
thorough search for a global point, using a quadratic sieving procedure rather similar to the
one described in the previous section for finding points on the elliptic curve itself. (In fact, such
a sieve-assisted search may be used to find rational points on any curve given by an equation
of the form y? = g(z) where g(x) is a polynomial in x.) The philosophy here is that there is
no point in looking hard for rational points unless one is sure of local solubility, but also that
there is no point in checking local solubility when there is an obvious global point.

To carry out the sieve-assisted search, for each possible denominator of x one precomputes,
for each of several sieving moduli m, the residues to which the numerator of  must belong if
the right-hand side of the equation is to be a square modulo m. In addition, it is easy to see
that for every odd prime p dividing the denominator of the z-coordinate of a rational point,
we must have (2) = +1; so provided that the leading coefficient a is not a square (in which

case the points at infinity are rational anyway), we precompute a list of primes p for which

(%) = —1, and discard possible denominators divisible by any of these primes. For p = 2 a

similar condition holds.” One also obviously restricts the search to ranges of = for which g(x)
is positive; depending on the number of real roots of g and the sign of a, this splits the search
into up to three intervals. Finally, in the case of two-descent via 2-isogeny, where the quartics
are polynomials in 22 and thus even, we may restrict to positive z.

For reasons of space, we will only give here the code for a simple point search with no
sieving.

Algorithm for searching for a rational point on a quartic: simple version

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))
k1, k2 (lower and upper bounds)

QUTPUT: TRUE/FALSE  (solubility of y2=g(x) in Q with x=u/w

and k1 < |ul+w < k2)

1. BEGIN

2. FOR n = k1 TO k2 DO

3. BEGIN

4. IF n=1 THEN

5. IF square(a) RETURN TRUE FI;

6. IF square(e) RETURN TRUE FI

7. ELSE

8. FOR u = 1 TO n-1 DO

9. BEGIN

10. IF gcd(u,n)=1

11. THEN

12. W = n-u;

13. IF square(axu?+b*udw+cruZwl+d*uws+exw?) RETURN TRUE FI;

T am grateful to J. Gebel for this idea, which saves considerable time in practice.



84 III. ELLIPTIC CURVE ALGORITHMS

14. IF square (a*u?-brudw+cru?u?-dsuwd+exw?) RETURN TRUE FI
15. FI

16. END

17. FI

18. END;

19. RETURN FALSE

20. END

We will now describe the two main two-descent algorithms: two-descent via 2-isogeny for
use when E has a rational point of order 2, and general two-descent in the general case. We
only use general two-descent when there is no point of order 2, so that the first method does
not apply. The situation is not appreciably simpler when E has all three of its points of order
two rational than when there is just one rational point of order two, and so we will not bother
to consider this case separately.

Method 1: descent using 2-isogeny.
Suppose that E has a rational point P of order 2. By a change of coordinates we may
assume that E has equation
E: y?=zx(x*+cx+d)

where P = (0,0), and ¢,d € Z. Explicitly, in terms of a Weierstrass equation, let xy be a root
of the cubic 23 + box? + 8byx + 16bg, and set ¢ = 3z + by, d = (c+ ba)wg +8by. If a; = a3z = 0,
then we can avoid a scaling factor of 2 by letting z¢ be a root of 2 + asz? + a4z + ag, and
setting ¢ = 3xg + ag, d = (¢ + az)xo + a4. The 2-isogenous curve £/ = E/ (P) has equation

E': y*=z2@*+dx+d)

where
/

cd =—-2¢ and d = c® — 4d.

The nonsingularity condition on FE is equivalent to dd’ # 0. The 2-isogeny ¢: E — E’ has

kernel {0, P} and in general maps (z,y) to <‘z—z, w>

2 2_g
(I‘,y) to (f?? y(xng )

For each factorization d = dids, with d; square-free, we consider the homogeneous space

The dual isogeny ¢': E/ — E maps

H(dy,c,dy): % =diut + cu? + ds.

Let n1 = n1(c,d) be the number of factorizations of d for which the quartic H(d,c,d2) has
a rational point, and ny = ny(c,d) the number for which the quartic has a point everywhere
locally. Define nf = ni(c/,d’) and n), = na(¢/,d') similarly. Then it is not hard to show
by rather explicit calculation (see below and the references given) that E(Q)/¢'(E'(Q)) is
isomorphic to the subgroup of Q*/(Q*)? generated by the factors d; for which H(dy,c, d2) has
a rational point. Thus

|E(Q)/¢'(E'(Q))| =,
which must therefore be a power of 2, say n; = 2°; similarly,
E'(Q)/¢(E(Q)] =nj =27
It then follows (see below) that

(3.6.2) rank(E(Q)) = rank(E'(Q)) = e; + ¢} — 2.
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With luck one will find rational points on all the quartics which have them everywhere
locally; then n; = no, and there is no ambiguity in the result. However there will be cases in
which the number 7, of quartics on which we can find a rational point is strictly less than ns.
In such cases, we will only have upper and lower bounds for n;, and similarly for n}, leading
to upper and lower bounds for the rank. This can happen for two reasons: either there is a
rational point on some quartic, but our search bound was too small to find it; or the quartic
has points everywhere locally but no global rational point.

The quartics H which have points everywhere locally but not globally come from elements
of order 2 in the Tate—Shafarevich groups IHI(E/Q) and III(E’/Q). There is an exact sequence

0— E(Q)/¢'(E'(Q)) — S“)(E'/Q) — LI(E'/Q)[¢'] — 0

coming from Galois cohomology; here S(¢")(E’/Q) is the Selmer group of order ny whose ele-
ments are represented by the homogeneous spaces H(dy, ¢, d2) which are everywhere locally sol-
uble, and HI(E’/Q) is the Tate-Shafarevich group of E’. The injective map F(Q)/¢'(E'(Q)) —
S@)(E’/Q) is induced by taking a point (x,y) in E(Q) with & # 0 to the space H(d1,c,ds)
where d; = x modulo squares: if x = dju? and v = uy/x then (u,v) is a rational point on
H(dy,c,d3). The point P = (0,0) maps to d modulo squares. Conversely, if (u,v) is a rational
point on H(dy,c,ds) then (z,y) = (diu?,diuv) is a rational point on E. (In proving these
statements, one has to check that two rational points on E have the same z-coordinate modulo
squares if and only if their difference is in ¢'(E’(Q)); for example, the image of P is d, which
is a square if and only if P € ¢/(E’(Q)).) It follows that n; is the order of E(Q)/¢'(E'(Q)),
as stated above, and hence that

[II(E'/Q)[¢]| = na/n1.

Similarly, from the exact sequence

0 — E'(Q)/¢(B(Q)) — $(E/Q) — LI(E/Q)[¢] — 0

with similarly defined maps, we obtain

[UL(E/Q)[g]| = ny/n.

Thus the result is only genuinely ambiguous when either HI(E/Q)[¢] or HI(E'/Q)[¢'] is
non-trivial, so that not all elements of the Selmer groups are obtained from rational points
on the elliptic curves. This is rare for the curves in the tables, but obviously must be taken
into account in general. A typical situation is to have non, = 16 and nin}j > 4, when one
suspects that » = 0 with |III(E/Q)[2]| = 4 or |III(E’/Q)[2]| = 4, but where it is possible
instead that » = 2 and |II(E/Q)[2]| = |LI(E’/Q)[2]| = 1. Curve 960D1 in the tables is an
example of this, although in this case since the curve is modular and we know that L(FE, 1) # 0,
it must have rank 0 by the result of Kolyvagin mentioned earlier. We can also deduce this
by working with the 2-isogenous curves 960D3 and 960D2, where there is no ambiguity: here
ny = ng = nj = nh = 2, showing that the rank is certainly 0. (Note that isogenous curves have
the same rank, but not necessarily the same order of III, which can work to our advantage in
cases like this.) Returning to the pair 960D1-960D2 where we compute ny; = no = 1, n, = 16
and n} > 4, now we know that the rank is in fact zero we can conclude that n} = 4, and that
|IHI(E/Q)[¢]| = 4. The nontriviality of III(£/Q) in this case is confirmed by the Birch-Swin-
nerton-Dyer conjecture, which for this curve predicts that III has order 4 (see Table 4).

Local solubility of H(dy,c,ds) is automatic for all primes p which do not divide 2dd’; for
those p which do divide 2dd" we may apply the general criteria of Birch and Swinnerton-Dyer.
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Local solubility in R is easy to determine here: if d’ < 0 then we require d; > 0, while if
d’ > 0 then either d; > 0 or ¢+ V/d > 0 is necessary. Thus if either d’ < 0, or d’ > 0 and
¢+ Vd < 0, then we only consider positive divisors d; of d, and need not apply the general
test for solubility in R.

Each rational point (u,v) on H(dy, ¢, ds) maps, as observed above, to the point (dju?, dyuv)
on E; modulo ¢'(E'(Q)), this is independent of the rational point (u,v), and only depends on
d; modulo squares. Similarly, a rational point (u,v) on H(d},c’,d}) maps to a point on E’,
and hence via the dual isogeny ¢’ to the point

( w2 o(dut — dé))

4?2’ Su3

in £(Q). The set of nyn} points in E(Q) thus determined (by adding the points constructed in
this way) cover the cosets of E(Q)/2E(Q), either once each, when |E(Q)[2]| = 4, which is when
d' is a square, or twice, when d’ is not a square and |E(Q)[2]| = 2. Thus, when |E(Q)[2]| = 2
we have
ninj
2

= |E(Q)/2E(Q)| =2,
while if |E(Q)[2]| = 4 we have
niny = |E(Q)/2E(Q)| = 2"

hence 2" = nyn) /4 in both cases, proving (3.6.2).

When counting ny and ne (and similarly, n} and nj), it is very useful to use the fact that
each is a power of 2, being the order of an elementary abelian 2-group. This is particularly
important when d (or d’) has many distinct prime factors. Let Ag be the group of all divisors
of d modulo squares, of order ng (say). Then Ay is generated by —1 and the primes dividing
d, so that ng = 2°° where e is the number of distinct prime factors of d, plus 1. Within Ay we
must determine the subgroups A; and A, of orders n; and ns, consisting of those divisors d;
of d for which the corresponding homogeneous space is everywhere locally or globally soluble,
respectively.

We can effectively reduce the size of the set Ay of divisors to be searched by a factor up to 8
as follows: as observed above, if either d’ < 0, or d’ > 0 and ¢+ v/d’ < 0, then we need only
consider positive divisors d; of d, cutting in two the number of elements of Ay which may lie
in A;. Secondly, we may take advantage of the fact that we know the rational point (0,0) on
E; thus we know that d is in Ay (though possibly just the identity if d is a square); similarly, if
d’ is a square then z2 + cx + d factorizes, say as (x — x2)(z — x3), and we know that x5 and 3
also lie in As.

More generally, whenever we find in the course of our systematic search through the elements
of Ay that the element d; lies in A5, we can effectively factor out d; and reduce the number of
remaining values to check by a factor of 2. Of course, this requires careful book-keeping in the
implementation; for simplicity, we omit these refinements from the pseudocode below, where
we simply loop over all square-free divisors of d and d’.

As an example of the saving that can be made, consider the curve of rank 13 constructed
by Fermigier in [23]; this is of the form y? = z(2? + cx + d) with

¢ = 36861504658225 and
d = 1807580157674409809510400 = 215 . 3% .52 .72.17.23-29-41-103 - 113 - 127 - 809,
so that d has 12 distinct prime factors and 23 = 8192 square-free divisors. Since d is non-square

we can cut the set in half, say by excluding all d; divisible by the largest prime factor 809,
leaving 4096 values to test. In our implementation, the results of the test are as follows:
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7 non-trivial values of d; give rational points after searching, as well as d; = 1 which gives

the trivial point;

e 120 further values are in the subgroup As generated by these 7 values and need not be
tested;

e 122 further values were tested and found to be not everywhere locally soluble, hence not
in Al,

e 3846 further values were discarded as being a product of an element of As and an element

not in Ay, and hence not in A;.

Thus in this case we find that ny = ny = 256, after only having to search for points on seven
homogeneous spaces. Working with the isogenous curve, we obtain n} = n}, = 128 after only
searching six homogeneous spaces for points. Thus e; = 8, €] = 7 and the rank is 13. Note that
in the course of computing this value, we have searched precisely 13 homogeneous spaces, and
the points we thereby construct give 13 generators of E(Q)/2E(Q) modulo torsion. Adding
P = (0,0) to this list gives 14 points which generate E(Q)/2E(Q) (which has order 2'4), and
which therefore generate a subgroup of finite odd index in the full Mordell-Weil group E(Q).

The situation is not always this simple, however, even for curves where III[2] is trivial,
since there may be homogeneous spaces with rational points which are hard to find. For
example, consider Fermigier’s curve of rank 14 from [23], with ¢ = 2429469980725060 and d =
275130703388172136833647756388 (which has 14 prime factors). When we run our program
using a (logarithmic) bound of 10 in the search for rational points on the quartics, we find
ny > 64, n} > 128, while ny = n), = 256. Here the correct values are n; = n} = 256, giving
r = 14, but we only find 11 < r < 14; and in the process, we have had to search many more
homogeneous spaces for rational points.

Here is the pseudo-code which implements the algorithm just described. The main routine
aborts if either the input curve is singular (this is useful if one wants to apply the algorithm
systematically to a range of inputs) or if there is no point of order two. The latter is detected
in lines 6-7, where an integer root to a monic cubic with integer coefficients is found (if it
exists). Most of the work is done in the subroutine count(c,d,p-list) which determines
na(c,d) and, as far as possible, nq(c,d). Here p_list is the set of ‘bad’ primes dividing
2dd’ where local solubility needs to be checked, which we only compute once. There are two
calls to the subroutine rational point(a,b,c,d,e,k1,k2), which seeks a rational u/w with
k1 < |u|+w < ks such that g(u/w) is a rational square, where g(z) = ax® +bx® + cz? + dz +e.
(Here w > 0 and ged(u,w) = 1.) In the first call we carry out a quick check for ‘small’ points;
then we look further, having first checked for everywhere local solubility. The particular
parameters 1im1, 1im2 for the search will probably be decided at run time. The subroutines
Qp_soluble and rational point are implementations of the algorithms given earlier (though
in practice we would use a more efficient algorithm for the second call to rational point, as
explained above).

Algorithm for computing rank: rational 2-torsion case

INPUT: al, a2, a3, a4, a6 (coefficients of F)
OQUTPUT: rmin, r_max (bounds for rank of F)
S,S’ (upper bounds for #II(FE)[¢] and #III(E')[¢'])
1. BEGIN
2. IF al=a3=0
3. THEN s2 = a2; s4 = a4; s6 = ab
4. ELSE s2 = alxal+4xa2; s4 = 8x(alxa3+2*ad); s6 = 16x(a3*a3+4x*ab)
5. FI;
6. x.list = integer_roots(X3+s2*x2+s4*x+s6=0);
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IF length(x_1list)=0 THEN abort ELSE x0 = x 1ist[1] FI;
c = 3*%x0+s2; d = (c+s2)*x0 + s4;
c’ = =2%xc; 4’ = 02—4*d;

IF d*d’=0 THEN abort FI;

p-list = prime divisors(2*xd*d’);
(n1,n2) = count(c,d,p_list);
(n1’,n2’) = count(c’,d’,p_list);
el = log2(nl); e2 = log2(n2);

el’” = log-2(n1’); e2’ = log2(n2’);
rmin = el+el’-2; rmax = e2+e2’-2;
S =n2’/n1’; S’ = n2/nl;

RETURN r_min, r_max, S, S’

END

(Main counting subroutine)
SUBROUTINE count(c,d,p-list)

e e e e e
0 ~NO O WIN

19.
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BEGIN

nl = n2 = 1; d’ = c2-4xd;

dilist = squarefree divisors(d);

FOR d1 IN di_1ist DO

BEGIN
IF rational _point(di1,0,c,0,d/d1,1,1iml)
THEN n1 = ni1+1; n2 = n2+1

ELSE
IF everywhere_locally soluble(c,d,d’,dl,p_list)
THEN
n2 = n2+1;
IF rational point(d1,0,c,0,d/d1,liml+1,1im2)
THEN n1 = ni1+1
FI
FI
FI
END;
RETURN (n1, n2)
END

(Subroutine to check for everywhere local solubility)

[
o
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SUBROUTINE everywhere_locally_soluble(c,d,d’,dl,p_list)
BEGIN
IF d’<0 AND di1<0 THEN RETURN FALSE FI;
IF d4°>0 AND d1<0 AND (c+sqrt(d’))<0 THEN RETURN FALSE FI;
FOR p IN p_list DO
BEGIN

IF NOT Qp-soluble(d1,0,c,0,d/d1l,p) THEN RETURN FALSE FI
END;
RETURN TRUE
END

Method 2: general two-descent.

We now turn to the general two-descent, which applies whether or not E has a rational

point of order 2. Again, the basic idea is to associate to E a collection of 2-covering quartic
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curves (or homogeneous spaces) H. These have equations of the form
(3.6.1) H : y? = g(x) = ax* + ba® + ca® +dr +e
with a, b, c,d, e € QQ, such that the invariants
I = 12ae — 3bd + ¢* and J = T2ace + 9bed — 27ad? — 27eb* — 263
are related to the ¢4 and cg invariants of E via
I=X\¢ and J = 2X\%¢4
for some A\ € Q*. Two such quartics g1(z), g2(x) are equivalent if

ar + (3
yr + 0

g2(x) = p* (o + 5)491<

for some «, (3, v, 6 and p € Q, with p and ad — 3y non-zero. The invariants of g1 (x) and go(x)
are then related by the scaling factor A = p(ad — 3v):

I(g2) = p*(ad — B)*1(g1),
J(g2) = pu(ad — 57)°J(g1).-

We set A = 413 — J? = 27disc(g), and call A the discriminant.

In particular, by scaling up the coefficients, we may assume that the invariants I and J are
integral. The number of equivalence classes of quartics with given invariants (up to a scaling
factor \) which are everywhere locally soluble is finite. One of our tasks will be to determine,
for a given integral quartic, an equivalent integral one with minimal invariants. This process
is closely analogous to the one considered earlier in this chapter, using Kraus’s conditions or
Tate’s algorithm to determine minimal models for elliptic curves. Indeed, we will see below that
if ¢4 and cg are invariants of a minimal model for the elliptic curve E, then I = ¢4 and J = 2¢gq
are also minimal, except possibly at the prime 2. (We may lose minimality at 2 because the
equations (3.6.1) we use for homogeneous spaces are not completely general, not having terms
in y, 2y or 22y; to remove these by completing the square involves a scaling by a factor of 2.)

We now explain the relationship between equivalence classes of soluble quartics with in-
variants I and .J and rational points on the elliptic curve. More details of this relationship,
including proofs, may be found in [20]. For convenience, we again start by making a coordi-
nate transformation: if ¢4 and cg are the integral invariants of our curve F, we set I = ¢4 and
J = 2c¢g, and replace E by the isomorphic curve

(3.6.3) Ery: Y?=F(X)=X3-27IX —27J.

This is the model on which the rational points we construct will naturally lie; it is then a
simple matter to transfer them back to the original model for F. For simplicity, we will still
continue to refer to the curve simply as ¥ when this will not cause confusion.

Associated to each quartic g there are two so-called covariants, which we denote g4 and gg:

94(X,Y) = (3b% — 8ac) X* + 4(bc — 6ad) X3Y + 2(2¢* — 24ae — 3bd) X?Y?
+ 4(cd — 6be) X Y3 + (3d* — 8ce)Y?,
96(X,Y) = (b + 8a*d — 4abc) X® + 2(16a’e + 2abd — 4ac® + b*c) XY
+ 5(8abe + b*d — 4acd) X*Y? + 20(b%e — ad*) X3Y?
— 5(8ade + bd?* — 4bce) X2Y* — 2(16ae? + 2bde — 4c*e + cd*) XY?
— (d® + 8be? — 4ede)YS.

(3.6.4)
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Wherever convenient, we will also denote by g the homogenized polynomial g(X,Y) = aX* +
bX3Y 4 cX?Y? +dXY3 + eY*. These three homogeneous polynomials satisfy an algebraic
identity, or syzygy:

(3.6.5) 2798 = g3 — 481g%gy — 64Jg°.
Later we will also need a simpler form of this syzygy; set
(3.6.6) p=94(1,0) = 3b* —8ac  and r = g6(1,0) = b* + 8a*d — 4abc;

these quantities are called seminvariants of g. Substituting (X,Y) = (1,0) in the covariant
syzygy (3.6.5) gives an identity (the seminvariant syzygy) between these seminvariants:

(3.6.7) 27r% = p® — 481a’p — 64.Ja’.

We will make use of this equation in our search for quartics with given invariants, where it will
allow us to set up a quadratic sieve.
It follows from the covariant syzygy (3.6.5), by simple substitution, that the map

3g4(x, 1) 27g6(:c,1))
(2y)2 7 (2y)3

maps rational points (z,y) on H (satisfying y?> = g(z,1)) to rational points on Ey ;, thus
defining a rational map &, of degree 4, from H(Q) to Ey ;(Q). We are using affine coordinates
3p £27r

4a’ (4a)3/?

(3.6.8) £ (zy) (

here; the points at infinity on H map to ( ), which are rational if and only if a is

a square.

We now have the following facts (see [20] for details):

o If R € H(Q) with P = &(R) € Ey 5(Q), then the coset of P modulo 2E; ;(Q) is inde-
pendent of R, and of the particular quartic g up to equivalence; in fact, equivalences between
quartics induce rational maps between the associated homogeneous spaces, and the covariant
property of g4 and gg ensures that corresponding rational points on the homogeneous spaces
have the same image in E7 ;(Q).

e Each rational point P = (x,y) € E7 ;(Q) arises as the image of a rational point on some
quartic g with invariants I and J: explicitly, one can take the rational point at infinity on the
quartic with coefficients (a,b,c,d,e) = (1,0, —x/6,y/27,1/12 — 22 /432); the equivalence class
of g depends only on the coset of P modulo 2E; ;(Q).

e The equivalence classes of everywhere locally soluble quartics with invariants I and J form
a finite elementary abelian 2-group, isomorphic to the 2-Selmer group S (E/Q).

e The equivalence classes of soluble quartics with invariants I and J form a finite elementary
abelian 2-group isomorphic to F(Q)/2E(Q); the identity is the ¢rivial class, consisting of
quartics with a rational root.

e More generally, when E has no 2-torsion, for any extension field K of Q there is a bijection
between the roots of g(z) in K and the solutions @ € E; j(K) to the equation 2¢Q) = P (where
P = ¢(R) for R € H(Q) as above). In particular, non-trivial quartics are irreducible in this
case. We will use this fact with K = R later.

We therefore classify the set of equivalence classes of quartics with invariants I and J as
follows:

(0) the trivial class consists of those quartics g(z) which have a rational root. These are
elliptic curves isomorphic to E over Q.

(1) those which have a rational point: these are also elliptic curves, isomorphic to E over Q.

(2) those which have points everywhere locally.

(3) those which fail to have points everywhere locally.



3.6 THE MORDELL-WEIL GROUP III: THE RANK 91

Let the number of inequivalent quartics in the first three sets be ng = 1, n; and ns. (Those
in the last set will not be used.) Because of the group structure, each of these numbers is a
power of 2. We write n; = 2% for i =1, 2.

As in the case of descent via 2-isogeny, Galois cohomology gives an exact sequence

0— E(Q)/2E(Q) — S®(E/Q) — II(E/Q)[2] — 0.

Thus the quotient of S (E/Q) by the image of E(Q) is isomorphic to ITI(E/Q)[2], the 2-
torsion subgroup of the Tate-Shafarevich group III(E/Q). So it is the points of order 2 in
II(E/Q), if any, which account for the possible existence of homogeneous spaces which have
points everywhere locally but not globally, and we have

IIII(E/Q)[2]| = na/nq.

As before, the potential practical difficulty lies in determining whether each homogeneous
space H has a rational point, as there is no known algorithm to do this in general. Again, for
the vast majority of the curves in the tables, we found a rational point easily on each space
which was everywhere locally soluble, which not only determined the rank of E, but also implied
that the Tate-Shafarevich group had no 2-torsion. The only example with n; < ny in the tables
(for a curve with no 2-torsion) is curve 571A1, where n; = 1 and ng = 4; here the rank is 0,
and |III(E/Q)[2]| = 4; the Birch-Swinnerton-Dyer conjecture predicts |ILI(E/Q)| = 4.

The steps of the algorithm are as follows: first we determine the pair or pairs of integral
invariants (I, J) such that every quartic associated with our curve E is equivalent to one with
integer coefficients and these invariants. There will be either one or two such pairs. For each
pair (I,J), we find a finite set of quartics with invariants (I, .J) such that every non-trivial,
everywhere locally soluble quartic with these invariants is equivalent to one in the list. This is
the most time-consuming step, as the search region can be very large when I and J are large.
Now we must test the quartics in our list pairwise for equivalence, discarding those equivalent
to earlier ones; look for rational points; and test everywhere local solubility. Again, there may
be quartics where we do not find rational points despite their having points everywhere locally,
so that although we can always (given enough time) determine no, we may in some cases only
find bounds on n;. Since n; = |E(Q)/2E(Q)|, we can then compute the rank r, or bounds on
the rank. Usually, F will have no rational 2-torsion, or we would probably be using descent
via 2-isogeny, and then simply 2" = n;.

We now consider each of these steps in more detail.

Step 1: Determining the invariants (1, .J).

Given an integral quartic g with invariants I and J, we must consider the question of whether
there exists an equivalent integral quartic with smaller invariants. The smaller invariants will
have the form A=%1, A=6J with A € Q*. In [3, Lemmas 3-5], conditions are stated under which
g is equivalent to an integral quartic with invariants p=*I, p~%J for a prime p; we call such a
quartic p-reducible, otherwise p-minimal. Clearly a necessary condition for reducibility is that
p* | I and p® | J. We say that the pair (I,.J) is p-reducible if every integral quartic with these
invariants which is p-adically soluble is equivalent to an integral quartic with invariants p =4I
and p~%.J.

The question of p-reducibility is almost completely settled by the following proposition. The
result is simplest for primes greater than 3, but even for these it is important to note that the
assumption of p-adic solubility is necessary for reduction to be possible when the divisibility
conditions are satisfied.

PROPOSITION 3.6.1. Let I and J be integers such that A = 413 — J? # 0.
(1) If p is a prime and p > 5, then (I,.J) is p-reducible if and only if p* | I and p® | J.
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(2) (I,J) is 3-reducible if and only if either 3° | I and 3° | J, or 3* || I, 35 || J and 3% | A.
(3) (I,J) is 2-reducible if 2° | I, 2° | J and 2'° | 81 + J.

This proposition is stated in [3] as Lemmas 3-5, but only the proof of Lemma 3 (covering
the case p > 5) is given there. Complete proofs in all cases (which are elementary though
somewhat lengthy) can be found in [52].

Note that for p = 2 we only have sufficient conditions for reducibility. Because of this, we
will sometimes have to consider two pairs of invariants, a smaller pair (I, Jy) and a larger
pair (161y,64Jy). However, when searching for integral quartics with the larger invariants, we
may assume that the quartic cannot be 2-reduced, and this provides us with useful congruence
conditions on the coefficients of such a quartic. We state these here.

PROPOSITION 3.6.2. Let g be an integral 2-adically soluble quartic whose invariants satisfy
24| I and 25 | J, such that

(1) g is not equivalent to an integral quartic with invariants 2=4I and 27°.J;
(2) g is not equivalent to an integral quartic with the same invariants I and J and smaller
leading coefficient a.

Then the coefficients of g satisfy
(a) 21a,2%2]b,2|c,2*teand2*ta+b+c+d+e; or
(b) 21la,22|b,2% ¢, 22teand 2ta+b+c+d+e.
Moreover, if 25 | I and 27 | J, then we must have
() 21a, 22 |b, 22 || ¢, 22 | d, and 2% || e;  or
(b)) 21a, 22|b,22||c—2a+3b, 23| d—band 2? ||a+c+e.

The first set of conditions stated here were given in [3]; the second set are from [52], which
contains complete proofs in both cases.

Using this proposition, we may ensure that few of the quartics we find when searching the
larger pair of invariants are equivalent to one with smaller invariants. More significantly in
terms of running time, we have extra congruence conditions to apply when searching for the
larger invariants, which speeds up this search.

It would appear that rational points in E(Q) whose quartics have the larger pair of invariants
lie in certain components of the 2-adic locus F(Q3). Further study of this would be very useful,
since if the search for quartics with the larger pair of invariants could be eliminated or curtailed,
it could result in a major saving of time in the algorithm.

In practice, suppose that our original curve F is given by a minimal equation, with invariants
¢y and cg. We set I = ¢4 and J = 2¢¢. Clearly the pair (I,J) is p-minimal for p > 5: for
if p* | T and p% | J then p~*cs and p~%cs would be integral invariants of an elliptic curve,
contradicting minimality of E, and similarly the pair (p*I,p°J) is certainly p-reducible by
Proposition 3.6.1(1). Less obvious is that (I, .J) is also 3-minimal; using Kraus’s conditions, it
is easy to check first that (3%1,3.J) is certainly 3-reducible (one needs here that ords(cg) # 2),
and then that (I, .J) itself is not 3-reducible, using Proposition 3.6.1(2).

For p = 2, the best we can do is the following. First set I = ¢4 and J = 2¢¢. Replace (1, J)
by (2741,276J) if 24 | I and 2° | J; the resulting pair (I, J) (which will not be further divisible
by 2) will be the basic pair of invariants. Then we also use the pair (167,64.J) unless 4 | I,
8| J and 16 | (21 + J).

The result of this step is then to produce either one or two pairs of invariants (7, J). In the
latter case, the following steps must be carried out with both pairs separately.

Step 2: Finding the quartics with given [ and J.
We now have a fixed pair of invariants (I,.J) with A = 4I% — J? # 0, and we wish to find
all integral quartics with these invariants, up to equivalence. We classify the quartics g(x) into
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types, according as g(z) has no real roots (type 1), four real roots (type 2) or two real roots
(type 3). When A < 0 only type 3 is possible, while if A > 0, only types 1 and 2 are possible.
For each relevant type, we now determine a finite list of quartics of that type with the given
invariants such that every soluble quartic with these invariants is equivalent to at least one on
the list. We can ignore quartics which are negative definite (type 1 with a < 0), since they will
not be soluble over R. For each type, we will determine a finite region of (a, b, ¢)-space such
that every quartic with invariants I and J is equivalent to at least one in this region.

As observed above, the number of real roots of g(z) is equal to the number of points
Q € E(R) satisfying 2Q) = P, where P € E(R) is the image under the map £ of any real point
on the homogeneous space H with equation y? = g(x). When A < 0, the real locus is in one
component, and F(R) is isomorphic to the circle group, which is 2-divisible with two 2-torsion
points, so in this case the equation 2Q) = P has exactly two solutions for all P € E(R). This
agrees with the observation just made, that quartics with negative discriminant A will all have
exactly two real roots.

Consider further the case A > 0. Now F(R) has two components, the connected component
of the identity E°(R) and a second component which we call the ‘egg’. There are four 2-torsion
points, and 2E(R) = E°(R). There are therefore two possibilities for a point P € E(R) and its
associated real quartic: if P € EY(R), then there are four solutions Q to 2QQ = P, and P will be
associated to a quartic of type 2 with four real roots. On the other hand, if P ¢ EY(R), then
there are no solutions and the quartic associated to P will be of type 1, with no real roots.

The image of F(Q) in E(R)/2E(R) has order 2 or 1, depending on whether or not there
are any rational points on the egg. Thus there are two sub-cases to the case A > 0: if
E(Q) C E°(R), then there are no rational points on the egg, the index is 1, and there will be
no soluble quartics of type 1; on the other hand, if E(Q) ¢ E°(R), then there are rational
points on the egg, the index is 2, and there are equal numbers of (equivalence classes of) soluble
quartics of types 1 and 2. Those of type 2 will lead to rational points on E(Q) N E°(R), while
those of type 1 will lead to rational points on the egg.

To take advantage of this in practice, when A > 0 we will first look for quartics of type 2;
let the number of these be n}", where n; /n{ is either 1 or 2. At this stage we will already know
the rank to within one, since if we set r ™ = log,(n]") then (assuming no rational 2-torsion) we
have either r = r* or » = r™+1. Then we start to look for quartics of type 1; as soon as we find
one which is soluble, then we may abort the search for type 1 quartics at that point, and assert
that r = r* + 1. On the other hand, if we complete the search for quartics of type 1 without
finding any soluble ones, then we will know that r = ™, and we will have proved that there
are no rational points on the egg. An example of the second possibility happens with the curve
E =[0,0,1,—-529, —3042] (which is the —23-twist of the curve [0,0,1, —1, 0] with conductor 37
and rank 1), which has rank 1 with generator (46,264) on the identity component, and no
rational points on the egg.®

If we happened to know in advance that there were rational points on the egg (perhaps by a
short preliminary search for such points with small height), then we would already know that
r =71 + 1, and we would not need to search for type 1 quartics at all.

In order to find all integral quartics of a given type (up to equivalence) we proceed as
follows. First, following [3], we determine bounds on the coefficients a, b and ¢. We also set up
a sieve based on the seminvariant syzygy (3.6.7) to speed up our search through this region of
(a,b,c)-space. For triples (a,b,c) in the region which pass the sieve, we solve for d and e and
ensure that they are integral. Finally, we check that the quartic we have constructed satisfies
any further congruence conditions we require (for example, when we are using the larger pair
of invariants).

8Thanks to Nelson Stephens for this example.
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The method for bounding the coefficients which is developed in [3] involves using the aux-
iliary (resolvent) cubic equation

(3.6.9) ¢ —3Ip+J =0

which will have one real root (type 3) or three real roots (types 1 and 2), since its discriminant
is 27A. Indeed, ¢ is a root of (3.6.9) if and only if (—3¢,0) is a point of order 2 on the curve
E 1,7

In each case, the bound for b arises simply from the fact that the quartics g(z) and g(z + k)
are equivalent, and the coefficients of the latter are (a,b + 4ak,...), so that we may assume
that b is reduced modulo 4a. Also, note that the bounds on ¢ are effectively bounds on the
seminvariant 8ac — 3b? = —p, which is how they arise in [3].

Bounds for (a,b,c): Type 1. Here we may assume a > 0 for real solubility. Order the three
real roots of (3.6.9) as ¢1 > ¢2 > ¢3, and set K = (41 — ¢?)/3. Then the bounds on a, b, c are

K+K?
0<a< 1+ * 91 :
3K?2 + @1+ 202
—2a < b < 2aq;
4&@52—}-3[)2 <C<4a¢1+362.
8a - = 8a

Bounds for (a,b,c): Type 2. This subdivides into subtypes according as a > 0 or a < 0.
For a > 0 we take ¢1 > ¢2 > ¢3 and search the region

1-¢3
0<a< ——=—;
3(¢2 — ¢3)
—2a < b < 2a;
4
dapy — (1 — ¢3) + 3b° oo dadst 3b2.
8a - 8a
Then for a < 0 we take ¢1 < ¢ < ¢3 and search over
I—¢3
0< —a< ——=—;
3(¢3 — ¢2)
—2|a| < b < 2lal;
4
4apy — 5(I — $3) + 3b2 . daps + 3b2.
8a - 8a

Bounds for (a,b,c): Type 3. Here we let ¢ be the unique real root of (3.6.9), and search

1 4 1 4
Sh— ) —=(2—I)<a<-= — (2 — I);
—2|a| < b < 2lal;
9a2 — 2a¢ + (41 — ¢*) + 3b?
8|al

4ae + 3b?
8|al

< csign(a) <
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The syzygy sieve. Recall the seminvariant syzygy
(3.6.7) 27r% = p® — 481a’%p — 64.Ja> = s(a, p),

say, where p = 3b%> — 8ac and r = b3 + 8a?d — 4abc. For fixed I, J the expression s(a,p) is a
polynomial in a, b and ¢, which we require to be 27 times an integer square. We can set up
a quadratic sieve as follows: for each of several sieving moduli m we create and initialize an
m x m array indicating whether s(a,p) is 27 times a square modulo m, for each pair (a,p)
modulo m. We take one of the moduli to be 9 and use it to force the right-hand side of (3.6.7)
to be divisible by 27; it will certainly be positive, as this is ensured by the bounds on c.

For each (a,b,c) in the region searched, we check that it passes the sieving test; it is then
quite likely that s(a,p) will be 27 times a square, since it is so modulo a large modulus and is
positive. We then test whether this is the case, discarding (a, b, ¢) if not, and if so we then find
r. We can take r > 0, since the quartics with coefficients (a, b, c,d,e) and (a, —b,c, —d,e) are
equivalent, with opposite signs of their respective r-seminvariants. In fact, we treat the triples
(a, b, c) together in practice.

Implementation note: It is worth pointing out that a large proportion of the running time of
our algorithm is spent testing whether large integers are squares (given that they are positive
and congruent to squares modulo several carefully chosen moduli), and find their integer square
root if so. This is needed here, and in our searches for rational points, both on the elliptic curve
directly, and on the homogeneous spaces. Hence it is crucial that we have access to efficient
procedures for this in the multiprecision integer package we use.

Solving for d and e. Given integers a, b, ¢, r satisfying (3.6.7) with p = 3b? — 8ac, we can
solve for d and e, setting

d = (r — b + 4abc)/(8a?) and e = (I +3bd—c*)/(12a).

This will certainly give rational values for d and e; we must check that they are integral,
discarding the triple (a,b,c) if not. If they are, we have integral coefficients (a,b,c,d,e) of a
quartic g(x) with invariants I and J in the search region, which we add to our list for further
processing.

Solving for the roots of g(x). For later use, when we check for triviality, and again when we
search for rational points on the homogeneous spaces, we will need to know the real roots of
the quartic g(x) we have constructed. Although the formulae for finding the roots of quartic
are well-known, we give them here: since we already know the roots of the resolvent cubic,
there is very little work remaining.

For i = 1,2,3 we set z; = (4a¢; + p)/3 where the ¢; are the three roots of (3.6.9). The
product of these quantities is 72 (from (3.6.7) again), and we form their square roots with
product r by setting wy = /z1, wa = /22, and ws = r/(wiws). Then the roots of g(x) are

w1+w2—w3—b

( )/(4a)
(w1 —ws+ws —b)/(4a)
(—wy + wy + w3 — b)/(4a),
(— )/ (4a)

wl—wQ—wg—b

T
T2
T3
Ty

We will not give here a pseudo-code algorithm for the search for quartics, as it is straight-
forward in principle, although in practice it needs careful book-keeping. As this is the most



96 III. ELLIPTIC CURVE ALGORITHMS

time-consuming part of the whole procedure, particularly when the second, larger, pair of in-
variants must be used, it is important to make the implementation code as efficient as possible.

At the end of this step we will have a list of quartics with the desired invariants. We now
discard any which are equivalent to earlier ones, or are not locally soluble at some prime p, and
try to find rational roots on the remainder. In practice we may choose to apply these tests in
a different order, such as not bothering to check equivalences between quartics which are not
locally soluble.

Step 3: Testing triviality.

For each quartic g(x) in the list, we already know its roots x to reasonable precision. If z
is rational, then ax is integral, which we can test. If we suspect that ax is equal to an integer
n to within some working tolerance, we can check whether n/a is a root of g(z) using exact
arithmetic.

Step 3: Testing equivalence of quartics.

With each quartic we find with the right invariants, we store its coefficients, type, roots
and seminvariants p and r. We also compute and store the number of roots of the quartic
(including roots at infinity) modulo each of several primes not dividing its discriminant, as
these numbers are clearly invariant under equivalence.’

When testing equivalence of two quartics, we first check that their invariants and type are
the same, as well as their numbers of roots modulo these primes. If this is the case, we use a
general test for equivalence (valid over any field) from [20], which we state here.!?

PROPOSITION 3.6.3. Let g1 and go be quartics over the field K, both having the same invariants
I and J, and with leading coefficients a; and seminvariants p; and r; for i =1,2. Then g is
equivalent to go over K if and only if the quartic u* — 2pu® — 8ru + s has a root in K, where

p = (32a1a2l + p1p2)/3,
r=rira, and

s = (64](@%1)3 + a%p% + ayasp1p2) — 256a1axJ (a1p2 + aspr) — p%p%)/27.

The quantities p, » and s in this proposition will be integers when ¢g; and go are integral.
Converting the proposition into an algorithm is straightforward.

Step 5: Testing local and global solubility.
This is carried out using the procedures and strategy described earlier.

Step 6: Final computation of the rank.

The number of quartics found (up to equivalence) which are everywhere locally soluble is
ng, the order of the 2-Selmer group. This must be a power of 2, say ny = 2¢2, which serves
as a check on our procedures. The number n; with a rational point is also a power of 2, say
ny = 21, equal to the order of E(Q)/2E(Q). If we have found rational points on all ny locally
soluble quartics, then certainly ny = ng, so that IHI(E/Q)[2] is trivial, and the rank of E(Q) is
e1 —eg where |[E(Q)[2]| = 2 with ey = 0, 1 or 2. The rank is equal to the Selmer rank es —eg
in this case. (Usually eg = 0 when we are using this method.)

As before, we may not have found global points on all the locally soluble quartics; if the
number on which we have points is n; with n; < ne then we only know that ny < n; < ng. If
11 is not a power of 2, we will know that n; > nq, so that at least some of our locally soluble

9This was suggested to us by S. Siksek.

10The algorithm presented here only applies to quartics. In the First Edition we presented a different
algorithm, described in [3], which is messier to implement, but which generalizes more readily to more general
situations, such as testing the equivalence of binary forms of higher degree.



3.7 THE PERIOD LATTICE 97

quartics must have rational points which we have not found. In this case, we replace n; by the
next highest power of 2, say n; = 2°*. Then we have bounds on the rank, namely

é1—eg < e; —eg =rank(F(Q)) < ey — e,
and on the order of III(F/Q)[2]:
[II(E/Q)2]] < ng/nn.

One final point: from the Selmer conjecture, we expect the Selmer rank es; — eg to differ
from the actual rank e; — ey by an even number, so that e; = e; (mod 2). This would also
follow from the conjecture that III(E/Q) is finite, since then its order is known to be a perfect
square, so that ns/n; must be a square. So if we find that e; #Z €; (mod 2), then we suspect
that the rank is at least one more than our lower bound, and can output a comment to this
effect, though of course we will not have proved that the rank is greater than our lower bound.
In some cases, such as for a modular curve where we know the sign of the functional equation,
we may have other conjectural evidence for the parity of the rank.

Step 7: Recovering points on F.

Each quartic g(z) for which the homogeneous space y? = g(x) has a rational point R leads
to a rational point P = &(R) on the model Ey ; of our curve E, via the formula (3.6.8) given
above. If we apply this formula to all the inequivalent quartics with rational points which we
found in computing the rank of E, we will have a complete set of coset representatives for
2E(Q) in E(Q), provided that 7; = n;. In cases where we have rounded up 77 to the nearest
power of 2, we will still have generators for F(Q)/2E(Q), and can fill in the missing coset
representatives if we wish.

This completes our description of algorithms for determining the Mordell-Weil group E(Q).

3.7 The period lattice

In this section we show how to compute the complex periods for an elliptic curve defined
over the complex numbers. We used this in our investigation of modular curves to check that
the exact integral equations we found (after rounding the approximate computed values of ¢y
and c¢g) did have the correct periods; and also in our method for computing isogenous curves,
which we describe in the following section.

Let E be an elliptic curve defined over the complex numbers C, given by a Weierstrass
equation. We wish to compute periods A1 and Ay which are a Z-basis for the period lattice
A of E. We do this using Gauss’s arithmetic-geometric mean (AGM) algorithm. Write the
equation for F in the form

2
a1r +a b b b
<y+ %) :$3+ZQSE2+§4$+Z6 = ($—€1)(x_62)(x_63)7

where the roots e; are found as complex floating-point approximations (using Cardano’s for-
mula, say). Then the periods are given by

T
A=
AGM(y/e3 —e1,/e3 — €2)’
(3.7.1) iy
A2

~ AGM(ves —e1, ez —e1)
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Notice that in general this involves the AGM of pairs of complex numbers. This is a multi-
valued function: at each stage of the AGM algorithm we replace the pair (z,w) by (v/zw, 5(z+
w)), and must make a choice of complex square root. It follows from work of Cox (see [11])
that while a different set of choices does lead to a different value for the AGM, the periods we
obtain this way will nevertheless always be a Z-basis for the full period lattice A. We have
found this to be the case in practice, where we always choose a square root with positive real
part, or with positive imaginary part when the real part is zero. The computation of A\; and
A2 by this method is very fast, as the AGM algorithm converges extremely quickly, even in its
complex form. As a check on the values obtained, in each case we recomputed the invariants
c4 and cg of each curve from these computed periods A1 and A, using the standard formulae
given in Chapter II; in every case we obtained the correct values (known exactly from the
coefficients of the minimal Weierstrass equation) to within computational accuracy.

If the curve is defined over R, we can avoid the use of the complex AGM, and also arrange
that A\ is a positive real period, as follows. First suppose that all three roots e; are real;
order the roots so that es > ey > e7, and take the positive square root in the above formulae.
Then we may use the usual AGM of positive reals in (3.7.1), and thus obtain a positive real
value for A\; and a pure imaginary value for A,. This is the case where the discriminant
A > 0 and the period lattice is rectangular. When A < 0 there is one real root, say es,
and e = e7. If \Je3—e; = 2 = s+ it with s > 0 then \/e3 —e; = Z = s — it, so that
A1 = 7/AGM(z,Z) = m/AGM(|z|, s) which is also real and positive.

3.8 Finding isogenous curves

Given an elliptic curve E defined over Q, we now wish to find all curves E’ isogenous to
E over Q. The set of all such curves is finite (up to isomorphism), and any two curves in the
isogeny class are linked by a chain of isogenies of prime degree [. Thus it suffices to be able
to compute [-isogenies for prime [, if we can determine those [ for which rational /-isogenies
exist. The latter question can be rather delicate in general, and we have to have a completely
automatic algorithmic procedure if we are to apply it to several thousand curves, such as we
had to when preparing the tables.

When the conductor N of E is square-free, so that F has good or multiplicative reduction
at all primes, E is called semi-stable. In this case, a result of Serre (see [53]) says that either
E or the isogenous curve E’ has a rational point of order [, and so by Mazur’s result already
mentioned, [ can only be 2, 3, 5 or 7. Moreover, if a curve E possesses a rational point of order
[, then the congruence 1+ p —a, = 0 (mod [) holds for all primes p not dividing NI, so the
presence of such a point is easy to determine, even if it is not E itself but the isogenous curve
E’ which possesses the rational [-torsion, since the trace of Frobenius a, is isogeny-invariant.

If E is not semi-stable we argue as follows. The existence of a rational [-isogeny is purely
a function of the j-invariant j of E: in fact, pairs (E, E’) of l-isogenous curves parametrize
the modular curve Xq(l) whose non-cuspidal points are given by the pairs (j(F),j(E’)). For
[l =2,3,5, 7 or 13 the genus of X(l) is zero, and infinitely many rational j occur. The only
other values of [ for which rational [-isogenies occur are [ = 11,17,19,37,43,67, and 163, and
these occur for only a small finite number of j-invariants (see below). The fact that no other
[ occur is a theorem of Mazur (see [39] and [40]), related to the theorem limiting the rational
torsion which we quoted earlier in Section 3.3 of this chapter. These extra values occur only
for curves with CM (complex multiplication, see the next section), apart from [ = 17 (where
Xo(l) has genus 1) and the exotic case [ = 37 studied by Mazur and Swinnerton-Dyer in [41]
(where X () has genus 2).

For isogenies of non-prime degree m, the degrees which occur are: m < 10, and m = 12, 16
18, and 25 (where X((l) has genus 0, infinitely many cases); and finally m = 14, 15, 21, and
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27. The latter occur first for conductors N = 49 (with CM), N = 50, N = 162 and N = 27
(with CM) respectively. See [2, pages 78-80] for more details.

Thus our procedure is:

If N is square-free, try [ = 2,3,5,7 only;

else try [ = 2,3,5,7 and 13 in all cases; and

if j(E) = -2, —112, or —11- 1313, try also [ = 11;

(
if j(E) = —17%-1013/2 or —17-3733/2'7 try also [ = 17;
if j(E) = —963, try also [ = 19;
if j(F) = —7-11% or —7-137% - 20833, try also [ = 37;
if j(E) = —9603, try also | = 43;
if j(E) = —52803, try also | = 67;

if j(E) = —640320%, try also [ = 163.

Now we turn to the question of finding all curves (if any) which are [-isogenous to our given
curve E for a specific prime [. The kernel of the isogeny is a subgroup A of F(Q) which is
defined over Q, but the points of A may not be individually rational points. If we have the
coordinates of the points of a subgroup of E of order [ defined over K, we may use Vélu’s
formulae in [68] to find the corresponding l-isogenous curve. Finding such coordinates by
algebraic means is troublesome, except when the subgroup is point-wise defined over K, and
instead we resort to a floating-point method.

The case [ = 2 is simpler to describe separately. Obviously in this case the subgroup of
order 2 defined over Q must consist of a single rational point P of order 2 together with the
identity. We have already found such points, if any, in computing the torsion. There will be 0,
1 or 3 of them according to the number of rational roots of the cubic 423 + byx? + 2bsx + bg.
If x; is such a root, then P = (z1,y;) has order 2, where y; = —(a1x1 + a3)/2. As a special
case of Vélu’s formulae we find that the isogenous curve E’ has coefficients [a], a}, a5, a}, af] =
la1, as, a3, a4 — 5t,ag — bat — Tw] where

t = (627 + baxy + by)/2 and w = x1t.

Note that the point (z1,y1) need not be integral even when FE has integral coefficients a;, but
that 4z, and 8y, are certainly integral, by the formulae given; thus the model just given for
the isogenous curve may need scaling by a factor of 2 to make it integral.

The simpler formula for a curve in the form y? = 23 + cz? + dx and the point P = (0,0)
was given in the previous section: the formulae just given take the curve [0,¢,0,d,0] to
[0,¢,0, —4d, —4cd], which transforms to [0, —2c, 0, c? — 4d, 0] after replacing z by x — ¢. The
relation between the two formulae is given by ¢ = 12z + bs and d = 16t.

For reference we give here similar algebraic formulae for [-isogenies for [ = 3 and [ = 5, from
Laska’s book [35]. In each case we assume that the curve F is given by an equation of the
form y? = 23 4+ ax + b, and the isogenous curve E’ by y? = 22 + Ax + B. Each subgroup of F
of order [ is determined by a rational factor of degree (I — 1)/2 of the I-division polynomial
of degree (1> — 1)/2, whose roots are the z-coordinates of the points in the subgroup. The
simplest case is [ = 3, where there is just one x-coordinate, which must be rational.

| = 3. Let £ be a root of the 3-division polynomial 3z* + 6az? 4 12bx — a®. Then the
3-isogenous curve E’ is given by
A = —3(3a + 10£?)
B = —(706> + 42a€ + 27b).
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| =5. Let 2 + hix + hy be a rational factor of the 5-division polynomial 5z'2 + 62az'? +
38062 — 105a228 + 240aba” — (300a® + 240b2) 28 — 696a2bz® — (1250 + 1920ab%)z* — (16006% +
80a3b)x® — (50a° +240a2b?) 2% — (100a*b+640ab3)x+ (a’ —32a3b? —256b*). Then the 5-isogenous
curve E' is given by

A = —19a — 30(h? — 2hs)
B = —55b — 14(15h hy — 5h% — 3ahy).
A similar formula is given in [35] for [ = 7, where A and B are given in terms of a, b and
the coefficients of a factor 2 + hix? + hox + hs of the 7-division polynomial. Rather than take

up space by giving the latter here, we refer the reader to [35, page 72].
Now we turn to Vélu’s formulae in the case of an odd prime I. Let P = (z1,y;) be a point

of order [ in F(Q), and set kP = (zy,yx) for 1 <k < (I —1)/2. Define
tr = 61‘;% + boxy, + by and Uy = 4:5‘;?; + ngi + 2byxy, + bg,

and then set

(1-1)/2 (1-1)/2
t= Z t and w = Z (u + Txty) -
k=1 k=1

Then the isogenous curve E’ has coefficients [a1, as, as, ay — 5t, ag — bat — Tw] as before. Again,
these may not be integral, even when the original coefficients were; but since the x; are the
roots of a polynomial of degree (I — 1)/2 with integral coefficients and leading coefficient (>
(the so-called I-division equation), we must have {2z integral. Thus a scaling factor of [ will
certainly produce an integral equation.

We make these remarks on integrality as our method is to find the coordinates xj; and
yr as real floating-point approximations, and thus to determine the coefficients of any curves
l-isogenous to E over R; there will always be exactly two such curves over R, but of course
they will not necessarily be defined over Q. As we will only know the coefficients a) of the
isogenous curves approximately, we wish to ensure that if they are rational then they will in
fact be integral, so that we will be able to recognize them as such.

First we find the period lattice A of E, as described in the previous section. The Z-basis
[A1, A2] of A is normalized as follows: there are two cases to consider, according as A > 0 (first
or ‘harmonic’ case) or A < 0 (second or ‘anharmonic’ case). In both cases A; is real (the least
positive real period); in the first case, Ay is pure imaginary, while in the second case, 2A\; — Ao
is pure imaginary. We can also ensure that 7 = Ay/A; is in the upper half-plane; however we
can not simultaneously arrange that 7 is in the usual fundamental region for SL(2,Z), and this
needs to be remembered when evaluating the Weierstrass functions below.

Of the [ + 1 subgroups of C/A of order [, the two defined over R are the one generated by
z = A1/l (in both cases), and in the first case, the one generated by z = Ay /[, or in the second
case, the one generated by z = (A1 — 2X2)/l. Thus z/\; is either 1/I, 7/I, or (1 —27)/l. Let
©(z;7) denote the Weierstrass p-function relative to the lattice [1,7]. Then we have

_ _ 1 1 _ ~
zr = p(kz\] 1;7’))\1 2 Eb4 and Yr = 3 (p/(kZ/\l 1;7’))\1 3 _ a1 — CL3) .

Here we have had to take account of the lattice scaling [A1,A\2] = A1[l, 7], and also of the
fact that (p(z),9’(2)) is a point on the model of E of the form y? = 42° — gow — g3 =
423 — (c4/12)x — (c6/216) rather than a standard model where the coefficient of 3 is 1.

We evaluate these points of order | numerically for £k = 1,2,... ,(l — 1)/2, for each of the
two values of z (depending on whether we are in case 1 or case 2). Substituting into Vélu’s
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formulae, we obtain in each case the real coefficients a of a curve which is I-isogenous to E
over R. If these coefficients are close to integers we round them and check that the resulting
curve over Q has the same conductor NV as the original curve E. If not, we also test the curve
with coefficients I*al.

The resulting program finds l-isogenous curves very quickly for any given prime [. We run
it for all primes [ in the set determined previously, applying it recursively to each new curve
found until we have a set of curves closed under [-isogeny for these values of [. Since the set
of primes [ for which a rational l-isogeny exists is itself an isogeny invariant, once we have
finished processing the first curve in the class, we will already know which primes [ to use for
all the remaining curves.

Some care needs to be taken with a method of computation such as this, where we use
floating-point arithmetic to find integers. The series we use to compute the periods and the
Weierstrass function and its derivative all converge very quickly, so that we can compute the
a’; to whatever precision is available, though of course in practice some rounding error is bound
to arise. When we test whether a floating-point number is ‘approximately an integer’ in the
program, we must make a judgement on how close is close enough. With too relaxed a test, we
will find too many curves are ‘approximately integral’; usually these will fail the next hurdle,
where we test the conductor, but this takes time to check (using Tate’s algorithm). On the
other hand, too strict a test might mean that we miss some rational isogenies altogether, which
is far more serious. In compiling the tables, there was only one case which caused trouble af-
ter the program had been finely tuned. The resulting error resulted in a curve (916B1) being
erroneously listed as 3-isogenous to itself in the first (preprint) edition of the tables; this is pos-
sible only when a curve has complex multiplication, which is not the case here, though it does
not often occur even in the complex multiplication case (see the remarks in the next section).
Unfortunately the error was not noticed in the automatic generation of the typeset tables,
and I am grateful to Elkies for spotting it.!! The curve E = [0,0,0, —1013692, 392832257]
has three real points of order 2, two of which are equal to seven significant figures; the pe-
riod ratio is approximately 7i. One of the curves 2-isogenous to F over R has coefficients
[0,0,0,—1013691.999999999992, 392832257.000000006], which are extremely close to those of
E itself. Thus this new curve, which is not defined over Q, passed both our original tests (the
coefficients are extremely close to integers, and the rounded coefficients are those of a curve
of the right conductor, namely F itself). After this example was discovered, we inserted an
extra line in the program, to print a warning whenever a supposedly isogenous curve was the
original curve itself, and reran the program on all 2463 isogeny classes (which only takes a few
minutes of machine time). The result was that expected, namely that 916B1 is the only curve
for which this phenomenon occurs within the range of the tables'?. There is no example of a
curve actually [-isogenous to itself with conductor less than 1000.

Our original implementation of this algorithm in Algol68 used a precision of approximately
30 significant figures for its real and complex arithmetic, which was sufficient to find all the
isogenous curves up to conductor 1000. However, our implementation in C++ misses several
isogenous curves when using standard double precision, with approximately 15 digits (though
this runs very quickly); we need to use a multiprecision floating-point package (such as the
one included in LiDIA) to obtain a satisfactory working program, though the resulting code
runs very much slower. In our extended computations to conductor 5077, we have computed
the isogenies independently using both a C++/LiDIA program and a PARI program, and the
results agree.

When we were initially persuaded to extend the tables to include isogenous curves as well
as the modular curves themselves, we were afraid that the total number of resulting curves

' This error also somehow survived into the first edition of this book, despite these comments in the text.
12 Another example of the same type occurs for curve 1342C3, where the period ratio is approximately 9.5i.
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would be rather larger than it turned out to be. On average, we found that the number of
curves per isogeny class was 5113/2463, or just under 2.08. We do not know of any asymptotic
analysis, or even a heuristic argument, which would predict an average number of two curves
per class. However, it is dangerous to generalize from the limited amount of data which we
have available. In the extended computations to conductor 5077, the ratio slowly diminishes;
for all curves up to this conductor, the ratio is 31570/17583 = 1.795.

3.9 Twists and complex multiplication

Traces of Frobenius.
If F is given by a standard minimal Weierstrass equation over Z, then for all primes p of
good reduction the trace of Frobenius a, is given by

ap =1+4p—|E(F,).

If E has bad reduction at p, this same formula gives the correct value for the pth Fourier
coefficient of the L-series of F.

Since in our applications we never needed to compute a, for large primes p, we used a very
simple method to count the number of points on E modulo p. First, for all primes p in the
desired range (say 3 < p < 1000; p = 2 would be dealt with separately), we precompute the
number n(t,p) of solutions to the congruence s> =t (mod p). Then we simply compute

p—1
p =P — Zn(4x3 + box? + 2b4x + bg, p).
=0

This was sufficient for us to compute a, for all p < 1000 for all the curves in the table,
which we did to compare with the corresponding Hecke eigenvalues. For large p, there are far
more efficient methods, such as the baby-step giant-step method or Schoof’s algorithm (see
[51]). Details of these may be found in [9]. More recently, even better algorithms have been
developed, by Atkin, Elkies, Morain, Miiller and others. For example, Morain and Lercier in
1995 successfully computed the number of points on the curve [0, 0,0, 4589, 91228] over F,, for
p = 10499 4 153, a prime with 500 decimal digits. This took 4200 hours of computer time.

Twists.

A twist of a curve E over Q is an elliptic curve defined over Q and isomorphic to E over Q
but not necessarily over Q itself. Thus the set of all twists of F is the set of all curves with
the same j-invariant as F. These can be simply described, as follows.

First suppose that ¢4 # 0 and cg # 0; equivalently, j # 1728 and j # 0 (respectively).
Then the twists of E are all quadratic, in that they become isomorphic to E over a quadratic
extension of Q. For each integer d (square-free, not 0 or 1), there is a twisted curve E x d with
invariants d2c4 and d®cg, which is isomorphic to E over Q(v/d). If E has a model of the form
y? = f(x) with f(z) cubic, then E * d has equation dy? = f(x). A minimal model for E x d
may be found easily by the Laska—Kraus—Connell algorithm. The conductor of E * d is only
divisible by primes dividing N D, where D is the discriminant of Q(v/d). The simplest case is
when ged(D, N) = 1; then E * d has conductor ND?. More generally, if D? { N then E * d
has conductor lem(N, D?), but if D? | N then the conductor may be smaller; for example,
(E x d) = d is isomorphic to E, so has conductor N again.

Twisting commutes with isogenies, in the sense that if two curves E, F' are [-isogenous then
so are their twists £« d, F xd. If E has no complex multiplication (see below), then the
structure of the isogeny class of F is a function of j(E) alone.
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The trace of Frobenius of E * d at a prime p not dividing N is x(p)a,, where x is the
quadratic character associated to Q(v/d) and ap is the trace of Frobenius of E. Thus if E is
modular, attached to the newform f, then F xd is also modular and attached to the twisted
form f ® x, in the notation of Chapter 2.

When j = 0 (or equivalently ¢, = 0), E has an equation of the form y? = 2® + k with k € Z
non-zero and free of sixth powers. Such curves have complex multiplication by Z[(1+/=3)/2].
Two such curves with parameters k, k' are isomorphic over Q(v/k/k’).

Similarly, when j = 1728 (or equivalently cg = 0), E has an equation of the form y? = 23 +kz
with k € Z non-zero and free of fourth powers. Such curves have complex multiplication by
Z[v/—1]. Two such curves with parameters k, k' are isomorphic over Q({/k/k’).

Complex multiplication.

Each of the 13 imaginary quadratic orders O of class number 1 has a rational value of
J(O) = j(w1/w2), where © = Zwy + Zw,. Elliptic curves E with j(E) = j(O) have complex
multiplication: their ring of endomorphisms defined over C is isomorphic to 9. In all other
cases the endomorphism ring of an elliptic curve defined over Q is isomorphic to Z, since an
elliptic curve with complex multiplication by an order of class number A > 1 has a j-invariant
which is not rational, but algebraic of degree h over Q.

We give here a table of triples (D, j, N) where j = j(9) for an order of discriminant D, and
N is the smallest conductor of an elliptic curve defined over Q with this j-invariant. All but
the last three values (D = —43, —67, —163) have N < 1000 and so occur in the tables.

D|—4|-16| -8 |—3| —12 —27 —7 | —28| —11| —19 | —43 | —67 —163
j 11231662 [20%]| 0 [2-30%|—3-1603 | —153|2553 | —323 | —963 | —960° | —52803 | —6403203
N|32] 32 |256|27| 36 27 49 | 49 | 121 | 361 | 432 672 1632

If ¥ has complex multiplication by the order O of discriminant D, then the twist F x D is
isogenous to E, though not usually isomorphic to E (over Q). Indeed, the only cases where E
is isomorphic to Ex D are D = —4 and D = —16 with j(E) = 1728: the curves y? = 23+ 16kz
and y? + 256kx are twists of, and isomorphic to, y? = 23 + kx. Since curves are isogenous if
and only if they have the same L-series by Faltings’s Theorem (see [22]), this implies that E
has complex multiplication if and only if a,, = x(p)a, for all primes p, where x is the quadratic
character as above. Thus a, = 0 for half the primes p, namely those for which x(p) = —1. This
gives an alternative way of recognizing a curve with complex multiplication, from its traces of
Frobenius. This is particularly convenient in the case of modular curves, where we compute
the a, first, and will always know when a newform f, and hence the associated curve F, has
complex multiplication. For, in such a case, we must have D? | N and f = f ® x, which we
may easily check from the tables.
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EXAMPLES

We give here some worked examples of the methods described in the preceding chapter,
to illustrate and clarify the different situations which arise. The first example is N = 11,
which is the first non-trivial level; here we give most detail. Then we consider N = 33, where
we encounter oldforms and more complicated M-symbols, and N = 37, where there are two
newforms, one of which has L(f,1) = 0, necessitating a different method of computing Hecke
eigenvalues. Finally we look at a square level, N = 49, to illustrate the direct method of
computing periods.

Example 1: N = 11

For simplicity we will only work in H(11), rather than the smaller quotient space H ™ (11).
The M-symbols for N = 11 are (¢ : 1) for ¢ modulo 11 and (1 : 0), which we abbreviate as (c)
and (00) respectively, with |c¢| < 5. (Similarly with other prime levels). The 2-term and 3-term
relations (2.2.6) and (2.2.7) are as follows.

(0) + (00) =0
(1) +(-1)=0 (0) + (00) +(=1) =0
(2)+(5) =0 (D) +(=2)+(5)=0
(=2)+(=5)=0 2)+ @)+ (-4 =0
3)+(-4) =0 B)+(=5)+(=3)=0

(=3)+(#)=0

Solving these equations we can express all 12 symbols in terms of A = (2), B = (3) and

C = (0):

0) = C
o =D
R I
2) = (-2) = 4 -
| (—4) = B

There are two classes of cusps, [0] and [0o], with [a/b] = [0] if 11 1 b and [a/b] = [o0] if 11 | b.
Hence 6((c)) = §({0,1/c}) = [1/c¢] — [0] = 0 for ¢ # 0. It follows that

H(11) = ker(6) = (A, B) ,

with 2¢g = dim H(11) = 2, so that the genus is 1. There is therefore one newform f. This

makes the rest of the calculation simpler, as we do not have to find and split off eigenspaces.

The conjugation * involution maps (¢) — (—c), so A* = A and B* = A — B. This has

matrix ((1) _11> with respect to the basis A, B. The +1- and —1-eigenspaces are generated
52
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by A and A — 2B respectively, and we have left eigenvectors v = (2,1) and v~ = (0,1). Thus
the period lattice is Type 1 (non-rectangular), and Q(f) = Qo(f) = (4, f).

If we had worked in H*(11), viewed as the quotient H(11)/H ~(11), by including relations
(¢) = (—c), the effect would be to identify (¢) and (—c). This gives a 1-dimensional space
generated by B with A = 2B, where the bars denote the projections to the quotient. Notice
that although B is a generator here, the integral of f over B is not a real period; its real
part is half the real period. However we do still have Q(f) = (B + B*, f) = 2Re (B, f), so we
could compute Q(f) in this context without actually knowing whether it was 1 or 2 times the
smallest real period.

To compute Hecke eigenvalues we may work in the subspace (A); since this subspace is
conjugation invariant (being the +1-eigenspace) we will have T),(A) = a, A for all p # 11. We
first compute T, explicitly. The first method, converting the M-symbol A = (2 : 1) to the
modular symbol {0,1/2}, gives:

ran=n (o)) - o1} (13
SOR IR
4

=1:)+@d:1)+1:2)+(—

=)+ @)+ (=5 +(-4)
— 0+ (B—A)+ (—A) + (-B) = —24,

so that ao = —2. Alternatively, using the Heilbronn matrices from Section 2.4, we compute:

(g (1))+(2:1)(3 1)+(2;1)G g)

— 0+ (B—A)+ (—A) + (-B)
= 24,

T5(A) =T>((2:1)) = (2: 1)Re

Now (142 — as)L(f,1) = ({0,1/2}, f) = (A, f) = Q(f), giving

For all primes p # 11 we will evaluate p, = 5;(1] {0,a/p} = n,A for a certain integer n,,
since then also 1/5 =n,/(1 +p — ap), giving

ap, =1+ p—5n,.

At this stage we already know that the corresponding elliptic curve has rank 0, and that
1+p—a, =0 (mod 5) for all p # 11, so that it will possess a rational 5-isogeny.
To save time, we can use the fact that {0,a/p}" = {0, —a/p}; thus for odd p we need only

evaluate half the sum, say
(p—1)/2

o2 o)

a=1
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and then set p, = i, + (11,)"

For p = 3, we have p4 = {0,1/3} =(3:1) = (3) = B, so ug = B+ B* = A, giving n3 = 1
and a3 =1+ 3 —b5ng = —1.

For p = 5 we compute:

{0,1}=(5:1>:<5>=—A;

2 1 1 2
it =tozf+{z3)
=2:1)+(-5:2)=(2)+(3) = A+ B;
ps = (—A) + (A + B) = B;
s = B+ B* = A, so that ns = 1;
as =14+5—5n; =1.

Similarly, with p = 7 we have n; = 2, so that a; =1+ 7 — 5ny; = —2, and with p = 13 we
have n13 = 2 so that a;3 = 4.

These computations can also be carried out using Heilbronn matrices, by applying the Hecke
operators directly to C'= (0: 1) = {0, 00}, as follows. Once we know that as = —2, we have

—2C =T5(C)=T5((0:1))=(0:1)Ry;=(0:2)+(0:1)+(0:1)+ (1:2) =3C — A,

giving C' = %A in agreement with the ratio L(f,1)/Q(f) found earlier. Similarly, using the
Heilbronn matrices R3 listed in Section 2.4, we find

asC =T3(C)=(0:1)R;3
=0:3)+0:1)+1:3)+0:1)+(0:1)+(1:-3)
=C+C+(B-A)+C+C+(-B)
=4C - A=-C,

giving az = —1 again.
For the prime ¢ = 11 we compute the involution W7, induced by the action of the matrix

(101 _01>:
=1 o) {op- {5
e fo) (351

=(1:0)4(=5:1)+ (11:5)
= (00) + (=5) + (0)
— A

?

so that the eigenvalue 17 of Wiy is —1. In fact, this was implicit earlier, since L(f,1) # 0
implies that the sign of the functional equation is +1, which is minus the eigenvalue of the
Fricke involution Wi;.

The Fourier coefficients a(n) = a(n, f) for 1 < n < 16 are now given by the following table.
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n 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15 16

a(n) 1 -2 -1 2 1 2 -2 0 -2 -2 1 -2 4 4 -1 —4

Here we have used multiplicativity, and:

a(ll) = —€&11 = +1,
a(4) = a(2)? — 2a(1) = 2;
a(8) = a(2)a(4) — 2a(2) = 0;
a(16) = a(2)a(8) — 2a(4) = —4;
a(9) = a(3)? — 3a(1) = -2

We know that the period lattice Ay has a Z-basis of the form [wy,ws] = [2z, z + iy, where
w1 = P¢(A) and wy = P¢(B). We can compute the real period wy = Q(f) = 5L(f,1) by
computing L(f,1):

L(f,1) = Z

where ¢ = exp(—27/v/11) = 0.15.... Using the first 16 terms which we have, already gives
this to 13 decimal places:
L(f,1) =0.2538418608559 ... ;

thus
w1 = Q(f) = 1.269209304279.. .. .

For the imaginary period y we twist with a prime [ = 3 (mod 4). Here [ = 3 will do, since

732{0,%}—{0,%1}:(3)—(—3):—A+237é0.

To project onto the minus eigenspace we take the dot product of this cycle (expressed as a row
vector (—1,2)) with v~ = (0,1) to get m™(3) = 2. Hence

Lpe.s) = Lrres),

Summing the series for L(f ® 3,1) to 16 terms gives only 4 decimals:
L(f®3,1) = 1.6845... .

This is less accurate than L( f, 1) since this series is a power series in exp(—27/3+/11) = 0.53. ..,
compared with 0.15.... Hence y = 1.4588..., so that

wy = 0.634604652139 ...+ 1.4588.. .1.

So far we have only used the Hecke eigenvalues a, for p < 13, and only 16 terms of each
series. If we use these approximate values for the period lattice generators w; and ws we already
find the approximate values ¢4 = 495.99 and cg = 20008.09 which round to the integer values
cs = 496 and cg = 20008. Taking the first 25 a, and the first 100 terms of the series gives

ca = 495.9999999999954 . . . and ce = 20008.0000000085.
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The exact values ¢4 = 496 and cg = 20008 are the invariants of an elliptic curve of conductor 11,
which is in fact the modular curve Ey:

v 4y =2 —2? — 10z — 20.

This is the first curve in the tables, with code 11A1 (or Antwerp code 11B). The value
L(f,1)/Q(f) = 1/5 agrees with the value predicted by the Birch-Swinnerton-Dyer conjecture
for L(E,1)/Q(Ey) , provided that E; has trivial Tate-Shafarevich group.

We now illustrate the shortcut method presented in Section 2.11, where we guess the
imaginary period and lattice type without computing H(11). Having computed P(3,f) =
2.9176. . .4 which is certainly non-zero, we consider the lattices (z,yi) and (2z,x + yi), where
2x = 1.2692... (from above) and yi = P(3,f)/m~, for m~ = 1,2,3,.... With m™ =1
we do not find integral invariants, but for m~ = 2 and lattice type 1 we find the curve
Ef =10,-1,1,-10, —20] given above®.

Using the first variant of the method, where we do not even know x, we can take [T = 5
since P(5, f) = 6.346... # 0. The correct value of m™ here is 10; if we do not know this, but
try mT = 1,2,3... in a double loop with m ™, the first valid lattice we come across is with
(m™,m~) = (2,2) and type 1, which leads to the curve £’ = [0, —1, 1,0, 0], also of conductor 11;
this is 5-isogenous to the “correct” curve E'¢, which comes from (m™,m™) = (10,2) and type 1.

We may also consider the ratios P(l, f)/P(3, f) for other primes [ = 3 (mod 4); we restrict
to those [ satisfying (_TH) = (ﬁ) = +1, since otherwise P(l, f) is trivially 0 (since the sign of
the functional equation for the corresponding L(f ® x,s) is then —1). We find the following
table of values (rounded: they are only computed approximately):

3 23 31 47 59 67 71 103 163 179 191 199 223 251

1 1 1 0 1 9 1 0 4 25 1 4 1 1

The zero values for | = 47 and [ = 103 indicate that the corresponding twists of the newform
f have positive even analytic rank (one can check that the corresponding twists of the curve
E; do indeed have rank 2). As all these values are integral here (a priori they are only known
to be rational) we do not find any nontrivial divisor of m™ (which we know in fact equals 2).
The fact that all the integers are perfect squares is an amusing observation, but has a simple
explanation in terms of the numbers appearing in the Birch-Swinnerton-Dyer conjecture for
the twists of Ey.

There is one other curve E” isogenous to E in addition to £’ (found above). If the period
lattice of Ey = [0,—1,1,-10,—-20] is (2z,yi) with * = 0.6346... and y = 1.4588..., then
E’" = [0,-1,1,0,0] has period lattice (10x, 5z + yi), and E” = [0,—1,1,—7820,263580] has
lattice (x/5,2x/5 + yi). These curves are linked by 5-isogenies E¢ < E' and E; < E".

Finally, we compute the degree of the modular parametrization ¢: X((11) — Ef. Of course,
this is obviously 1, since the modular curve X(11) has genus 1, so that ¢ is the identity map
in this case; but this example will serve to illustrate the general method.

The twelve M-symbols form 4 triangles which we choose as follows:

(170)7(_171)7(071)3 (171)7(_271)7(_172);
(172)7(_371)7(_273); (173)7(_471)7(_374)

1Here, [a1, a2, a3, a4,a6] denote the Weierstrass coefficients of the curve; see Chapter 3.
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There are two T-orbits, corresponding to the two cusps at oo (of width 1) and at 0 (of width 11).
The first contributes nothing. The second is as follows:

(1,0) — (1,1) — (1,2) — (1,3) — (1,4) = (=2,3) — (=2,1) — (=2, 1)
=(-3,4)— (-3,1) = (-3,-2) = (-4,1) — (—4,-3) = (—1,2) — (—1,1) — (1,0).

There are four jump matrices coming from the above sequence. From (1,4) = (-2, 3) we obtain

s=(0 (&) -G )

the others are d, = (141 ;), 03 = (115 _21) and 04, = (If _14> Using modular

symbols, we can compute the coefficients of Pf(d;) with respect to the period basis w1, wa, to
obtain Pf(61) = —w1, Pf(62) = we, P¢(d3) = w1, and Pf(d4) = —wy. Hence

1/lo 1| o o] |o —1|, |1 o |1 —1] |0 -1
=g (| a5 a5 Gl S W)

1
SAH0—14+1404+1)=1,

as expected.

Example 2: N = 33

Since 33 = 3-11, the number of M-symbols is 48 = 4-12, consisting of 33 symbols (¢) = (¢ : 1),
13 symbols (1 : d) with ged(d, 33) > 1, and the symbols (3 : 11) and (11 : 3). (In fact, whenever
N is a product pq of 2 distinct primes, the M-symbols have this form, with exactly two symbols,
(p:q) and (q : p) not of the form (c: 1) or (1:d)).

There are four cusp classes represented by 0, 1/3, 1/11 and oo, with the class of a cusp a/b
being determined by ged(b, 33). (Similarly, whenever N is square-free, the cusp classes are in
one-one correspondence with the divisors of N).

Using the two-term and three-term relations, and including the relations (¢ : d) = (—c : d),
we can express all the M-symbols in terms of six of them, and ker(6%) = ((7), (2), (15) — (9)).
Hence H*(33) is three-dimensional. We know there will be a two-dimensional oldclass coming
from the newform at level 11, so there will also be a single newform f at this level.

If we compute the images of the basis modular symbols {0,1/7}, {0,1/2} and {1/9,1/15}
under T5 and W33, we find that they have matrices

-2 0 0 10 0
Tg = 0 1 2 and W33 = 0 -1 0
0 0 -2 1 0 -1

T5 has a double eigenvalue of —2, coming from the oldforms, which we ignore, and also the
new eigenvalue as = 1 with left eigenvector v = (0,1,0). The corresponding eigenvalue for
Wiss is €33 = —1. Hence the sign of the functional equation is +, and the analytic rank is even.
Moreover since the eigencycle for as is the second basis element, which is {0,1/2} = po, we
have 2(1 42 —a2)L(f,1) = Q(f), so that
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In particular, L(f,1) # 0, so that the analytic rank is 0. Note that because we have factored
out the pure imaginary component, we do not usually know at this stage whether the least
real period Qo(f) is equal to Q(f) or half this; all we can say is that Q(f)/2 = Re ({0,1/2}, f)
is the least real part of a period (up to sign). But in this case, {0,1/2} is certainly an integral
cycle, and since ({0,1/2}, f) is real, we can in fact deduce already that the period lattice is of
type 2 (rectangular) with Q(f) = 2Q0(f).

To compute more a, we express each cycle u, as a linear combination of the basis and
project to the eigenspace by taking the dot product with the left eigenvector v, which just
amounts in this case to taking the second component. In this way we find a5 = —2, a7 = 4,
a13 = —2, and so on. For the involutions W3 and W7, we can either compute their 3 x 3
matrices or just apply them directly to the eigencycle {0,1/2}, and we find that 3 = +1 and
11 = —1. In fact we already knew that the product of these was €33 = —1, so we need not
have computed £11 directly, though doing so serves as a check.

Now we go back and compute the full space H(33), which is six-dimensional, with basis

O S L AR i B R i

By computing the 6 x 6 matrices of conjugation and 75, we may pick out the left eigenvectors
vt =(0,1,-1,1,2,0) and v~ =(-1,0,0,2,1,1).

Since these vectors are independent modulo 2, it follows (as expected) that the period lattice
is type 2, with a Z-basis of the form [w1,ws] = [z, yi].

Firstly, x = Qo(f) = Q(f)/2 = 2L(f,1). Summing the series for L(f, 1) we obtain L(f,1) =
0.74734 ..., so that w; = =z = 1.49468... and Q(f) = 2z = 2.98936.... Then we use the
twisting prime [ = 7: the twisting cycle

=X (5){03)

a=

is evaluated in terms of our basis to be (2,2,0,—2,0,0), whose dot product with v~ is —6.
Hence y = V7L(f®7,1)/6. The value of L(f ®7,1) is determined by summing the series to be
3.11212 ..., so that y = 1.37232... and wo = 1.37232...7. If we evaluate these from the first
100 terms of the series, using a, for p < 100, we find the approximate values ¢4 = 552.99999. ..
and cg = —4084.99947 . ... These round to ¢4 = 553 and c¢g = —4085, which are the invariants
of the curve 33A1: y? 4+ 2y = 2% 4+ 22 — 11z. Notice that this curve has four rational points,
which we could have predicted since the ratio L(f,1)/Q(f) = 1/4 implies that 1 +p —a, =0
(mod 4) for all p # 2,3,11.

Example 3: N = 37

Since 37 is prime the M-symbols are simple here, as for N = 11. We find that H*(37) is
two-dimensional, generated by A = (8) and B = (13). With this basis the matrices of T and

Wsr are
-2 0 1 0
TQ—(O 0) and W37—<0 _1)

Thus we have two one-dimensional eigenspaces, generated by A and B respectively, with eigen-
values (a2 = —2,e37 = +1) for A and (ag = 0,37 = —1) for B. The left eigenvectors are simply
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v1 = (1,0) and vy = (0,1). Let us denote the corresponding newforms by f and g respectively.
Now {0,1/2} = 2B, so
L(g,1) 1

L/ 1) =0 and =_.
Q(f) Qg) 3
The fact that e37(f) = +1 implies that f has odd analytic rank, while the previous line shows
that g has analytic rank 0..

To compute Hecke eigenvalues, the method we used previously would only work for g, so
instead we use the variation discussed in Section 2.9. The cycle {1/5, 00} projects non-trivially
onto both eigenspaces. In fact (1+2—T5){1/5,00} = —5A — B, so the components in the two
eigenspaces are (—5)/(1+2—(—2)) = —1 and (—1)/(1+2—0) = —1/3. Hence by computing
(14+p—T,){1/5,00} = n1(p)A + n2(p)B for other primes p # 37, we may deduce that

a(p,f)=1+p+ni(p) and  a(p,g)=1+p+3nap).

In this way we find that the first few Hecke eigenvalues are as follows:

p 2 3 5 7 11 13 17 19
a(p, f) 2 3 —2 -1 -5 -2 0 0
a(p, g) 0 1 0 -1 3 -4 6 2

Two things can be noticed here: the preponderance of negative values amongst the first few
a(p, f) means that the curve E; has many points modulo p for small p, which we might expect
heuristically since we know that its analytic rank is odd, and hence positive. Secondly, since
14+p—a(p,g) =0 (mod 3) for all p # 37, we know that F, will have a rational 3-isogeny.

Turning to the full space H(37), we find that it has basis ((8), (16), (20), (28)). Conjugation
and W37 have matrices

0 -1 0 O 0o -1 0 0
-1 0 0 0 -1 0 0 O
0 1 01 and 1 0 0 -1
1 0 1 0 0o -1 -1 0
respectively.
For the A eigenspace corresponding to f we find left eigenvectors v; = (—1,1,0,0) and

vy = (—1,0,—1,1). These are independent modulo 2, so the period lattice is rectangular, say
[, yi]. To find x we must twist by a real quadratic character, using a prime ! = 1 (mod 4). Here
[ =5 will do: the twisting cycle is {0,1/5} —{0,2/5} —{0,3/5} +{0,4/5} = (2,—2,0,2), whose
dot product with v is —4, so that * = v/5L(f®5,1)/4. For the imaginary period we use | = 3
with twisting cycle (0,0, —1,1) and a dot product of 2 with v}, so that y = V3L(f ® 3,1)/2.
Evaluating numerically, using 100 terms of the series and a, for p < 100, we find the values

L(f®5,1) =5.35486.. ., so that r=2.99346... ;
L(f®3,1) =2.83062..., so that y=245139...;
and finally,
¢y = 47.9999999996. . . ,
ce = —216.000000004 . .. .
The rounded values ¢y = 48 and ¢4 = —216 are those of the curve 37A1, with equation

y? +y = 22 — x. This curve does have rank 1. We may also check that the analytic rank is 1
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by computing L’(f,1) by summing the series given in Section 2.13: we find that L'(f,1) =
0.306. .., which is certainly non-zero.

The B eigenspace is handled similarly to the example at level 33. We find v} = (0,1,1,1)
and v, = (1,1,0,0). The period lattice is [z, iy] with z = 3L(g,1)/2 and y = V19L(g®19,1) /4.
The latter needs more terms to compute to sufficient accuracy, as 19 is larger than the twisting
primes we have previously used. Using p < 100 as before we find ¢4 = 1119.878..., which
rounds to the correct (with hindsight) value 1120, but for ¢ we get 36304.495, and neither
36304 nor 36305 is correct. Going back to compute a, for 100 < p < 200 we reevaluate the
series to 200 terms, and find

L(g,1) =0.72568.. ., so that x =1.08852...;
L(g®19,1) = 1.62207...,  sothat y=1.76761...:
and hence
cq4 = 1120.000008. .. , and cg = 36295.99943 ... .

Now the rounded values ¢4 = 1120 and c¢g = 36296 are the invariants of the curve 37B1 with
equation y? +y = 23 + 22 — 23z — 50. As expected, this curve does admit a rational 3-isogeny.

Example 4: N = 49

H(49) is two-dimensional, with a basis consisting of the M-symbols (11), (2). Hence there
is a unique newform f at this level, which must be its own —7-twist, or in other words have
-1 0
-1 1)
so we take v = (1, —2) and v~ = (1,0). Hence the period lattice has the form [2z, z +yi] with
2 = Qo(f) = Q(f). Also as =1, so we have L(f,1)/Q(f) = 1/2. Hence we may compute the
real period via L(f, 1) as before, and find L(f,1) = 0.96666. .., so that Q(f) = 1.9333.... But
the method we have used in the earlier examples to find the imaginary period will not work here,
since for every prime [ = 3 (mod 4), [ # 7, we have L(f®I,1) = 0, since x(—49) = x(-1) = -1
where y is the associated quadratic character modulo [.

Instead, we compute periods directly, as in Section 2.10. The cycle (5) = {0,1/5} is equal to
(11)+(2), from which it follows that ((5), f) = —z +yi; the coefficients are the dot products of

the vector (1,1) with v*. Now {0,1/5} = {0, M(0)} with M = (10 1

complex multiplication by —7. The conjugation matrix with respect to this basis is

19 5 ) Hence the simpler

formula (2.10.5) gives
Pf(M) = 071 ’f S +yz — i @6_2ﬂn/49 (627rinw2 . 627rinas1)
g n=1 n

where z1 = —5/49 and x5 = 10/49. Summing the first 100 terms as before, we find the values
x = 0.96666 . . . and y = 2.557536. .. .

Of course, the value of x merely confirms the value we had previously obtained a different way.
These values give, in turn,

cq = 104.99992 . .. and ce = 1322.9994 ...,
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which round to the exact invariants ¢4 = 105 and c¢g = 1323 of the curve 49A1, which has
equation 32 + zy = 23 — 22 — 2z — 1.
Using the improved formula (2.10.8) with better convergence, gives (also using 100 terms)

z — 0.96665585 . .. and y = 2.55753099... ,
which lead to the better values
cq = 104.9999992 . .. and ce = 1322.99998. .. .

In this computation, we have not exploited the presence of complex multiplication. Notice
that, in fact, y/x = /7. Obviously if we had known this it would have given us an easier way
of computing y from z, and hence from L(f,1). However not all newforms at square levels
have complex multiplication. Some are twists of forms at lower levels (for example, 100A is
the 5-twist of 20A, and 144B is the —3-twist of 48A), which means that we could find the
associated curves more easily by twisting the earlier curve. Others first appear at the square
level in pairs which are twists of each other (for example, 121A and 121C are —11-twists of
each other, and 196B is the —7-twist of 196A). One could probably find both periods of all
such forms by looking at suitable twists to moduli not coprime to the level, but we have not
done this systematically, as the more direct method was adequate in all the cases we came
across in compiling the tables.

In practice we always computed the Hecke eigenvalues for p < 1000 at least, with a larger
bound for higher levels. In some cases, particularly when the target values of ¢4 or (more
usually) cg were large, and especially when a large twisting prime was needed, we needed to
sum the series to several thousand terms before obtaining the vales of ¢4 and cg to sufficient
accuracy.

These four examples exhibit essentially all the variations which can occur. The only problem
with the larger levels is one of scale, as the number of symbols and the dimensions of the spaces
grow. A large proportion of the computation time, in practice, is taken up with Gaussian
elimination. This is why we have tried wherever possible to reduce the size of the matrices
which occur: first by carefully using the 2-term symbol relations to identify symbols in pairs as
early as possible, and secondly by working in H*(N) during the stage where we are searching
for Hecke eigenvalues. The symbol relation matrices are very sparse (with at most three entries
per row); sparse matrix techniques, which we use in our implementation, help greatly here.
For finding eigenvectors of the Hecke algebra, however, we use a completely general purpose
exact Gaussian elimination procedure.

The second time-consuming stage is when we are computing a large number of Hecke eigen-
values, where we call a very large number of times the procedures to convert rational numbers
(cusps) to M-symbols and look these up in tables to find their coordinates with respect to the
symbol basis. It is vital that these procedures are written efficiently; during the preparation
of the tables, many great improvements in the efficiency of the program were achieved over a
period of several months.



TABLE 1

ELLIPTIC CURVES

The table is arranged in blocks by conductor. Each conductor is given in factorized form at
the top of its block (repeated, if necessary, on continuation pages), together with the number
of isogeny classes of curves with that conductor. Each block is subdivided into isogeny classes
by a row of dashes.

The columns of the table give the following data for each curve E:

(1)

P U Uy

\V)
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— N N N N N N

an identifying letter (A, B, C, ... ) for each isogeny class of curves with the same
conductor, choosing consecutive letters for the curves in the order in which they were
computed. Within each isogeny class we also number the curves in that class, with
curve 1 being the “strong Weil curve”.! For ease of reference, when N < 200 we also
give the identifying letter of each curve as given in Table 1 of [2].

The integer coefficients a1, as, as, as and ag of a minimal equation for FE.

The rank r of E(Q).

The order |T| of the torsion subgroup T' of E(Q).

The sign of the discriminant A of E, and its factorization.

The prime factorization of the denominator of j(E).

The local indices ¢, for the primes of bad reduction.

The Kodaira symbols for F at each prime of bad reduction.

The curves isogenous to F via an isogeny of prime degree, with the degree [ in bold
face. For example, the entry “2: 3; 3: 2, 6” for curve 448C4 indicates it is 2-isogenous
to 448C3 and 3-isogenous to both 448C2 and 448C6. From these entries it is easy
to draw isogeny diagrams for each isogeny class in the manner of the Antwerp tables
[2]. We regret that we could not persuade Birch to draw little diagrams for us in this
column, as he did for [2].

For convenience, we give the factorization of N at the head of each section of the table.
This order of the ‘bad’ prime factors pq,... ,pr of N is used within the table itself. We give
the discriminant A = £pi* ... p* in factorized form as £, ey,... ,e; in the columns headed
s, ord(A). The column headed ord_(j) contains the exponents of these same primes in the
denominator of the j-invariant, as in [2]. Finally the local factors c,, and then the Kodaira
symbols, are given for each of these primes in order.

IFor class 990H the “strong” curve is 990H3 and not 990H1.
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TABLE 1: ELLIPTIC CURVES 11A-21A

ap az as ay ag |7 | |T|| s ord(A) | ord_(j) | ¢, | Kodaira | Isogenies
11 N =11=11 (1 isogeny class) 11
AIB)] 0-1 1 -10 -20]0]5[- 5 5 5 I, |5:23
A2(C)| 0—1 17820 -263580|0| 1 |— 1 1 1 I, |5:1
A3(A)]| 0 -1 1 0 olo] 5 |- 1 1 1| 1 [5:1
14 N=14=2-7 (1 isogeny class) 14
ALCQ)] 1 0 1 4 —6lol6 - 63 6,3 23] Igl; |2:2:3:3.4
A2D)| 1 0 1 —-36 -70{0] 6 |+ 3,6 3,6 1,6 Isl¢ [2:1;3:5,6
A3E)| 1 0 1 —171  —874|0| 2 |- 18,1 | 181 |2,1| Lish |2:53:1
AMAY| 1T 01 -1 olol 6 |- 21 2.1 [2,1] LI, |2:6:3:1
AS(F)| 1 0 1-2731 —55146|0| 2 |+ 9,2 9.2 |1,2| Toly [2:3:3:2
A6(B)| 1 0 1 -—11 12006 [+ 1,2 1,2 |1,2] L, |2:43:2
15 N =15=3-5 (1 isogeny class) 15
AlC) 1 11 —10  -10l0] 8 [+ 44 | 44 [24] LL [2:234
A2B)| 1 1 1 —135 —660|0| 4 |+ 8,2 82 22| I, [2:1,56
A3B)[ 1 11 -5 200] 8 |+ 2,2 2.2 2,2 T,o, [2:1,7.8
AMFE)[ 1 11 35  —28|0| 8 |- 2,8 2.8 [2,8] T,z |2:1
AS(H)| 1 1 1-2160 —39540|0| 2 |+ 4,1 41 [21] 1, |2:2
A6(G)| 1 1 1 —110 -880|0| 2 |- 16,1 | 16,1 |2,1| Lis.h |2:2
ATD)[ 1 11 —80 24210 4 |+ 1,1 1,1 |L,1| L, |2:3
AS(A)| 1 1 1 0 olo| 4 |- 1,1 1,1 1,1 ., |2:3
17 N =17=17 (1 isogeny class) 17
ALCQ)] 1-1 1 -1  -—14]0] 4 [- 4 4 4 L |2:2
A2B)| 1-1 1 -6 —400] 4 [+ 2 2 2 I, |2:1,3,4
A3D)| 1-1 1 —91 -310|0| 2 |+ 1 1 1| 5 |2:2
AdA)| 1-1 1 -1 ojo| 4 |+ 1 1 1 I, |2:2
19 N =19=19 (1 isogeny class) 19
AIB)J 0o 11 -9  —15]0]3[- 3 3 [3] 1, [3:23
A20C)| 0 1 1 —769 —8470|0| 1 |- 1 1 1 I, |3:1
A3(A)| 0 1 1 1 00| 3 |— 1 1 1 I 3:1
20 N =20=2%.5 (1 isogeny class) 20
AIB) 0 1 0 4 4lol 6 [— 8,2 0,2 [3,2] V<1, |2:2:3:3
A2A)[ 0 10 -1 olo| 6 [+ 4,1 0,1 |3,1] TV, |2:1;3:4
A3(D)| 0 1 0 —36 —140]0| 2 |- 8,6 0,6 |1,2] IV¥Is [2:4:3:1
A4C)| 0 1 0 —41 —116]0| 2 |+ 4,3 | 0,3 |1,1| IV [2:3;3:2
21 N=21=3-7 (1 isogeny class) 21
AIB)[ 1 00 —4 —1]o] 8 [+ 4,2 42 [42] I, [2:234
A2D)| 1 0 0 —49 —136|0| 4 |+ 2.4 2.4 |2,2] Iy, [2:1,56
A3(C)| 1 0 0 -39 9008 |+ 81 81 |81 I, [2:1

Al 1 00 1 olo| 4 |- 2,1 Ly |2:1
1 0 N nl o | | 1 9 9.9

QA

T. T.



111
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112 TABLE 1: ELLIPTIC CURVES 35A-43A

ai as as ay ag | 7| |T| | s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
35 N =35=5-7 (1 isogeny class) 35
A1B)| 0 1 1 9 1101 3 |— 3,3 3,3 1,3 IENE 3:2,3
A200)| 01 1 —131 —650|0| 1 |- 9.1 9.1 | 1,1 | I, [3:1
A3(A)] 01 1 -1 olol 3 |- 1,1 L1 | 1,1 | L,L |3:1
36 N =36=2%2-32 (1 isogeny class) 36
A1(A)] 0 0 O 0 1101 6 |— 4,3 0,0 3,2 IVIIDT |2:2;3:3
A2B)Y| 0 0 0 —15 20| 6 |+ 83 0,0 | 3,2 | IV*III |2:1;3:4
A3(C)| 0 0 0 0 27|02 |- 49 0,0 | 1,2 | IVIII* |2:4;3:1
A4D)| 0 0 0 —135 =594 (0| 2 |+ 8,9 0,0 1,2 | IVSIII* |2:3;3:2
37 N =37=37 (2 isogeny classes) 37
AlA)] 00 1 —1 oft][ 1]+ t | 1 | 1 I
BI(C)| 0 1 1 —23 —50]0| 3 [+ 3 3 3 I, |3:23
B2(D)| 0 1 1 —1873 —31833|0| 1 |+ 1 1 1 I 3:1
B3B)| 0 1 1 -3 1o 3|+ 1 1 1 L [3:1
38 N =38=2-19 (2 isogeny classes) 38
AI(D)| 1 0 1 9 (03 |- 9,3 9,3 1,3 Io,I5 3:2,3
A2(E)| 1 0 1 -8 -2456|0| 1 |- 27,1 | 27,1 | 1,1 | Lo, |3:1
A3(C)| 1 0 1 —16 20| 3 |- 3,1 31 | 1,1 | I [3:1
BI(A)| 1 1 1 0 1ol 5 |- 51 51 | 51 | I.0 |5:2
B2B)| 1 1 1 -7 -279(0|1 |- 1,5 1,5 | 1,1 | I.0s |5:1
39 N =39=3-13 (1 isogeny class) 39
AIB)] 1 10 -4  —s5]o]4]+ 22 22 | 2,2 | L, [2:23.4
A20C)] 1 1 0 —69 —252|0| 2 [+ 4,1 41 | 2,1 | L, |2:1
A3D)| 11 0 -19 20| 4 |+ 1,4 L4 | 1,4 | 1,0, |2:1
A4A)] 11 0 1 olol 2 [— 1,1 L1 | 1,1 | 0 |2:1
40 N =40=23.5 (1 isogeny class) 40
AIB)[ 0 0 0 -7  —6l0] 4|+ 82 0,2 | 22 | L [2:23,4
A2D)| 0 0 0 —107 —426|0| 2 |+ 10,1 | 0,1 | 2,1 | II*L |2:1
A3(A)l 00 0 -2 110 4 |+ 41 0,1 | 21 | 1L [2:1
A4C) 000 13 —34|0|4 |- 104 | 04 | 2,4 | II*L |2:1
42 N=42=2-3-7 (1 isogeny class) 42
AlA)] 111 4 s5lo] 8 = 821 821 [82,1] IglI, |2:2
A2B)| 1 1 1 -84  261|0] 8 |+ 4,42 | 44,2 [4,22] LI I |2:1,3,4
A3(C)| 1 1 1 —104 101]0| 4 |+ 2,84 | 2,84 |2,2,2| L,Ig.I, |2:2,5,6
A4D)| 1 1 1 —1344 18405(0| 4 [+ 2,2,1 | 2,2,1 |2,2,1| I,I,I; |2:2
A5(F) | 1 1 1 —914 —10915|0| 2 |+ 1,4,8 | 1,4,8 |1,2,2| I;,IsIs |2:3
A6(E)| 1 1 1 38 1277|0| 2 |- 1,16,2 | 1,16,2 |1,2,2 | I;.16,Io | 2:3
43 N =43 =43 (1 isogenv class) 43



TABLE 1: ELLIPTIC CURVES 44A-52A 113
ay az as ay ag |7 | |T| | s ord(A) |ord_(j) | ¢, |Kodaira| Isogenies

44 N =44=2%2.11 (1 isogeny class) 44
AL(A)] 0 1 0 3 1ol 3 [= 81 0,1 |31] IvsI, |3:2
A2B)Y| 0 1 0 —77 —289]0|1 |- &3 | 0,3 |1,1| V-] |3:

45 N =45=3%.5 (1 isogeny class) 45
AlAY ] 1-1 0 0 5lo0] 2= 7.1 L1 [21] &L [2:2
A2B)| 1-1 0 —45 —104|0] 4 |+ 8,2 2.2 42| &L |2:1,34
A3(D)| 1-1 0 —720 —7259(0| 2 [+ 7.1 | 1,1 |41 | DI [2:2
A4(C) 1 -1 0 —-90 175 (0| 4 |+ 10,4 4,4 4,2 I;,14 2:2,5,6
AS(E)| 1 -1 0 —1215 16600 |0| 4 |+ 14,2 | 82 |42| ItL |2:4,78
AG(F) | 1 -1 0 315 1066/0| 2 |- 88 2.8 22| Ll |2:4
A7(H) 1 -1 0 —19440 1048135 0| 2 |+ 10,1 4,1 2,1 I;.I 2:5
A8(G)| 1-1 0 —990 22765|0| 2 |— 22,1 | 16,1 | 4,1 | Iife; |2:5

46 N =46=2-23 (1 isogeny class) 46
AlA)] 1-1 0 -10 -—12]o]l 2= 10,1 | 10,1 [21] Lok |2:

A2B)| 1-1 0 —170 —812|0| 2 |+ 5,2 52 | 1,2 ] Isl, |2:1

48 N =48 =2%.3 (1 isogeny class) 48
AIB)l 0 1 0 -4 —4]o] 4 [+ 82 0,2 |22 It [2:234
A2D)| 0 1 0 —64 -220[0[2 [+ 10,1 | 0,1 |21]| L |2:1
A3(C) 0 1 0 —24 36(0| 8 |+ 10,4 0,4 4,4 15,14 2:1,5,6
A4A)| 0 1 0 1 olo] 2 [— 41 0,1 |1,1] I, |2:1
AS(F)| 0 1 0 —-384 2r72|0| 4 |+ 11,2 | 0,2 |22| IiL |2:3
AGE)| 0 1 0 16 180|0| 8 |- 11,8 | 0.8 |48 | I |2:3

49 N =49 =172 (1 isogeny class) 49
Al(A) 1-1 0 -2 —-110| 2 | — 3 0 2 111 2:2:7:3
A2B)| 1-1 0 -37 -78l0| 2|+ 3 0 2 M |2:1;7:4
A3(C) 1-1 0 -107 552 (0| 2 | — 9 0 2 IIT* 2:4;,7:1
A4(D) 1 -1 0 —-1822 30393|(0| 2 |+ 9 0 2 IIT* 2:3;7:2
50 N =50=2-5%2 (2 isogeny classes) 50
ALE)[ 1 0 1 1 2ol 3= 1,4 1,0 |1,3] 1,0V [3:2:5:3
AQ(F) 1 0 1 —126 =552|0| 1 |— 3,4 3,0 1,1 I3,IV 3:1:5:4
A3(G) 1 0 1 —76 208101 3 9,8 9,0 1,3 | Is,IV* |3:4;5:1
AME)| 1 01 549 —2202|0| 1 |- 158 | 150 | 1,1 | I;5IV* |3:3:5:2
BI(A)| 1 1 1 -3 1]o] 5 [— 52 50 |51 Is0T |3:2:5:3
B2B)| 1 1 1 29 “9lo| 5 |- 152 | 150 |15,1| LisII |3:1:5:4
B3C)| 1 11 -13 -219/0| 1 |- 1,10 | 1,0 |11 | L,II* [3:45:1
B4(D) 1 1 1 —3138 —68969|0| 1 |— 3,10 3,0 3,1 15, 11* 3:3;5:2
ol N =51=3-17 (1 isogeny class) ol
AL(A)] 0 11 1 1ol 3 = 31 31 |31 I, |3:2
A2B)| 0 1 1 -5 —196|0|1 |- 1,3 1,3 | 1,1 ] I,0I; |3:1
52 N =52=22.13 (1 isogeny class) 52
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114 TABLE 1: ELLIPTIC CURVES 53A-62A

ay as as ay ag | 7| |T| | s ord(A) | ord_(j) | ¢, |Kodaira | Isogenies
03 N =53=53 (1 isogeny class) 53
AL(A)] 1-1 1 0 of1] 1 ]- 1 1 1 I,
o4 N =54=2.3% (2 isogeny classes) o4
ALE)] 1 -1 0 12 slol 3 3.9 3.0 | 1,3 ] I3,Iv* [3:2.3
A2(F) | 1 -1 0 —123 —667|0] 1 |— 9,11 | 9,0 | 1,1 | LII* |3:1
ASD)| 1-1 0 -3 310/ 3 [— 1,3 1,0 | 1,1 | 0,00 [3:1
BI(A)| 1 -1 1 1 —1]0| 3 |- 3.3 30 |31 I [3:23
B2(C)| 1-1 1 -20  —53]/0| 1 |- 1,9 1,0 | 1,1 | 1,0V [3:1
B3B) | 1-1 1 —14 2(0[ 9|~ 95 9,0 |93 IoIV |3:1
5%5) N =55=5-11 (1 isogeny class) 5%5)
AIB)| 1-1 0 -4 3lol 4 [+ 22 22 22 I, |2:23.4
A2D)| 1-1 0 -29 —52]0] 2 |+ 14 L4 [1,2] L |2:1
A3(C)] 1 -1 0 -—59 19010 4 |+ 4,1 4,1 4,1 Iy,14 2:1
Ad(A) ]| 1-1 0 1 olo| 2 |- 1,1 L1 | 1,1 1,0 |2:1
51§ N =56=23.7 (2 isogeny classes) 51§)
ALC)] 0 0 0 1 2olo] 4 [— 8,1 0,1 |41 L [2:2
A2D)[ 0 0 0 —19 30|04 |+ 10,2 | 02 |22 0", |2:1,3,4
A3(E)| 0 0 0 —59 —138[0| 2 |+ 11,4 | 04 |1,2] II*IL, |2:2
A4F)| 0 0 0 —2909 1990 |0| 2 |+ 11,1 | 0,1 | 1,1 | II* |2:2
B1(A)| 0 -1 0 0 4]0 2= 10,1 | 0,1 |21 | 0y |2:2
B2B) | 0 -1 0 —40  —84(0| 2 |+ 11,2 | 0,2 |1,2| "L |2:1
57 N =57=3-19 (3 isogeny classes) 57
AIE)| 0-1 1 -2 2(1]1 |- 21 | 21 |21] LI |
BIB)| 1 0 1 -7 5104 [+ 22 22 22| I, |2:2,3.4
B2(A)| 1 0 1 -2 ~1l0| 2 |+ 1,1 L1 [ 1,1 ] I, |2:1
B3(C)| 1 0 1 —102 385 0| 4 |+ 4,1 41 |41 ] 1,4, |2:1
B4D)| 1 0 1 8 2900 2 |~ 1,4 L4 | 1,2 1,0, |2:1
Ci(F) | 0 1 1 20 -32(0] 5 |— 10,1 10,1 10,1 | Iy, y | 5:2
C2(G)| 0 1 1-4390 —113432|0| 1 |- 2,5 25 | 21| Iyl |5:1
o8 N =58=2-29 (2 isogeny classes) o8
Al(A)| 1-1 0 -1 )1 - 210 [ 21 |21 LL |
BIB)| 1 1 1 5 910 5 [— 10,1 | 10,1 [10,1] Ty0,i |5
B2(C) | 1 1 1 —455 —3951|0| 1 |— 25 25 | 21| Iyl |5:1
61 N =61=61 (1 isogeny class) 61
AlA) 1 00 -2 111 ][- 1 1 1 I
62 N =62=2-31 (1 isogeny class) 62
AIA) ] 1-1 1 -1 1]ol 4 = 41 41 [ 41] 1, [2:2
A2B)| 1-1 1 -21 4100 4 |+ 2.2 2,2 |22 Ly |2:1,34
AarcY 1 1 1 a1 clnl o | L 14 14 19 1.1 |o.9




TABLE 1: ELLIPTIC CURVES 63A-70A 115

ay as as ay ag |7 ||T]| s ord(A) |ord_(j)| ¢, |Kodaira | Isogenies
63 N=63=3%2-7 (1 isogeny class) 63
ALA) 1-1 0 9 olo[ 27— 81 [ 201 [ 21 | L [2:2
A2B)| 1-1 0 —36 27|04 |+ 10,2 | 42 | 42 | BL [2:1,3,4
A3(C)| 1 -1 0 =351 —2430(0| 2 |+ 14,1 8,1 4,1 L, |2:2
A4D)] 1 -1 0 —441 367210 4 |+ 8,4 2,4 4,2 I, 12:2,5,6
AS(F) | 1 -1 0 —7056 229905(0| 4 |+ 7.2 | 1,2 | 42 | ItL |2:4
AGE)| 1-1 0 —306 585902 |- 7.8 | 1,8 | 2,2 | Iils |2:4
64 N =64=2% (1 isogeny class) 64
AIBY 0 00 4 olo] 4 [+ 12 0 4 I [2:2,3,4
A20C)| 0 0 0 —44 —112]0| 2 |+ 15 0 2 o [2:1
A3D)| 0 00 —44 1120] 4 |+ 15 0 4 o [2:1
A4(A)| 0 0 0 1 olo| 2 |- 6 0 1 I [2:1
65 N =65=5-13 (1 isogeny class) 65
ALA)] 1 00 -1 ol1] 2 [+ 1.1 1,1 L1 | L, |2:2
A2B)| 1 00 4 11 2= 22 | 222 | 222 | L |2:1
66 N=66=2-3-11 (3 isogeny classes) 66
A1 01 -6 alo] 6 [+ 23,1 ] 23,1 [2,3,1 ] Ios0;, |2:2:3:3
A2B)| 1 0 1 4 21(0] 6 |- 1,6,2 | 1,6,2 | 1,6,2 | T1,Ig,To |2:1:3: 4
A3(C)| 1 01 —81  —284|0| 2 |+ 6,1,3 | 6,1,3 | 2,1,1 | Ig.1,I3 |2:4;3:1
AMD)| 1 01 —41  -556]0| 2 |- 3,26 | 3,2,6 | 1,2,2 | I;,Io,g |2:3;3:2
BIE)| 1 1 1 -2 1lo] 4 |+ 411 | 41,1 [ 41,1 ] L0 |2:2
B2F) | 1 1 1 —22  —49(0| 4 |+ 2,22 | 22,2 2,22 | LI, |2:1,3,4
B3(H)| 1 1 1 -352 -2689(0| 2 |+ 1,1,1 | 1,1,1 | 1,1,1 | I;,I;,I; |2:2
B4G)| 1 11 —12  —81]0] 2 |- 1,44 | 1,44 |1,2,2 | I,Is,Ly |2:2
Cim |1 00 —45 81]0]10 |+ 10,5,1] 10,5,1 |10,5,1 | T10,05,11 | 2:2:5 : 3
c2) |1 00 115 5611010 | = 5,10,2 | 5,10,2 |5,10,2 | I5,110,I2 | 2: 1;5 : 4
C3(L) | 1 0 0-10065 —389499 (0| 2 [+ 2,1,5 | 2,1,5 | 2,1,5 | Io,i,I5 |2:4;5:1
CA4(K)| 1 0 0—10055 —390309 0| 2 |- 1,2,10| 1,2,10 |1,2,10 | I;,Io,li0 | 2:3;5: 2
67 N =67=067 (1 isogeny class) 67
Ao 11 —12 —21fo[1[- 1 1 1 I,
69 N =69=3-23 (1 isogeny class) 69
AlA) 1 01 1 “1lol2]= 21 [ 21 [ 21 | Lo [2:2
A2B)1 01 -16  -2500|2|+ 1.2 | 1,2 | 1,2 | LI |2:1
70 N=70=2-5-7 (1 isogeny class) 70
AlA)] 1-1 1 2 3ol 4= 421 421 [421]1,L1 [2:2
A2B)| 1-1 1 —18  —19|0| 4 |+ 2042 | 2,4,2 | 2,2,2 | LI, |2:1,3,4
A2 1 1 1 _oee _1etolnl 9ol 1941 194 199l 11T, |l9.9




116 TABLE 1: ELLIPTIC CURVES 72A-79A

ai as ag ay ag || |T|| s ord(A) |ord_(j) | ¢, |Kodaira | Isogenies
72 N =72=23.32 (1 isogeny class) 72
ALA)] 0 0 0 6 7lola]— 47 [ o1 |24 ] 1y [2:2
A2B)| 0 00 -39 —70l0] 4 |+ 88 | 02 |24 | B |2:1,34
A3D)[ 0 0 0 —579 —5362|0| 2 |+ 10,7 | 0,1 | 2,2 | I |2:2
A4(C)| 0 0 0 —219 1190 (0| 4 |+ 10,10 0,4 2,4 | III" I} |2:2,5,6
A5(F)| 0 0 0 —3459 78302 (0| 2 |+ 11,8 0,2 1,2 mI; (2:4
A6(E)| 0 0 0 141 4718 (0] 2 |- 11,14 | 0,8 | 1,4 | II*I; |2:4
73 N =73=173 (1 isogeny class) 73
AIB)| 1-1 0 4 3ol 2 - 2 2 2 L, |2:2
A2A)| 1-1 0 -1 olo| 2 |+ 1 1 1 L [2:1
75 N =175=3-5%2 (3 isogeny classes) 75
AIA)] 0-1 1 -8 7lo] 1 ]= 1,4 1,0 | 1,1 | IV |5:2
A2(B)| 0 -1 1 42 44310 1 |~ 5,8 50 | 1,1 | I,,IV* |5:1
BIE)| 1 01 -1 2310] 2 |- 1,7 1,1 | 1,2 | LI [2:2
B2F)| 1 0 1 —126 52310 4 [+ 2,8 | 202 | 24| L, |2:1,34
B3(G)| 1 0 1 -251 —72710] 4 |+ 4,10 | 4,4 | 44 | LI [2:2,56
BAH)| 1 0 1 —2001  34273l0| 2 |+ 1,7 | 1,1 | 1,2 | L, |2:2
B5(I) | 1 0 1 —3376 —75727|0| 4 |+ 838 | 82 |84 | Isl; |2:3,7,8
B6(J) 1 01 874 —=5227(0| 2 |— 2,14 2,8 2,4 I,I5 2:3
B7(L) | 1 0 1 —54001 —4834477|0| 2 |+ 4,7 4,1 4,4 I J7 [2:5
BS(K)| 1 0 1 —2751 —104477|0| 4 |— 16,7 | 16,1 |16,4 | LigIf [2:5
CLC)] 0 1 1 P 410 5 |= 5,2 50 | 51 | I, |5:2
c2D)| 0 1 1 -208 —1256|0| 1 |— 1,10 | 1,0 | 1,1 | I, I* |5:1
76 N=76=2%2.19 (1 isogeny class) 76
AlA) ] 0-1 0  —21 3tlo] 1= 81 | o1 [1,1]1ve
77 N=77=7-11 (3 isogeny classes) 77
AL(F)| 0 0 1 2 oj1] 1]= 21 | 21 [21] L |
BID)| 0 1 1  —49 600|0] 3 |- 63 | 63 | 61| I |3:23
B2(E) | 0 1 1 441 —15815|0| 1 |— 29 | 29 |21 | L, |3:1
B3(C)| 0 1 1 -89 25(0| 3 |- 21 21 | 2,1 | I, |3:1
Cl(A)| 1 10 4 11(0 2 |— 3,2 3,2 1,2 I3, [2:2
e2B)| 1 10 -51 1olo| 2 [+ 6,1 6,1 | 21| Il |2:1
78 N =78=2-3-13 (1 isogeny class) 78
AlA) 1 10 —19 685]0] 2 [~ 16,51 16,5,1 [2,1,1 ] I16,I5,1; | 2: 2
A2(B)| 1 1 0 —1209  17325|0| 4 |+ 8,10,2 | 8,10,2 |2,2,2 | Is.T10.I> | 2:1,3,4
A3(C)| 1 1 0 —2339 —15747|0| 2 |+ 4,20,1 | 4,20,1 [2,2,1|14,I50,]; |2:2
A4D)| 1 1 0-20739 1140957 0| 4 |+ 4,54 | 4,54 [2,1,4| LIs0, [2:2

79 N=79=79 (1 isogenv class) 79



TABLE 1: ELLIPTIC CURVES 80A-90B 117
ay az as ay |T|| s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
N =80=2%*-5 (2 isogeny classes) 80
ylo oo -7 o] 4 [+ 8,2 0,2 | 22| L [2:234
ylo oo -2 0] 2 [+ 4,1 0,1 | 1,1 | ILI, |2:1
H|0 00 —107 ol 4|+ 101 | 01 | 41| BL |2:1
G)| 0 00 13 0| 4 |- 10,4 0,4 2,4 I5.14 2:1
0-1 0 4 0] 2 |-~ 8,2 0,2 | 1,2 | L, |2:23:3
0-10 -1 0| 2 |+ 4,1 0,1 | 1,1 | I, |2:1;3:4
0-1 0 —36 0] 2 |= 8,6 0,6 | 1,2 | Il |2:43:1
0-1 0 -4l 0| 2 |+ 4,3 0,3 | 1,1 | ILIz |2:3:3:2
2=2-41 (1 isogeny class) 82
1 01 -2 2 [+ 21 21 | 2,1 | To0, |2:
1 01 -12 2 |+ 1,2 L2 | 1,2 | LI, |2:1
N =83 =283 (1 isogeny class) 83
1 11 1 1 |- 1 1 1 I
N =84=2%2.3.7 (2 isogeny classes) 84
0 10 7 06 |— 43,2 | 0,3,2 [3,3,2| IV,Is,Io |2:2;3:3
0 10 —28 0| 6 [+ 86,1 | 0,6,1 |3,6,1|IV-IsI, |2:1:3:4
0 10 —113 0| 2 |- 41,6 | 0,1,6 |1,1,6| IV, Ig |2:4:3:1
0 1 0-—1828 0| 2 |+ 82,3 | 0,2,3 [1,2,3|IV*I3I3(2:3;3:2
0-10 -1 0] 2 |- 41,2 0,1,2 |1,1,2] IVI,I, | 2:2
0-1 0 -36 0| 2 |+ 82,1 | 0,2,1 [1,2,1|IV*I;,); [2:1
=5-17 (1 isogeny class) 85
1 10 -8 2 [+ 21 21 | 2,1 | L |2:
1 10 -3 2 |~ 4,2 4,2 | 22 | I |2:1
N =88=23.11 (1 isogeny class) 88
0 00 —4 1] 81 0,1 | 41 ] &L
=89 (2 isogeny classes) 89
111 -1 EUEE 1|1 I
1 10 4 2 |- 2 2 2 I 2:2
1 10 -1 2 |+ 1 1 1 I, |2:1
N=90=2-32.5 (3 isogeny classes 90
1-1 0 6 6 |- 23,3 ] 2,0,3 22,3 Io,ITL1; [2:2:3:3
1-1 0 —24 6 |+ 1,3,6 | 1,0,6 [1,2,6| I;,ITIg [2:1:3:4
1-1 0 —69 2 1= 6,91 | 6,01 |2,2,1|TIT* 1, [2:4:3:1
1 -1 0 —1149 —14707 2 |+ 3,92 | 3,02 [1,2,2 150" 1, [2:3,3:2
1-1 1 -8 6 |- 6,31 6,01 |6,2,1] IaIILI; |2:2:3:3
1-1 1 —128 6 |+ 3.3,2 | 3,02 3,22 I, |2:1;3:4
1 1 1 £ ol 9a2l 902 1991 l1.1T1T1*1T. | 9.4.92.1




118 TABLE 1: ELLIPTIC CURVES 90C-99A

ay as as ay ag|7||T|| s ord(A)|ord_(j)| ¢, |Kodaira| Isogenies
90 N=90=2-32.5 (continued) 90
CLE)|[ 1-1 1 13 —61[0] 4 [- 4,91 ] 43,1 [4,4,1 [ 1 I5L [2:2,3:3
C2(F)| 1—-1 1 —167 —709(0| 4 |+2,12,2] 2,6,2 | 2,4,2 | 1,51, |2:1,4,5;3:6
C3(G)| 1-1 1  —122  1721|0|12 |- 12,7,3|12,1,3 [12,4,3|112,I5,15|2:6;3 : 1
C4(D) | 1-1 1 —2597 —50281(0] 2 [+ 1,9,4 | 1,3,4 | 1,2,4 | L1314 [2:2;3:7
C5(H)| 1-1 1 —617  5231|0] 2 [+ 1,18,1|1,12,1 | 1,4,1 |I,,I5,1; [2:2;3:8
C6(J) | 1-1 1 —3002  63929(0|12 |+ 6,8,6 | 6,2,6 | 6,4,6 | Is.[3.Is |2:3,7,8:3:2
CT(L) | 1—-1 1 —4082  14681|0| 6 |+ 3,7,12]3,1,12 |3,2,12|I5.I5 110 |2: 6:3 : 4
C8(K)| 1 -1 1 —48002 4059929(0| 6 |+ 3,10,3| 3,4,3 |3,4,3 | I3,I},I3 |2:6;3:5
91 N =91=7-13 (2 isogeny classes) 91
A1(A)] 0 01 1 oftj1]- 1,1 | L1 [ 1,1 | Ly |
BI(B)| 0 1 1 7 51031 1,1 | 1,1 | L1 ] I, [3:2
B2(C)| 0 1 1 13 420113 |- 3,3 | 3,3 | 3,3 | Iz |3:1,3
B3(D)| 0 11 —-117  —1245|1| 1 |— 9,1 9,1 9,1 Io,y [3:2
92 N =92=22.23 (2 isogeny classes) 92
A1A)] 0 10 2 to[3]= 41 [ o1 [ 31 [1vy [3:2
A2B)| 0 10 —18  —43]0| 1 |- 43 | 03 | L1 | IVI; |3:1
Bl(C)l 0 00 —1 1‘1| 1 |— 4,1 | 0,1 | 3,1 ‘ V.1, ‘
94 N =94=2-47 (1 isogeny class) 94
AL(A)] 1-1 1 0 “1lol 2= 2,1 | 201 [ 2,1 | L, [2:2
A2B)[1-11  —10 ool 2]+ 1,2 | 1,2 | 1,2 | I, [2:1
96 N =96=2°-3 (2 isogeny classes) 96
ALE)[ 0 10 9 olo 4]+ 62 | 02 | 22 | L1, [2:2,3.4
A2F)[ 0 10 —17  -33l0| 2|+ 12,1 | 0,1 | 2,1 | ILL |2:1
A3(H)| 0 10  -32 60/0| 2 [+ 9,1 | 01 | 1,1 | LI, |2:1
A4G)| 0 10 8 slof4 |- 94 | 04 | 2,4 | 131, |2:1
B1(A)] 0-1 0 9 olo[ 4]+ 6,2 | 0,2 | 2,2 | ILL, |2:2,3,4
B2D)| 0-1 0 32  —60lo[2 |+ 91 | 01 | 2,1 | IxL |[2:1
B3B)| 0-1 0  —17 33/0( 4 [+ 12,1 | 01 | 41 | ILL |2:1
B4(C)| 0-1 0 8 80| 2 |- 9,4 | 04 | 1,2 | L |2:1
98 N =98=2-72 (1 isogeny class) 98
AIB)[ 1 10 —25 —11tfol2]- 2,7 | 21 | 2,2 | LI [2:2;3:3
A20A)[ 1 10 =515 —4717[0| 2 |+ 1,8 | 1,2 | 1,4 | I,,I; |2:1;3:4
A3D)[ 1 10 220 2192|0| 2 |- 6,9 | 6,3 | 2.2 | IeIi |2:4,3:1,5
A4(C)| 1 1 0 —1740 2218410| 2 |+ 3,12 3,6 1,4 3,05 12:3;3:2,6
AS(F)| 1 1 0 —8355 291341(0| 2 |~ 18,7 | 18,1 | 2,2 | st |2:6:3:3
A6(E)| 1 1 0-13379518781197(0| 2 |+ 9,8 9,2 1,4 IhI5 2:5;3:4
99 N =99=3%.11 (4 isogeny classes) 99
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TABLE 1: ELLIPTIC CURVES 99B-106B 119

ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, |Kodaira| Isogenies
99 N=99=3%.11 (continued) 99
BIH)| 1-1 1 —59 186]0] 4 [+ 91 [ 3,1 [ 41 [ 1L [2:2
B2I) | 1-1 1 -104  —102|0| 4 |+ 122 | 62 | 42 | I, [2:1,34
B3(K)| 1 -1 1 —1319 —18084(0| 2 |+ 9,4 | 3,4 | 2,2 | Ll |2:2
B4(J) | 1-1 1 391 —1092|0| 2 |- 181 | 12,1 | 4,1 | I, [2:2
CIF)| 1-1 0 —15 slo[ 2 [+ 91 | 01 | 2,1 |1, |2:2
C2(G)| 1-1 0 —150  —667[0| 2 |+ 92 | 0,2 | 2,2 | O*I, |2:1
DI(C)| 0 0 1  —3 —5lol1]- 61 | 01 | 1,1 | It |5:2
D2D)| 0 0 1 —93 625(0/ 1 [— 6,5 | 05 | 1,1 | I*I; |5:1,3
D3(E)| 0 0 1-70383 7187035(0| 1 |— 6,1 0,1 1,1 I, i |5:2
100 N =100 =2%-5%2 (1 isogeny class) 100
AlA)] 0-1 0 —33 62[0] 2 [+ 47 [ 01 | 1,2 | IVv,I¥ [2:2:3:3
A2(B)| 0-1 0 92 312(0/ 2 [— 88 | 0,2 | 1,4 | VI [2:1;3:4
A3(C)| 0—-1 0 —1033 —12438|0| 2 |+ 4,9 0,3 3,2 IVI; |2:43:1
A4(D)] 0—-1 0 —908 —15688|0| 2 |— 8,12 0,6 3,4 IV IE (2:3;3:2
101 N =101 =101 (1 isogeny class) 101
Al 0 11 -1 1)1 [+ 1 1 1 I,
102 N =102=2-3-17 (3 isogeny classes) 102
AIE)[ 1 10 -2 ol1] 2 [+ 221 ] 2,2,1 [ 2,21 [ oI, [2:2
A2F)| 1 1 0 8 10012 |- 1,42 1,42 [1,2,2 | ,,LI, |2:1
BI(CG)| 1 00 —34 6810 8 [+ 8,41 | 8,4,1 |8,4,1 | IgI T, |2:2
B2(H)| 1 0 0 —114  —396[0| 8 |+ 4,82 | 4,8,2 | 4,8,2 | IIgI, |2:1,3,4
B3(J) | 1 0 0 —1734 —27936|0| 4 |+ 2,4,4 | 2,4,4 | 2,4,4 | Io,I4,I4 |2:2,5,6
BAI) | 1 0 0 226 —2232|0| 4 |- 2,16,1|2,16,1 [2,16,1 | Io,L16,[; |2 : 2
B5(L) | 1 0 0-27744 —1781010|0| 2 |+ 1,2,2 | 1,2,2 | 1,2,2 | I;Io,I, |2:3
B6(K)| 1 0 0 —1644 —30942|0| 2 |- 1,2,8 | 1,2,8 | 1,2,8 | I;.Io,Is |2:3
ClA)| 1 01 —256 1550 0] 6 |+ 6,6,1 | 6,6,1 |2,6,1 | IgJs], |2:2:3:3
C2B)| 1 01 —216 2062[0] 6 |- 3,12,2(3,12,2 [1,12,2|I3,110,1, |2:1:3: 4
C3(C)| 1 0 1 —751  —6046|0| 2 |+ 18,2,3|18,2,3 | 2,2,1 | Tig,Io,l5 |2:4;3: 1
C4D)| 1 0 1 1809 —37790|0| 2 |— 9,4,6 | 9,4,6 | 1,4,2 | To,lsIs |2:3;3:2
104 N =104 =2%.13 (1 isogeny class) 104
AIA) 0 10 —16 3200l 1[- 1,1 | o1 [ 1,1 | I*g
105 N=105=3-5-7 (1 isogeny class) 105
AIA)] 1 01 -3 ol 2 [+ 1,11 1,1,1 [1,1,1 [ LI [2:2
A2B)| 1 01 -8 “7l0] 4 [+ 222] 222 222 | Ihl, |2:1,3,4
A3D)| 1 0 1 —113  —469|0| 2 |+ L4,1 | 1,4,1 | L4, 1 | ;I [2:2
A4C)] 1 01 17 3700] 4 |— 41,4 | 41,4 | 41,4 | 00, |2:2
106 N =106 =2-53 (4 isogeny classes) 106
AIB)[ 1 0 0 1 1fo] 3 3,1 | 31 | 3,1 [ I, [3:2
A20C) 1 00 -9 —2900]| 1 1,3 | 1,3 | 1,1 | 1,05 |3:1




120 TABLE 1: ELLIPTIC CURVES 106C-114B

ai as as ay ag |r||T|| s ord(A)|ord_(j)| ¢, |Kodaira| Isogenies
106 N =106=2-53 (continued) 106
CLUE)| 1 00 -283 —2351]|0|3[- 24,1 | 24,1 [24,1] LI, [3:2
C2(F)| 1 0 0—24603 —1487407|0| 1 |— 8,3 8,3 8,1 | IgI3 [3:1
Dl(D)‘ 1 10 =27 —67‘0‘ 1 ]— 5,1 \ 5,1 \ 1,1 ] Is.I; \
108 N =108 =2%-3% (1 isogeny class) 108
A1(A)| 0 0O 0 4101 3 |— 8,3 0,0 3,1 | IVXII [3:2
A2B)| 0 0 0 0 —108]0| 1= 89 | 00 | 1,1 |[IV-IV*|3:1
109 N =109 =109 (1 isogeny class) 109
AlA)] 1-1 0 -8 ~7lol 1 ]- 1 1 1 I,
110 N=110=2-5-11 (3 isogeny classes) 110
ALC)] 1 11 10 —45]0] 5 |= 5,51 ] 5,51 |55 1] 1505 [5:2
A2D)[ 1 1 1 —5940 —178685|0| 1 |- 1,1,5 | 1,1,5 |1,1,5| ;.15 |5:1
BI(A)] 1 00 -1 10l 31— 31,1 31,1 [3,1,1]I35,,I; |3:2
B2(B)| 1 0 0 9 9500 1 |- 1,3,3 ] 1,3,3 |1,1,1| 5,15 |3:1
C(E)| 1 01 -89 31610 3 |— 7,1,3 | 7,1,3 (1,1,3| I;,I;,I5 [3:2
C2(F)| 1 01 296 170210 1 |—21,3,1|21,3,1 |1,1,1|I9y,I5,1; |3 :1
112 N =112=2%.7 (3 isogeny classes) 112
ALK)] 0 1 0 0 altl2]- 101 | o1 [41 ] L [2:2
A20L)[ 0 10  —40 841 2 |+ 11,2 | 0,2 | 42| L |2:1
B1(A)| 0 0 0 1 200l 2 |- 81 | 0,1 |21 ] I |2:2
B2B)| 0 0 0 —19 —30]0] 4 |+ 102 | 0,2 | 42| ILL |2:1,34
B3MD)| 0 0 0 —299 —1990|0| 2 |+ 11,1 | 0,1 | 4,1 | I3I, |2:2
B4C)| 0 0 0 —59 138(0) 4 [+ 11,4 | 0,4 | 24 | ILL |2:2
CLE)| 0-1 0 -8 —16/0] 2 |— 14,1 | 21 |41 | L [2:2:3:3
C2(F)| 0-1 0 —168 —78410| 2 |+ 13,2 1,2 2,2 | Ifl, [(2:1;3:4
C3(G)| 0—-1 0 72 3680 2 |— 18,3 6,3 4,1 | Ig0s |2:4;3:1,5
C4(H)| 0-1 0 —568 4464|0| 2 |+ 15,6 | 3,6 | 2,2 | ItI; [2:3;3:2,6
C5(I) | 0-1 0 —2728  55920(0| 2 |— 30,1 | 18,1 | 4,1 | T, |2:6;3:3
C6(J) | 0—1 0—43688 3529328 0| 2 |+ 21,2 9,2 2,2 T30 [2:5;3:4
113 N =113=113 (1 isogeny class) 113
AIB)[ 1 11 3 —4fol 2 [- 2 2 2 I, |2:2
A2M)[ 1 11 -2 200 2 |+ 1 1 1 L |2:1
114 N=114=2-3-19 (3 isogeny classes) 114
A1(A)| 1 00 -8 00y 6 |+ 6,3,1| 6,3,1 [6,3,1]| Ig,I3,]; |2:2;3:3
A2(B)[ 1 0 0 32 slo] 6 |— 3,62 3,6,2 (3,62 13161, [2:1:3:4
A3(C)| 1 0 0 —428  —3444|0| 2 |+ 2,1,3 | 2,1,3 [2,1,3| I;,)];,I5 |2:4;3:1
A4D)| 1 0 0 -—418 —3610(0] 2 |- 1,2,6 | 1,2,6 |1,2,6| I;,Io,Is |2:3:3:2
BRI/ 1 1.0 _or  _@aalnl o1l 9511 951 19141111717 |o.o0




TABLE 1: ELLIPTIC CURVES 114C-121B 121
ai as as ay ag |'T|| s ord(A) |ord_(j) Kodaira | Isogenies
114 N=114=2-3-19 (continued) 114
CI(G)| 1 1 1 —352  —2431|0| 4 |+ 20,3,1]20,3,1 Iools, Ly [2:2
C2(H)| 1 1 1 —5472 —158079|0| 4 |+ 10,6,2 | 10,6,2 I0.06,I> [2:1,3,4
C3(J) | 1 1 1-87552-10007679(0| 2 |+ 5,3,1 | 5,3,1 I51s,1; |2:2
C4(I) | 1 1 1 —5312 —167551|0| 2 |- 5,12,4|5,12,4 5,010,014 [2:2
115 N =115=5-23 (1 isogeny class) 115
AL(A)| 0 0 1 7 —11(0] 1 5,1 5,1 I5,1
116 N =116 =2%2-29 (3 isogeny classes) 116
ALE)| 0 0 0 —4831 —129242|0 1 |- 81 | 0,1 | JRAART
B1(A)] 0 1 0  —4 4l0] 3 |- 81 0,1 VI, [3:2
B2(B)| 0 1 0 36 ~76(0| 1 |- 8,3 0,3 VI3 [3:1
cio)y| 0o-1 0 -4 2410 2 |- 8,2 0,2 VI, [2:2
c2(C)l 0-1 0 =9 140 2 |+ 4,1 0,1 VI, [2:1
117 N =117=3%2-13 (1 isogeny class) 117
AL(A)| 1-1 1 4 614 |— 7,1 1,1 I, |2:2
A2B)| 1-1 1 —41 96 1| 4 |+ 8,2 2,2 I3, |2:1,3,4
A3(D)| 1 -1 1 —176 —768|1] 2 |+ 7,4 1,4 51, |2:2
A4(C)] 1-1 1 —626 6180 (1| 2 |+ 10,1 | 4,1 Il |2:2
118 N =118=2-59 (4 isogeny classes) 118
AlA)[ 1 10 1 1)1 ]- 2,1 | 2,1 | I,
BIB)| 1 11 —25 39|10 5 |— 10,1 | 10,1 Lol [5:2
B2(C)| 1 1 1 115  —2481(0| 1 |— 2,5 2,5 LI, [5:1
CiD)| 1 11 —4 -5/0[ 1 |- 1,1 | 1,1 | 1
Dl(E)‘ 1 10 56 —192]0\ 1 \— 19,1 \ 19,1 \ Lig,Ii
120 N=120=23-3-5 (2 isogeny classes) 120
ALE)| 0 1 0 —15 1810 4 |+ 4,2,1 | 0,2,1 | 2,2,1 | IILI,I; |2:2
A2(F)| 0 1 0 —20 010 8 |+ 84,2 0,42 [4,4,2| 1L |2:1,3,4
A3(H)| 0 1 0 —200  —1152[0| 4 [+ 10,2,4| 0,2,4 | 2,2,4 |I11*I5,14[2:2,5,6
A4(G)[ 0 1 0 80 80|0| 4 |—10,8,1| 0,8,1 | 2,81 |III*IgI; |2:2
A5(J) | 0 1 0 —3200 —70752(0| 2 |+ 11,1,2| 0,1,2 | 1,1,2 | II*1;,I, |2:3
A6(I) | 0 1 0 -8  —2400(0| 2 |—11,1,8| 0,1,8 | 1,1,8 | II*T;,Ig |2:3
B1(A)| 0 1 0 4 olo] 2 |- 81,1] 01,1 |21,1] I, |2:2
B2B)| 0 1 0 —16 —~16|0| 4 |+ 10,2,2| 0,2,2 | 2,2,2 |II[*]I,,I|2:1,3,4
B3(C)| 0 1 0 —216  —1296(0| 2 |+ 11,4,1| 0,4,1 | 1,4,1 | II*I,L; [2:2
B4D)| 0 1 0 —136 5600 2 |+ 11,1,4| 0,1,4 | 1,1,2 [II*I;,I, |2:2
121 N =121 =11% (4 isogeny classes) 121
ALH)| 1 1 -30 —76(0| 1 |- 2 0 I |11:2
A2y | 1 1 1 —305 78880 1 |— 10 0 I |11:1
BRI a1 1 5777 N N P LT



122 TABLE 1: ELLIPTIC CURVES 121C-129A

ai as as ay ag |r||T|| s ord(A)|ord_(j)| ¢, |Kodaira| Isogenies
121 N =121=11% (continued) 121
CIE)[ 1 10 9 —7lo] 1 ]- 4 0 1 IV [11:2
C2(G)| 1 1 0 —-3632 8275701 1 |— 8 0 1 v J11:1
D1(A)| 0-1 1 —40 —221101 1 |— 7 1 2 I 5:2
D2(B)| 0—-1 1 —1250 312390 1 |— 11 ) 2 I 5:1,3
D3(C)| 0 -1 1-946260 3546096390 1 |— 7 1 2 I 5:2
122 N =122=2-61 (1 isogeny class) 122
AtA) 1 01 9 o[1] 1 41 | 41 | 2,1 | 1,4,
123 N =123=3-41 (2 isogeny classes) 123
AtA) o 11 —10 wlhls]- 51 [ 51 [ 51 | ., [5:2
A2B)[ 0 11 20 890|111 |— 1,5 | 1,5 | 1,5 | I.05 |5:1
Bl(C)‘ 0-1 1 1 —1\1\ 1 \— 1,1 \ 1,1 \ 1,1 L,.I;
124 N =124=22.31 (2 isogeny classes) 124
A1(B)| 0 1 0 -2 1113 |— 4,1 0,1 3,1 Iv,I; |3:2
A2(C)| 0 1 0 18 11— 43 | 03 | 1,3 | IVI; [3:1
Bl(A)‘ 0 0 —17 —27\0\ 1 \— 4,1 \ 0,1 \ 1,1 | IV,
126 N =126=2-32.7 (2 isogeny classes) 126
AL(A)] 1-1 1 5 —7lof 2= 2,6,1] 20,1 [2.2,1 [ LI [2:2:3:3
A2B)| 1-1 1 —-95 -331|0| 2 |+ 1,6,2 | 1,0,2 | 1,2,2 | I;,I5,I> (2:1;3:4
A3(C)| 1-1 1 40 15501 6 |— 6,6,3 | 6,0,3 |6,2,3 | Ig,I5I3 |2:4;3:1,5
A4D)| 1-1 1 =320 1883|0| 6 |+ 3,6,6 | 3,0,6 |3,2,6 | I3,I§,I6 |{2:3;3:2,6
ASE)| 1-1 1 —1535  23591|0| 6 |- 18,6,1]18,0,1 |18,2,1|T;s,I5.11 |2:6;3: 3
AG(F)| 1-1 1 —24575 1488935(0| 6 |+ 9,6,2 | 9,0,2 | 9,2,2 | Io,I5 I, |2:5;3: 4
B1(G)| 1-1 0  -36  —176/0] 2 |- 8,81 | 82,1 2,21 |1, |2:2
B2(H)| 1-1 0 —756  —7808|0| 4 |+4,10,2| 4,4,2 | 2,4,2 | 1,51, |2:1,3,4
B3(J) | 1-1 0 —12096 —509036(0| 2 |+ 2,8,1 | 2,2,1 |2,4,1 |I;,I5,1; |2:2
B4(I) | 1-1 0 —936  —3668(0| 4 |+2,14,4| 2,8,4 |2,4,2 | I,I5 L [2:2,5,6
B5(L) | 1—-1 0 —8226  286474|0| 2 |+ 1,10,8| 1,4,8 | 1,2,2 | I}, I}Ig |2:4
B6(K)| 1-1 0 3474 —31010{0| 2 |- 1,22,2|1,16,2 | 1,4,2 |I3,I5,.Io |2 : 4
128 N =128 =27 (4 isogeny classes) 128
ArC)f o 10 1 11 2] 8 0 2 I [2:2
A2(D)| 0 1 0 -9 7112 |+ 13 0 4 I3 2:1
BI(F)[ 0 1 0 3 —5l0] 2 |- 14 0 o | I |2:2
B2(E)| 0 1 0 ) 2002 |+ 7 0 1 m[2:1
C1A)] 0-1 0 1 “1lo[ 2 |— 8 0 2 I [2:2
C2(B)| 0-1 0 -9 ~7l0] 2 |+ 13 0 2 o(2:1
DI1(G)| 0-1 0 3 slof 2 |- 14 0 o | I |2:2
D2(H)| 0-1 0 ) 2lof 2 [+ 7 0 1 m o [2:1
129 N =129 =3-43 (2 isogenv classes) 129



TABLE 1: ELLIPTIC CURVES 129B-138C 123

ai as as ay ag | r | |T|| s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
129 N =129 =3-43 (continued) 129
BIB)| 1 01 -3 -29/0] 4]+ 6.2 6,2 | 6,2 | Isly |2:23.4
B2(A)| 1 0 1 -25 —49|0| 2 |+ 3,1 31 | 3,1 | IL |2:1
B3(C)| 1 0 1 —245 1433|0| 4 |+ 12,1 | 12,1 | 12,1 | IpnL |2:1
B4D)| 1 0 1 105 —191(0| 2 |- 3,4 3.4 | 3,2 | Il |2:1
130 N =130=2-5-13 (3 isogeny classes) 130
ALE)][ 1 01 -33 68]1] 6 |+ 4,31 | 4,31 [2,3,1] Il |2:2:3:3
A2F) | 1 0 1 -13 156[1] 6 |— 26,2 | 2,6,2 [2,6,2| IoJsl» |2:1:3:4
A3(G)| 1 0 1 —208 —1122|1] 2 |+ 12,1,3] 12,1,3 [2,1,3 | Lio,Ti,I3 [2:4:3:1
AAH) | 1 0 1 112 —4194|1] 2 |- 6,2,6 | 6,2,6 [2,2,6| Iglols [2:3;3:2
BI(A)| 1 -1 1 -7  —1]|0] 4|+ 81,1 | 81,1 [81,1] Ig,I;,I; |2:2
B2(B) | 1 -1 1 -8 —289|0| 4 |+ 4,2,2 | 42,2 4,22 LI, |2:1,34
B3(D)| 1 -1 1 -1387 —19529(0| 2 |+ 2,1,1 | 21,1 |2,1,1| LI, |2:2
B4(C) | 1 -1 1 —67 —441[0| 4 |— 2,44 | 2,4,4 2,44 LI, |2:2
Ci(J) | 1 1 1 —841 -9737|0| 2 |+ 8,5,1 | 85,1 |8 1,1 IgI5I; [2:2
c2) | 1 1 1 —761 —11561|0| 2 | — 4,10,2 | 4,10,2 [4,2,2 | I.Li0Lo | 2:1
131 N =131=131 (1 isogeny class) 131
AL(A)| 0-1 1 1 of1] 1 [- 1 1 1 I,
132 N=132=2%.3-11 (2 isogeny classes) 132
ALA)] 0 1 0 3 ofo] 2 = 421021 [1,21] VI, [2:2
A2B)l 0 10 -12 -12|0| 2 |+ 81,2 | 0,1,2 [1,1,2|IV*;,I,|2:1
B1(C)| 0 -1 0 —77 330(0| 2 |- 4,10,1 | 0,10,1 [1,2,1 [IV,I10,]; |2:2
B2(D)| 0 -1 0 -1292 18312|0| 2 |+ 85,2 | 0,52 |1,1,2|IV* 50, |2:1
135 N =135=3%-5 (2 isogeny classes) 135
AlA) 0 01 -3 al1f1]- 52 [ 02 [32] v, |
Bl(B)‘ 0 1 =27 —115\0\ 1 \— 11,2 \ 0,2 \ 1,2 \ I1* I, \
136 N =136 =23-17 (2 isogeny classes) 136
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124 TABLE 1: ELLIPTIC CURVES 139A-145A

ay as as ay ag | r | |T| | s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
139 N =139=139 (1 isogeny class) 139
Al(A)| 1 10 -3  —4fo]1]- 1 1 1 I,
140 N =140=2%2.5-7 (2 isogeny classes) 140
A1(A)] 0 1 0 —5 -2510] 3 |— §&3,1 | 0,3,1 |3,3,1 IV~ ]IsI;|3:2
A2B)| 0 1 0 —805 —9065(0| 1 |— 8,1,3 | 0,1,3 |1,1,3 [IV*I;,I3|3:1
Bl(C)‘ 0 32 212\0\ 1 \— 8,1,5 \ 0,1,5 \1,1,1\1\/*,11,15\
141 N =141 =3-47 (5 isogeny classes) 141
AIE)| 0 1 1 —12 2(1] 1 [+ 71 | 7,1 [ 71 ] IL
BI(G)| 1 11 -8 —16l0] 2 |- 61 6,1 | 2,1 | IsL, |2:2
B2(F) | 1 1 1 —143 -718|0| 2 |+ 3,2 32 | 1,2 | I, |2:1
ClA)| 1 00 -2 31004 |- 4,1 41 | 41 | L |2:2
C2B)| 1 00 —47 120|0| 4 |+ 2,2 2,2 | 22 | I, |2:1,3.4
C3(C)| 1 00 —62 33/0] 2 |+ 1,4 L4 | 1,2 | LL |2:2
c4aD)| 1 0 0 —752 7875|0] 2 |+ 1,1 L1 | 1,1 | 1,0, |2:2
DII) | 0-1 1 -1 of1] 1 |+ 1,1 | 1,1 | 1,1 | I L
El(H)‘ 0 1 1 —26 —61‘0‘ 1 \+ 1,1 \ 1,1 \ 1,1 \ I,.I
142 N =142=2-71 (5 isogeny classes) 142
AIF) | 1-1 1 —12 151 1 |+ 91 | 91 |91 | I
BIE)| 1 10 -1 -1t 1]+ 1,1 | 1,1 | L,1 | I
ClA)| 1-1 0 -1 30l 2 |- 61 6,1 | 2,1 | IgL, |2:2
C2B)| 1 -1 0 —41 -91|0| 2 |+ 3,2 32 | 1,2 | I, |2:1
DIC)] 1 00 -8 slo| 3 [+ 31 31 | 3,1 | I [3:2
D2(D)f 1 0 0 —-58 —170|0| 1 |+ 1,3 1,3 1,1 I1,I3 3:1
El(G)‘ 1 -1 0 —2626 52244‘0\ 1 \+ 27,1 ‘ 27,1 ‘ 1,1 ‘ Io7,1h
143 N =143 =11-13 (1 isogeny class) 143
Al(A)] 0-1 1 -1 211 |- 1,2 L2 | 1,2 ] 1L
144 N =144=2%.3%2 (2 isogeny classes) 144
AL(A)] 0 0 0 0o —1lol2[- 43 0,0 | 1,2 | 11 [2:2:3:3
A2B)| 0 0 0 -15 -22]0] 2 |+ &3 0,0 | 1,2 | IzII |2:1;3:4
A3(C)| 0 0 0 0 2710 2 | = 4,9 0,0 | 1,2 | ILIT* |2:4:3:1
A4D)| 0 0 0 —135 9094101 2 |+ 8,9 0,0 1,2 I 1" | 2:3;3:2
BLE)| 0 0 0 6 7101 2 | = 4,7 0,1 | 1,2 | LIy |2:2
B2(F) | 0 0 0 -39 70(0] 4 |+ 8,8 0,2 | 2,4 | LI |2:1,3.4
B3(G)| 0 0 0 —219 —1190|0| 4 |+ 10,10 | 0,4 | 4,4 | I, [2:2,56
B4H)| 0 0 0 —579 5362|0| 4 |+ 10,7 | 0,1 | 2,4 | LI |2:2
B5(J) | 0 0 0 —3459 —78302 (0| 2 |+ 11,8 0,2 4,2 I5,15 2:3
B6I) | 0 0 0 141 —4718|0| 2 |— 11,14 | 0,8 | 2,4 | ;I |2:3
145 N =145=5-29 (1 isogeny class) 145
[A1/AN] 1 1 1 _a ol1l o 1T L. 11 T 14 T 114 T 17 I|lo.o |




TABLE 1: ELLIPTIC CURVES 147A-153D 125

ay asas ay ag|r||T|| s ord(A)jord_(j)| ¢, |Kodaira | Isogenies
147 N =147=3-7% (3 isogeny classes) 147
ALQ)[1 11 48 asfola]- 27 [ 21 [ 224 [ LI [2:2
A2D)| 1 11 197 146/0[ 4 [+ 4,8 | 4,2 | 2,4 | L, |2:1,3,4
A3(E)| 1 11 —1912 —32782/0| 2 |+ 87 | 81 | 2,2 | I |2:2
AA(F)| 1 11 -2402  44246[0 4 |+ 2,10 | 2,4 | 2,4 | L,I; [2:2,56
AS(H)| 1 1 1 —38417 2882228(0[ 2 |+ 1,8 | 1,2 | 1,2 | LI} |2:4
AG(G)| 1 11 —1667  72764l0| 2 |— 1,14 | 1,8 | 1,4 | I,.It |[2:4
BID) |0 11 —114 a73lo[ 1= 1,8 | 1,0 | 1,1 | I,,Iv* [13:2
B2(J) | 0 1 1 —44704 —3655907|0| 1 |— 13,8 | 13,0 | 13,1 | I,3,IV* [13:1
Cl(A)] 0—1 1 —9 o[ 1= 1,2 | Lo | 1,1 | L0 |13:2
C2(B)| 0-1 1 —912  10019(0| 1 |- 13,2 | 13,0 | 1,1 | I,3,II [13:1
148 N =148 =2%2-.37 (1 isogeny class) 148
AL(A)] 0-1 0 5 1]+ 81 [ 01 | 31 [ vea,
150 N =150=2-3-5% (3 isogeny classes) 150
Al(A)]1 00 -3 “3lol2]- 21,3 2,1,0 [2,1,2| L, 1T [2:2:5:3
A2B)|1 00  —53 ~153/0] 2 |+ 1,2,3 | 1,2,0 [1,2,2 | 1,,Io,ITT |2:1;5 : 4
A3(C)| 1 00 —28 2721010 |- 10,5,3]10,5,0 {10,5,2| I10,I5,I1II [2:4;5: 1
A4D)| 1 00 —828 9072(0[10 |+ 5,10,3 | 5,10,0 |5,10, 2| T5,1,0,111 |2 : 3:5 : 2
B1(G)|1 10 —75 =37510| 2 |— 2,1,9 | 2,1,0 |2,1,2 |1, III* |2:2;5: 3
B2(H)| 1 10 —1325 —19125/0| 2 |+ 1,2,9 | 1,2,0 |1,2,2 |I;,Io,[II* [2:1;5: 4
B3(E)|1 10 —700  34000(0| 2 |~ 10,5,9]10,5,0 | 2,1,2 |T10,I5,[IT*|2 : 4;5 : 1
B4(F)| 1 1 0 —20700 1134000|0| 2 |+ 5,10,9|5,10,0 | 1,2,2 |I5,110,I11*|2:3;5: 2
cun) |1 11 37 281(0] 4 |~ 4,3,7 | 4,3,1 |4,1,4| L,I;If |2:2:3:3
c2) |1 11  —463 3281(0| 4 |+ 2,6,8 | 2,6,2 [2,2,4 | IIe.I5 |2:1,4,5:3:6
C3(K)| 1 11 —338  —7969/0| 4 |—12,1,9]12,1,3 |12,1,4| I;o,1;.I5 [2:6;3: 1
C4L)| 1 11 —1713 —24219(0] 2 |+ 1,12,7|1,12,1 | 1,2,4 | I;,I;0,0F |2:2:3:7
C5(M)| 1 11 —7213  232781|0| 2 [+1,3,10| 1,3,4 |1,1,4| I, I5,If [2:2;3:8
C6(N)| 1 11 —8338 —295969/0| 4 |+6,2,12] 6,2,6 |6,2,4| IgIo,I5 [2:3,7,8;3:2
C7(0)] 1 1 1-133338—-18795969(0| 2 [+ 3,4,9 | 3,4,3 |3,2,4 | I3,I4,I5 |2:6;3:4
O8(P)| 1 11 —11338 —67969(0| 2 |+3,1,18/3,1,12 [3,1,4 | Is,;,I5, |2:6;3:5
152 N =152=23.19 (2 isogeny classes) 152
Al(A)| 0 1 -1 311 ]- 81 | 01 | 41 | 1L |
Bl(B)‘ 0 1 -8 —16‘0| 1 \— 11,1 \ 0,1 \ 1,1 \ 1.1, \
153 N =153=3%.17 (4 isogeny classes) 153
AlC)Jo 01 -3 21— 31 | o1 | 2,1 | 1wy |
B1(A)| 0 0 1 6 27(1] 1 |— 9,1 | 3,1 | 41 | ILL [3:2
B2(B)| 0 01 —534 475201 3 |- 7,3 | 1,3 | 43 | I |3:1
CLE)| 1-1 0 6 —1o[ 2 |+ 6,1 | 0,1 | 2,1 | L [2:2
C2(F)| 1-1 0 —51 152|101 4 |+ 6,2 0,2 4,2 I (2:1,3,4
C3(H)| 1-1 0 —816 01790l 2 |+ 6,1 | 0,1 | 2,1 | L [2:2
C4(Q)| 1-1 0 —6 37710l 2 |— 6,4 | 04 | 2,2 | I*L, [2:2




126 TABLE 1: ELLIPTIC CURVES 154A-161A

ai as ag ay |T|| s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
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TABLE 1: ELLIPTIC CURVES 162A-170E 127
ai as as ay ag |7 ||T|| s ord(A) [ord_(j)| ¢ Kodaira | Isogenies
162 N =162=2-3" (4 isogeny classes) 162
ALK)[ 1-1 0 -6 sl1] 3= 2,6 2,0 | 2,3 | L,V |3:2
A2(L)| 1-1 0 39 -19(1| 1 |— 6,10 6,0 2,3 Ig,IV* [3:1
BI(G)| 1-1 1 -5 500/ 3= 3.4 30 | 3,1 LT [3:2:7:3
B2(H)| 1-1 1 25 1ol 1= 1,12 | 1,0 | 1,1 | T,00* [3:1:;7:4
B3I) | 1-1 1 -95 —697]0| 3 |- 21,4 | 21,0 | 21,1 | Io,II |3:4;7:1
B4(J) | 1 -1 1-9695-364985(0| 1 |— 7,12 | 7,0 | 7,1 | I,II* |3:3;7:2
Cl(A)] 1-1 0 3 —1lo] 3= 1,6 1,0 | 1,3 | 1,0V [3:2:7:3
C2B)| 1 -1 0 —42 —100(0| 1 |— 3,10 3,0 1,1 I3, 0V 13:1;7:4
C3(D)| 1 -1 0-—1077 13877|0]| 3 7,6 7,0 1,3 I, IVv. 13:4,7:1
C4(C)| 1 -1 0 —852 19664 (0| 1 21,10 21,0 1,1 19,1V 3:3;,7:2
DI(E)| 1-1 1 4 “1l0| 3 6, 4 6,0 | 61 eIl |3:2
D2(F)| 1 -1 1 =56 —161(0| 1 |— 2,12 2,0 2,1 I, 11" 3:1
163 N =163 =163 (1 isogeny class) 163
AIA)] 0 01 -2 i1 ]- 1 1 1 I
166 N =166 =2-83 (1 isogeny class) 166
AIA)][ 1 10 -6 alif1]- 41 | 41 [ 21 | L
168 N =168 =23-3-7 (2 isogeny classes) 168
AIB)] 0 10 -7 -10lo] 2+ 41,1 o1 [21,1] O [2:2
A2A)l 0 1 0 —12 0lol 4 |+ 822|022 222 ILL |2:1,3.4
A3(C)] 0 1 0 —152 67210 4 |+ 10,4,1 | 0,4,1 | 2,4,1 | IIT*I,.01, [2:2
A4D)| 0 1 0 48 4810 2 | = 10,1,4 | 0,1,4 | 2,1,2 | TIT* 1,1, |2:2
BIE)| 0-1 0 -7 5200 4 |— 4,3,4 | 0,3,4 [2,1,4 | TILI;0, |2:2
B2(F) | 0-1 0 —252  1620|0| 4 |+ 86,2 | 0,6,2 |2,2,2 | ItIsLo [2:1,3,4
B3(G)| 0-1 0 —392 —228(0| 2 |+10,12,1]0,12,1 | 2,2,1 |III*,I;»,I; |2:2
B4(H)| 0 -1 0-4032 99900|0| 2 |+ 10,3,1 | 0,3,1 | 2,1,1 | III*,I3,I; |2:2
170 N=170=2-5-17 (5 isogeny classes) 170
AIA)] 1 01 -8 6l1] 21+ 421 | 421 221 I,LI, |2:2
A2B)l 1 01 12 3811 2 |— 2,42 | 2,42 | 2,42 Iy, |2:1
BI(H)| 1 0 1-2554 49452]0| 6 |+ 8,23 | 82,3 [ 2,23 | Islols [2:2:3:3
B2(I) | 1 0 1-2474 52716(0| 6 |— 4,4,6 | 4,4,6 | 2,2,6 | LIl |2:1:3:4
B3(J) | 1 0 1-4169 —20724|0| 2 |+ 24,6,1 | 24,6,1 | 2,2,1 | ToaJe,l; [2:4:3:1
B4(K)| 1 0 1 16311 —159988 (0| 2 |— 12,12,2(12,12,2] 2,2,2 | I15,I12,I5 |2:3;3:2
CIF)| 1 00 399 —919]0| 3 |- 21,3,1]21,3,1 [21,1,1] Ioy,Is,5; |3:2
C2(G)| 1 0 0-6641 —215575|0| 1 |— 7,9,3 | 7,9,3 | 7,1,1 | Inlods |3:1
DID)[ 1 01 -3 610] 3 |- 3,31 | 3,31 [1,3,1] I35 |3:2
D2AE)| 1 01 22 —164]0| 1 |— 91,3 | 91,3 | 1,1,1 | ToJ0, 05 |3:1




128 TABLE 1: ELLIPTIC CURVES 171A-176C

ay as ag ay ag |7 ||T|| s ord(A) [ord_(j)| ¢, |Kodaira |Isogenies
171 N =171=3%2-19 (4 isogeny classes) 171
AID) 1-1 1  -14 200 4 [+ 7.1 1,1 | 41 | 1n5 [2:2
A2B)| 1-1 1  —59 —14200] 4 |+ 82 | 22 | 42 | L |2:1,34
A3(F)| 1-1 1 —914 —10402]0| 2 [+ 10,1 | 4,1 | 4,1 | Iy |2:2
A4(G)| 1-1 1 76 —790(0] 2 |-~ 7,4 1,4 | 22 | TtL |2:2
BIL(A)| 0 0 1 6 ol1] 1 ]- 6,1 0,1 | 2,1 | ItL |3:2
B2B)| 0 0 1 -84 315(1] 3 |— 6,3 0,3 | 23 | I*'I; [3:1,3
B3(C)| 0 0 1 —6924  221760|1| 3 |- 6,1 0,1 | 21 | IpL |[3:2
C1I) | 0 0 1 177 10350 1 |— 16,1 | 10,1 | 2,1 | Iip0i |5:2
C2(J) | 0 0 1 —39513 3023145|0| 1 |— 8,5 2,5 2,1 I, |5:1
Dl(H)‘ 0 01 —21 —41\0\ 1 \— 8,1 \ 2,1 \ 2,1 \ I3 \
172 N =172=22-43 (1 isogeny class) 172
AtA) o 10 —13 15[1] 3 |- 8,1 0,1 | 3,1 | v, [3:2
A2(B)| 0 1 0 67 79111 |— 8,3 0,3 1,3 Ivel; (3:1
174 N=174=2-3-29 (5 isogeny classes) 174
AID) [ 1 01 —7r05  1226492]0] 3 |- 11,21,1]11,21,1]1,21,1[T41,I1,11 3 : 2
A20) | 1 0 1 68840 —318103300| 1 |- 33,7,3 | 33,7,3 | 1,7,1 | Ia3,Is.I5 |3 : 1
B1(G)| 1 0 0 1 13700 7 |— 7.7,1 | 7,71 | 7,71 | T dp 0y |72
B2(H)[ 1 0 0 —6511 -—203353|0| 1 |- 1,1,7 | 1,1,7 | 1,1,7 | L,I.,I; |7:1
CIF)| 1 11 -5 —710] 1 |- 1,3,1 | 1,3,1 | 1,1,1 | I;,I3,I; |
DI(A)| 1 0 1 0 ool 2= 41,1 [ 41,1 | 21,1 | L. |2:2
D2B)[ 1 01  —20 —34]0] 4 |+ 2,22 | 2,2,2 |2,2,2 | I, |2:1,3,4
D3(C)| 1 01 —310  —2122]0| 2 [+ 1,41 | 1,4,1 | 1,4,1 | I;I.I, |2:2
D4D)[ 1 01  —50 s6lol 2 |+ 1,1,4 | 1,1,4 | 1,1,2 | .00, |2:2
El(E)‘ 1 10 —56 —192\0\ 1 \ 13,1,1 \ 13,1,1 \ 1,1,1 \113,11,11 \
175 N =175=5%-7 (3 isogeny classes) 175
ALB)| 0-1 1 2 —of1] 1 3,1 0,1 | 2,1 | TILL, |5:2
A2(A)| 0-1 1  —148 7481 5 |- 3,5 | 05 | 2,5 | ILI; |5:1
BI(C)] 0-1 1  —33 93/1] 1=~ 7,1 1,1 | 41 | 1L, [3:2
B2(D)| 0-1 1 217 —982[1] 1 |— 9,3 3,3 | 41 | IL; [3:1,3
B3E)| 0-1 1 -—3283 —74657|1| 1 |- 15,1 | 9,1 | 4,1 | I;I, [3:2
CLF)[ 0 11 42 —131lo] 1 |— 9,1 0,1 | 2,1 | 11", |5:2
C2(G)| 0 1 1 -3708 86119|0| 1 |— 9,5 0,5 2,1 nr=Is [5:1
176 N =176 =2%-11 (3 isogeny classes) 176
AL(C)[ 0 0 0 —4 —4fo[ 1 ]- 81 [ o1 | 1,1 | 1L |
BID)| 0 1 0 -5 130l 1]— 12,1 | o1 | 1,1 | L |5:2
B2(E)| 0 1 0 —165 142710 1 |— 12,5 0,5 1,1 I [5:1,3
B3(F)| 0 1 0-125125 16994227|0| 1 |— 12,1 0,1 1,1 =1, |5:2
AN N 1 T 9 I 1 et U AAd 91 Tt da.o




TABLE 1: ELLIPTIC CURVES 178A-186C 129

ai as ag ay ag |7 ||T|| s ord(A) ord_(j)| ¢, |Kodaira | Isogenies
178 N =178 =2-89 (2 isogeny classes) 178
AL(A)| 1 0 0 6 —28(0| 3 |— 12,1 | 12,1 | 12,1 | Ip1; [3:2
A2B)| 1 0 0 —b54  —5068(0| 1 |— 4,3 4.3 | 41 | Igls |3:1
B1(C)| 1 1 0 —44 8010 2 |+ 14,1 | 14,1 | 2,1 | I |2:2
B2D)| 1 1 0 —684 6608 0] 2 |+ 7,2 7,2 1,2 | I, |2:1
179 N =179 =179 (1 isogeny class) 179
AL(A)| 0 0 1 -1 —1/0| 1 |- 1 1 1 I,
180 N =180=2%2-32.5 (1 isogeny class) 180
AL(A)L 0 0 0 —12 —~11(0| 2 |+ 4,6,1 | 0,0,1 | 1,2,1 |IV,I5I; [2:2;3:3
A2(B)| 0 0 0 33 —74(0| 2 |- 86,2 | 0,0,2 [1,2,2 |[IV*[¥1,|2:1;3:4
A3(C)| 0 0 0 —372 27610| 6 |+ 4,6,3 | 0,0,3 |3,2,3 [IV,I5I3 |2:4;3:1
A4(D)| 0 0 0 —327 34540| 6 |— 8,6,6 | 0,0,6 |3,2,6 [IV*I5Is|2:3;3:2
182 N=182=2-7-13 (5 isogeny classes) 182
ALE)| 1-1 1 866 6445 0] 4 |— 20,3,220,3,2 {20,1,2 | Ipo,I3,I5 [2:2
A2(F) | 1—1 1 —4254 59693 [0| 4 |+ 10,6,4| 10,6,4 [10,2,2 | I10,I,I4 |2:1,3,4
A3(G)| 1—1 1—31294 —2081875 (0| 2 |+ 5,12,2(5,12,2 | 5,2,2 | I5,L15,I5 |2:2
A4(H)| 1 -1 1-59134 5547693 (0| 2 |+ 5,3,8 | 5,3,8 | 51,2 | I5,I3]g [2:2
B1(A)| 1 0 0 7 —7l0] 3 |— 91,1 | 91,1 |9,1,1] Iy,;,I; |3:2
B2B)| 1 0 0 —193 —1055(0| 3 |— 3,3,3 | 3,3,3 | 3,3,3 | Is,I3,]5 |3:1,3
B3(C)| 1 0 0-15663 —755809 (0| 1 |— 1,1,1 | 1,1,1 | 1,1,1 [ I;,I;,I; |3:2
C1(J) | 1 0 1 —4609 120244 |0] 1 |- 11,7,1|11,7,1 | 1,1,1 | Iy3,I7,I1 |
DI(D)| 1 -1 1 3 —5/0] 1 |- 1,3,1 | 1,3,1 | 1,1,1 | I; I5,I; |
E1(I) | 1-1 0 —22 884‘0‘ 1 |— 7,.1,5 \ 7,1,5 \1,1,1 \ I7.1;.I5 \
184 N =184 =23.23 (4 isogeny classes) 184
AL(C) | 01 0 0 1)1 ]- 41 | o1 | 21 [ oon |
B1(B)| 0-1 0 —4 5011 |- 41 | 01 | 2,1 | OLI; |
C1MD)| 0 0 0 5 6/0] 2 |- 10,1 | 0,1 2,1 | II*I |2:2
C2E)[ 0 00 =35 62/0| 2 |+ 11,2 | 0,2 1,2 | I*I, [2:1
D1(A)| 0 00 =55 —157\0\ 1 |— 4,1 \ 0,1 \ 2,1 \ LI, \
185 N =185=15-37 (3 isogeny classes) 185
AID)[ 0 11 —156 700[1] 1 [+ 41 | 41 | 21 | LI |
BI(A)| 0-1 1 -5 6/1] 1]+ 2,1 | 2,1 | 2,1 | LI |
CiIB)| 1 01 —4 -3]|1] 2 |+ 1,1 1,1 1,1 | I [2:2
c2(C)| 1 0 1 1 91| 2 |- 2,2 2,2 : L, |2:1
186 N =186=2-3-31 (3 isogeny classes) 186
A1(D)| 1 83 —369(0| 1 |- 1,11,1| ,11,1 [ 1,1,1 [ I, L L |
BI(B)| 1 0 0 15 90| 5 |- 5,5,1 | 5,5,1 |5,5,1 ] I5I5,I; |5:2
B2(C)| 1 0 0 —1395 —20181|0| 1 |- 1,1,5 | 1,1,5 | 1,1,5 | I3.I;.I5 |[5:1




130 TABLE 1: ELLIPTIC CURVES 187A-194A

ai as ag ay ag | r | |T|| s ord(A) |ord_(j) | ¢, |Kodaira |Isogenies
187 N =187=11-17 (2 isogeny classes) 187
AL(A)[ 0 11 11 300 3 3,2 3,2 3,2 I30, |3:2
A2B)[ 0 1 1 —99 —905|0| 1 |— 1,6 1,6 1,2 LI |3:1
B1(C) \ 1 7 1\0\ 1 \ 3,1 | 3,1 \ 1,1 \ Is,I; \
189 N =189 =3%.7 (4 isogeny classes) 189
AlA) 0 01 -3 o[t] 1 [+ 51 | o1 | 31 | v, |
B1(C)| 0 0 1 —24 4511 3 |+ 3,1 0,1 1,1 LI, |[3:2
B2D)| 0 0 1 —54 —88|1|3 |+ 9,3 0,3 3,3 | IV¥13 [3:1,3
B3(E) | 0 0 1-3834 —91375|1| 1 |+ 11,1 0,1 1,1 | II*1; [3:2
CiF) |0 01 —6 3/0] 3 |+ 3,3 0,3 1,3 ILI; [3:2,3
C2(G)| 0 0 1 —216 —1222(0| 1 |+ 9,1 0,1 1,1 | IV5L [3:1
C3(H)| 0 0 1 —426 3384(0| 3 |+ 5,1 0,1 3,1 | IVI; [3:1
Dl(B)‘ 0 01 =27 —7\0\ 1 \+ 11,1 | 0,1 \ 1,1 \ I*.I; \
190 N=190=2-5-19 (3 isogeny classes) 190
AID) | 1-1 1 —48  147|1| 1 |- 11,2,1 | 11,2,1 [11,2,1 | Lip LT |
B1(C)| 1 1 0 2 2011 |- 1,2,1 | 1,2,1 | 1,2,1 | I1,I,)1; |
Cl(A)| 1 00 =30 —-100]0] 3 |- 3,6,1 | 3,6,1 | 3,6,1 | Is,I6,]; |3:2
C2B) | 1 0 0 —2780 —56650 |0 1 1,2,3 | 1,2,3 | 1,2,3 | I;,Ib.]15 [3:1
192 N =192=2%.3 (4 isogeny classes) 192
AL(Q | 0-1 0 —4 21| 2 |+ 6,1 0,1 1,1 ILL, |2:2
A2R) | 0-1 0 -9 91| 4 |+ 12,2 0,2 4,2 I3, |2:1,3,4
A3(T) | 0—-1 0 —129 609 |1| 4 |+ 15,1 0,1 4,1 1, |2:2
A4(S) | 0-1 0 31 33(1| 2 |— 154 | 0,4 4,2 IEI, |2:2
Bl(A)| 0 1 0 —4 210 2 |+ 6,1 0,1 1,1 I, |2:2
B2B) | 0 1 0 -9 —9(0| 4 [+ 12,2 0,2 4,2 51, |2:1,3,4
B3D)| 0 1 0 —129 —609|0| 2 |+ 15,1 0,1 4,1 XL [2:2
B4C)| 0 1 0 31 33|04 |— 154 | 0,4 44 | IEL |2:2
CIK)| 0 1 0 3 310l 2 |- 10,1 0,1 2,1 I, |2:2
c2L) | 0 10 —17 150 4 |+ 14,2 0,2 4,2 I, |2:1,3,4
C3(M)| 0 1 0 —97 -—385(0| 4 |+ 16,4 | 0,4 4,4 I, |2:2,5,6
CAN) | 0 1 0 —257 1503[0| 2 |+ 16,1 0,1 2,1 I, |2:2
C5(P) | 0 1 0—1537 —23713 (0| 2 |+ 17,2 0,2 4,2 I, |2:3
C6(0)| 0 1 0 63 —1377(0| 4 |— 17,8 0,8 4,8 Ils |2:3
DI(E) | 0-1 0 3 —3]0| 2 |- 10,1 0,1 2,1 I, |2:2
D2F) | 0-1 0 =17 —15|0| 4 |+ 14,2 0,2 4,2 I, |2:1,3,4
D3(H) | 0 -1 0 —257 —1503|0| 2 |+ 16,1 0,1 4,1 1, |2:2
D4(G)| 0 -1 0 —97  385/0| 4 |+ 16,4 | 0,4 4,2 1, |2:2,5,6
D5(J) | 0 -1 0—1537 23713|0| 4 |+ 17,2 0,2 4,2 IEl, |2:4
D6(I) | 0—-1 0 63 1377|0| 2 |— 17,8 0,8 2,2 g [2:4
194 N =194=2-97 (1 isogeny class) 194

[ A1/AY |

1 0nl o

[ o1 | o1

[ o 1



TABLE 1: ELLIPTIC CURVES 195A-200A 131

ai as as ay ag|7||T|| s ord(A) ord_(j)| ¢, | Kodaira | Isogenies
195 N =195=3-5-13 (4 isogeny classes) 195
A1A)[ 1 00  -110 4350] 4 [+ 4,11 [ 41,1 [4,1,1] LI, |2:2
A2B)[1 00 —115 39210 8 [+ 8,2,2 | 8,2,2 18,22 Isb,I, |2:1,3,4
A3(D)| 1 0 0 —520  —4225|0| 8 |+ 4,4,4 | 4,4,4 |4,4,4| I,LL |2:2,5,6
A4(C)| 1 0 0 210 227710] 4 |— 16,1,1 | 16,1,1 |16,1,1]| T6,1;,I; |2:2
A5(E)| 1 0 0 —8125 —282568|0| 4 |+ 2,8,2 | 2,8,2 |2,8,2| IpIg,Io [2:3,7,8
AG(F) | 1 00 605  —19750(0] 4 |- 2,2,8 | 2,2,8 |2.2,8 | To,los |2:3
A7TH)| 1 0 0-130000—18051943|0( 2 |+ 1,4,1 | 1,4,1 | 1,4,1 | I3,I4,I; |2:5
A8(G)| 1 0 0 —7930 —296725|0( 2 |— 1,16,1 |1,16,1 |{1,16,1| I;,I16,13 |2:5
B1I) | 0 11 0 —-1|0] 1 |- 1,1,1 | 1,1,1 |1, 1,1 | ;.10 |
CIK)| 0 11  —66 —-349(0| 1 |- 3,7,1 | 3,7,1 |3,1,1| I3IzI; |
D1(J) \ 0-11 =190 1101\0\ 1 |— 7,1,3 \ 7,1,3 |1,1,1\ 17,115 \
196 N =196 =22-72 (2 isogeny classes) 196
Al(A)] 0-1 0 9 1] 1 [+ 42 0,0 | 31 | VIl [3:2
A2B)| 0-1 0 —142 70101 1 |+ 42 | 00 | 1,1 | IVII |3:1
BI1(C)| 0 10 —114 12710 3 |+ 4,8 0,0 3,3 IV,IV* |3:2
B2(D)| 0 1 0 —6974 —226507|0| 1 [+ 4,8 0,0 1,3 Iv,iv: (3:1
197 N =197 =197 (1 isogeny class) 197
AL(A)] 0 01 —5 alif 1]+ 1 1 1 I,
198 N =198=2-32.11 (5 isogeny classes) 198
AID) [ 1-10  —18 alt] 2 [+ 471 | 41,1 [2.4,1 ] LIL [2:2
A2() [ 1-1 0 —198 1120(1) 4 |+ 2,8,2 | 2,2,2 |2,4,2 | L,I;L, [2:1,3,4
A3(L) | 1-1 0 —3168  69430(1] 2 |+ 1,7,1 | 1,1,1 [1,2,1| I,,I,I; [2:2
A4K)| 1-1 0 —108 2074(1] 2 |— 1,10,4 | 1,4,4 | 1,4,4 | T, T50 [2:2
BIE)| 1-1 1  -50 —11500| 2 [+ 2,9,1 | 2,3,1 [2.2,1] L,I5L |2:2:3:3
B2(F) | 1-1 1 40 —547(0] 2 |- 1,12,2 | 1,6,2 | 1,4,2 | T;.I5 0, |2:1;3:4
B3(G)| 1-1 1 =725 7661|101 6 |+ 6,7,3 | 6,1,3 |6,2,3 | I I5, I3 |2:4;3:1
B4H)| 1-1 1 —365 15005(0| 6 |— 3,8,6 | 3,2,6 |3,4,6 | I3,I5Ig |2:3;3:2
CiM)| 1-1 1 —65 209(0] 6 |+ 12,3,1 | 12,0,1 |12,2,1| I;5,1I1T; |2:2;3:3
Co(N) [ 1-1 1 —1025 12881(0| 6 |+ 6,3,2 | 6,0,2 [6,2,2 | T¢I, |2:1:3:4
C3(0)| 1-1 1 —785  —8207|0| 2 |+ 4,9,3 | 4,0,3 |4,2,1 | I,,IIT*I; |2:4;3: 1
C4P)| 1-1 1 —1325 496910] 2 |+ 2,9.6 | 2,0,6 |2,2,2 | To,IT1* I |2:3:3 : 2
DI(A)| 1-1 0  —87 333101 6 |+ 4,3,3 | 4,0,3 [2,2,3 ] I, IILI; [2:2:3:3
D2(B)| 1-1 0 —147 ~135/0] 6 |+ 2,3,6 | 2,0,6 |2,2,6 | Io,ITLI; [2:1:3:4
D3(C)| 1-1 0 —582 —5068(0| 2 |+ 12,9,1 |12,0,1 | 2,2,1 I3, III*I;|2:4;3:1
D4(D)| 1-1 0 —9222 —338572|0| 2 |+ 6,9,2 | 6,0,2 |2,2,2 | Ig,III*,I, |2:3;3: 2
E1(Q)] 1-1 0 —405  —2187[0] 2 |+10,11,1]10,5,1 [ 2,2,1 | T1o. It L1 [2:2;5:3
E2(R) | 1-1 0 1035 —15147/0| 2 |- 5,16,2 | 5,10,2 | 1,4,2 | I5,I1)Io |2:1;5:4
E3(S) | 1—1 0 —90585 10516473(0| 2 |+ 2,75 | 21,5 | 2,2,1 | L,I5I; [2:4;5:1
E4T) | 1-1 0 —90495 10538343|0| 2 |— 1,8,10 | 1,2,10 | 1,4,2 | I;,I5.Ti0 |2:3;5: 2

200 N =200=23-52 (5 isogeny classes) 200



132 TABLE 1: ELLIPTIC CURVES 200B-207A

ay as as ay ag | r | |T| | s ord(A) |ord_(j) | ¢p Kodaira | Isogenies
200 =200 =23-5% (continued) 200
B1(C)| 0 1 0 -3 —2(1| 2 |+ 4,3 0,0 | 2,2 | IILIOT |2:2
B2D)| 0 1 0 —28 48 (1] 2 |+ 8,3 0,0 | 4,2 | IXIIl |[2:1
CL(G)] 0 0 0 —50 125|0] 4 |+ 4,7 0,1 | 2,4 | IILIx |2:2
C2H)| 0 0 0 —175 —750|0| 4 |+ 8,8 0,2 | 4,4 I [2:1,3,4
C3(J) | 0 0 0—-2675 —53250 (0| 2 |+ 10,7 | 0,1 | 2,4 | HI*If [2:2
C4I) | 0 0 0 325 —4250(0| 2 |— 10,10 | 0,4 | 2,4 | HI*I% [2:2
DI(E)| 0-1 0 —83 —88[0| 2 |+ 4,9 0,0 | 2,2 | ILII* |2:2
D2(F)| 0 -1 0 —708 7412|0| 2 |+ 89 0,0 | 2,2 | Irir |2:1
El(A)‘ 0 00 5 —10\0\ 1 \— 11,2 \ 0,0 \ 1,1 \ I* 11 \
201 N =201=3-67 (3 isogeny classes) 201
Al [o-11 2 oft] 1 ]- 21 [ 2,1 |21 ] L |
Bl |1 00 -1 2011 |- 31 | 31 |31 | I3 |
C1 \ 1 1 0 —79% 8289‘1‘ 1 \— 5,1 \ 5,1 \ 1,1 \ I5.I; \
202 N =202=2-101 (1 isogeny class) 202
Al 1-1 0 4 176 (0| 1 |— 17,1 | 17,1 | 1,1 | L.
203 N =203=7-29 (3 isogeny classes) 203
Al 0-11 20 8|05 |- 5,1 51 | 5,1 I, [5:2
A2 0-1 1-2150 —37668 |0| 1 |— 1,5 1,5 | 1,1 I, |[5:1
Bl |1 11 0 =211 |- 21 | 2,1 | 21| LI |
C1 1 10 -9 glo] 2 |- 1,2 1,2 | 1,2 L, |[2:2
C2 1 10 —154  675|0| 2 |+ 2,1 2,1 | 2,1 L, |[2:1
204 N =204=2%.3-17 (2 isogeny classes) 204
Al [ 0-1 01621 —24623 |0 | 1 |- 811,1] 0,11,1 |3,1,1 [TV I;,]; |
B1 \ 0 10 =5 —9\0| 1 |— 8,1,1 | 0,1,1 |1,1,1|IV*,11,11|
205 N =205=5-41 (3 isogeny classes) 205
Al 1-1 1 —22 44 (1] 4 [+ 2,1 2,1 | 2,1 I, |[2:2
A2 1-1 1 —27 2 |1| 4 [+ 4,2 4,2 | 4,2 I, [2:1,3,4
A3 1-1 1 —232 —1286|1] 2 |+ 8,1 8,1 | 8,1 Is,;, [2:2
A4 1-1 1 98 126|1| 4 |— 24 2,4 | 2,4 LI, |2:2
B1 1 11 —21  —46|0| 2 |+ 21 2,1 | 2,1 L, |[2:2
B2 1 11 —16 —62]0|2 [— 4,2 4,2 | 2,2 I, |2:1
C1 1 10 =2 —1]o0| 2 [+ 21 2,1 | 2,1 L, |[2:2
C2 1 10 =27 410 2 |+ 1,2 1,2 | 1,2 LI, |2:1
206 N =206=2-103 (1 isogeny class) 206
Al 1 10 2 olo| 2 |- 21 2,1 | 2,1 I, |[2:2
A2 1 10 -8 —10]/0|2 [+ 1,2 1,2 | 1,2 L, |[2:1
207 N =207 =3%-23 (1 isogeny class) 207
(A1 T 1 1 1 E onl1l o1 _ <1 | o4 T 411 11 To.0 |



133

TABLE 1: ELLIPTIC CURVES 208A-210D

Isogenies

Kodaira

Cp

ord_(j)

ag|r||T||s ord(A)
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134 TABLE 1: ELLIPTIC CURVES 210E-219C

ai asas ay ag|T||T|| s ord(A) |ord_(j) Cp Kodaira |Isogenies
210 N=210=2-3-5-7 (continued) 210
El|1 00 210 900(0| 8 |—16,4,2,1[16,4,2,1|16,4,2,1|T16,14,I5,1;|2 : 2
E2|1 00 —1070 7812(0|16 |+ 8,8,4,2 [ 8,8,4,2 | 8,8,4,2 | Ig,Ig,Iy,I5 [2: 1,3,4
E3| 1 00 —7550  —247500(0| 8 |+ 4,4,8,4 | 4,4,8,4 | 4,4,8,2 |I4,I4,Ig,14 |2:2,5,6
E41 00 —15070 710612(0| 8 |+4,16,2,1(4,16,2,1]4,16,2,1|14,116,I2,1; |2 : 2
E5| 1 0 0 —120050 —16020000(0| 4 |+ 2,2,4,8 [2,2,4,8 (2,2,4,2 |I,I5,I,I5 |2:3,7,8
E6| 1 00 1270  —789048(0| 4 [—2,2,16,2(2,2,16,2(2,2,16,2|I2,I2,I16,I2(2 : 3
E7| 1 0 0-1920800—1024800150(0| 2 [+ 1,1,2,4 [1,1,2,4 [1,1,2,2 |T;,[;,I5,I; [2: 5
ES| 1 00 —119300 —16229850(0| 2 [—1,1,2,16(1,1,2,16|1,1,2,2 |I;,I;,I2,l16[2 : 5
212 N =212=22.53 (2 isogeny classes) 212
A1} 0-1 0 —4 slif1]|- 81 | o1 | 31 | v |
B1| 0—1 0 —12 —40l0| 2 |- 8,2 0,2 3, V*I, [2:2
B2/ 0—1 0 —17 —22(0| 2 [+ 4,1 0,1 3,1 v, [2:1
213 N =213=3-71 (1 isogeny class) 213
All1 01 0 10 2 |- 2,1 2,1 2,1 LI, [2:2
A2l 1 01 —15 1910 2 |+ 1,2 1,2 1,2 LI, [2:1
214 N =214=2-107 (4 isogeny classes) 214
All1 00  —12 61— 71 | 7,1 | 71 | L |
Bl 1 01 1 o 1]- 11 | 11 | L1 | I |
Cif1 01  —193 10121 1 |- 10,1 | 10,1 | 2,1 | LioJy |
DIl 1 00 2 4o 3 |- 6,1 6,1 6,1 eI, [3:2
D2| 1 00 —18 ~112/0/ 1 |- 2,3 2,3 2,1 L |[3:1
215 N =215=5-43 (1 isogeny class) 215
A1l 0 01 -8 —12|1) 1 [— 4,1 4,1 2,1 I,
216 N =216 =2%-3% (4 isogeny classes) 216
Allo 00  —12 2001 1]- 85 | 00 | 43 | ;v |
B1| 0 00 -3 -34/0/ 1 |- 11,5 | 0,0 | 1,1 | II*IV |
C1[0 00 —27 918/0] 1 |- 11,11 | 0,0 | 1,1 | II*JI* |
Dl‘ 0 00 —108 —540\0] 1 \— 8,11 \ 0,0 ] 2,1 \ I; 1T 1
218 N =218=2-109 (1 isogeny class) 218
All1 00 —2 413 |- 6,1 6,1 6,1 sl |3:2
A2|1 00 18 ~104/1 1 |- 2,3 2,3 2,3 LI |[3:1
219 N =219=3-73 (3 isogeny classes) 219
A1l 0-1 1 —6 sif1]- 1,1 | L1 [ 1,1 | nn |
Bll 0 11 3 2[1] 3 |- 3,1 3,1 3,1 LI, [3:2
B2/ 0 11 —27 —85/1| 1 |- 1,3 1,3 1,3 LI; |3:1

—an=l1l o | L




TABLE 1: ELLIPTIC CURVES 220A—-225D 135
ay as ag ay ag |7 ||T]| s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
220 N =220=2%-5-11 (2 isogeny classes) 220
A1 0 1 0 —45 100(1] 6 |+ 43,2 | 0,3,2 [3,3,2| IV,I3,]s |2:2;3:3
A2/ 0 10  —100 952 |1| 6 |+ 86,1 | 0,6,1 [3,6,1|IV*Is]; |2:1:3:4
A3 0 1 0 —445  —3720|1| 2 |+ 4,1,6 | 0,1,6 |1,1,2| IV.I I |2:4;3:1
A4l 0 1 0 —7100 —232652|1| 2 |+ 8,2,3 | 0,2,3 |[1,2,1|[TV*Io,015[2:3;3:2
Bl| 0-1 0 -5 2101 2 |+ 4,1,2 | 0,1,2 |1,1,2| IV.I, I, | 2:2
B2 0-1 0  —60 20010] 2 |+ 82,1 | 0,2,1 |1,2,1[IV*IpI;|2:1
221 N =221=13-17 (2 isogeny classes) 221
A1l 1-1 1 —733 7804 (0] 2 |+ 6,1 6,1 | 21 | 15L [2:2
A2 1 -1 1 —11718  491144|0] 2 |+ 3,2 32 | 1,2 | Il |2:1
Bi|1 10  —59 152]0] 2 |+ 2,1 2.1 | 2,1 | I, |2:2
B2 1 1 0  —54 185/0] 2 |~ 4,2 42 | 22 | Ll |2:1
222 N =222=2-3-37 (5 isogeny classes) 222
ALl 1 0 0 2 —4]o0] 3 3,3,1 | 3,3,1 3,31] I35, |3:2
A2/ 1 0 0  —148 —706 |0 1 1,1,3 | 1,1,3 |1,1,3] I,,I,,I; |3:1
Bl| 1 11 17 1790 1 |- 1,11,1 | 1,11,1 | 1,1,1 | Iy,Ii1, Iy
Ci| 1 1 0 16 0lo] 2 |- 83,1 83,1 [2,1,1] Igls; |2:2
c211 10 —64 —8010| 4 |+ 4,6,2 | 4,6,2 [2,2,2] Iylel2 [2:1,3,4
C3| 1 1 0 -804  —9108|0| 2 |4+ 2,12,1| 2,12,1 2,2,1 | Io,I1o,1; | 2:2
C4| 1 1 0 —604 5428 10| 4 |+ 2,3,4 | 2,3,4 [2,1,4] I,I3ly |2:2
D1| 1 01 1 —46 0] 1 |- 13,1,1]13,1,1 |1,1,1| I15,I1,;
El‘ 1 1 0-182317 29887645‘0‘ 1 \— 23,9,1 \ 23,9,1 \1,1,1 1 23,1915
224 N =224=2%.7 (2 isogeny classes) 224
All o 10 2 ol1] 2 |- 6,1 0,1 | 2,1 ] 1, [2:2
A2/ 0 10 -8 —8|1] 2 [+ 9,2 0,2 | 22| L |2:1
Bl| 0-1 0 P olol 2 |- 6,1 0,1 | 2,1 | T, |2:2
B2 0-1 0 8 glol 2 |+ 9,2 0,2 | L2 | L |2:1
225 N =225=3%.52 (5 isogeny classes) 225
ALl o o1 0 111 ]= 3.2 0,0 | 2,1 ] 1L [3:2
A2/ 0 0 1 0 34|11 |— 9,2 0,0 | 21 | a1 [3:1
B1| 0 01 0 156 (0 3 |— 3,8 0,0 2,3 | IILIV* |3:2
B2/ 0 0 1 0 —4219|0| 1 |- 9.8 0,0 | 2,1 |1 1v* |3:1
Cl| 1-1 1 —5 6280 4 |- 7.7 | 1,1 | 44| I |2:2
c2;)1-1 1 -—-1130 —14128|0| 4 |+ 8&,8 2,2 4,4 15,15 2:1,3,4
C3| 1-1 1 —18005 —925378|0| 2 [+ 7.7 | 1,1 | 24 | DI} [2:2
C4| 1-1 1 —2255  19622|0| 4 |+ 10,10 | 4,4 | 4,4 | I:I% |2:2,56
Csh| 1 -1 1 —30380 2044622 |0 4 |+ 14,8 8,2 4,4 I, 15 2:4,7,8
C6| 1-1 1 7870 141122]0| 2 |— 8,14 | 2,8 | 2,4 | LI |2:4
C7| 1 -1 1 —486005 130530872 0| 2 |+ 10,7 4,1 2,2 ;.13 2:5
C8| 1 -1 1 —24755 2820872 (0| 2 |— 22,7 16,1 4,2 el |2:5

JU
N



136 TABLE 1: ELLIPTIC CURVES 225E-234E

ay as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, | Kodaira |Isogenies
225 N =225=132.52 (continued) 225
El] 0 01 —75 256 1] 1 [— 7,4 1,0 | 43 [ 1;Iv [5:2
E2| 0 0 1 375 —12344|1] 1 |— 11,8 | 50 | 4,3 | EIV* |5:1
226 N =226=2-113 (1 isogeny class) 226
Al 00 5 1] 2 [+ 6,1 6,1 | 6,1 | Igl, |2:2
A2 1 00  —45 11901 2 |+ 3,2 3,2 | 3,2 | I, |2:1
228 N =228=22.3-19 (2 isogeny classes) 228
Al] 0-1 0 3 18lo] 21— 4320032 [1,1,2] VL [2:2
A2 0-1 0  —92 360(0] 2 |+ 861 | 0,6,1 | 1,2,1 |[IV*Is0|2:1
Bl‘ 0-1 0 3 9\1\ 1 \— 8,2,1 \ 0,2,1 \3,2,1 ‘IV*,IQ,Il‘
229 N =229 =229 (1 isogeny class) 229
Al 1 00 —2 1711 [+ 1 1 1 I
231 N=231=3-7-11 (1 isogeny class) 231
Al]1 11 —34 62[0] 4 |+ 1,21 | 1,21 | 1,21 LL,I,T; |2:2
A2 1 11 -39 3610 8 |+ 2,42 | 24,2 | 24,2 | Iyl |2:1,3,4
A3 1 11 —284  —1924|0| 4 |+ 4,2,4 | 42,4 |2,2,2 | LI, |2:2,56
A4l 1 11 126 43200] 4 |— 1,81 | 1,8,1 | 1,81 | I;,Is,; |2:2
A5| 1 1 1 —4519 —118810(0] 2 |+ 81,2 | 81,2 | 21,2 | Ig,.I |2:3
A6 1 1 1 31 —-5578 (0| 2 |— 2,1,8 | 2,1,8 | 2,1,2 | Ip,I;,Ig |2:3
232 N =1232=23.29 (2 isogeny classes) 232
Al] 0-1 0 8 —41]1]- 101 | 01 | 21 | L |
Bl‘ 0 1 —80 —304]0] 1 \— 10,1 \ 0,1 \ 2,1 | II* I, \
233 N =233 =233 (1 isogeny class) 233
A1 1 0 1 0 110 — 2 2 2 I 2:2
A2l 1 01 _5 30| 2 [+ 1 1 1 I, |2:1
234 N =234=2-32.13 (5 isogeny classes) 234
Al 1-1 0 —24 —64l0] 1 |- 76,1 | 7,01 [1,1,1 | LT, |7:2
A2l 1-1 0 —1914 35846 0| 1 |- 1,6,7 | 1,0,7 | L,1,1 | I,I5I, |7:1
Bl| 1-1 1  —29 “107]0] 2 [ = 4,91 | 40,1 | 4,21 |T,I0*1]2:2
B2| 1-1 1 —569  —5075|0] 2 |+ 2,9,2 | 2,0,2 | 2,2,2 [Io,II1*I, |2: 1
Cl| 1-1 0 -3 50112 = 4,31 | 40,1 221 | ILL [2:2
2/ 1-1 0  —63 209[1] 2 |+ 23,2 | 20,2 |2,2,2 | I,,ITLI, |2:1
DI| 1-1 1 —176 —18669|0| 4 |- 16,11,1| 16,5,1 |16,4,1 | I,I.I; |2:2
D2| 1-1 1 —11696 —479469|0| 4 |+ 8,16,2 | 8,10,2 | 8,4,2 | Ig,I3p.Io |2:1,3,4
D3| 1 -1 1-186656 —30992493 0| 2 |+ 4,11,4 | 4,5,4 | 4,2,4 | 14,514 [2:2
D4| 1 -1 1 —21056  404115|0| 2 |+ 4,26,1 | 4,20,1 | 4,4,1 | Ij,Ii.I; [2:2
El] 1-1 1 4 —7l0| 1 ]- 1,6,1 | 1,0,1 | 1,1,1 | I;,IzT; |3:2
Ml 1 1 1 A1 snalnl 21 a9eca9a | an2 | 2192 T.1*7. |2.1 2




TABLE 1: ELLIPTIC CURVES 235A-240C 137
ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, |Kodaira| Isogenies
235 N =235=05-47 (3 isogeny classes) 235

Al 1 11 -5 oft] 1|+ 31 | 31 | 31 | LL

Bl1| 1 1 1 -3551 —82926/0| 1 [+ 9,1 | 9,1 | 1,1 Io,I;

01\ 0-1 1 4 1\0| 1 \— 3,1 \ 3,1 \ 1,1 Is.I;

236 N =236 =2%2-59 (2 isogeny classes) 236
Al 0-1 0 -1 201 1]- 41 | o1 | 31 | v

Bi{ 0 10 -9 8101 3 |— 4,1 0,1 3,1 Iv,l; [3:

B2 0 10 31 68(0| 1 |— 4,3 0,3 1,1 IV, [3:1

238 N =238=2-7-17 (5 isogeny classes) 238
Al 1 00 —60 16]1] 2 [+ 14,2,1 [ 14,2,1 [14,2,1 14,111 | 2: 2

A2 1 00 —700 7056(1| 2 |+ 7,42 | 7,42 | 7,42 | ;00 |2:1

Bl| 1-1 0 P olt] 2= 21,1 | 21,1 | 2,1,1 | I,0,.,I; |2:2

B2 1-10 -8 611 2 |+ 1,22 | 1,2,2 | 1,2,2 | I, |2:1

Cil| 1-11 —19 3500 4 |+ 4,21 | 42,1 |4,2,1 | Il [2:2

c2l 1-1 1 -39 —37|0| 4 |+ 2,42 | 24,2 | 2,4,2 | I,1,0, |2:1,3,4

C3| 1-1 1 =529 —4545|0] 2 |+ 1,2,4 | 1,2,4 [ 1,2,4 | T,,Io,1, |2:2

cal 1-1 1 131  —377|o| 2 |- 1,81 | 1,81 | 1,81 | I;,Ig,l; |2:2

DI| 1 11 —18  =37]0] 2 |+ 2,21 | 22,1 [2,2,1 | L,IL,I; |2:2

D2] 1 11 —28 500] 2 |+ 1,42 | 1,4,2 [ 1,2,2 | 1,10 |2:1

El| 1 1 0 32 0[o] 2 1= 10,1,2 | 10,1,2 | 21,2 | Tio.1,I2 | 2 : 2

B2l 1 10 —128 —160|0| 2 |+ 5,2,4 | 5,24 | 1,2,2 | Is,Ib,I, |2:1

240 N =240=2%*-3.5 (4 isogeny classes) 240
Atlo-10 —15  —18]ol 2 [+ 42,1 [ 0,21 [ 1,21 | ILI,I; [2:2

A2/ 0-1 0 —20 00| 4 |+ 84,2 | 0,42 |222|5LL [2:1,34

A3 0—-1 0 —200 1152|0| 8 |+ 10,2,4 | 0,2,4 | 4,2,4 | I5]I5,I4 |2:2,5,6

A4l 0-1 0 80  —80(0| 2 |- 10,8,1| 0,81 |2,2,1 | 5IsL; |2:2

A5 0-1 0 —3200 70752|0| 4 |+ 11,1,2 | 0,1,2 | 4,1,2 | I5.L,,I, |2:3

A6 0-1 0 —80  2400|0| 4 |- 11,1,8 | 0,1,8 | 2,1,8 | I5.I,,Is |2:3

Bl| 0-1 0 24 —144]0| 2 |- 16,3,1 | 43,1 | 41,1 | I5I3L [2:2:3:3
B2| 0-1 0 -296 —1680|0| 4 |+ 14,6,2 | 2,6,2 | 4,2,2 | I} IsI, |2:1,4,5:3:6
B3| 0-1 0 —216  4080|0| 2 |— 24,1,3 | 12,1,3 | 4,1,1 |I5L.I5 [2:6:3: 1
B4| 0 -1 0 —4616 —119184 (0| 2 |+ 13,3,4 | 1,3,4 | 4,1,2 | I5I304 |2:2;3:7
B5| 0-1 0 —1096 12400|0| 2 |+ 13,12,1]1,12,1 | 2,2,1 |If,Ip]; |2:2;3:8
B6| 0-1 0 —5336 151536|0| 4 |+ 18,2,6 | 6,2,6 | 4,2,2 |If,I.Is |2:3,7,8:3:2
B7| 0-1 0 —7256 34800|0| 2 |+ 15,1,12] 3,1,12 | 4,1,2 |I5L;.I;» |2:6;3 : 4
B8| 0 -1 0—-85336 9623536 (0| 2 |+ 15,4,3 | 3,4,3 | 2,2,1 | I7,I4I3 |2:6;3:5
Cl] 0-1 0 4 o1l 2 |- 81,1 ] 01,1 | 21,1 ]Iz, |2:2

c2| 0-1 0 —16 161 4 |+ 10,2,2] 0,2,2 | 4,2,2 | LI, [2:1,3,4

2l n .1 n 12 _eenl1il ol 11140l n1 4 o1l 1.7 |o.9




138 TABLE 1: ELLIPTIC CURVES 240D—-246G

ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, | Kodaira |Isogenies
240 N =240=2%-3-5 (continued) 240
DI 0 1 0 0 —1200] 2 [—12,1,1 ] 0,1,1 [4,1,1 | LG [2:2
D2 0 1 0  —80 —300(0| 4 |+ 12,2,2 ] 0,2,2 |4,2,2 | I [2:1,3,4
D30 1 0 —1280  —18060|0| 2 |+ 12,1,1 | 0,1,1 |2,1,1 | ItI,.I, |2:2
D4 0 1 O —160 30810 8 |+ 12,4,4 | 0,4,4 | 4,44 | I}, 14,1, [2:2,5,6
D50 1 0 —2160 37908 (0| 8 |+ 12,8,2 | 0,8,2 | 4,8,2 | I},Is, I [2:4,7,8
D6 0 1 0 560 20000 4 |- 12,2,8 | 0,2,8 | 2,2,8 | IiLIs |2:4
D7| 0 1 0 —34560 2461428 0| 4 |+ 12,4,1 | 0,4,1 | 4,4,1 | I1 1L |2:5
D8 0 1 0 —1760 027880 4 |—12,16,1| 0,16,1 |2,16,1 | I},I16,I; |2:5
242 N =242=2-11% (2 isogeny classes) 242
A1l 1 00 3 1] 1 [= 4,2 40 | 41 | 1,00 [3:2
A2 1 0O —52 14411| 1 12,2 12,0 12,1 Tio,JI [3:1
Bl| 1 01 360 —970[0] 3 |- 4,8 40 | 2,3 | 1L,IV* [3:2
B2| 1 0 1 —6295 —197958(0| 1 |— 12,8 | 12,0 | 2,1 | Lio,IV* |3:1
243 N =243 = 3% (2 isogeny classes) 243
A1 0 0 1 0 111 |- 5) 0 1 II 3:2
A2 0 01 0 2001 3 |— 11 0 3 v= 3:1
Bl 0 01 0 2100 3 |— 7 0 3 v 3:2
B2 0 01 0 —61(0] 1 |— 13 0 1 I 3:1
244 N =244 =22.61 (1 isogeny class) 244
ALl 0 00 1 6l1] 1= 8,1 0,1 | 31 | ve],
245 N =245=5-72 (3 isogeny classes) 245
Al[ 0 01 —7 1211 1]- 3,3 | 3,0 | 3,2 | LI |
Bl| 0 01 —343 —4202[0] 1 |— 3,9 | 3,0 | 1,2 | IgII* |
Cl| 0-1 1 —65 -20411] 1 |- 1,7 1,1 1,4 L,I7 |3:2
c2l 0-1 1 425 433111 |— 3,9 3,3 | 3,4 | LI |3:1,3
C3| 0-1 1 —6435 210006 (1] 1 [—= 9,7 9,1 | 94 | LI [3:2
246 N =246=2-3-41 (7 isogeny classes) 246
Al 1 11 =270 —1821]0] 1 [= 3,7,1 | 3,7,1 [3,1,1 | Is,I..1, |
Bl| 1 00 —175  —27847]0| 5 |— 25,5,1 | 25,5,1 |25,5,1] Tos,I5,I; |5 : 2
B2| 1 0 0-579535 —169860007 (0] 1 5,1,5 | 5,1,56 | 5,1,5 | Is,I;,I5 |5:1
Cl| 1 0 1-453897 —117739700[0| 2 |4 14,12,1]14,12,1[2,12,1 |Tya 12,1 |2 : 2
C2| 1 0 1-—453257 —118088116 0| 2 |— 7,24,2 | 7,24,2 |1,24,2 | I7,I54,15 [2:1
DI 1 10  —66 180[1] 2 |+ 6,4,1 | 6,4,1 |2,2,1 | TgII |2:2
D21 10 -2 444 (1] 2 |— 3,82 | 3,82 [1,2,2 | Islgls |2:1
El| 1 0 0 9 9lo] 4 |+ 42,1 | 42,1 | 421 | LI, |2:2
E201 00  —29 5100] 4 |+ 2,42 | 2,42 | 2,42 | Il |2:1,3,4
E3[ 1 00 —439 357710 2 |+ 1,81 | 1,81 | 1,8,1 | I;,Ig,l; |2:2
E4| 1 0 0 61 “985(0] 2 |— 1,2,4 | 1,2,4 | 1,2,4 | T,,Ib,I, |2:2
F1| 1 0 1 9 210 3 = 1,3,1 | 1,3,1 | 1,3,1 | I,,Is,I; |3:2
201 01 13 58]0 1 |- 3,1,3 | 3,1,3 | 1,1,1 | Is.1,,I5 |3:1




TABLE 1: ELLIPTIC CURVES 248A-258C 139
ai as ag ay ag | r | |T|| s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies

248 N =248 =23-31 (3 isogeny classes) 248
ALl 0 10 0 111 ]- 41 | o1 |21 | mn |
BI| 0 1 0 8 olo[ 2= 10,1 | 01 | 21 | 111, |2:2
B2l 0 1 0 —32 3210 2 |+ 11,2 | 0,2 | 1,2 | II*L, |2:1
C1| 0 00 1 —1‘1| 1 |— 4,1 | 0,1 | 2,1 | 1,1, |
249 N =249 =3-83 (2 isogeny classes) 249
Al 11 —55 13411 |- 3,1 | 31 | 1,1 ] L |
Bl‘ 1 10 2 1\1\ 1 \— 1,1 \ 1,1 1 1,1 \ I,.,I; \
252 N =252=22.32.7 (2 isogeny classes) 252
Al o 0o 60 6110 2 [— 4,92 0,32 [1,22] IVI;L [2:23:3
A2 0 0 0 —255 502 |10 2 |+ §8,12,1| 0,6,1 |1,4,1 IV*IgI(2:1;3:4
A3] 0 0 0 —1020 12913|0| 6 |— 4,7,6 | 0,1,6 [3,2,6| IVI5,Is [2:4:3:1
A4l 0 0 0—16455 812446 |0| 6 |+ 8,83 | 0,2,3 [3,4,3[IV* 1315 |2:3;3:2
BI| 0o 00 —12 651 2 |- 47,21 0,1,2 |3,4,2] IVIIL [2:2
B2 0 0 0 =327 2270 |1 2 |+ 8§81 | 0,2,1 |3,41|IV* I |2:1
254 N =254=2-127 (4 isogeny classes) 254
Al 1 00 —22 36/1] 3 [+ 91 9.1 | 91 | IoL, |3:2
A2 1 0 0 —302 -2036 |1 3 |+ 3,3 3,3 3,3 | EW B 3:1,3
A3 1 0 0 —24432 —1471934 1| 1 |+ 1,1 L1 | 1,1 | 1., [3:2
Bl 1 0 0 P olol 2 [— 21 21 | 2,1 | Ly, |2:2
B2 1 00 -8 —210| 2 |+ 1,2 L2 | 1,2 | 1L |2:1
Cl| 1-10 -5 =311 |+ 31 | 31 | 1,1 | I3k |
DI| 1-1 1 —19 5100 4 [— 12,1 | 12,1 [12,1 | Il [2:2
D2 1-1 1 —339 2483 (0| 4 |+ 6,2 6,2 | 6,2 | Igl, |2:1,3,4
D3| 1-1 1 —379 1891 (0| 2 |+ 3,4 3.4 | 32| I |2:2
D4| 1 -1 1 —5419 154883 (0| 2 |+ 3,1 31 | 3,1 | I |2:2
256 N =256 =2% (4 isogeny classes) 256
A1} 0 1 0 -3 1412 |4+ 9 0 2 111 2:2
A2 0 1 0 -13 =211 2 |+ 15 0 2 Ir- 2:1
B1| 0 0 O -2 0|1 2 |+ 9 0 2 111 2:2
B2 0 0 O 8 01} 2 |— 15 0 2 Ir- 2:1
Ci] 0 00 2 0j0 2 (- 9 0 2 111 2:2
C2]1 0 00 -8 010 2 |+ 15 0 2 Ir- 2:1
Di| 0-1 0 -3 -110| 2 |+ 9 0 2 111 2:2
D2 0-1 0 -13 21101 2 |+ 15 0 2 Ir- 2:1
258 N =258 =2-3-43 (7 isogeny classes) 258
ALl 1 10 3 3[1] 1= 61,1 61,1 [2,1,1] L1 |
Bl| 1 1 0 —1916 314400 2 |+ 14,7,1 | 14,7,1 [ 2,1,1 | Iio,I5,1; | 2:2
B2| 1 1 0 —1276  53584|0| 2 |— 7.14,2 | 7,14,2 [1,2,2 | I..1u0s | 2:1




140 TABLE 1: ELLIPTIC CURVES 258D-267B

ai az as ay ag |7 | |T| | s ord(A) [ord_(j) | ¢ Kodaira | Isogenies
258 N =258 =2-3-43 (continued) 258
DI| 1 11 —24 “39f0] 4 [+ 12,1,1 [12,1,1 [12,1,1 | oL, [ 2:2
D2/ 1 1 1 —344 —2599(0| 4 |+ 6,2,2 | 6,22 6,22 | Igll |2:1,3,4
D3| 1 1 1 —5504 —159463|0| 2 |+ 3,1,1 | 3,1,1 [ 31,1 | I3, |2:2
D4l 1 1 1 —304 —3175|0| 2 |— 3,44 | 3,44 | 3,22 | Il [2:2
E1| 1 1 1-44124 3549153 |0] 1 |— 2,19,1 | 2,19,1 | 2,1,1 | Iy,Lip.y |
F1| 1 00 159 173710 7 | — 14,7,1 | 14,7,1 [14,7,1 | TiuIs,0; |72
F2| 1 0 0-59901 —5648523 (0| 1 |— 21,7 | 21,7 | 21,7 | Iy, |7:1
Gi| 1 00 -2 olol 2 |+ 2,1,1 | 21,1 | 2,1,1 | I0,,I; |2:2
G2l 1 0 0 8 210l 2 |- 1,2,2 | 1,2,2 | 1,2,2 | I, Iy |2:1
259 N =259=17-37 (1 isogeny class) 259
Al 1-10 -5 3200l 2 |- 3,2 3,2 32 | I, [2:2
A2 1-1 0 —190  —957|0]| 2 6,1 6,1 | 61 | Igl, |2:1
260 N =260=2%-5-13 (1 isogeny class) 260
ALl 0-1 0 —281 v10]o] 2 [+ 41,2 | o,1,2 [ 1,12 VI [2:2
A2 0-1 0 —276 1976 (0] 2 | — 8,2,4 | 0,2,4 | 1,2,2 |[IV* 1,1, |2:1
262 N =262=2-131 (2 isogeny classes) 262
Al[ 1 00 1 2501 1 |- 1,1 [ 1,1 | Lt | 1L |
Bl‘ 1-10 -2 2[1\ 1 \— 1,1 | 1,1 ] 1,1 \ I,.I \
264 N =264=23%-3-11 (4 isogeny classes) 264
ALl 0 10 -8 olo] 2 [+ 10,1,1 ] 0,1,1 |2,1,1 |1Ir* 1,1, [ 2:2
A2 0 1 0 32 32100 2 | = 11,2,2 | 0,2,2 | 1,2,2 | I* 1,1, |2:1
Bl 0-1 0 —-12 —1200] 2 |+ 81,1 | 0,1,1 |21,1 | LT |2:2
B2 0-1 0 —32 6010| 4 |+ 10,2,2 | 0,2,2 | 2,2,2 |1II*Io,Io | 2:1,3,4
B3| 0-1 0 —472 4108 0] 2 |+ 11,41 | 0,41 | 1,2,1 | %00, |2:2
B4| 0 -1 0 88 3000 2 | — 11,1,4 | 0,1,4 | 1,1,4 | TI*1;,I, |2:2
ci| o 10 1 610 4 |— 4,41 | 0,41 | 2,41 | LII |2:2
c20 0 10 —44 96 (0] 4 [+ 822 | 0,2,2 | 22,2 | It LI, |2:1,3,4
c3| 0 1 0 -—104 —288|0| 2 |+ 10,1,4 | 0,1,4 | 2,1,2 |III" 03,14 |2:2
c4l 0 1 0 —704 6960 (0| 2 |+ 10,1,1 | 0,1,1 | 2,1,1 |TITI51,,01, |2:2
DI 0 1 0 —8016 —278928|0] 2 |+ 10,7,1 | 0,7,1 | 2,7,1 |TII*I,,1, | 2: 2
D2| 0 1 0 —7976 —281808|0| 2 | — 11,14,2| 0,14,2 |[1,14,2 |TT1*T14,Io | 2: 1
265 N =265=5-53 (1 isogeny class) 265
Al] 1-1 1 —138 656 2 |+ 3,1 3,1 1,1 LI, |2:2
A2 1-1 1 —133 702 2 |- 6,2 6,2 2,2 | Iegly |2:1
267 N =267=3-89 (2 isogeny classes) 267
Allo 11 -3 2lo] 3 [= 3,1 3,1 3.1 | I, [3:2
A2 0 1 1 27 =370 1 |— 1,3 1,3 1,1 I, .13 3:1




TABLE 1: ELLIPTIC CURVES 268A—275A 141

aiy as as ay ag | r | |T| | s ord(A) |ord_(j) | ¢ Kodaira | Isogenies
268 N =268 =22.67 (1 isogeny class) 268
A1l 0-1 0 3 7lo] 1 [= 81 0,1 L1 | Ive L
269 N =269 =269 (1 isogeny class) 269
A1 0 0 1 —2 —1 1 |+ 1 1 1 I
270 N =270=2-3%-5 (4 isogeny classes) 270
Al 1-1 0 —15 3500/ 3= 1,91 ] 1,01 [ 1,31 1,,IV5L, |3:2
A2 1-1 0 120 —424|0| 1 |- 3,11,3| 3,0,3 | 1,1,1 | I;,0*I5 |3:1
Bl| 1 -1 1 7 -103]|0| 3 | = 15,3,1] 15,0,1 |15,1,1] T;5,ILI, | 3:2
B2| 1 -1 1-1433 —20519|0| 1 |— 5,93 | 50,3 | 5,1,1 | Is,IV*I3 |3:1
Cl| 1-1 1 =2 “1]o] 1 |- 1,3,1 ] 1,0,1 | 1,1,1 ] L,ILL, |3:2
2 1-1 1 13 11]0] 3 |- 3,53 | 3,03 | 31,3 ,IVI [3:1
DI| 1-1 0 —159 813101 3 | = 53,3 | 50,3 | 1,1,3 | I;ILI; |3:2
D2 1-1 0 66 2708|0| 1 |— 15,9,1| 15,0,1 | 1,1,1 | I;5,IV*,1; | 3:1
272 N =272=2%.17 (4 isogeny classes) 272
Atlo 10 -8 al1] 2 [+ 101 ] o1 4,1 L |2:2
A2 0 1 0 —48 —140|1| 2 |+ 11,2 | 0,2 2,2 Ll |2:1
B1] 0 0 0 -11 -6 |1 2 |+ 12,1 0,1 4,1 ;L 2:2
B2 0 00 -91 33011 4 |+ 122 | 0,2 | 42 Il |2:1,3,4
B3| 0 0 0—1451 21274 [1| 4 |+ 12,1 | 0,1 4,1 L |2:2
B4l 0 0 0 —11 890 1| 4 |— 12,4 | 0,4 2,4 L |2:2
Cl| 0-1 0 —4 0j]0 2 |+ 8,1 0,1 2,1 I5,1 2:2
c2l 0-10 16 —16|0]| 2 |- 10,2 | 0,2 2,2 L |2:1
D1 0-1 0 —48 —64 (0| 2 |+ 18,1 6,1 4,1 I B} 2:2;3:3
D2| 0-1 0 —688 —6720|0] 2 |+ 15,2 | 3,2 | 4,2 L |2:1;3:4
D3| 0 -1 01648 26304|0| 2 |+ 14,3 | 2,3 | 4,1 I, | 2:43:1
D4| 0 -1 01808 21056 |0| 2 |+ 13,6 | 1,6 | 4,2 s |2:3:3:2
273 N =273=3-7-13 (2 isogeny classes) 273
Al| 0 -1 —26 631 1 |- 4,31 ] 431|231 Lk
Bl| 0 1 1 2540 -157433|0| 1 |- 87,3 | 873 | 811 | Iglr]s
274 N =274=2-137 (3 isogeny classes) 274
A1 00 -7 olt]1]- 71 | 71 [ 7,1 | 1L
Bl| 1-1 0-2846 59156 |1] 1 |— 11,1 | 11,1 | 1,1 | IyL
Cl| 1-10 —2 o1 2 |+ 21 2,1 2,1 I, 14 2:2
2] 1-1 0 8 6l1] 2 |- 1,2 1,2 1,2 LI, |2:1
275 N =275=5%-11 (2 isogeny classes) 275
ALl 11 20 2]1] 4 - 7,1 1,1 4,1 I |2:2
A2 1-1 1 —105 272 (1] 4 |+ 8,2 2,2 4,2 I, |2:1,3,4
A2l 1 1 1 _7an 79 l1l o | L = 4 11 19 T* T, 9.9




142 TABLE 1: ELLIPTIC CURVES 275B-286F

ai as as ay ag |7 ||T|| s ord(A) |ord_(j) | ¢, |Kodaira |Isogenies
275 N =275=52-11 (continued) 275
Bl| 0 1 1 -8 19/0] 1 |- 6,1 0,1 1,1 | I5L |5:2
B2| 0 1 1 —258 —20981|0| 1 |— 6,5 0,5 1,5 | I¥I; |5:1,3
B3| 0 1 1-195508 —33338481(0| 1 |— 6,1 0,1 1,1 | L [5:2
277 N =277 =277 (1 isogeny class) 277
Al| 1 01 0 —1(1|1 |- 1 1 1 I,
278 N =278 =2-139 (2 isogeny classes) 278
Al 1 00 -1 ol1] 1 |- 81 | 81 | 81 | LI |
Bl| 1 01 —537 6908 |0 3 |— 12,3 | 12,3 | 2,3 | Iipls [3:2,3
B2| 1 0 1 4328 —100122|0| 1 |— 36,1 | 36,1 | 2,1 | Isely [3:1
B3| 1 01 —602 5628 (0] 3 |— 4,1 4,1 2,1 | Iyl [3:1
280 N =280=2%-5-7 (2 isogeny classes) 280
Al 0-1 0 -1 sl 1= 81,1 01,1 [ 41,1 | LT |
Bl| 0 0 0 —412 3316 1| 1 |- 8,53 ] 0,53 | 4,53 |11 |
282 N =282=2-3-47 (2 isogeny classes) 282
Al| 1 11 58 —61(0] 4 |- 12,4,1 | 12,4,1 [12,2,1 | I15,1,,1; | 2:2
A2 1 11 —262 —82910| 4 |+ 6,8,2 | 6,82 |6,2,2 | Igls]y [2:1,3,4
A3 1 1 1 —3502 —81181|0| 2 |+ 3,4,4 | 3,44 | 3,2,2 | I31I; |2:2
A1 1 1 —2142 36771 (0| 2 |+ 3,16,1( 3,16,1 | 3,2,1 |I5Ij6,]; [2:2
Bl| 1 11 ~15 20 1] 2 |- 82,1 82,1 [821 |Igl]l [2:2
B2| 1 1 1 —255 1461 (1] 2 |+ 4,1,2 | 41,2 | 4,1,2 | LTI, [2:1
285 N =285=3-5-19 (3 isogeny classes) 285
Al 1 00 19 0/1] 2 |- 51,2512 51,2 I,L |2:2
A2/ 1 0 0 —76 —19(1] 2 |4 10,2,1 | 10,2,1 |10,2,1 | I;0,Ip,; | 2:1
Bl| 1 10 2 —17]1] 2 |- 1,3,2 | 1,3,2 | 1,1,2 | 15,1, [ 2:2
B2| 1 1 0 —93 —378 |1 2 |+ 2,6,1 | 2,6,1 | 2,21 | Ile] |2:1
Cl| 1 10 23 ~176 0] 2 |— 8,3,1 | 83,1 |2,3,1 | IgI3]; |2:2
c2/ 1 10 —38 —2849 (0| 4 |+ 4,6,2 | 4,6,2 | 2,6,2 | Iy,IgI |2:1,3,4
C3[ 1 1 0 —6007 —181724[0| 2 |+ 2,3,4 | 2,3,4 |2,3,2 | I,,I5,], [2:2
C4| 1 1 0 —1237 13054 |0 4 |+ 2,12,1 [ 2,12,1 |2,12,1 | Iy,L15,L; | 2:2
286 N =286=2-11-13 (6 isogeny classes) 286
Al 1 01 —7 4210 3 |— 51,3 | 51,3 | 1,1,3 | Is,I;,I3 |3:2
A2 1 0 1 58 —1128 |0| 1 |— 15,3,1] 15,3,1 | 1,1,1 |Iy5,I3,L; |3:1
Bl| 1 11 13 177]1] 1 |—13,2,1| 13,2,1 [13,2,1 | I1i3.Io,L1 |
Cl| 1 10 -33 611 1 |- 3,21 3,2,1 | 1,2,1 | Iz3,Io,I; |
DI| 1 11 280 39310 5 |- 52,5 | 5,2,5 52,5 | I5,.I5 |5:2
D2| 1 1 1 —27930 —1808687|0| 1 |— 1,10,1 | 1,10,1 |1,10,1 |I;,I10,; |5:1
Ei|1 11 —66 -313|0| 1 |- 3,5,1 | 3,5,1 |3,1,1 | I3.I5,1; |




TABLE 1: ELLIPTIC CURVES 288A-294B 143
ay as as ay ag | 7| |T| | s ord(A) |ord_(j) | ¢, | Kodaira | Isogenies
288 N =288 =2°-32 (5 isogeny classes) 288
A1l 0 0 0 3 of1] 2= 6.3 0,0 | 2,2 | mLim [2:2
A2 0 0 0 —12 Oj1} 2 |+ 12,3 0,0 4,2 III |2:1
Bl 0o 00 —21 21| 4 |+ 68 0,2 | 2,4 | IILL; |2:2,3,.4
B2/ 0 0 0 -201 —1910|1| 2 |+ 9,7 0,1 | 1,2 | I;Ii |2:1
B3| 0 0 0 —156 736 1| 4 |+ 12,7 | 0,1 | 44 | I |2:1
B4l 0 0 0 60  —146|1| 2 |- 9,10 | 0,4 | 24 | LI |2:1
Cit] 0 00O —21 2010 4 |+ 6,8 0,2 2,4 IILI5 2:2,3,4
C2| 0 0 0 —156 =736 0| 2 |+ 12,7 0,1 2,2 I3.17 2:1
c3l 0 00 —291 1910 (0| 4 [+ 9,7 0,1 | 24| I |2:1
c4l 0 0 0 69 1460 2 |- 9,10 | 0,4 | 1,4 | ;L |2:1
DI 0 00 -9 ojo[ 4|+ 66 0,0 | 2,4 | ILI; [2:2,3,4
D2/ 0 0 0 99  -378|0| 2 |+ 96 0,0 | 22| Iy |2:1
D3| 0 0 O —-99 37810 2 |+ 9,6 0,0 1,2 15,15 2:1
D4l 0 0 0 36 0olol 2 |- 126 | 00 | 22| &I |2:1
E1| 0 0 0 27 olof 2 ]= 6,9 0,0 | 2,2 | ILIIT* |2:2
E2[ 0 0 0 —108 olo] 2 [+ 129 | 00 | 2,2 | LLI* [2:1
289 N =289 =172 (1 isogeny class) 289
Al 1 -1 1 —-199 510 (1] 4 |+ 7 1 4 I 2:2
A2 1 -1 1 —1644 —24922|1| 4 |+ 8 p 4 I |2:1,3,4
A3 1 -1 1 —26209 —1626560 | 1| 2 |+ 7 1 4 I 2:2
Ad| 1 -1 1 —-199 —-68272|1| 2 |— 10 4 4 I; 2:2
290 N=290=2-5-29 (1 isogeny class) 290
Al 1-1 0 —70  —204[1] 2 [+ 831 83,1 [2,1,1] Iglsl; |2:2
A2 1-1 0 10 —700|1] 2 |— 46,2 | 46,2 [2,2,2| I |2:1
291 N =291 =3-97 (4 isogeny classes) 291
Al o—1 1 —2174 151262 0| 1 [— 23,1 | 23,1 | 1,1 | I Ly |
Bl| 1 1 1 —169 686 0] 4 |+ 8,2 82 | 22 | Igls |2:2,34
B2 1 1 1 —654 —5910(0] 2 |+ 16,1 | 16,1 | 2,1 | TigL |2:1
B3| 1 1 1 —164 740 (0| 4 |+ 4,1 41 | 2,1 | L, |2:1
B4l 1 1 1 236 3926 |0 | 4 |~ 4,4 44 | 24 | LI |2:1
cil1 11 -3 of1] 2|+ 21 21 | 2,1 | T, [2:2
c2l 1 11 —18 —36(1| 2 |+ 1,2 L2 | 1,2 | L,L |2:1
D1| 0-1 1 0 —1‘0‘ 1 ‘— 1,1 | 1,1 ‘ 1,1 ‘ I,.I; ‘
294 N =294=2-3.-7% (7 isogeny classes) 294
ALl 1 11 =50 2030 1 [= 1,1,8 [ 1,1,0 [1,1,1[1,,0,,0v* [ 7:2
A2 1 1 1 —6910 —232261 (0| 1 |- 7,7,8 | 7,7,0 |7,1,1 |I;,I;,IV* | 7:1

1T 1 N

11 1] T.1.711T | =™.9



144 TABLE 1: ELLIPTIC CURVES 294C-302C

ay as as ay ag |7 | |T]| s ord(A) |ord_(j)| ¢p Kodaira |Isogenies
294 N =294=2-3-7> (continued) 294
Cl| 1 00 —197 —2367|0| 4 |— 82,7 | 821 |824 | IglI* [2:2
C2| 1 0 0 —4117 —101935|0| 4 |+ 4,4,8 | 4,4,2 | 4,44 | I,I,I; [2:1,3,4
C3| 1 0 0—65857 —6510547 0| 2 [+ 2,2,7 | 2,2,1 [2,2,2 | LLLIf [2:2
Cal 1 0 0 —5097 —49995|0| 4 |+ 2,810 | 2,8,4 | 2,84 | LI Ii [2:2,56
C5| 1 0 0—44787 3609423 |0| 2 |+ 1,4,14 | 1,4,8 | 1,4,4 | LI, |2:4
C6[ 1 0 0 18913 —381333|0| 2 |— 1,16,8 | 1,16,2 |1,16,2| I} 1615 |2:4
DI| 1 0 1 23 —52]0| 3 |- 5,3,4 | 53,0 | 1,3,3] I5I3IV |3:2
D2| 1 0 1 —712 —7402|0| 1 |— 15,1,4 | 15,1,0 | 1,1,3 | I15,;,IV [3:1
E1| 1 1 0 1151  18901|0| 1 |- 5,3,10 | 5,3,0 | 1,1,1 | I,I3,II* [3:2
E2| 1 1 0-34864 2503936 |0| 1 |—15,1,10| 15,1,0 | 1,1,1 | Iy5.I;,I1* [3:1
F1| 1 1 0 122 —10940|0] 2 |— 4,4,9 | 4,4,0 | 2,2,2 | I,I,III* |[2:2
F2| 1 1 0 —6738 —209880 (0| 2 [+ 2,8,9 | 2,8,0 |2,2,2 | I, Ig,III* [2:1
Gl 1 0 1 2 32012 |- 4,4,3 | 4,4,0 | 2,4,2 | LI 0 [2:2
G2 1 0 1 —138 592 1| 2 [+ 2,8,3 | 2,8,0 | 2,8,2 | LJg I |2:1
296 N =296 =23-37 (2 isogeny classes) 296
Al 0-1 0 -9 13011 |+ 81 | o1 | 41 | |
Bl‘ 0-1 0 —33 85‘1‘ 1 |+ 8,1 ‘ 0,1 ‘ 2,1 ‘ 7,1 ‘
297 N =297=3%.11 (4 isogeny classes) 297
ALl 0 01 -8l 20011 92 | 02 | 32 | vl |
Bl| 1-1 1 1 o1} 1]- 31 | o1 | 1,1 | ILI; |
Cl| 1-1 0 12 -19]1[ 1 |- 91 | 01 | 31 | IV5L, |
Dl‘ 0 0 1 -9 —11\0\ 1 |— 3,2 \ 0,2 \ 1,2 \ ILI, \
298 N =298 =2-149 (2 isogeny classes) 298
Al 1 00 —19 33[1] 1 ]- 91 | 91 | 91 | I |
Bl‘ 1-10 1 —1‘1‘ 1 |— 1,1 ‘ 1,1 ‘ 1,1 ‘ I,.I; ‘
300 N =300=2%-3-5% (4 isogeny classes) 300
Al 0-1 0 —13 —23]0| 1 |- 83,2 | 0,3,0 | 1,1,1 | IV*I5,IT |3:2
A2] 0-1 0 —1213 —15863|0| 1 |— 8,1,2 | 0,1,0 | 3,1,1 | IV* ;I [3:1
Bl| 0 1 0 —333 —3537|0] 3 |- 83,8 | 0,3,0 |3,3,3 |[IV*I3IV*|3:2
B2| 0 1 0-30333 —2043537|0| 1 |— 8,1,8 | 0,1,0 | 1,1,1 |IV*I;,IV*|3:1
Cl| 0 1 0 -333 20880 2 |+ 4,2,9 | 0,2,0 | 1,2,2 | IV, I, IIT* [2:2
c2/ 0 10 292 9588 0| 2 |— 8,4,9 | 0,4,0 | 1,4,2 |IV* I, III* [2:1
D1| 0-1 0 —13 21 2 |+ 4,2,3 ] 0,2,0 |3,2,2| IVIo,III |2:2
D2| 0-1 0 12 7211 2 |— 84,3 | 0,4,0 |3,2,2 | IV*I,III [2:1
302 N =302=2-151 (3 isogeny classes) 302
Al 1 1 1 =230 1251 1| 5 |— 15,1 | 15,1 | 15,1 Iis5];  [5:2
A2/ 1 1 1 1650 —27389|1| 1 |— 3,5 3,5 3,5 I3, [5:1
Bl| 1 10 1 5lo] 2 |- 6,1 6,1 2,1 I |2:2
B2| 1 10 -39 77100 2 |+ 3,2 3,2 1,2 LIL [2:1




TABLE 1: ELLIPTIC CURVES 303A-309A 145

ay as ag ay ag |7 | |T|| s ord(A) ord_(j5) | ¢ Kodaira | Isogenies
303 N =303=3-101 (2 isogeny classes) 303
AL o 11 —197  —208[1 1 [+ 14,1 | 14,1 | 14,1 | L5 |
Bl‘ 0 11 —6 2\1‘ 1 \+ 4,1 \ 4,1 ‘ 4,1 | I, |
304 N =304=2%-19 (6 isogeny classes) 304
A1 0 1 0 0 —76|1| 1 |- 17,1 | 5,1 4,1 1, |5:2
A2/ 0 1 0 —1120 15604 (1|1 |— 13,5 | 1,5 4,5 X1, [5:1
Bl| 0-1 0 —248 —1424|0| 1 |- 151 | 3,1 2,1 L [3:2
B2| 0-1 0 152 —5776|0| 1 |— 21,3 | 9,3 2,1 | Ifyls [3:1,3
B3| 0-1 0 —1368 157168(0| 1 |— 39,1 | 27,1 | 2,1 | If.L |3:2
Cl] 0-1 0 -8 16|11 |- 1,1 | o1 | 41 | IfyL |
D1| 0-1 0 -1 -3/0] 1 |- 81 | 01 | 1,1 | I |
E1| 0-1 0 11 -3l0] 1 |- 12,1 | 0,1 1,1 | 5 [3:2
E2| 0—-1 0  —149 79710 1 |- 12,3 | 0,3 1,1 | I*Is [3:1,3
E3| 0—-1 0 —12309 529757(0| 1 |— 12,1 | 0,1 1,1 | 15 [3:2
Fl‘ 0 10 —21 31]1\ 1 \ 8,1 ] 0,1 \ 2,1 ‘ 3,1 ‘
306 N =306=2-3%-17 (4 isogeny classes) 306
Al| 1 -1 1 —2300 —41857|0| 2 |+ 6,12,1| 6,6,1 | 6,2,1 | IgI50 [2:2;3:3
A2 1 -1 1 —1940 —55681[0| 2 |— 3,18,2 | 3,12,2 | 3,4,2 | I3,I5y,I5 |2:1;3:4
A3| 1 -1 1 —6755 163235(0| 6 |+ 18,8,3 | 18,2,3 |18,2,3 | I 1g, 5,15 |2:4;3:1
Ad| 1 -1 1 16285 1020323[0| 6 |— 9,10,6 | 9,4,6 | 9,4,6 | Io,I5 ] |2:3;3:2
Bl| 1 -1 0 —27 —27]1] 2 |+ 6,6,1 ] 6,0,1 |2,2,1 | Izl [2:2:3:3
B2| 1 -1 0 —387 —2835[1| 2 |+ 3,6,2 | 3,0,2 | 1,2,2 | I3,I5I, |2:1;3:4
B3| 1 -1 0 —927 11097 1] 6 |+ 2,6,3 | 2,0,3 | 2,2,3 | Io,I5I5 [2:4;3:1
B4| 1 -1 0 —1017  8883[1| 6 |+ 1,6,6 | 1,0,6 | 1,2,6 | I,,I51s |2:3;3:2
Cl| 1-1 0 —306 —1836|0| 2 |+ 8,10,1| 84,1 |2,2,1 | IgI5L [2:2
C2] 1-1 0 —1026 10692 |0| 4 |+ 4,14,2| 4,82 | 2,4,2 | I,I5 1, |2:1,3,4
C3| 1 -1 0 —15606 754272 (0| 4 |+ 2,10,4| 2,44 | 2,4,2 | I3, |2:2,5,6
Cal 1-1 0 2034 60264 (0| 2 |— 2,221 |2,16,1 | 2,4,1 | I,I%s.1; |2:2
C5| 1 —1 0 —249696 48087270 |0 | 2 |+ 1,8,2 | 1,2,2 [ 1,2,2 | I},I5I, [2:3
C6| 1 -1 0 —14796 835434|0| 2 |— 1,8,8 | 1,2,8 | 1,4,2 | ;I3 Is |2:3
D1| 1-1 1 —23 —21]0] 2 [+ 2,81 | 2,2,1 | 2,21 | I,,I3L; |2:2
D2| 1-1 1 67 —201|0| 2 |—1,10,2| 1,4,2 | 1,4,2 | [,,I5I, [2:1
307 N =307 =307 (4 isogeny classes) 307
Al[ 0 0 1 -8 —gloj1 |- 1 | v | 1 | ©n |
Bl|[ 1 10 0 -1joj 1 |- 1 | 1 | 1 | L |
Cl] 0 01 1 -1joj 1 |- 1 | 1 | 1 | L |
D1‘0—11 2 —1\0\1\— 1 \ 1 \ 1 | I, |
308 N =308=2%2.7-11 (1 isogeny class) 308
Al| 0-1 0 —21 4911 1 |- 82,1 | 0,2,1 | 3,2,1 |[IV* 1]
309 N =309 =3-103 (1 isogenv class) 309



146 TABLE 1: ELLIPTIC CURVES 310A-318C

ai as as ay ag | 7 | |T| | s ord(A) | ord_(j) Cp Kodaira | Isogenies
310 N =310=2-5-31 (2 isogeny classes) 310
ALl 1 11 —66 —241]0]2 - 6,41] 641 ]621 ]| Igl,l |2:2
A2 1 1 1-1066 —13841 0| 2 |+ 3,2,2 | 3,22 | 3,2,2 | I3l |2:1
Bl 1 0 0 —106 420|1] 6 | — 12,2,1 ] 12,2,1 [12,2,1 | Liao,l; | 2:2:3:3
B2| 1 0 0-1706 26980 |1| 6 |+ 6,1,2 | 6,1,2 | 6,1,2 | Tgi,Ir |2:1:3:4
B3| 1 0 0 454 1876 |1| 2 | — 4,6,3 | 46,3 | 42,3 | IIgls |2:4:3:1
B4| 1 0 0-2046 15376 1| 2 |+ 2,3,6 | 2,3,6 | 2,1,6 | ToJs]s | 2:3:3:2
312 N =312=2%.3-13 (6 isogeny classes) 312
Al o 10 -3  —6lol2]- 412] 012212, |2:2
A2 0 10 —68 —240/0] 2 |+ 821 0,21 |221]| I |2:1
Bl 0-10 -3 ol1] 2 [+ 421 ] 0,2,1 | 221 | LI, |2:2
B2l 0-1 0 12 -12]|1|2 |- 81,2 | 01,2 |21,2| L |2:1
cilo 10 -7 210 4 |+ 4,41 | 0,41 | 2,41 | ILI,L |2:2
2| 0 10 -5 —160|0| 4 |+ 822 | 0,22 | 422 | LI |2:1,3,4
c3| 0 1 0 =832 —-9520|0| 2 |+ 10,1,1| 0O,1,1 | 2,1,1 |IIT*I;,I; |2:2
C4] 0 1 0 8§ —448 (0| 2 |- 10,1,4| 0,1,4 | 2,1,4 |[IIT*1;,I4 | 2:2
DI| 0-1 0 -39 108]|0] 4 |+ 4,21 | 0,2,1 | 2,21 | LTI, |2:2
D2 0 -1 0 —44 840 4 |+ 8,42 | 0,42 | 222 | LI |2:1,34
D3| 0-1 0 —304 —1892|0| 2 |+ 10,8,1| 0,81 | 2,2,1 |IT*Ig,]; | 2:2
DA| 0 -1 0 136 444 (0| 4 | — 10,2,4 | 0,2,4 | 2,24 |TIT*Ip,I, | 2:2
El1|] 0 -1 0 —651 6228]0| 2 |+ 4,10,3] 0,10,3 | 2,2,1 | IILI,0,I5 | 2: 2
E2| 0-1 0 564 25668|0| 2 |— 856 | 0,56 | 4,1,2 | It |2:1
F1] 0 1 0 5 4|1 2 [ 432 032|232 |0l |2:2
F2 0 1 0 —60 144|1] 2 |+ 86,1 | 0,6,1 | 4,6,1 | I*Ie,; |2:1
314 =314 =2-157 (1 isogeny class) 314
Al 1-10 13 —1tl1]1]= 101 ] 101 [ 21 [ Lok
315 N =315=3%2.5-7 (2 isogeny classes) 315
Atlo o1 -12 -18lo] 1 [-61,1] 01,1 [1,1,1 | LY [3:2
A2 0 01 78 451013 |- 6,3,3 | 0,3,3 | 1,3,3 | I5Is, I3 [|3:1,3
A3| 0 0 1-1182 16362|0| 3 |— 6,91 | 0,9,1 | 1,9,1 | I¥ oIy |3:2
Bl| 1-1 1 -23 -34|1|2 ]+ 71,1 | 1,1,1 |[21,1 | L0 |2:2
B2| 1-1 1 —68 182|1|4 |+ 822 | 222 | 422 | Bl |2:1,34
B3| 1 -1 1-1013 12656 |1| 2 |+ 7,41 | 1,41 | 42,1 | ItI.L [2:2
B4| 1-1 1 157 992|1| 2 |- 10,1,4| 4,1,4 | 4,1,4 | T5,;,I, [2:2
316 N =316=2%.79 (2 isogeny classes) 316
ALl 0-1 0 —180 -s872]o0| 1t [+ 81 | 01 | 1,1 | Ivi L |
Bl‘ 0 00 -7 —2|1\ 1 |+ 8,1 \ 0,1 ] 3,1 \ V1, \
318 N =318=2-3-53 (5 isogeny classes) 318
ALl 1 11 2 —7lol 1 |- 1,51 | 1,51 [ 1,1,1 ] LT |
Bl 1 01 —61 176|0] 3 |— 33,1 | 3,3,1 | 1,3,1 | IsIsI; |3:2
B2 1 01 44 722001 |— 91,3 91,3 | 1,1,1 | Ip.Jy,0ls [3:1




TABLE 1: ELLIPTIC CURVES 318D—-324B 147

ay a ag  ay ag | 7 | |T| | s ord(A) | ord_(j) Cp Kodaira | Isogenies
318 N =318=2-3-53 (continued) 318
DI| 1 1 1 —12  45|1] 1 |- 1,21 1,21 [11,2,1 | Ly Do 0 |
El‘ 1 1 0 142 180‘0‘ 1 \— 17,3,1 ] 17,3,1 | 1,1,1 |117,13,11|
319 N =319=11-29 (1 isogeny class) 319
ALl 0 01 —37 —s7|o|1]= 152 1,2 1,2 1,1
320 N =320=2%.5 (6 isogeny classes) 320
Al o oo -8 —s8lo] 2+ 101 0,1 2.1 L | 2:2
A2 0 0 0 —28 48|0| 4 |+ 14,2 0,2 4,2 L [2:1,3,4
A3 0 0 0 —428 3408 0| 2 |+ 16,1 0,1 2,1 I5.I; 2:2
A4l 0 0 0 52 212]0| 2 |~ 16,4 0,4 2,2 1, [2:2
BI| 0 0 0 -8 8[1] 2 |+ 10,1 0,1 2.1 L | 2:2
B2| 0 0 0 —28 —48|1| 4 |+ 14,2 0,2 4,2 I, |2:1,3,4
B3| 0 0 0—428 —3408 1| 2 |+ 16,1 | 0,1 2.1 | IiL, |2:2
B4| 0 00 52 —212|1| 2 |~ 16,4 | 0,4 4,2 | oL | 2:2
Cl] 0-1 0 -5 500 2 |+ 10,1 0,1 2.1 ;L | 2:23:3
2| 0-10 15 17]|0| 2 |- 142 | 0,2 2.2 | Il [2:1;3:4
C3| 0-1 0-165 —763|0| 2 |+ 10,3 | 0,3 2.3 | Iil; |2:43:1
C4| 0 -1 0 —-145 =975 (0| 2 | — 14,6 0,6 2,6 I;,Is 2:3;3:2
DI| 0 -1 0 0 210 2 |- 6,2 0,2 1,2 ML, |2:2
D2 0-1 0 —25 57]0| 2 |+ 12,1 0,1 2.1 I |2:1
El1lo 10 o0 -2]o0]2 |- 6.2 0,2 1,2 ML, |2:2
E2] 0 1 0 —25 —57(0| 2 |+ 12,1 0,1 2.1 I |2:1
F1|] 0 10 -5 5|12+ 101 | 0,1 2,1 L | 2:23:3
F2l 0 10 15 —17|1] 2 |~ 14,2 0,2 4,2 I, |2:1;3:4
F3| 0 1 0-165 763|1]| 2 |+ 10,3 | 0,3 2.3 I3I; | 2:43:1
F4| 0 1 0145 975|1| 2 | — 14,6 | 0,6 4,6 Tile | 2:3:3:2
322 N =322=2-7-23 (4 isogeny classes) 322
Al 1 -1 0 -8 44]1] 2= 232 232 [232] L |2:2
A2 1 -1 0-238 1470 1| 2 |+ 1,6,1 | 1,6,1 | 1,6,1 | I;,Is,[; | 2:1
Bi| 1 10 35 38]0] 2 |— 1412|1412 ] 21,2 |yl |2:2
B2| 1 1 0-605 5117[0| 2 |+ 7.2,4 | 7,24 | 1,2,2 | T;Ih,l, | 2:1
cl| 1 11 -4 1ol 2 |+ 21,1 | 21,1 | 21,1 | Iy, | 2:2
c2| 1 11 —14 -23|0| 2 |+ 1,2,2 | 1,22 | 1,22 | I;,Ib,l, | 2:1
DI| 1 0 0 —14 A01] 2 |+ 10,1,1 | 10,1,1 [10,1,1 | Tyo,Iy.I, | 2:2
D2 1 0 0174 868|1| 2 |+ 52,2 | 522 | 522 | Il | 2:1
323 N =323=17-19 (1 isogeny class) 323
ALl 0 01 —46 27|01 ]— 51 5.1 1,1 Is.L
324 =324 =22-3% (4 isogeny classes) 324
AL 0 0 0 —21 37]0| 3 [+ 44 0,0 3.1 | IVII |3:2
A2 0 0 0 —81 —243|0| 1 |+ 4,12 0,0 1,1 | v,ii* |3:1

| 1TVvU* TV




148 TABLE 1: ELLIPTIC CURVES 324C-330A

ai as ag ay ag |7 ||T|| s ord(A) | ord_(j) Cp Kodaira |Isogenies
324 N =324=22.3" (continued) 324
cilo oo -9 o[1] 3 [+ 4,6 0,0 3,3 | IVIV |3:2
Cc2{ 0 00 -189 —999|1| 1 |+ 4,10 0,0 1,1 IV,Iv* 13:1
DI[0 00 -39 94[0] 3 |— 8,4 0,0 3,1 IV<IT |3:2
D2] 0 0 0 81 4860 1 8,12 0,0 1,1 | IveIr [3:1
325 N =325=5%-13 (5 isogeny classes) 325
Ao 11 —s3 24[1] 3 [+ 8,1 0,1 3,1 | V<1, |3:2
A2 0 1 1 —1333 —19131|1| 1 |+ 8,3 0,3 1,3 Ivesi; [3:1
Bl1|0-11 -3 3(1]1 |+ 21 0,1 1,1 I [3:2
B2| 0-1 1 -53 —132|1]| 1 |+ 2.3 0,3 1,1 Ml; |3:1
cil1 10 -2 ool 2 |+ 7.1 1,1 4,1 L [2:2
C211 10 100 12510 2 |— 8,2 2,2 4,2 I5.1o 2:1
DI 0 1 1 —508 -4581[0 1 |+ 4,1 0,1 3,1 I, |5:2
D2 0 1 1 —2458 42369|0| 1 |+ 8,5 0,5 3,1 IV:I; |5:1
El] 0-1 1 —98 3780 5 |+ 2.5 0,5 1,5 I |5:2
E2| 01 1-12708 —547182]0| 1 |+ 10,1 0,1 1,1 1 |5:1
326 N =326 =2-163 (3 isogeny classes) 326
Al 1-1 0 —80 -256[1| 1 [+ 9,1 | 9,1 1,1 oI,
Bl|1 00 -6 4(1] 1 [+ 51 | 5,1 5,1 I5,
Cl| 1 01 =355 1182101 3 [+ 9,3 9,3 1,3 Io,I3 3:2,3
C2| 1 0 1-14210-653100(0| 1 |+ 27,1 27,1 1,1 Ie7, Iy 3:1
c3| 1 01 —300 1970(0] 3 [+ 3,1 3,1 1,1 LI [3:1
327 N =327=3-109 (1 isogeny class) 327
A1l 1 00 4 31l 1= a1 41 41 L1,
328 N =328 =23-41 (2 isogeny classes) 328
Allo oo —11  —10]1] 2]+ 10,1 0,1 2,1 eI, |2:2
A2] 0 0 0 29 —66|1| 2 |- 11,2 0,2 1,2 I, |2:1
Bl| 0-1 0 —12 20[0] 2 |+ 8,1 0,1 2,1 L |2:2
B2| 0-1 0 8 60|10 2 |— 10,2 0,2 2.2 | "I, |2:1
329 N =329=7-47 (1 isogeny class) 329
Al] 1 11 246 —1376]0] 1 [— 9.1 9,1 1,1 To,I;
330 N=330=2-3-5-11 (5 isogeny classes) 330
ALl 1 10 —1393 —20603[0] 2 [+ 4,521 [4,5,2,1[2,1,2,1] Io,I5,Io,1; |2:2
A2| 1 1 0 —1413 —20007|0| 4 |+2,10,4,2(2,10,4,2(2,2,2,2 |Ty,l10,1s,T0 | 2 : 1,3, 4
A2l 1 1 a0 A1ea 7742 lnl 9ol L1 o9n9 111909 11199 111.1T. 1.T. |9 .9




TABLE 1: ELLIPTIC CURVES 330B-336A 149

ay asas ay ag|r||T||s ord(A) | ord_(y) Cp Kodaira |Isogenies
330 N=330=2-3-5-11 (continued) 330
B1ij1 00 ) 1701 4 |— 8,2,1,1 | §,2,1,1 [8,2,1,1 | Ig,Io,I3,I; |2:2
B2 1 00 75 22500 8 |+ 4,4,2,2 | 4,4,2.2 [4,4,2,2 | 14,14 00,1o [2:1,3,4
B31 00  —255 —1323[0 4 |+ 2,2,4,4 | 2,2,4,4 [2,2,4,2 | Tp,Io,I,,I, |2:2,5,6
B4 1 00 —1175 154050| 4 [+ 2,8,1,1 | 2,8,1,1 |2,8,1,1 | Ip,Ig,I;,I; |2: 2
B5{1 00 —3885 —935250| 2 |+ 1,1,8,2 | 1,1,8,2 |1,1,8,2| I1,I;,Ig,0I5 |2:3
B6/1 00 495 —7473101 2 |- 1,1,2,8 | 1,1,2,8 (1,1,2,2 | I;,I;,I5,Ig |2:3
Ci1 11 255 92550 4 |- 16,3,1,2]16,3,1,2[16,1,1,2|T16,I3,1;,I2 |2 : 2
c21 11 1025 76700 8 |+ 8,6,2,4 | 8,6,2,4 |8,2,2.4 | Tg,Ig,Io.I, [2:1,3,4
C3] 1 11 —10705  —429025(0] 4 |+ 4,12,4,2 |4,12,4,2 |4,2,4,2 |14, 112,14, [2: 2,5,6
C4l 1 11 —11825  488927)0 4 |+ 4,3,1,8 | 4,3,1,8 4,1,1,8 | 1,051,152 : 2
Ch 1 11 —171085 —27308713(0| 2 |+ 2,6,8,1 | 2,6,8,1 [2,2,8,1]| Iy,Ig,Ig,I1 |2:3
C6l 1 11 —5205 —8624250| 2 |— 2,24,2,1(2,24,2,112,2,2,1 |Ta,Ios,Io,]; [2: 3
DI 1 11 —40266  2921559(0 4 |+ 28,5,4,1]28,5,4,1[28,1,2, 1| Tog,I5, 14,1 2 : 2
D2| 1 1 1 —122186 —12872617(0| 4 |+14,10,8,2(14,10,8,2[14,2,2,2[T,4,110,Is,12[2 : 1,3,4
D3| 1 1 1-1832906-955821481(0| 2 |+ 7,5,16,1|7,5,16,1 [7,1,2,1 |I7,I5,l16,11 |2 : 2
D4/ 1 11 277814 —79112617(0| 2 |- 7,20,4,4|7,20,4,4 [7,2,2,2 | I7,Ta0,14,14 |2 : 2
Ell1 10 ~99 —a41l| 2 [+ 81,21 ] 8,1,2.1 [2,1,2,1 | IgI; Io]; [2:2
E201 10  —102 324(1] 4 |+ 4,2,4,2 | 4,2,4,2 [2,2,4,2 | T4,Io,I,,Io [2:1,3,4
E3/1 10 —1602 24024/1| 4 |+ 2,1,2,4 | 2.1,2,4 |2,1,2,4| To,1;,To,1, [2:2
E4/1 10 118 1776(1] 2 |[— 2,4,8,1 | 2,4,8,1 2,2,8,1 | Ip,ls,Ig,[; |2:2
331 N =331=331 (1 isogeny class) 331
All1 00 -5 aif1]- 1 1 1 I,
333 N =333=32-37 (4 isogeny classes) 333
All0 01 30 6311 [+ 6,1 0,1 1,1 L |3:2
A2/ 0 01 —210 11341 3 [+ 6,3 0,3 1,3 15,13 3:1,3
A3l 0 01 —16860 84262511 3 |+ 6,1 0,1 1,1 15,1 3:2
Bi| 1-1 0 12 35012 - 9,1 0,1 2.1 1, [2:2
B2 1-10  —123 49401 2 [+ 9,2 0,2 2,2 M1, |2:1
1] 1-1 1 1 ol 2= 3,1 0,1 2.1 ML, |2:2
2l 1-1 1 14 14l 2 |+ 3,2 0,2 2,2 ML, [2:1
Dl‘ 0 01 -9 —7\0] 1 ]+ 6,1 \ 0,1 \ 1,1 \ 3.1, ]
334 N =334=2-167 (1 isogeny class) 334
A1l 1-1 1 1 —1o[1]= 1,1 1,1 1,1 1.1
335 N =335=5-67 (1 isogeny class) 335
All0 01 9 ol 1] 21 2,1 2.1 Io.I,
336 N =336=2%-3-7 (6 isogeny classes) 336
A1l 0-1 0 7 ool 2]~ 432 | 032 | ,1,2 | 1,1, [2:2:3:3
A2/ 0-1 0 —98 280 2 [+ 86,1 | 0,6,1 | 1,2,1 | Iflel, |2:1;3:4
A2l 01 n 119 c1elnl ol 41 @ n1e 119 1 11T1.1. 9. 4.9.1




150 TABLE 1: ELLIPTIC CURVES 336B-340A

a; az as ay ag |7 | |T|| s ord(A) |ord_(j)| ¢p Kodaira | Isogenies
336 N =336=2*-3-7 (continued) 336
Bl| 0 -1 0 -7 1000 2 |+ 4,1,1 | 0,1,1 | 1,1,1 | ILI,;; [2:2
B2| 0-1 0 —12 010 4|+ 822|022 |222]| Ll |2:1,34
B3| 0-1 0 —152 —672(0] 2 |+ 10,4,1 | 0,4,1 | 2,2,1 | I5I.0; |2:2
B4| 0—1 0 48 —48 10| 4 |— 10,1,4 | 0,1,4 | 4,1,4 | I51;I, [2:2
Ci| o 10 —7 —52|0] 2 |— 4,3,4 | 0,3,4 | 1,3,2 | ILI;L, [2:2
C2( 0 1 0 —252 —1620|0| 4 |+ 86,2 | 0,6,2 | 26,2 | I1IsIy [2:1,3,4
C3| 0 1 0 —4032 —99900(0| 2 [+ 10,3,1 | 0,3,1 | 4,3,1 | I3I3I; |2:2
C4| 0 1 0 —392 228 (0| 4 |+ 10,12,1] 0,12,1 |2,12,1 | I515.0; [2:2
DI| 0 1 0 —64 —460 0] 2 |- 20,2,1 | 82,1 | 4,2,1 | I5 1L |2:2
D2| 0 1 0 —1344 —19404|0| 4 |+ 16,4,2 | 4,4,2 | 4,4,2 | I3I40, |2:1,3,4
D3| 0 1 0-21504 —1220940 |0 | 2 |+ 14,2,1 | 2,2,1 | 2,2,1 | I¥IpI; [2:2
DAl 0 1 0 —1664 —9804|0| 8 |+ 14,8,4 | 2,84 | 4,84 | I5Igly [2:2,5,6
D5| 0 1 0—14624 669300 |0| 8 |+ 13,4,8 | 1,4,8 | 4,4,8 | ¥, Is |2:4
D6| 0 1 0 6176 —69388|0| 4 |— 13,16,2| 1,16,2 [2,16,2 | It I;6I5 | 2:4
El| 0-1 0 16 ol1] 2 |- 12,2,1] 0,2,1 | 4,2,1 | Il [2:2
E2| 0-1 0 —64 64 1| 4 |+ 12,4,2 | 0,4,2 | 4,22 | It 10, |2:1,3,4
E3| 0-1 0 —624 —5760|1| 2 |+ 12,8,1 | 0,8,1 | 2,2,1 | I;,Is]; |2:2
E4| 0-1 0 —784 8704 |1| 8 [+ 12,2,4 | 0,2,4 | 4,2,4 | I1 ], |2:2,5,6
E5| 0—1 0—12544 544960 |1| 4 |+ 12,1,2 | 0,1,2 | 2,1,2 | 5,1, |2:4
E6| 0-1 0 —544 13888 |1| 4 |— 12,1,8 | 0,1,8 | 4,1,8 | It I;,Is |2:4
F1|0 1 0 -1 210 2 |- 41,2 | 0,1,2 | 1,1,2 | ILI1,I, [2:2
F2/0 1 0 —36 72000 2 |+ 82,1 | 0,2,1 | 1,2,1 | I5L.I |2:1
338 N =338=2-13 (6 isogeny classes) 338
Al 1-1 0 1 1011 |— 22 2,0 2,1 LII [7:2
A2/ 1-1 0 —389 —2859|1| 1 |— 14,2 | 14,0 | 2,1 | Iy [7:1
Bl| 1-1 1 137 2643 (0] 1 |- 2,8 2,0 2,1 | L,IV* |7:2
B2| 1 -1 1—65773 —6478507 |0 | 1 |— 14,8 | 14,0 | 14,1 | I;4,IV* |7:1
Cl| 1 0 0 81 46710 1 |— 1,7 1,1 1,2 LI [3:2
C2( 1 0 0 —764 —16264{0| 1 [— 3,9 3,3 3,2 I35 |3:1,3
C3| 1 0 0-77659 —8336303|0| 1 |— 9,7 9,1 9,2 IJf |3:2
DI| 1 1 0 504 —13112|0] 1 |— 3,9 3,0 1,2 | I3I* |[5:2
D2 1 1 0-54421 4945517 (0| 1 |— 15,9 | 15,0 | 1,2 | Ii5I00* |[5:1
El| 1 11 3 —5]1] 1 |- 3,3 3,0 3,2 | I3 |5:2
E2|1 1 1 —322 2127 (1| 1 |— 15,3 | 15,0 | 15,2 | Ij5II0 |[5:1
F1| 1-1 0 —454 5812 (1] 1 |— 7,7 7,1 1,4 I |7:2
F2| 1 -1 0—35944 —2868878 |1| 1 |— 1,13 1,7 1,4 LI |7:1
339 N =339=3-113 (3 isogeny classes) 339
Al 0 11 —441 3422|111 - 91 | 91 | 91 | I |
Bl| 0-1 1 —112 501|101 |— 91 | 91 | 1,1 | Inh |
Cl| 0 11 -2 2\1\ 1 |— 3,1 \ 3,1 \ 3,1 \ I3, \
340 N =340=2%.5-17 (1 isogeny class) 340
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TABLE 1: ELLIPTIC CURVES 342A-347A 151

ay as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
342 N =342=2-32-19 (7 isogeny classes) 342
Al| 1-1 1 —140 —601|0] 1 |— 3,6,1 | 3,0,1 |3,1,1| I3, 151, |3:2
A2 1-1 1 85  —2437|0| 3 |- 9,6,3 | 9,0,3 [9,1,3 | Io,I5,I3 |3:1,3
A3 1-1 1 =770  66305|0| 3 27,6,1 | 27,0,1 {27,1,1 | Io7, 15,0, |3:2
Bl| 1-1 1 —860 9915]0| 2 |+ 2,11,1 | 2,5,1 | 2,2,1 | LIz |2:2
B2| 1-1 1 —770 12003|0] 2 |— 1,16,2 | 1,10,2 | 1,4,2 | 1,51 | 2: 1
Cl] 1-1 0 —72 0|1 2 |+ 6,91 | 6,3,1 | 2,41 LIEI |2:2;3:3
C2] 1-10 288 —216(1| 2 |- 3,12,2 | 3,6,2 | 1,4,2 | I3I3I, |2:1;3:4
C3| 1-1 0 —382  92988[1| 6 |+ 2,7,3 | 2,1,3 | 2,43 | I,,I5I3 [2:4;3:1
C4| 1-1 0 —3762  97470(1| 6 |— 1,8,6 | 1,2,6 | 1,4,6 | I;,I5Is [2:3:;3:2
D1| 1-1 1 —29 1[0] 2 [+ 2,91 | 2,0,1 |2,2,1 |I,II*I;[2:2
D2| 1-1 1 —299 2053|0] 2 |+ 1,9,2 | 1,0,2 | 1,2,2 |, III* I, |2:1
El1| 1-1 0 -3 1[1] 2 [+ 2,3,1 | 2,0,1 |2,2,1|LILL [2:2
E2| 1-1 0 —-33 —65[1] 2 [+ 1,3,2 | 1,0,2 | 1,2,2 | I;,IILI, [2:1
F1| 1-1 0 —3168  62464[0| 2 |+ 20,9,1 | 20,3,1 | 2,2,1 | Ip0, I35, [ 2:2
F2| 1 -1 0 —49248 4218880 (0| 4 |+ 10,12,2|10,6,2 | 2,4,2 [ L1051, [2:1,3,4
F3| 1 -1 0 —787968 269419360 0| 2 [+ 5,9,1 | 53,1 | 1,4,1 | I5I51; |2:2
F4| 1 -1 0 —47808 4476064 (0| 2 |— 5,18,4 | 5,12,4 | 1,4,2 | I5,I*,,I5 | 2: 2
Gl| 1-1 0 0 —32]0| 1 |- 56,1 | 50,1 | 1,1,1 | I;,I5L |5:2
G2 1-1 0 —630 6898 10| 1 |— 1,6,5 | 1,0,5 | 1,1,1 | I,,I* 15 |5:1
344 N =344 =23.43 (1 isogeny class) 344
A1 0 00 4 41101 |- 8,1 0,1 2,1 I 1,
345 N =345=3-5-23 (6 isogeny classes) 345
Al 0-1 1 =731 -7369]0| 1 |- 2,51 | 2,5,1 | 2,1,1 | Ip,I.1, |
Bl1| 0 11 -1 1[1] 1= 21,1 | 2,1,1 | 2,1,1 | L,I;,I; |
Cl| 1 0 1 456 24010 2 |- 5,3,4 | 5,3,4 | 51,2 | I5I3]1; |2:2
C2| 1 01 —2189  20387|0| 4 |+ 10,6,2 | 10,6,2 [10,2,2| I10,Is,I5 |2:1,3,4
C3| 1 0 1 —16564 —807613[0| 2 |+ 20,3,1 | 20,3,1 [20,1,1 | Ipo,I5I; [2:2
C4| 1 0 1 —30134 2010071(0| 2 |+ 5,12,1 | 5,12,1 | 5,2,1 | I5I;0.I; [2:2
Di| 1 0 0 9 olo] 4 |- 42,1 | 42,1 | 421 ] I,L0L [2:2
D2| 1 0 0 —36 —910[ 4 [+ 2,42 | 2,42 222 | LI [2:1,34
D3| 1 0 0 —411  —3234[0| 2 [+ 1,2,4 | 1,24 | 1,2,2 | I, Io,I; |2:2
D4| 1 0 0 —381 28200 2 |+ 1,81 | 1,8,1 | 1,2,1 | I,IgJ; |2:2
El1] 0-1 1 30 —97]0] 1 |- 4,1,3 | 41,3 | 2,1,1 | I;;1.I; |
Fl’ 0 11 —100 406’1‘ 1 \— 8,3,1 \ 8,3,1 ‘8,3,1 ] Ig.Is,I; \
346 N =346 =2-173 (2 isogeny classes) 346
Al 1 00 -16 260l 1|+ 1,1 | 1,1 | 1,1 | L |
B1| 1 11 —7 —3|1| 1 \+ 7,1 ‘ 7.1 ‘ 7,1 | I;.I |
347 N = 347 = 347 (1 isogenv class) 347



152 TABLE 1: ELLIPTIC CURVES 348A-354D

ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
348 N =348 =22.3-29 (4 isogeny classes) 348
Al] 0-1 0 2 il 1= 41,1 o011 [31,1 ]IV |
B1| 0 1 0 —2 -3|0] 1 |- 41,1 | 01,1 | 1L,1,1]|IVI.]I |
Cl|0-1 0 -94 3973|0| 1 |- 4,15,1 ] 0,15,1 | 1,1,1 [IV,I;5,1; |
D1’ 0 10 =50 129]1] 1 ]— 4,71 ] 0,7,1 \3,7,1 \1\/,17,11\
350 N =350=2-5%-7 (6 isogeny classes) 350
Al| 1-1 0 58 —284|0| 2 [— 4,8,1 | 4,2,1 [2,2,1 | I.I3I; [2:2
A2 1-1 0 —442  —2784|0| 4 |+ 2,10,2 | 2,4,2 | 2,4,2 | L I;I, [2:1,3,4
A3] 1-1 0 —6692 —209034 (0| 2 |+ 1,8,4 | 1,2,4 | 1,2,4 | I;, I3l [2:2
A4l 1-1 0 —2192 37466 0| 2 |+ 1,14,1 | 1,81 | 1,4,1 | I; I3, |2:2
Bl 1 00 112 39210 3 |- 3,8,2 | 3,0,2 |3,3,2 |I3IV*];|3:2
B2| 1 0 0 —1138 —20858|0| 1 |— 1,86 | 1,0,6 | 1,1,6 |I;,IV*Is|3:1
Ci| 1 10 5 501 1 3,2,2 | 3,0,2 | 1,1,2 | I3,ILI, [3:2
C21 10 —45 —185|1| 1 1,2,6 | 1,0,6 | 1,1,2 | I;,ILIs |3:1
DI 1 11 -13 310 2 |- 2,6,1 | 2,0,1 |2,2,1| L, |2:2;3:3
D2/ 1 1 1 -263 153110 2 |+ 1,6,2 | 1,0,2 | 1,2,2 | I, I5I, |2:1;3:4
D3| 1 11 112 —719|0| 2 |- 6,6,3 | 6,0,3 [6,2,1 | Ls,I5I3 |2:4;3:1,5
D4/ 1 1 1 —88 —8719(0| 2 |+ 3,6,6 | 3,0,6 |3,2,2 | I3T5ls [2:3;3:2,6
D5 1 1 1 —4263 —109219(0| 2 |— 18,6,1 | 18,0,1 {18,2,1 | I1g,I§.I; [2:6;3:3
D6| 1 1 1-68263—6893219(0| 2 |+ 9,6,2 | 9,0,2 | 9,2,2 | Ig,Ig,Io [2:5;3:4
El| 1-1 0 —4492 126416|0| 1 |- 11,10,2| 11,0,2 | 1,1,2 |I;1,II* I, |
Fl’ 1-1 1 —180 1047\1] 1 ]— 11,4,2 \ 11,0,2 \11,3,2\11171\/,12\
352 N =352=2%-11 (6 isogeny classes) 352
Al 0 10 —45  —133/o[1]- 121 | o1 | 2,1 | mrrL |
B1| 0 1 0 3 1)1 1|- 12,1 | 0,1 | 2,1 | OI*I; |
Cl| 0-1 0 —45 1331 1 |- 12,1 | 0,1 | 2,1 | OI*I; |
D1| 0-1 0 3 —11|1| 1 |- 12,1 | 0,1 | 2,1 | III*]I; |
El1| 0 0 8 —-112]0| 1 |- 12,3 | 0,3 | 2,1 | II*]I5 |
F1| 0 0 8 121 1 |- 12,3 | 0,3 | 2,3 | II"]; |
353 N =353 =353 (1 isogeny class) 353
Al| 1 11 —2 16|02 [— 2 2 2 I, [2:2
A2] 1 11 —7 4101 2 |+ 1 1 1 L |2:1
354 N =354=2-3-59 (6 isogeny classes) 354
Al| 1 11 -3 =3[0 2 |+ 2,1,1 | 2,1,1 | 2,1,1 | I,y [2:2
A2| 1 11 7 -7(0] 2 |- 1,2,2 | 1,2,2 | 1,2,2 | I; I, |2:1
Bi| 1 01 9 -8[0] 3 |- 1,6,1 | 1,6,1 | 1,6,1 | I1,I,l; [3:2
B2 1 01 -216 —1250(0| 1 |— 3,2,3 | 3,2,3 | 1,2,1 | I3Ip,I3 |3:1
Ci|1 10 -715 7069|1| 1 |- 5,6,1 | 5,6,1 | 1,2,1 | I5,Ig,I4
DI 1 10 —34 —92]0| 2 |+ 4,3,1 | 4,3,1 |2,1,1 | LIz [2:2
D2/ 1 1 0 —54 0[0 4 |+ 2,6,2 | 2,6,2 |2,2,2 | LJgl, [2:1,3,4
N2 | 1 1 N _RAA AOTIRITNO! 9 1T L 1T 19 1 1 19 1 1T 91T | T, 1.7 9 .9




TABLE 1: ELLIPTIC CURVES 354E-360E 153
ay as as ay ag |7 ||T]| s ord(A) [ord_(j)| ¢p Kodaira |Isogenies
354 N =354=2-3-59 (continued) 354
El1| 1 1 1-23511—1393299|0| 2 |+ 22,9,1 | 22,9,1 |22,1,1| I Tg,L; [2:2
E2[ 1 1 1-13271 —2601619|0| 2 |— 11,18,2|11,18,2|11,2,2| Iy1.Ii5,I, |[2:1
F1’ 1 11 -5 11\1\ 1 ]— 7,2,1 \ 7,2,1 ]7,2,1] 17,051, \
355 N =355=5-71 (1 isogeny class) 355
A1l 0 11 5 -1(0| 3 |- 3,1 3,1 3,1 I;,;, [3:2
A2/ 0 11 —95 —396|0( 1 |— 1,3 1,3 1,1 I,,J; |3:1
356 N =356 =2%2-89 (1 isogeny class) 356
Al| 0-1 0 4 —8[1] 1 |- 81 0,1 3,1 VI,
357 N =357=3-7-17 (4 isogeny classes) 357
Al 0-1 1 3565 72914|0| 1 |- 17,4,1 | 17,4,1 | 1,2,1 | T LI |
Bl1| 0-1 1 -5 —-16]1] 1 |- 1,4,1 | 1,4,1 | 1,4,1 | L IsI; |
Cil]o 11 20 —-17]0| 1 |- 1,2,3 | 1,2,3 | 1,2,1 | I} I3 |
Dl‘ 0 1 1 —42 110|1‘ 1 ‘— 7.2,1 ‘ 7,2,1 ‘7,2,1‘ 17,151, ‘
358 N =358=2-179 (2 isogeny classes) 358
Al] 11 55 7)ol 1 |- 17,1 | 11 | 4,1 | L |
Bl 1 00 —18 280 3 |- 3,1 3,1 3,1 I;,; [3:2
B2 1 0 0 32 1500 1 |— 1,3 1,3 1,1 I,I; [3:1
359 N =359 =359 (2 isogeny classes) 359
Al 1 01 23 ot 1][+ 1 [ 1 | 1 | n ]
Bl| 1-11 ~7 sif1 |+ 1 | 1 | 1 | L |
360 N =360=2%-32-5 (5 isogeny classes) 360
A1[ 0 0 0 —138 —623|0] 2 |+ 4,81 | 0,2,1 | 22,1 | ILI5L |2:2
A2/ 0 0 0 —183 —182|0| 4 |+ 8,10,2 | 0,4,2 | 2,42 | III;L, |2:1,3,4
A3 0 0 0 —1803  29302|0| 4 |+ 10,8,4 | 0,2,4 | 2,4,2 | III* 51, |2:2,5,6
A4 0 0 0 717 —1442|0| 2 |—10,14,1| 0,8,1 | 2,4,1 | III* 51, [2:2
A5/ 0 0 0—28803 1881502|0| 2 |+ 11,7,2 | 0,1,2 | 1,2,2 | II*I{I, [2:3
A6 0 0 0 —723  64078|0| 2 |— 11,7,8 | 0,1,8 | 1,4,2 | II* It ]Is |2:3
B1| 0 0 0 -3 —-18]0] 2 |- 10,3,1 | 0,0,1 | 2,2,1 | II* LI, |2:2
B2 0 0 0 —123 —52210( 2 |+ 11,3,2 | 0,0,2 | 1,2,2 | II* LI, |2:1
Cil o 00 —27 486]0] 2 |- 10,9,1 | 0,0,1 | 2,2,1 |III* III* 1, | 2: 2
C2/ 0 0 0 —1107  14094|0| 2 |+ 11,9,2 | 0,0,2 | 1,2,2 | II*III*I, | 2:1
DI| 0 0 0 33 34l0] 4 |- 87,1 | 0,1,1 [ 4,41 | 1 |2:2
D2 0 0 0 —147 286 (0| 4 |+ 10,8,2 | 0,2,2 | 2,4,2 | III* 131, |2:1,3,4
D3| 0 0 0 —1227 —16346|0| 2 |+ 11,7,4 | 0,1,4 | 1,2,4 | II*T{ I, [2:2
D4| 0 0 0 —1947  33046|0| 2 |+ 11,10,1| 0,4,1 | 1,4,1 | II*TI5L [2:2
E1I| 0 0 0 —18 —27]1| 2 |+ 4,6,1 | 0,0,1 |2,2,1] OLI5L [2:2
E2( 0 0 0 —63 1621 4 |+ 86,2 | 0,0,2 | 4,42 | I'IzL, |2:1,3,4
N N N 1 9 N N 1 9 9 1 9 .9

TTIT* T* T.




154 TABLE 1: ELLIPTIC CURVES 361A-368E

ay az as ay ag |7 | |T|| s ord(A) |ord_(j) | ¢p Kodaira | Isogenies

192 (2 isogeny classes) 361
A1} 0 0 1 —38 90111 |- 3 0 2 II1 19:2
0 0 1 —13718 —619025|1| 1 2

0-11 0
B2 0-1 1 —3369 81208 | 0
0 -1 1 -277729 56427893 |0

362 N =362=2-181 (2 isogeny classes) 362
Al 1 10 —4 2/t 1[- 1,1 | 1,1 | 1,1 | L |

363 N =363=3-11% (3 isogeny classes) 363
1 —789  8130|0| 4 [+ 3.7 3.1 1,4
1 —1394 —6874|0| 4 |+ 6,8 | 6,2 | 2,4 | IgL
1 —17729 —915100 (0| 2 |+ 3,10 3,4 1,4
1 — 2,2

Cl‘ 0-1 1 444 —826‘0‘ 1 \— 3,8 \ 3,0 \ 1,1 ‘Ig,IV* \

364 N =364=2%.7-13 (2 isogeny classes) 364
A1 0 00 —584  54dd|1] 1 |— 851 0,51 [3,51 |[IV-I |

Bl‘ 0 10 -5 7\1\ 1 \— 8,1,1 \ 0,1,1 \3,1,1 ‘IV*,Il,Il‘

366 N =366=2-3-61 (7 isogeny classes) 366
A1l 1 00 —205 —1147|0] 1 [- 22,1 | 2,2,1 | 2,2,1 | L], |

-5 33‘0‘ 5 ’— 5,5,1 ‘ 5,5,1 ’

- 1,1,5

1| Ig, 1, |2

2 14712,12 2:
) 1 12714711 2

4 12711714 2

1

1

0

0 —81 -3151]0
0 —1301 —18615|0
0 —141 129 10
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TABLE 1: ELLIPTIC CURVES 368F-377TA 155

ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
368 N =368 =2%-23 (continued) 368
F1| 0 00 1 ~1lo[1]- 41 | o1 | 1,1 | mL |
Gl‘ 0 00 —55 157\1\ 1 \— 4,1 \ 0,1 \ 1,1 \ LI, \
369 N =369 =3%2-41 (2 isogeny classes) 369
Al 0 0 1 6 13011 - 7,10 | 1,1 | 21 [ L |
B1| 0 0 1 —93 -369]0| 1 |- 11,1 | 5,1 4,1 X1, |5:2
B2| 0 0 1 177 24201 (0] 1 |— 7,5 1,5 4,1 I*ls |5:1
370 N =370=2-5-37 (4 isogeny classes) 370
Al| 1-1 0 -5 51102 |+ 41,1 [ 41,1 | 21,1 | LI |2:2
A2 1-1 0 —25 —39(1| 4 |+ 2,2,2 | 2,2,2 [ 2,22 | I,,I,I, |2:1,3,4
A3 1-1 0 —395 —2025|1] 2 |+ 1,4,1 | 1,4,1 | 1,2,1 | I;,I,.I; |2:2
Adl 1-1 0 25 —209(1| 2 [— 1,1,4 | 1,1,4 | 1,1,2 | I;,I;,I, |2:2
B1l| 1 0 13 —19]0| 1 |- 11,1,1 ] 11,1,1 | 1,1,1 | I3,y
Ci|1 01 -19 34210] 3 |- 3,3,3 | 3,3,3 | 1,1,3 | I3J5,I3 |3:2,3
c2(1 01 166 —9204|0] 1 |— 9,9,1 | 9,9,1 | 1,1,1 | Ip,Ig.I; |3:1
C3[1 01 —54 146 (0| 3 |— 1,1,1 | 1,1,1 | 1,1,1 | I;,IL,I; |3:1
D1| 1 0 0 —75 —143]0| 6 |+ 12,3,1]12,3,1 [12,3,1] I12.I5,L; [2:2;3:3
D2| 1 0 0 245 —975|0| 6 |— 6,6,2 | 6,6,2 | 6,6,2 | IgIgI [2:1;3:4
D3| 1 0 0 —5275 —147903|0| 2 |+ 4,1,3 | 4,1,3 | 4,1,3 | 15,103 |2:4:3:1
D4| 1 0 0 —5255 —149075|0] 2 |— 2,2,6 | 2,2,6 | 2,2,6 | Iy,b.15 |2:3:3:2
371 N =371=7-53 (2 isogeny classes) 371
Al 1 10 35 98|11 |- 41 | 41 [ 21 | 1L |
Bl| 0 01 -31 —67(0] 1 |- 3,1 | 31 | 31 | Ishi |
372 N =372=22.3-31 (4 isogeny classes) 372
Al] 01 0 —6 ol1] 1 |- 42,1] 021 [3,21|1VL] |
Bl1| 0 1 0 -9 1210 2 |- 41,2 ] 0,1,2 | 1,1,2 | IVI;I, |2:2
B2| 0 1 0 —164 756 (0] 2 |+ 8,2,1 | 0,2,1 | 1,2,1 [IV*I;|2:1
Cl| 0 1 0 —3054 —69327|0] 3 |— 4,18,1]0,18,1 |3,18,1 IV 1151, |3 :2
C2] 0 1 0-—250914 —48460347|0| 1 |— 4,6,3 | 0,6,3 | 1,6,3 | IV,Ig,I3 |3:1
Dl‘ 0 10 -2 9\1\ 1 \— 4,4,1 \ 0,4,1 \3,4,1 \ IV,I4,Il‘
373 N =373=2373 (1 isogeny class) 373
A1 0 11 —2 2011 [+ 1 1 1 I
374 N =374=2-11-17 (1 isogeny class) 374
Al| 1-1 0 —32 0(1] 2 [+10,2,1]10,2,1 | 2,2,1 | Ij0,]5L; [2:2
A2 1-1 0 128 —96 (1| 2 |— 5,42 | 5,42 [ 1,22 | I;1,I, |2:1
377 N =377=13-29 (1 isogeny class) 377
Al| 1-1 0 -8 111 2 |+ 1,1 1,1 1,1 L, |2:2
A2 1-1 0 -13 0(1] 4 [+ 2,2 2,2 2,2 | Il [2:1,3,4
A 1T 1 N _1EQ _ 7o |1 99999900 A4 1 A 1 A 1 T. 1. 9 .9




156 TABLE 1: ELLIPTIC CURVES 378A-384H

aiy as as ay ag |7 ||T|| s ord(A) |ord_(j) Cp Kodaira | Isogenies
378 N =378=2-3%-7 (8 isogeny classes) 378
Al 1 -1 1 10 5/01 3 |— 9,3,1 | 90,1 [9,1,1| IgILL; |3:2
A2 1-1 1 —-110 -539|0| 3 |— 3,93 | 3,0,3 | 3,3,3 | I3,IV*]I3 [3:1,3
A3| 1 -1 1-9560 —357371|0| 1 |— 1,11,1 | 1,0,1 | 1,1,1 | I;,JI*I; |3:2
Bl| 1-10 -12 240 3 |- 3,3,3 | 3,0,3 | 1,1,3 | I3II3 |3:2,3
B2 1-10 93  —235|0| 1 |— 9,9,1 | 9,0,1 | 1,1,1 | Io,IV¥]I; |3:1
B3| 1-1 0-1062 13590|0| 3 |— 1,5,1 | 1,0,1 | 1,3,1 | I;,IV,I; |3:1
Ci|1-11 -2 —107|0| 1 |- 2,11,1| 2,0,1 | 2,1,1 | LII*]T |
DI| 1-1 0 0 4111 |—= 2,51 | 2,0,1 | 23,1 I,IV]] |
El| 1-1 1 -11 -3710| 3 |- 6,3,3 | 6,0,3 |6,1,3 | III3 |3:2,3
E2| 1 -1 1-1271 —17117|0| 1 |— 2,9,1 | 2,0,1 | 2,3,1 | I,,IV¥*]I; |3:1
E3| 1-11 94 929 (0| 3 | — 18,5,1 | 18,0,1 |[18,1,1 | I;g,IV,I; |3:1
F1| 1-1 0 —141 6811 3 |- 2,3,1 | 2,0,1 | 2,1,1 | I ILI; |3:2
F2| 1-1 0 —96 10881 3 |— 6,93 | 60,3 | 2,3,3 | IsIV*I3 [3:1,3
F3| 1-1 0 849 —25939|1| 1 |— 18,11,1| 18,0,1 | 2,1,1 | I;g,II*I; |3:2
Gl| 1 -1 1 3967 38449|0| 1 |- 5,11,7 | 5,0,7 | 5,1,1 | I5,II*I7 |
Hl‘ 1 -1 0 441 —1571\0\ 1 \— 5,5,7 \ 5,0,7 \1,1,1 \ I5,1V,I; \
380 N =380=22-5-19 (2 isogeny classes) 380
Al 0 00 -8 31| 2 |+ 41,2 | 0,1,2 | 1,1,2 | IV,I;,I, |2:2
A2 0 0 0 —103  —402|1| 2 |+ 82,1 | 0,2,1 | 1,2,1 |IV*]I;,I; |2:1
Bl| 0-1 0 —921 10346|0| 2 |+ 4,5,4 | 0,54 | 3,1,2 | IV,I5,I4 [2:2
B2| 0-1 0 834 44280|0| 2 |— 8,10,2 | 0,10,2 | 3,2,2 |IV*Ijp,Io | 2:1
381 N =381 =3-127 (2 isogeny classes) 381
Ao 11 -1 <)1) 1|+ 51 | 51 | 51 | L |
Bl‘ 0 11 -4 —5\0\ 1 \+ 1,1 \ 1,1 \ 1,1 \ I,.I \

N =384=27.3

(8 isogeny classes)
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TABLE 1: ELLIPTIC CURVES 385A-390F 157

ai asas ay ag|r||T||s ord(A) | ord_(5) Cp Kodaira | Isogenies
385 N =385=5-7-11 (2 isogeny classes) 385
Al 1-1 1 —37 1241 4 |= 21,4 | 2,1,4 | 21,4 | L1, [2:2
A201-1 1  —642 6416(1] 4 |+ 4,2,2 | 4,22 | 42,2 | I,0Il, |2:1,3,4
A3 1-1 1 —697 5204|1) 2 |+ 8,4,1 | 8,4,1 | 82,1 | Igl,l; |2:2
A4l 1-1 1 —10267  4029661] 2 |+ 2,1,1 | 2,1,1 | 2,1,1 | Ip,i,I; |2:2
Bl 1 00 0 72— 21,2 | 21,2 | 2,1,2 | Iy, [2:2
B2/ 1 00  —55 1501 2 |+ 4,21 | 42,1 | 42,1 | LI [2:1
387 N =387 =23%2-43 (5 isogeny classes) 387
Alfo 01 —174 —8s70[ 1 |- 10,1 | 41 [ 21 | o |
Bl 1-10  —15 —46[1| 1 |- 9,1 | 0,1 | 21 | II*L |
Cl|1-11 —2 211 |- 31 | 01 | 21 | ILL |
DI| 1-1 1 —221 1316/0] 4 [+ 9,1 3.1 4,1 L |2:2
D2[ 1-1 1 —266 776/00 4 |+ 12,2 | 6,2 4,2 51, |2:1,3,4
D3| 1-1 1 —2201  —38698/0| 2 |+ 18,1 | 12,1 4,1 LI |2:2
D4 1-1 1 949 5150|101 2 |— 9,4 3,4 2,2 I5.14 2:2
El‘ 0 01 -3 —9\0\ 1 \— 6,1 \ 0,1 \ 2,1 | I;1 \
389 N =389 =389 (1 isogeny class) 389
A1l 0 11 —2 o2 1 [+ 1 1 1 I
390 N=390=2-3-5-13 (7 isogeny classes) 390
All1 10 —13 1] 2 [+ 4,2,1,1]4,2,1,1]2,2,1,1 [1,L,L,1L[2:2
A201 10  —33 —63[1] 4 |+ 2,4,2,212,4,2,2(2,2,2,2 | To,l,,Io]Is [2:1,3,4
A3 1 10 —483 —429301] 2 [+ 1,2,1,4 [ 1,2,1,4 [ 1,2,1,2 | T;,To, 13,0, [2: 2
A4l 1 10 97 —297|1] 2 | = 1,8,4,1 [ 1,8,4,1]1,2,2,1 | I1,Is,1s,1; |2: 2
Bl| 1 11 15 1500 4 |— 81,2,1[81,2,1]8,1,2,1 |Tg,I;,Io,I; [2: 2
B2/ 1 11  —65 4700| 8 |+ 4,2,4,2 1 4,2,4,2 [ 4,2,4,2 | 141,141, |2: 1,3, 4
B3| 1 11 —565 —5353(0] 4 |+ 2,4,2,4(2,4,2,4[2,2.2.4 | 15,1154 |2:2,5,6
B4l 1 11 —845 9095(0] 4 |+ 2,1,8,112,1,8,1(2,1,8,1 | Io,I;,Ig,I; |2: 2
B5/ 1 11 —9015 —333213/0] 2 |+ 1,8,1,2|1,8,1,2|1,2,1,2 | 1,,Ig.I;.I5 |2 : 3
B6/ 1 11 —115  —13093/0| 2 |— 1,2,1,8 | 1,2,1,8 | 1,2,1,8 | I,,Io,1;,I5 |2 : 3
Cij1 00 —6 36|0| 6 |— 6,3,2,1]6,3,2,1]6,3,2,1|Is,I3,I5,]; |2:2;3:3
c2l1 00 —206 1116]0| 6 |+ 3,6,1,2(3,6,1,2 | 3,6,1,2 | I3,06,11,I2 |2:1;3 : 4
C3/1 00 54 ~960[0] 2 |- 2,1,6,312,1,6,3(2,1,2,3 | To,I;.Is,I5 [2:4:3: 1
C4]1 0 0 —1196 —15210(0| 2 |+ 1,2,3,6 | 1,2,3,6 | 1,2,1,6 | 11,513,015 (2:3;3:2
DI 1 01 3997 3998(0] 6 |—10,9,6,1]10,9,6,1]2,9,6,1 |T10.19.16,11|2:2:3: 3
D211 0 1 —16003 27998|0| 6 |+5,18,3,2(5,18,3,2|1,18, 3,2|I5,1;5,I3,12(2:1;3: 4
D3| 1 0 1 —53378 —5124652(0| 2 |—30,3,2,3|30,3,2,3|2,3,2,3 |I30,I3,I5,I35]2:4;3:1
D4l 1 0 1-872578 —313799212|0| 2 |+15,6,1,6(15,6,1,6| 1,6,1,6 |T15,06,11,06]2 : 3:3 : 2
El]1 11 4 “7l0[ 2 1= 2,3,2,1[2,3,2,1(2,1,2,1 | To,I5,00,I; [2:2
E2| 1 11  —46 12710} 2 |+ 1,6,1,2 [ 1,6,1,2 | 1,2,1,2 | T1,I6,11,I2 |2 : 1
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158 TABLE 1: ELLIPTIC CURVES 390G-399C

ai as ag ay ag |7 ||T|| s ord(A) | ord_(j) Cp Kodaira |Isogenies
390 N=390=2-3-5-13 (continued) 390
Gl 1 01 —289  3092(0| 2 |—20,1,1,2(20,1,1,2(2,1,1,2 |To0,];,I;,I5 |2 : 2
G2[ 1 0 1 —5409 152596 (0| 4 |+ 10,2,2,4[10,2,2,4|2,2,2,2 |110,I5,I,14|2:1,3,4
G3[ 1 0 1 —6209 104276(0| 2 |+ 5,4,1,8 | 5,4,1,8 |1,4,1,2 | I5 1,1} Ig |2:2
G4| 1 0 1-86529 9789652 (0| 2 |+ 5,1,4,2 | 5,1,4,2 [1,1,2,2 | I51; I, I |2:2
392 N =392=2%.72 (6 isogeny classes) 392
A1[ 0 00 49  —686|1| 4 |— 8,7 0,1 4,4 I [2:2
A2/ 0 0 0 —931 —10290|1| 4 |+ 10,8 0,2 2,4 1 |2:1,3,4
A3| 0 0 0—14651 —682570|1| 2 |+ 11,7 0,1 1,2 I+ [2:2
Ad| 0 0 0 —2891 47334|1| 2 |+ 11,10 0,4 1,4 I+ [2:2
B1| 0 1 0 —80 -8359|0|1 [+ 4,10 | 0,0 | 21 | HOLII* |
Cl] 0-1 0 -16 29|11 |+ 44 | 00 | 23 | HOLIV |
DI 0 1 0 —16  1392]0] 2 |- 10,7 0,1 2,2 1 |2:2
D2| 0 1 0 —1976 32752|0| 2 |+ 11,8 0,2 1,4 I+ [2:1
E1I| 0 0 0 —343 —2401|0| 1 |+ 48 | 0,0 | 2,1 | ILIV* |
Fl‘ 0 00 7 7|1\ 1 \+ 4,2 | 0,0 | 2,1 ‘ 11,11 |
395 N =395=5-79 (3 isogeny classes) 395
Al| 1-1 1 —7 140 4 |- 4,1 4,1 4,1 I, [2:2
A2 1-1 1 —132 614(0] 4 |+ 2,2 2,2 2,2 I, [2:1,3,4
A3 1-1 1 —157 38410 2 |+ 1,4 1,4 1,2 LI, [2:2
A4l 1-1 1 —2107 37744|0| 2 |+ 1,1 1,1 1,1 I, [2:2
Bi| 1 11 —40 -—128]0] 2 |- 6,1 6,1 6,1 Ig,I; [2:2
B2 1 1 1 —665 —6878/0| 2 |+ 3,2 3,2 3,2 I3, [2:1
Cl| 0-1 1 =50 1560 5 |- 5,1 5,1 5,1 I, [5:2
C2/ 0-1 1 300 -5724(0|1 |- 1,5 1,5 1,1 LI, [5:1
396 N =396=2%2-32.11 (3 isogeny classes) 396
A1 0 0 0 —696 —8215|0| 2 |— 4,16,1 | 0,10,1 | 3,4,1 | IV.I*,,; [2:2
A2] 0 0 0—11631 —482794|0| 2 |+ 8,11,2 | 0,5,2 | 3,2,2 | IV*I: I, [2:1
B1| 0 0 0 24 251 2 |- 4,81 | 0,21 | 3,4,1 | IVIEL [2:2
B2| 0 0 0 —111 214(1] 2 |+ 87,2 | 0,1,2 | 3,42 | IV*I* I, [2:1
Cil 0 0 0 24 52100 1 |- 86,1 | 0,01 | 1,1,1 | IV<I5L [3:2
C2/0 00 —696  7108{0| 3 |— 86,3 | 0,0,3 | 3,1,3 | IV*I3,I3 [3:1
398 N =398 =2-199 (1 isogeny class) 398
Al 1 10 —6 200 2 |- 10,1 10,1 2,1 Io i |2:2
A2/ 1 1 0 —166 756 (0] 2 |+ 5,2 5,2 1,2 I, [2:1
399 N =399=3-7-19 (3 isogeny classes) 399
Al 1 10 —210 —441|1| 2 |+ 5,6,1 | 56,1 | 1,2,1 | I5IgL; [2:2
A2 1 1 0 —1925 31458|1| 2 |+ 10,3,2 | 10,3,2 | 2,1,2 | I10,IsI, [2:1
Bl|1 11 —13 —22]1] 2 |+ 3,2,1 | 3,2,1 | 1,2,1 | I3, [2:2
B2| 1 1 1 —48 90 (1| 2 |+ 6,1,2 | 6,1,2 | 21,2 | LgLI, |2:1




TABLE 1: ELLIPTIC CURVES 400A-405B 159

ay as as ay ag | 7| |T| | s ord(A) |ord_(j) | ¢, |Kodaira | Isogenies
400 N =400 =2%-52 (8 isogeny classes) 400
ALl 0 00 50 —125]1] 2 |+ 4,7 0,1 | 1,4 | I,y [2:2
A2] 0 0 0 175 750 1] 4 |+ 8,8 0,2 | 2,4 | ;I |2:1,34
A3 0 0 0 —2675 03250 |1 4 |+ 10,7 0,1 4,4 15,15 2:2
A4l 0 0 0 325  4250|1| 2 |- 10,10 | 0,4 | 24 | LI |2:2
Bl 0 1 0 —48 —172 |0 1 |— 17,2 9,0 2,1 I5,11 3:2;5:3
B2| 0 1 0 352 1268|0| 1 [— 27,2 | 150 | 2,1 | Il |3:1;5:4
B3| 0 1 0 -208 13588|0| 1 [— 13,10 | 1,0 | 2,1 | ILI* |3:4;5:1
B4| 0 1 0 —50208 4313588 (0| 1 | — 15,10 3,0 2,1 I [3:3;5:2
cilo-10 -8 112[1] 1 |- 134 | 1,0 | 43 | ILIV [3:25:3
C2| 0-1 0 —2008 35312|1| 1 |- 154 | 3,0 | 41 | IEIV |3:1;5:4
C3| 0-1 0 —1208 —19088 |1 | 1 17,8 5,0 4,3 I5IV* | 3:4;5:1
C4| 0—-1 0 8792 140912 (1| 1 |— 27,8 15,0 4,1 | I7g,IV* 13:3;5:2
DI] 0-1 0 -3 210 2 |+ 4,3 0,0 | 1,2 | ILIm |2:2
D2| 0-1 0 -28  —48|0| 2 |+ 8,3 0,0 | 22 | I [2:1
El1| 0 1 0 -33 —6210| 2 |+ 4,7 0,1 1,2 ILIy 2:2;3:3
B2 0 1 0 92 —312]0| 2 |- 88 0,2 | 1,4 | It |2:1;3:4
E3| 0 1 0 —1033 124380 2 [+ 4,9 0,3 | L2 | ILE |2:43:1
E4| 0 1 0 —908 15688 (0| 2 |- 812 | 0,6 | 1,4 | Iz |2:33:2
Fi| 0 10 —-83 8810 2 [+ 4,9 0,0 | 1,2 | ILIIT* |2:2
F2 0 1 0 —708 —7412[0] 2 |+ 8,9 0,0 | 2,2 | I [2:1
Gl| 0 00 125 1250|0| 1 |- 1L,8 | 0,0 | 2,1 | I5IV* |
Hl\ 0 00 5 10\1\ 1 \— 11,2 \ 0,0 1 4,1 \ 3,11 \
402 N =402=2-3-67 (4 isogeny classes) 402
Al 1 10 -2 —12)1| 1 |- 81,1 | 81,1 [2,1,1] IgIL |
Bl| 1 01 —10 40| 2 |+ 81,1 ] 81,1 [2,1,1] IgI0; |2:2
B2 1 0 1 —90 316 0] 4 |+ 4,22 | 42,2 [2,2,2] Il |2:1,3,4
B3| 1 0 1 —1430 20684 |0| 4 |+ 2,41 | 2,41 [2,4,1| Io,Iy,[; |2:2
B4 1 01 —30 748 0| 2 | = 2,1,4 | 2,1,4 |2,1,2| I, |2:2
ci| 1 11 —-37 110 2 |+ 2,3,1 2,3,1 |2,1,1| Ix)I5,I; |2:2
c2l 1 11 —21 12310 2 |- 1,6,2 | 1,6,2 |1,2,2| L,Ie,Jo | 2:1
DI| 1 0 1 —145 692 1] 3 | = 4,91 | 491 [2,9.1] LIl |3:2
D2 1 0 1 80 1070 |1] 3 |— 12,3,3 ] 12,3,3 [2,3,3 | 10,1515 | 3: 1,3
D3| 1 0 1 -10255 —438718 | 1| 1 |— 36,1,1 | 36,1,1 |2,1,1 | Tse,01,1; | 3:2
404 N =404=2%-101 (2 isogeny classes) 404
Al 0 00 -8 afr] 1 [+ 81 [ o1 |31 ] vy |
B1 0 —69 1910 3 |+ 8,1 0,1 3,1 IveIl; [3:2
B2 0 1 0 -229 —1161]0| 1 |+ 8,3 0,3 | 1,1 | IVv¥I; |3:1
405 N =405=3%-5 (6 isogeny classes) 405
ALl 0 01 —12 1510 3 [+ 43 0,3 | 1,3 | ILI; |3:2
A2 0 01 —162 —790|0| 1 |+ 12,1 | 01 | 1,1 | 11, |3:1




160 TABLE 1: ELLIPTIC CURVES 405C-414A

ai as as ay ag |7 ||T|| s ord(A) [ord_(j)| ¢, | Kodaira | Isogenies
405 N =405=3%.5 (continued) 405
Cl|1-10 0 (1] 1 |— 4,1 0,1 1,1 I, |7:2
c2l 1-1 0 —225 —1250 (1| 1 |— 4,7 0,7 1,1 I, |7:1
DIl 1-11 —2 —26[1] 1 |- 10,1 0,1 3,1 | IV¥I, |7:2
D2 1-1 1 —2027 35776 (1| 1 |— 10,7 | 0,7 3,7 | IViI; |7:1
E1|] 0 01 —27 A7|0] 1 |+ 10,1 | 0,1 | L,1 | IV5L
Fl‘ 0 01 -3 —2\1‘ 1 \+ 4,1 \ 0,1 \ 1,1 ‘ LI,
406 N =406=2-7-29 (4 isogeny classes) 406
Al 1-1 0 —302 2260 1| 2 |- 10,3,2 | 10,3,2 | 2,1,2 | I10,I3,I5 | 2: 2
A2 1 -1 0 —4942 134964 (1| 2 |+ 5,6,1 | 56,1 | 1,2,1 | I5,0,I; |2:1
Bi|1 01 —15 210 (1| 3 |- 4,2,3 | 4,2,3 |2,2,3 | IzI,I3 [3:2
B2(1 01 130 —5648 1| 1 |— 12,6,1]12,6,1 | 2,6,1 | I;5,Is,I; [3:1
Ci|]1 11 —102 351 1 |- 8,2,1 ] 82,1 |8,2,1] IsL.Ly
DI| 1 1 0 -2124 —60592|0| 2 |- 16,5,2| 16,5,2 | 2,5,2 | I16,I5,I2 | 2:
D2 1 1 0 —39244 —3007920 (0| 2 |+ 8,10,1 | 8,10,1 {2,10,1| Ig,I10,l; |2: 1
408 N =408 =23-3-17 (4 isogeny classes) 408
Al 0 10 —48 —144 10| 2 [+ 10,2,1| 0,2,1 | 2,2,1 |III*Io,I; | 2:2
A2/ 0 1 0 -8 —336|0| 2 11,4,2 ] 0,4,2 | 1,4,2 | II* 140, |2:1
Bl 0 10 —52 12810 4 [+ 82,1 | 0,2,1 |4,2,1 | I1,Ip,I; [2:2
B2 0 1 0 72 0[0| 4 |+ 10,4,2| 0,4,2 | 2,4,2 |[III*4,I5(2:1,3,4
B3| 0 10 —752 —8160 (0| 2 |+ 11,8,1| 0,8,1 | 1,81 | IT*,Ig,I; [2:2
B4 0 1 0 288 288 (0| 2 | — 11,2,4| 0,2,4 | 1,2,4 | II*Ix04 |2:2
Cl] 0-1 0 511 ~1899 (0| 1 |- 8,3,5 | 0,3,5 | 2,1,1 | I},I3.I;
Dl‘ 0 10 —17 51\1| 1 \— 8,5,1 ] 0,5,1 \4,5,1 \ 715,13
410 N =410=2-5-41 (4 isogeny classes) 410
Al 1-10 —14 20(1| 2 |+ 6,2,1 | 6,2,1 |2,2,1 | IgIpI; [2:2
A2 1-1 0 —214 1260 (1] 2 |+ 3,1,2 | 3,1,2 | 1,1,2 | I3,I;,I, |2:1
Bl| 1-1 1 —1387  —18501|0| 4 |+ 24,2,1|24,2,1 [24,2,1| IogIn,]; |2:2
B2 1 -1 1 —21867 —1239109 0| 4 |+ 12,4,2 | 12,4,2 [12,4,2 | I15,14,I5 [2:1,3,4
B3| 1 -1 1-349867 —79565509 (0| 2 |+ 6,2,1 | 6,2,1 | 6,2,1 | I,Io,l; |2:2
B4| 1 -1 1 —21547 —1277381(0| 4 |— 6,8,4 | 6,8,4 | 6,8,4 | IIs,Iy |2:2
Ci|1 01 —168 806|0] 6 |+ 4,6,1 | 4,6,1 |2,6,1 | I IeI; |2:2;3:3
c211 0 1 —2668 52806 0| 6 |+ 2,3,2 | 2,3,2 | 2,3,2 | I,I3I, |2:1;3:4
C3| 1 0 1 —1543  —23094|0| 2 [+ 12,2,3|12,2,3 | 2,2,1 | I1p,Ip,I3 [2:4;3:1
C4| 1 0 1 —3143 32586 (0| 2 |+ 6,1,6 | 6,1,6 | 2,1,2 | IgI1,Ig [2:3;3:2
DI 1 0 0 —16 o[1] 2 |+ 82,1 82,1 |8,2,1] IgIp,l; [2:2
D21 0 0 64 1612 |— 4,4,2 | 4,4,2 |4,2,2| I00, |2:1
414 N =414=2-32-23 (4 isogeny classes) 414
Al 1-11 -320 —2221 (0| 2 |— 4,12,1| 4,6,1 | 4,4,1 | I,,I51; [2:2:3:3
A2 1 -1 1 —5180 —142189|0| 2 [+ 2,9,2 | 2,3,2 | 2,4,2 | Io,I50, |2:1;3:4
A 1T 1 1 17NR _EF1927 001 A | - 19O 21 192 9 21194 21 T1.-T*T- (92 A4.-92 .1




TABLE 1: ELLIPTIC CURVES 414B-423B 161

ai as as ay ag |7 ||T||s ord(A) | ord_(y) p Kodaira | Isogenies
414 N =414=2-3%.23 (continued) 414
Bi| 1-1 1 -14 -39lol2]- 281 | 22,1 [ 241 | LIL [2:2
B2| 1-1 1 —284 —1767]0| 2 |+ 17,2 | 1,1,2 | 1,42 | LI’ |[2:1
Cl| 1-1 0 27 59|12 |- 481 | 421 | 241 | LIL [2:2
C2| 1-1 0 —153 —455[1] 4 |+ 2,10,2 | 2,4,2 | 2,4,2 | L,IIL |[2:1,3.4
C3| 1-1 0-2223-39785|1| 2 |+ 1,14,1 | 1,8,1 | 1,4,1 | T, I35, |2:2
C4] 1 -1 0 —963 11371|1| 2 |+ 1,8,4 1,2,4 1,2,4 1,151, 2:2
DI| 1-1 1 —92  415|1] 2 |- 10,6,1 | 10,0,1 | 10,4,1 | Ijo,I5L; [2:2
D2| 1-1 1-1532 23455|1] 2 |+ 56,2 | 502 | 522 | Izl |2:1
415 N =415=5-83 (1 isogeny class) 415
A1l 1-1 0 —109 —412]0| 1 |- 4.1 4,1 4,1 LI
416 N =416 =2°-13 (2 isogeny classes) 416
Allo 10 0o —4fo|1|- 91 | o1 | 1,1 [ L |
Bl‘ 0-1 0 0 4\1\ 1 \— 9,1 \ 0,1 \ 2,1 3.1, \
417 N =417=3-139 (1 isogeny class) 417
A1l 1 10 26 73001 |— 91 9,1 1,1 Io,I;
418 N =418=2-11-19 (3 isogeny classes) 418
Al 1-1 1 -4 slo] 2 [+ 21,1 | 21,1 [ 21,1 | oL [2:2
A2 1-1 1 6 1ol 2 |- 1,22 | 1,2,2 | 1,2,2 | L, |2:1
Bl|1 11 66 =51 1 |—= 13,2,1 | 13,2,1 | 13,2,1| I35y |
Cl‘ 1-11 -6 —5‘0‘ 1 ‘— 1,2,1 | 1,2,1 ‘ 1,2,1 ‘ I.I,.I; |
420 N =420=2%2.3-5-7 (4 isogeny classes) 420
A1l 0-1 0-4061 67590]0] 2 [+4,7,10,1[0,7,10,1]3,1,2,1] IV, I7.110,1; | 2: 2
A2 0—1 0 11564 448840 0| 2 |—8,14,5,2(0,14,5,2(3,2,1,2|TV*I14,I5,I5 | 2 : 1
Bl| 0-1 0 —565 5362|0] 2 [+ 4,5,2,1]0,5,2,1 |1,1,2,1] IV,I5IoI; |2:2
B2| 0-1 0 —540 5832|0| 2 |—8,10,1,2(0,10,1,2|1,2,1,2|TV*I10,];,I2 | 2 : 1
Cl1| 0 10 —61  164]0] 6 |+ 4,3,2,1|0,3,2,1[3,3,2,1| TV.I3ol; |2:2:3:3
C21 0 10 —36 324(0| 6 |— 86,1,2|0,6,1,2(3,6,1,2| V< Il Ip |2:1:3:4
c3|] 0 1 0 —301 —-1960|0| 2 |+ 4,1,6,3 | 0,1,6,3 |1,1,2,3| IV,I;IIs |2:4;3:1
C4l 0 1 0 324 —8460(0] 2 |— 8,2,3,6 | 0,2,3,6 |1,2,1,6| IV*Io,I5.Is [2:3:3:2
DI| 0 10 -5 0lo] 2 |+ 4,1,2,1]0,1,2,1 |1,1,2,1] TV,I;,Io,I; |2:2
D2l 0 10 20 2000]2 |- 821,20,21,2(1,2,1,2| IV I,II, |2:1
422 N =422 =2-211 (1 isogeny class) 422
A1l 1-1 0 1 311 ]= 41 4,1 2.1 LI
423 N =423 =32.47 (7 isogeny classes) 423
Al 0 01 —12 alif ]+ 71 | L1 | 41 L




162 TABLE 1: ELLIPTIC CURVES 423C-429B

ay as as ay ag | 7| |T|| s ord(A) | ord_(j) p Kodaira | Isogenies
423 N =423 =3%-47 (continued) 423
Cl| 1-1 0 —18 —-81|1] 2 |- 10,1 4,1 4,1 L [2:2
C2| 1 -1 0 —423 —3240|1| 4 [+ 8,2 2,2 4,2 I3l [2:1,3,4
C3| 1 -1 0 —6768 —212625|1| 2 [+ 7,1 1,1 2,1 I [2:2
C4| 1 -1 0 558 891 (1| 4 |+ 7.4 1,4 4,4 I, [2:2
D1 0 0 1 =8  —=277|0| 1 |+ 91 | 01 | 2,1 | O*]I |
El|0 01 —111 -=171]0| 1 |+ 13,1 | 7,1 | 21 | IfL |
F1| 0 0 1 -—237 1404|1| 1 |+ 7,1 | 1,1 | 2,1 | IjL |
Gl‘ 0 0 1 -9 10]11 1 \+ 3,1 \ 0,1 \ 2,1 \ 1.1, \
425 N =425=5%.17 (4 isogeny classes) 425
Al| 1 -1 0 —17 161 2 [+ 6,1 0,1 2,1 I [2:2
A2| 1 -1 0 —142 —609|1| 4 |+ 6,2 0,2 4,2 I3, [2:1,3,4
A3| 1 -1 0 —2267 —40984|1| 2 |+ 6,1 0,1 2,1 I [2:2
Ad| 1 -1 0 —17 —1734|1| 2 |- 6,4 0,4 4,2 I, [2:2
Bi|1 10 —75 250 |1| 1 |- 81 | 0,1 | 3,1 | IV:I |
Cl| 1 00 -3 2011 |- 21 | 01 | 1,1 | ILL; |
DI| 1 0 0 -213 —1208]1| 2 [+ 81 2,1 2,1 L [2:2
D2| 1 0 0 —8 —2583|1| 2 |- 10,2 4,2 4,2 I, [2:1
426 N =426=2-3-71 (3 isogeny classes) 426
Al 1 00 —20 4810 5 | — 5,51 | 5,51 | 55,1 | I5I5I; |5:2
A2 1 0 0 -230 -5202|0| 1 |— 1,1,5 | 1,1,5 | 1,1,5 | I;,I;,I5 [5:1
Bl| 1 1 0 -286 1780 | 1] 2 |- 10,6,1 ] 10,6,1 | 2,2,1 | I1p,06,I; | 2:2
B2| 1 1 0 —4606 118420 |1 + 53,2 | 53,2 | 1,1,2 | I5I30 [2:1
Cl| 1 0 1 -23007 1341682 |0| 3 |— 9,15,1| 9,15,1 | 1,15,1 | Tg,I;5,1; | 3:2
C2| 1 0 1 14658 5154352 (0| 1 |— 27,53 | 27,5,3 | 1,5,1 | Ia7,I5,03 [ 3:1
427 N =427=17-61 (3 isogeny classes) 427
Al o-11 -1 —1lo]1]- 1,1 [ 1,1 | 1,1 | nn |
Bl|1 01 -8 711+ 1,1 ] L, | L1 | LT |
C1| 1 00 —28 =59 1] 1|+ 31 | 31 | L1 | Ishi |
428 N =428 =22.107 (2 isogeny classes) 428
Ao 10 —157  —812{0| 1 [- 41 | o1 | 31 | v |
Bl‘ 0-1 0 3 —2\1\ 1 \— 4,1 \ 0,1 \ 3,1 \ V.1, \
429 N =429 =3-11-13 (2 isogeny classes) 429
Al 1 11 2 21102 |- 2,1,1 | 2,1,1 | 2,1,1 | ;I |2:2
A2 1 1 1 —13 811 2 |+ 1,22 | 1,2,2 | 1,2,2 | I1Ip0p [2:1
Bl| 1 00 —24 63[1] 4 | — 81,1 | 81,1 | 81,1 | Ig,I;,I; [2:2
B2| 1 0 0 —429 3384 |1| 8 |+ 4,2,2 | 4,2,2 | 42,2 | IyIp], | 2:1,3,4
B3| 1 0 0 —474 2619 |1 | 4 |+ 24,4 | 2,44 | 2,24 | Ip,051y |2:2,5,6
B4| 1 0 0 —6864 218313 |1 | 4 |+ 2,1,1 | 2,1,1 | 2,1,1 | Io,I;,I; [2:2
RE 1 0N 0O 2000 _R1770 | 1 ) 1T 1 Q 9 1 Q 9 1 9 9 T. T~ T~ 9 .92




TABLE 1: ELLIPTIC CURVES 430A-434E 163

a1 as as a4 ag | 7 | |T|| s ord(A) | ord_(5) p Kodaira | Isogenies
430 N =430=2-5-43 (4 isogeny classes) 430
Al] 1-1 0 -20 0011 |- 3,151 ] 31,1 | L1 | L5 |
Bl| 1-1 0 16 -10|1| 1 |- 1,51 | 1,5,1 | 1,5,1 | I1,I5,I; |
Ci| 1 0 0 4 161 3 |- 91,1 91,1 |91,1]IsI;,I; |3:2
c2( 1 00 —-36 —440|1| 3 |- 3,3,3 | 3,3,3 | 3,1,3 | I3,I3,I3 |3:1,3
C3| 1 0 0-5626 —162894 1| 1 |— 1,9,1 | 1,9,1 | 1,1,1 | I;.I5,I; |3:2
D1| 1 0 0 —1415 20617 | 1| 1 |— 15,5,1 \ 15,5,1 \15,5,1 \ L5151 \
431 N =431 =431 (2 isogeny classes) 431
AL] 1 0 0 1|11 ]- 1 | 1 1 L |
Bl‘l—l -9 —8|0‘1‘— 1 \ 1 1 I \
432 N =432=2%.3% (8 isogeny classes) 432
Al 0 0 0 0 —16|0| 1 |- 12,3 0,0 1,1 I |3:2,3
A2 0 0 0 —480 —4048|0| 1 |- 12,5 0,0 1,3 | II*IV |3:1
A3 0 0 0 0 43210 1 |- 12,9 0,0 1,1 | II*IV* [3:1,4
A4 0 0 0 —4320 109296 |0| 1 |— 12,11 0,0 1,1 | I*I1* |3:3
Bl1| 0 00 0 —411] 1 8,3 0,0 2,1 I3 | 3:2
B2| 0 0 0 0 10811 |- 8,9 0,0 2,3 | IxIv* |3:1
Ci|] o 00 -27 —918[0| 1 |- 11,11 | 0,0 2,1 | I3 |
DI| 0 0 0 -3 34|11 |- 11,5 | 0,0 4,3 | L3IV |
El1| 0 0 0 —51 —142]0]| 1 |- 13,3 1,0 2,1 IEIT [ 3:2
E2| 0 00 18  —702(0| 1 |— 15,9 3,0 2,1 | IxIv* [3:1,3
E3| 0 0 0 —1971 44658 |0| 1 |— 21,11 9,0 2,1 | IjgII* |3:2
F1| 0 0 0 21 26|11 |- 15,3 3,0 4,1 511 |3:2,3
F2| 0 0 0 —219 —1654|1| 1 |- 21,5 9,0 4,1 | iy IV | 3:1
F3| 0 0 0 —459 3834 1] 1 |- 13,9 1,0 4,3 | IxIv* |3:1
Gl 0 0 0 —108 540 0| 1 | — 811 | 0,0 L1 | IHIr |
Hl\ 0 00 —12 —20|0\ 1 \— 8,5 \ 0,0 1,1 I IV \
433 N =433 =433 (1 isogeny class) 433
Al 1 0 0 0 1121 ]|- 1 1 1 I,
434 N =434=2-7-31 (5 isogeny classes) 434
Al 1 -1 0 -7 3|1 2 |+ 6,1,1 | 6,1,1 | 2,1,1 | IgI;,I; |2:2
A2 1 -1 0 —47 133(1] 2 |+ 3,22 | 3,22 | 1,2,2 | I3LI, |2:1
Bl| 1 00 —4 160 3 |- 91,1 | 91,1 |91,1]IyI;,I; [3:2
B2 1 0 0 36 —424 (0| 3 |- 3,3,3 | 3,3,3 | 3,3,3 | I3I3I3 [3:1,3
B3| 1 0 0-3374 —75754 (0| 1 |- 1,9,1 | 1,9,1 | 1,9,1 | I;,Io,I; |3:2
Ci|] 1 11 =32 6110] 2 | — 2,4,1 | 2,4,1 | 2,2,1 | I,I,I; |2:2
c2] 1 1 1 —522 437310 2 |+ 1,2,2 | 1,2,2 | 1,2,2 | I, I,,I, | 2:1
DI| 1 0 0 21 491] 2 |- 10,2,1 ] 10,2,1 |10,2,1 | I;0,I5.I; | 2:2
D2 1 0 0 —139 465 (1] 2 |+ 5,4,2 | 5,4,2 | 54,2 | Iz, |2:1




164 TABLE 1: ELLIPTIC CURVES 435A—-440B

a1 az as ay ag | 7| |T|| s ord(A) |ord_(j) | ¢, |Kodaira | Isogenies
435 N =1435=3-5-29 (4 isogeny classes) 435
Allo 11 —11 1ol 3= 3,1,1 ] 3,1,1 [3,1,1 | 10,1, |3:2
A20 0 11 49 80/0| 1 |- 1,3,3 | 1,3,3 | 1,1,1 | I1,I3I3 |3:1
Bl| 0-1 1 79 —1123|0| 1 |— 57,1 | 57,1 | L1L,1 |11 |
Cl] 1 01 —28 5310 2 |+ 2,1,1 | 2,1,1 | 2,1,1 | I, I1,I; |2:2
21 01 —33 3110 4 |+ 42,2 | 42,2 | 422 | Iyl |2:1,3 4
C3| 1 0 1 —258 —1589|0| 2 |+ 21,4 | 2,1,4 | 2,1,4 | Ip,I;,I, |2:2
cal 1 01 112 230] 4 |~ 84,1 | 84,1 | 84,1 | Ig,liI; |2:2
DI| 1 00 —30 4500] 4 |+ 81,1 ] 81,1 | 81,1 | IgL,L |2:2
D2 1 0 0 —435 —3528|0| 4 |+ 4,22 | 42,2 | 4,2,2 | Iyl | 2:1,3,4
D3| 1 0 0 —6960 —224073|0| 2 [+ 2,1,1 | 2,1,1 | 2,1,1 | To,I,,I; | 2:2
DAl 1 0 0 -390 —4275|0| 4 |— 2,44 | 2,44 | 2,44 | To,I,0, | 2:2
437 N =437=19-23 (2 isogeny classes) 437
Al 0 -1 1 19 10011 |- 1,4 | 1,4 | 1,4 | LI |
Bl‘ 0-1 1 0 —5\0\ 1 \— 1,2 | 1,2 \ 1,2 1 I.I, \
438 N =438=2-3-73 (7 isogeny classes) 438
Al 1 0 0 —938 —-9564 (0| 6 |+ 18,6,1 | 18,6,1 |18,6,1 | I1g,I6,]; [2:2;3:3
A20 1 0 0 1622 —52060|0| 6 |— 9,12,2 ] 9,12,2 |9,12,2 | To,l12,I» | 2:1:3: 4
A3 1 0 0-72938 —7587996 |0 | 2 |+ 6,2,3 | 6,2,3 | 6,2,3 | Tg.Do,ls |2:4:3:1
Ad] 1 0 0 —72898 —7596724 |0 | 2 |— 3,4,6 | 3,4,6 | 3,4,6 | I3,I4,Ig [2:3;3:2
BI|1 00 —13 “1900] 2 |+ 2,21 ] 2,21 | 2,21 | Il |2:2
B2/ 1 00 -3 4500] 2 |- 1,42 | 1,4,2 | 1,42 | LI |2:1
cil1 10 -5 3012 [+ 4,21 | 42,1 | 2,21 | L |2:2
2|1 10 —65  —231|1|2 |+ 21,2 | 2,1,2 | 2,1,2 | Io,1,Io |2:1
DI| 1 0 1 —1946 32780 |1| 6 |+ 6,12,1] 6,12,1 |2,12,1 | Is.010,1; | 2:2:3:3
D2| 1 0 1-31106 2108972 |1| 6 |+ 3,6,2 | 3,6,2 | 1,6,2 | Is,Tg,0o |2:1:3:4
D3| 1 0 1 —9641 —337876|1| 2 |+ 18,4,3 | 18,4,3 | 2,4,3 | Iig,lu,l3 | 2:4:3: 1
DAl 1 0 1-32681 1883180 |1] 2 |+ 9,2,6 | 9,2,6 | 1,2,6 | To,In,Tg | 2:3:3:2
E1| 1 0 1 —130  —556|0| 2 |+ 14,2,1| 14,2,1 | 2,2,1 [ T4, | 2:2
E2| 1 0 1 —2050 —35884[0| 2 |+ 7.1,2 | 7,1,2 | 1,1,2 | I;.,Ip | 2:1
Fi|1 11 -19 17]1] 4 |+ 821 ] 82,1 | 821 | Igl |2:2
F2 | 1 1 1 —99  —399(1] 4 |+ 44,2 | 4,42 | 42,2 | LI, |2:1,3,4
F3| 1 1 1 —1559 —24343|1] 2 [+ 2,81 | 2,81 | 2,2,1 | To,Ig,T; | 2:2
F4| 1 1 1 81 1479 |1| 4 |— 2,24 | 2,2,4 | 2,24 | Il |2:2
Gil1 01 -8 201] 2 [+ 2,41 | 2,4,1 | 2,4,1 | I, | 2:2
G2l 1 01 —98 362 (1] 2 |+ 1,2,2 | 1,2,2 | 1,2,2 | LI, |2:1
440 N =440=23-5-11 (4 isogeny classes) 440
Atlo 00 —38 871 2 [+ 43,271 0,32 [ 21,2 [0, ]2:2
A2 0 00 17 -318|1] 2 |- 86,1 | 0,6,1 | 2,21 | Il |2:1
21l n 0 n 5 Sl 1l 9l . A 911 An91 1991 l1TITT. T |o.0



TABLE 1: ELLIPTIC CURVES 440C-443C 165

ai as as ay ag |7 ||T||s ord(A) |ord_(j5)| ¢ Kodaira | Isogenies
440 N=440=2%.5-11 (continued) 440
ci] 0 0 0 —5042 137801]0] 4 [+ 4,3,2 | 0,3,2 [2,3,2 | ILI;I, |2:2
C2/0 00 —5047 13751410| 4 |+ 8,6,4 | 0,6,4 | 2,6,2 | I7,Ig014 [2:1,3,4
C3| 0 0O —7547 —12986|0| 2 |+ 10,3,8 | 0,3,8 | 2,3,2 | III"I3,Ig |2:2
C4l 0 0 0 —2627 269646 (0| 4 |—10,12,2|0,12,2 [2,12,2 [TI1* I;5,I,| 2 : 2
Dl‘ 0 00 —67 —226‘0‘ 1 \— 11,3,1\ 0,3,1 \1,3,1 \ 1% 15,1, \
441 N =441 =3%-72 (6 isogeny classes) 441
Al o o1 0o —4202f0l1]= 3,10 | 0,0 | 2,1 [ 1 [3:2
A2/ 0 01 0  113447|0| 1 |— 9,10 | 0,0 | 2,1 | mI*I1* |3:1
Bi| 0 0 1 0 121] 3 |- 3,4 0,0 | 2,3 | LIV |3:2
B2/ 0 0 1 0 “331(1] 1 |— 94 | 00 | 2,3 | "IV |3:1
Cil1-10 432 —869 |1 2 |— 8,7 2,1 2,4 5,15 2:2
C2| 1-1 0 —1773  —5720{1| 4 |+ 10,8 | 4,2 | 4,4 | I;I; |2:1,3.4
C3| 1-1 0 -—21618 —1216265[1| 4 |+ 810 | 2,4 | 4,4 | I;IX |2:2,56
C4] 1—-1 0 —17208 867901 1| 2 |+ 14,7 8,1 4,2 | P ) 2:2
C5| 1-1 0 —345753 —78165914[1| 2 |+ 7,8 L2 | 22 | ILL; |2:3
C6| 1 -1 0 —15003 —1979636|1| 2 |— 7,14 1,8 4,4 I7,I5 2:3
D1 1-1 1 —90 46[1] 2 |- 6,3 0,0 | 2,2 | ILII [2:27:3
D2| 1-1 1  —335 24401 2 |+ 6,3 | 0,0 | 42 | LI |2:1;7:4
D3| 1-1 1  —965 —13940|1] 2 |— 6,9 0,0 | 2,2 | DI [2:47:1
D4 1-1 1 -16400 —804212|1| 2 |+ 6,9 0,0 4,2 I 1 (2:3;7:2
E1| 0 01 —1029 —13806]/0] 1 |- 7,8 1,0 | 2,1 | ©Ive [13:2
E2| 0 0 1 —402339 983071440 1 [— 19,8 13,0 2,1 I3, IVF 113 :1
Fi| 0 0 1 91 400111 [= 7,2 1,0 | 4,1 I |13:2
F21 0 01 —8211 —-286610(1| 1 |— 19,2 13,0 4,1 I 11 |13:1
442 N =442=2-13-17 (5 isogeny classes) 442
ALl 1-1 1 —94 36110 2 [+ 22,3 [ 22,3 [2,21] LI |2:2
A2 1-1 1 36 1193/0 2 |— 1,1,6 | 1,1,6 | 1,1,2 | T, ,.Is |2:1
Bl|1-11  —172 4651 2 [+ 82,3 | 82,3 823 Ighl; |2:2
B2 1-1 1 —1212 16175|1] 2 |+ 4,1,6 | 4,1,6 | 4,1,6 | Tyl |2:1
Cll1 10 54 17210 2 [+ 82,1 | 8,2,1 |2,2,1] Ighl |2:2
c2l1 10 2 540(0] 2 |— 4,42 | 44,2 | 22,2 T, |2:1
DI| 1 1 1 9 “130] 2 [+ 2,21 | 2,2,1 2,21 ] Lkl |2:2
D21 11  —139 —689(0] 2 |+ 1,1,2 | ,1,2 |1,1,2] T, |2:1
E1| 1 1 1 —144951 7520141]0] 2 |+ 22,4,5 | 22,4,5 22,2, 1| Tno,Is,I5 |2:2
E2| 1 1 1-1875511 987017101 (0| 2 |4+ 11,2,10]11,2,10|11,2,2 | T;1,I2,110 |2 1
443 N =443 =443 (3 isogeny classes) 443
ALl 0 11 1 fij1|- 1 | 1 | 1 [ n |



166 TABLE 1: ELLIPTIC CURVES 444A-448H

ai as as ay ag |7 ||T|| s ord(A)|ord_(j)| ¢, |Kodaira | Isogenies
444 N =444 =22 .3-37 (2 isogeny classes) 444
Al 0-1 0  —13 —14lol 2 [+ 42,11 0,21 [1,21] 1V IL1, [2:2
A2/ 0-1 0  —28 4010 2 [+ 81,21 0,1,2 |1,1,2|TV*,,Io|2:1
B1| 0 1 0 9 0[1] 2 |+ 44,1 | 0,41 [3,4,1]| VI, |2:2
B2/ 0 1 0 36 36(1) 2 |— 8,22 0,2,2 3,2,2|TV:Ih,|2:1
446 N =446 = 2-223 (4 isogeny classes) 446
Al[ 1 10  —30 52011 [+ 6,1 | 6,1 |21 Igl |
Bi|1 11 -39 =351 1 |+ 14,1 | 14,1 | 14,1 | I L |
cil1 11 2 5l0] 2 [— 6,1 | 61 |61 I, |2:2
c2l1 11 -38 “101l0] 2 |+ 3,2 | 32 |32 Lk |2:1
Dl‘ 1-1 0 —4 4‘2\ 1 |+ 2,1 | 2,1 ‘ 2,1 | I, I ‘
448 N =448 =2%.7 (8 isogeny classes) 448
A1l 0 0 0 4 161] 2] 14,1 ] o1 [41 | L [2:2
A2/ 0 00  —76 240(1] 4 |+ 16,2 | 0,2 | 42 | ;L |2:1,34
A3/ 0 00 —236  —1104|1| 2 |+ 17.4 | 0,4 | 4,2 | IxI, |2:2
A4l 0 0 0 —1196 15920 (1] 4 |+ 17,1 | 0,1 | 4,1 | &L, |2:2
B1| 0 0 0 4 —16|1] 2 |- 14,1 ] 01 |41 | ILL [2:2
B2/ 0 00  —76 —240(1| 4 |+ 16,2 | 0,2 |42 | L, |2:1,34
B30 00 —1196 —15920|1| 2 |+ 17,1 | 0,1 | 2,1 | &L, |2:2
B4 0 0 O —236 11041} 4 |+ 17,4 0,4 4,4 ZI, |2:2
Cl| o-1 0  —33 161]0] 2 [— 20,1 | 2,1 | 41 | IyhL |2:23:3
C21 0-10 —673 69450 2 |+ 19,2 1,2 2,2 I5I, |2:1;3:4
3] 0-1 0 287  —3231(0| 2 |- 24,3 | 6,3 | 4,3 | Il |2:4,3:1,5
Cc4] 0-1 0 —2273 —33439|0| 2 |+ 21,6 3,6 2,6 I le [2:3;3:2,6
C5| 0-1 0 —10913 —436447|0| 2 |- 36,1 | 18,1 | 4,1 | LI, [2:6;3:3
C6| 0 -1 0—174753 —28059871|0| 2 |+ 27,2 | 9,2 | 2,2 | IiI, |2:53:4
DI| 0-1 0 7 “7loj 2 |- 121 ] 01 |41 | L |2:2
D2] 0-1 0  —33 ~31l0| 2 |+ 152 | 02 | 22| L |2:1
El] 0-1 0 1 3300/ 2 [— 16,1 | 01 |41 | ItL |2:2
E2| 0-1 0 —161 833|012 |+ 17,2 | 0,2 | 22| L |2:1
Fi1| o0 1 0  —33 —161]0] 2 [— 20,1 | 21 | 41 | IjpL |2:23:3
F20 0 10 —673  —6945|0| 2 [+ 19,2 | 1,2 | 22| I3l |2:1;3:4
F3| 0 10 287 32310 2 |— 24,3 6,3 4,1 s 12:4,3:1,5
F4| 0 1 0 —2273 3343910 2 |+ 21,6 3,6 2,2 Il |2:3;3:2,6
F5| 0 1 0 —10913 436447 (0| 2 |— 36,1 18,1 4,1 g, i [2:6;3:3
F6| 0 1 0-174753 28059871|0| 2 |+ 27,2 | 9,2 | 2,2 | I, |2:53:4
Gl 0O 10 7 71 2 |— 12,1 0,1 4,1 L |2:2
G210 10  -33 311 2 |+ 152 | 0,2 | 42| L |2:1

>




TABLE 1: ELLIPTIC CURVES 450A-455B 167

ay asas ay ag|r||T||s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies

7 isogeny classes) 450

(

9 (21,0 |2,2,2 LI III*
9| 1,2,0 |1,4,2 | I, I3 III*
10,5,0 |10,2,2|T;0,Iz, ITI*
5,10,0 | 5,4,2 |I5,I%,, 111"

1,1] I,I51V |3
3,1,3 | I;,IIV |3

1,1 | I5,I5,IV* |3
15,151V |3

I, I 111 |2

1,500 |2
2
2

450 N =450 =2-32.52
Al 1 —680 94470
A2 1 —11930 504447
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451 N =451 =11-41 (1 isogeny class) 451
ALl 0 11 3 1= 1,2 [ 1,2 [ 1,2 [ 1,0

455 N =455=5-7-13 (2 isogeny classes
Al 0 —-50 111(1] 2
A2 0 —295 —1800|1
A3 0 —4670 —121675(1
A4 0 160 —7169(1
Bl1| 1-11

B2| 1-11 —72 1941
nal 1 1 1

)
2,1 | I3,L.L [2:2
,2, 2 16712712 2:1
1,2 13,11,14 2:2
1,1 112,11,11 2:2
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168 TABLE 1: ELLIPTIC CURVES 456A-462D

ai asas ay ag|r||T|| s ord(A) | ord_(j) Cp Kodaira |Isogenies

4 isogeny classes) 456

1%, 1,1,

B1|1 11 —16 —15\1\1\+ 10,1 | 10,1 |10,1\ Lo, 1 \

459 N =459 =3%-17 (8 isogeny classes) 459
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460 N =460 =22.5-23 (4 isogeny classes) 460

A1l 0 00 -8 —12/0[ 1 |- 81,1 | 01,1 | 1,1,1 [ 1ve LI

|
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‘3‘— 4,43 ‘ 0,4,3 |3,2,3‘ V14 I5 ‘
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4,12,1 | 0,12,1 | 1,2,1 | TV.I.L

Dl\ 0-1 0 —10 17]1\ 1 \— 4,21 \ 0,2,1 \3,2,1 \ IV.I,.I;

462 N =462=2-3-7-11 (7 isogeny classes) 462
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TABLE 1: ELLIPTIC CURVES 462E-468B 169
ay as ag ay ag |r||T||s ord(A) | ord_(j) Cp Kodaira | Isogenies
462 N=462=2-3-7-11 (continued) 462
El| 1 1 1 —405  4731)1] 2 |—14,2,3,2]14,2,3,2[14,2.3,2[1,4,15,I5,15 |2 : 2
E2| 1 1 1 —7445 244091|1| 2 |+ 7,4,6,1 | 7,4,6,1 | 7,2,6,1 | T;,Ly.Ig,0; |2:1
F1| 1 0 O —97 1337|101 4 |— 4,2,3,414,2,3,4|4,2,1,4 | IsIp,I3,I4 |2:2
F2|1 1 0 0 —2517 48285|0| 4 |+ 2,4,6,2 | 2,4,6,2 | 2,4,2,2 | Ix,I4,I6,10 |2:1,3,4
F3| 1 0 0 —3507  6507(0| 2 |+1,2,12,1]1,2,12,1] 1,2,2,1 |T1,I5,l12,]; | 2: 2
F4| 1 0 0-40247 3104415(0| 2 |+ 1,8,3,1 | 1,8,3,1 | 1,8,1,1 | I;,Ig,I5,T; |2: 2
Gi| 1 0 0 77 161]0] 6 |— 6,6,1,2 [ 6,6,1,2 | 6,6,1,2 | Ig,Is.1y.0o |2:2:3:3
G2/ 1 00 —363  1305|0| 6 |+3,12,2,1(3,12,2,1(3,12,2,1 |T3,10,T0,1; |2 :1;3 : 4
G3| 1 00 —823 —11611]0] 2 |- 2,2.3,6 [ 2,2.3,6 | 2,2.3,2 | Io,Io,Is,Is [2:4:3: 1
G4 1 0 0-14133 -647829|0| 2 |+ 1,4,6,3 | 1,4,6,3 | 1,4,6,1 | I;,I4,16,I3 [2:3;3:2
464 N =464 =2%-29 (7 isogeny classes) 464
A1l 0 10 8 alt] 1= 10,1 | o1 2,1 | Il
Bl|0-1 0 —80 304|1| 1 |- 10,1 | 0,1 2,1 | Iz
Ci| 0 1 0 80 —428|0| 1 |- 22,1 10,1 2.1 L |5:2
C21 0 1 0 —7280 238292|0| 1 |— 14,5 2,5 2,1 5,15 5:1
DI| 0-1 0 -4 —4lol 1 |— 8,1 0,1 1,1 ;1 |3:2
D2 0-1 O 36 7600 1 |— 8§,3 0,3 1,1 15,13 3:1
El1|] 0 10 -4  —24l0l2|- 8.2 0,2 1,2 31, |2:2
E2l0 10 -9 —14/0| 2|+ 4,1 0,1 1,1 I, |2:1
F1| 0 0 0 —4831 129242|0| 1 |- &1 | 0,1 L1 | I
G1| 0 00 -—19 —46‘0‘ 1 ‘— 14,1 ‘ 2,1 2,1 ‘ 1,1,
465 N =465=3-5-31 (2 isogeny classes) 465
Al 1 10 -7 16]1] 2 [= 3,1,2 | 3,1,2 | 1,1,2 | I, |2:2
A2 1 10 —162 729(1 2 |+ 6,21 | 6,21 | 221 | IgkI, |2:1
Bi|1 00 —10 —13|1|2 ]+ 1,1,1 | 1,1,1 | 1,1,1 | I, |2:2
B2/ 1 00 —15 0l1 4|+ 2,22 | 2,22 | 2,22 | Iyl |2:1,3,4
B3| 1 00 —170 837|1] 4 |+ 4,41 | 4,41 | 44,1 | LI [2:2
B4| 1 0 0 60 151 2 |— 1,1,4 | 1,1,4 | 1,1,2 | L, |2:2
466 =466 = 2-233 (2 isogeny classes) 466
All1 10 =5 —7lol 2 |+ 2.1 2,1 2,1 LI, |2:2
A2 1 10 —15 1o 2 [+ 1,2 1,2 1,2 LI, |2:1
Bl|1 00 —23 4110] 3 [= 6,1 6,1 6,1 I, [3:2
B2/ 1 0 0 7 2290 1 |— 2,3 2,3 2,1 Ll; |3:1
467 N =467 =467 (1 isogeny class) 467
A1l 0 01 —4 31111 |— 1 1 1 I
468 N =468 =2%2.3%2.13 (5 isogeny classes) 468
A1l 0 00 —168 —855]0] 2 ]— 4,34 | 0,04 | 3,22 | VLI, |2:2
A20 0 0 0 —2703 —54090|0| 2 |+ 8,3,2 | 0,0,2 | 3,2,2 |IV*IILIL, |2:1
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170 TABLE 1: ELLIPTIC CURVES 468C-475A

ay az as ay ag |7 | |T|| s ord(A) |ord_(j) | ¢ Kodaira | Isogenies
468 N =468 =22.32.13 (continued) 468
Cl| 0 00 —36 81(1] 2 |+ 4,6,1 | 0,0,1 |3,4,1 | IVI;L |2:2
c2/ 0 00 9 270 (1| 2 |- 8,6,2 | 0,0,2 | 3,2,2 [IV* I, |2:1
DI| 0 0 0 —120 —11]0| 2 |+ 4,12,1| 0,6,1 | 1,4,1 | IVI5L [2:2:3:3
D2| 0 0 0 —1335 —18722|0| 2 |+ 8,9,2 | 0,3,2 | 1,4,2 |[IV*[51,(2:1;3:4
D3| 0 0 0 —6600 206377 (0| 6 |+ 4,8,3 | 0,2,3 | 3,4,3 [ IVI5Is [2:4;3:1
D4| 0 0 0 —6735 197494 (0| 6 |+ 8,7,6 | 0,1,6 | 3,4,6 [IV*IITs|2:3;3:2
El1| 0 0 0 —48 ~115|0] 2 |+ 4,81 ] 0,2,1 | 1,4,1 | IVI5]; [2:2
E2| 0 0 0 —183 8300 2 |+ 87,2 | 0,1,2 | 1,2,2 [IV*If L, |2:1
469 N =469 =7-67 (2 isogeny classes) 469
ALl 1 01 -8  —275]1| 1]+ 51 | 51 | 1,1 | I |
Bl‘ 1-1 1 —12 18‘1‘ 1 \+ 1,1 ] 1,1 ] 1,1 \ I,.I ]
470 N =470 =2-5-47 (6 isogeny classes) 470
Al 1 01 44 106 1) 1 [+ 81,1 ] 81,1 [2,1,1] IglL |
Bl| 1 0 1 —5773 168328 |0| 3 |+ 8,3,1 | 83,1 | 2,3,1 | Ig,I3]; |3:2
B2| 1 0 1 —6348 132618 |0| 1 |+ 24,1,3|24,1,3 | 2,1,1 | Ip4]3,I5 [3:1
Ci|1 10 -97 2811 1 |+ 2,7,1 | 2,7,1 | 2,7,1 | I,I..I; |
DI| 1 00 —36 800] 3 |+ 6,1,1 ] 6,1,1 | 6,1,1 | Ig,L1,I; |3:2
D2 1 0 0 —176 —844 10| 1 [+ 2,3,3 | 2,3,3 | 2,1,1 | LT3l |3:1
El|1 11 -1 911 1 [+ 41,1 | 41,1 | 41,1 | LI |
Fl‘ 1-1 1 —117 141\1\ 1 \+ 14,3,1] 14,3, 1 ]14,3,1 \ Lia 5,14 ]
471 N =471 =3-157 (1 isogeny class) 471
Al 1 11 1 20101 |- 21 2,1 2,1 I,
472 N =472=23.59 (5 isogeny classes) 472
Al 0 0 0 2 1] 1= 41 | o1 | 21 | mnL |
Bl| 0-1 0 -276 —-1676|0| 1 |- 81 | 0,1 | 2,1 | ItI |
Cl| 0-1 0 8 12|01 |- 11,1 | 0,1 | 1,1 | II"I |
DI| 0 0 0 —19 -34]|0| 1 |- 10,1 | 0,1 | 2,1 | OI*I; |
El‘ 0-1 0 4 4\1\ 1 \— 8,1 ] 0,1 ] 4,1 \ Ir,I ]
473 N =473 =11-43 (1 isogeny class) 473
Al| 0 1 1 —1006 11952 (1| 1 |— 3,2 3,2 1,2 I3,15

= = 29" 1sogeny classes

474 N=474=2-3-79 (2i 1 474
A1l 1 10 81 27 1] 1 [ = 14,3,1] 14,3,1 | 2,1,1 | LigI3,1; |
Bl| 1 01 —7 1411 |=- 251] 251 [251]| Ll |
475 N =475=5%2-19 (3 isogeny classes) 475
Al| 0-1 1 17 ~710 6,1 0,1 1, [3:2

—_

999

129

N

1‘—
;

R 2

|

N 2

1,1‘
1 2

T* T.




171
475
2
01
477
480
2:2,3,4
2:1

2
2

Kodaira | Isogenies
I11,I,
111,15
I*aIl

IILI5,15

1*711711

Cp
2.1
2,2
1,1

2,2,2
2.1,1

ord_(j)
0,1
0,2
0,1
0,2,2
0,1,1

(continued)
(8 isogeny classes)

(1 isogeny class)

s ord(A)
3,1
3,2
6,1

1+ 6,2,2

+12,1,1

93

T
2
2
1
4
2

475 =52 .19

,
AT7 = 32
1

480 =2%-3-5

Qe
N
291 |1
5916 | 1
92
—-10 |1
0

N

—-255 |1

TABLE 1: ELLIPTIC CURVES 475B-481A
N

Q4

8
—617
0
—25
3

—6
—81

az as
1 -1 0
1 -1 0
1 -1 1
1 -1 1
1 -1 0
0-1 0
0-1 0

ai

B1
B2
C1
C2
Al
Al
A2

475
477
480

S Lt S
1~ [ 1~
_37 _37 _37
N = 1T AN~ —~ = 1T N~ —~ — 1N~ —
AN NN NN NN
1 1 1
1 1 1
I N I N [ Ne]
N o N e N e G
p— — i
1 1 1
S NN A AN A A NN
T SN P X N R R I I
N H TN AN AN AN NN A N
I 1 I
1 1 1
N '~ N A~ ' N
~ ol &« & @« o]l & & & ol e e o«
A N A A N O
S oo icoc oS IS o
I 1 ]
1 1 1
— N~ T e = T S oo
ST R e TR T N B i S VN C A~
o' d'caVad'c N
1 1 1
+ 1 +++ 1 +++ 1+ ++
1 1 1
22"4242"4222"4224
1 1 1
—“—H1lO0O 000000000 OO
1 1 1
OF'ow o Mmoo oWt O
DA NSO DN TD RN O D
— | I~ = — N I~ NN o)
1 _ 1 _ _1423
| _
1 1 1 _
I 1 I
O OO OO~ F O~ © <
DA A DF A, D0, NS A
_ [ — [ aN o
I _ 1 __3_
1 1 1 |
o, 000,000,000 O
1 1 1
— = A~ o~~~ o~~~
[ R |
00"0000"0000"000
1 1 1
N ' aNNm ' NN =AM
<<'mmmmrooooo'AANAA

481

2:2,3,4
01

2:1

2

2:1
2:23,4
2:1

11151
1*713718
I5,15,12
I*718711
1*712511
1*712714
TIRRE
1*711714

1,2,1
2,2,1
4,2,4
2,2,2
1,1,4

0,8,1
0,2,1
0,2,4
0,2,2
0,1,4

(1 isogeny class)

~ 12,2,4

G1

+ 6,4,2
+ 9,8,1
+ 9,21
+ 6,2,2
+ 9,1,4

[ |

2
4
2
4
2
4
4
4
2
2
4

0
481 =13 - 37

1360 | O
—2204 | 0
84385 | 0

3960 | 0

7211
—168 | 1
4212 | 1

225 | 1
8

—100 | O

728 1 0

-72 10
—4212 10

168 | 0

N —

97940 1 1 | o

—226
—496
24
—30
—80
—480
15
—10
—40
—160
15
-30
—480
—80
N _1RO2

0-1 0
0-1 0
0 -1 0 —3601
0-1 0
0-1 0
0-1 0
0-1 0
0-1 0
1 0
1 0
1 0
1 0
1 0
1 0
1

0
0
0
0
0
0

1

E1
E2
E3
E4
F1
F2
F3
F4
G2
G3
G4
H1
H2
H3
H4
481
[ A7 ]




172 TABLE 1: ELLIPTIC CURVES 482A—490G

ai as as ay ag |7 | |T| | s ord(A) |ord_(j) | ¢ Kodaira | Isogenies
482 N =482 =2-241 (1 isogeny class) 482
ALl 1T 01 —44  —150[1] 1 [— 141 | 141 | 21 | LuhL
483 N =483 =3-7-23 (2 isogeny classes) 483
Al] 0 1 1 -9 —457]0] 1 [- 51,3 ] 51,3 [ 51,1 ] LIl |
B1| 0 1 1 2 1\0\ 1 \— 1,1,1 \ 1,1,1 |1,1,1\ I;.Ii.I \
484 N =484 =22.11% (1 isogeny class) 484
ALl 0 1 0 323 2%71 1] 1 [~ 8,7 0,1 1,4 | VeI [3:2
A2 0 1 0-9357 347279 (1| 1 |— 8,9 0,3 3,4 Iv<I; |3:1
485 N =485=5-97 (2 isogeny classes) 485
A1 0 1 1 —121 —6410] 3 |+ 3,3 3,3 1,3 Is,I3 3:2,3
A21 0 1 1-6911 —223455|0| 1 |+ 9,1 9,1 1,1 o, |3:1
A3l 0 11 -s81 25|01 3 [+ 1,1 1,1 1,1 L, |3:1
Bl‘ 0 01 -2 0\1‘ 1 \+ 1,1 ‘ 1,1 ‘ 1,1 I.I ‘
486 N =486=2-3% (6 isogeny classes) 486
Al 1-1 0 3 511] 1 [— 6,5 6,0 2.1 eIl |3:2
A2 1 -1 0 —177 953 (1] 3 | = 2,11 | 2,0 2.3 | I,IV* |3:1
Bl|1-10 -6 “4l1] 1 |+ 3,5 3.0 1,1 LI |3:2
B2 1-1 0 -9 3861 3 |+ 1,11 | 1,0 1,3 | 1,Iv* |3:1
ci| 1-1 0 -123 55710 3 |+ 3,7 3,0 1,3 I3,IV 3:2
C2| 1 -1 0 -—258 —748 (0| 1 |+ 9,13 9,0 1,1 Io,IT" 3:1
DI| 1-1 1 -20 “9lol 1 |= 25 2.0 2.1 LI |3:2
D2| 1-1 1 25  —161|0| 3 |— 6,11 | 6,0 6,3 | IgIV* [3:1
El1|] 1-1 1 —11 “11lo] 1 |+ 1,5 1,0 1,1 LI |3:2
E2| 1-1 1 —-56 16310 3 |+ 3,11 3,0 3,3 I3,IV: | 3:1
F1| 1-1 1 -29 37111 3 |+ 9,7 9,0 9,3 Io, IV 3:2
F2 | 1 -1 1-1109 —13931[1| 1 |+ 3,13 | 3,0 | 31 | I [3:1
490 N =490=2-5-7% (11 isogeny classes) 490
ALl 1 01 121 46113 = 21,8 21,0 [ 2,1,3 [ Io,I;,IV* [3:2
A2 1 0 1-1594 —26708 1| 1 |— 6,3,8 | 6,3,0 | 2,1,3 | Is,I5,IV* | 3: 1
Bl|1 10 17 “o7l0] 1 |- 7,32 ] 7,30 | L,L1,1 | TpIsI0 |3:2
B2 1 1 0 —158 1268 0] 1 | — 21,1,2 | 21,1,0 | 1,1,1 | Top,,,0T |3:1
ci| 1 0 1 807 11708 |0 3 |— 7,3,8 | 7,3,0 | 1,3,3 | I, Is,IV* | 3:2
C2| 1 0 1-7768 —458202|0| 1 |— 21,1,8| 21,1,0 | 1,1,3 | Ty, ,,IV* [3:1
DI 1 1 0 3 111 ]= 21,2 21,0 | 2,1,1 | IyI,0I |3:2
D21 1 0 -32 641 1 |— 6,3,2 | 6,3,0 | 2,3,1 | IeIsIl |3:1
El] 1 00 -1 “15]0] 3 | = 3,1,4 | 3,1,0 | 3,1,3 | I;,,,IV |3:2
E2| 1 0 0 —491  —4229|0| 1 |- 1,3,4 | 1,3,0 | 1,1,3 | 1,51V [3:1
F1| 1 -1 1-6453 201121[0] 1 [— 21,8 | 21,0 | 2,1,1 | To,I;,IV* [ 7:2
F2 | 1 -1 1 44997 —1904213 [0 | 1 | — 14,7,8 | 14,7,0 |14,1,1 | T;4,I,,IV* | 7: 1

)

el 1] 9 1 _ 1n9o92!l 1tno9n01l1n9 91 1. 1. 11T |

N
]



TABLE 1: ELLIPTIC CURVES 490H-496E 173

ai az as ay ag |7 [ |T| | s ord(A) |ord_(j) | ¢p Kodaira | Isogenies
490 N =490=2-5-72 (continued) 490
H1| 1-1 1 113 7T110| 4 | — 4,2,7 | 4,2,1 | 4,2,4 | I I,IF |2:2
H2| 1 -1 1 —867 8159 |0 | 4 |+ 2,48 | 2,4,2 | 2,44 | LI,I5 [2:1,3,4
H3| 1 -1 1 —4297 —100229 0| 2 |+ 1,8,7 | 1,81 | 1,82 | I;IgIf |2:2
H4| 1 -1 113117 581459 [0| 2 |+ 1,2,10 | 1,2,4 | 1,2,4 | T;,I,,I5 [2:2
|1 11 =50 5095]0] 1 |—3,1,10 | 3,1,0 | 3,1,1 | Is,I;,I1* |3:2
12 | 1 1 1-24060 1426487 (0| 1 |— 1,3,10| 1,3,0 | 1,3,1 | I;,I3,II* |3:1
JU] 1 1 1 —3480 —94375|0] 2 10,2,9 | 10,2,0 [10,2,2 | 110,15, 101" | 2 : 2
J2 | 1 1 1 —58360 —5450663 |0 | 2 |+ 5,4,9 | 54,0 | 54,2 | I5,I,,III* |2:1
Ki| 1-1 1 —132 5490 1 |- 2,1,2 | 21,0 | 2,1,1 | LI, |7:2
K2| 1-1 1 918 5289 10| 7 | — 14,7,2 | 14,7,0 [14,7,1 | T34 1700 [7:1
492 N =492 =2%.3-41 (2 isogeny classes) 492
Al 0-10 -13 2501 1 |- 81,1 ] 0,1,1 |3,1,1 | V-1, |
Bl‘ 0 10 11 695‘1| 1 \— 8,9,1 \ 0,9,1 \3,9,1 \IV*,IQ,Il \
493 N =493 =17-29 (2 isogeny classes) 493
ALl 1-1 1 —7741 801682]|0| 1 |- 1,9 | 1,9 | 1,1 | Iy |
Bl‘ 1 -1 1 =57 222\1| 1 \— 2,3 \ 2,3 \ 2,3 \ Ip15 \
494 N =494=2-13-19 (4 isogeny classes) 494
ALl 1 10 13 1311 ]- 512512 |1,1,2] LLL |
Bl| 1 -1 0 4 ool 2 |- 41,1 | 41,1 | 2,1,1 | Iy, |2:2
B2| 1-1 0 —16 12100 4 |+ 2,2,2 | 2,22 [ 2,22 I,LIl, |2:1,3,4
B3| 1 -1 0 —146 —63810| 2 |+ 1,1,4 | 1,1,4 [ 1,1,4 | I; 10, |2:2
B4| 1 -1 0 —206 11900 2 |+ 1,4,1 | 1,4,1 | 1,2,1 | I;I0 |2:2
Cil| 1-1 0 —61 -169|0| 1 |- 1,1,2 | 1,1,2 | 1,1,2 | L1 LI |
Dl‘ 1 1 1 —1001 12375\1| 1 \— 13,3,2\ 13,3,2 \13,3,2\ I3.I5.15 \
495 N =495=3%2.5-11 (1 isogeny class) 495
Al| 1-1 1 7 —8(1| 2 |- 6,1,1 ] 0,1,1 | 21,1 | IZLI; [2:2
A2 1-1 1 —38 —44(1| 4 |+ 6,2,2 | 0,2,2 | 4,22 | IZLI, |2:1,3,4
A3| 1 -1 1 —533  —4598|1| 2 |+ 6,4,1 | 0,4,1 | 2,2,1 | IZI.0 [2:2
A4l 1-1 1 —263 1666 (1| 2 |+ 6,1,4 | 0,1,4 | 2,1,4 | I5L], |2:2
496 N =496 =2%-31 (6 isogeny classes) 496
AL[ 0 0 0 1 1)1 |- 41 ] o1 | 1,1 | mp |
Bl1| 0-1 0 0 -1]/0[ 1 |- 41 | o1 | 1,1 | ILL |
Cl] 0-1 0 8 0ojo] 2 |- 10,1 | 0,1 4,1 51 [2:2
C2] 0-1 0 —32 32100 2 |+ 11,2 | 0,2 2,2 I, [2:1
D1| 0 -1 0 —2 —1]0] 1 |- 4,1 0,1 1,1 LI, |3:2
D2| 0-1 0 18 1o} 1 |- 4,3 0,3 1,1 mi; |3:1




174 TABLE 1: ELLIPTIC CURVES 496F-504H

ay az as ay ag |7 | |T|| s ord(A) |ord_(j)| ¢, | Kodaira |Isogenies
496 N =496 =2%-31 (continued) 496
F1|0 00 -—11 —70l1] 2 | = 16,1 41 | 41| 1L |2:2
F2| 0 0 0 —331 —2310|1| 4 |+ 14,2 2,2 | 42 | L, |2:1,3,4
F3| 0 0 0 —5291 —148134 (1| 2 |+ 13,1 1,1 |21 | L |2:2
F4| 0 0 0 —491 154 1| 4 |+ 13,4 1,4 | 44 | L |2:2
497 N =497=7-71 (1 isogeny class) 497
A1l 1 1 0 25 141111 |- 5,1 9,1 9,1 I5,14
498 N =498 =2-3-83 (2 isogeny classes) 498
A1 01 =5 —afol 2 [+ 21,1 | 21,1 [2,1,1] LI, [2:2
A2 1 01 5 1610 2 |- 1,2,2 | 1,2,2 |1,2,2] I;,Ib,I, |2:1
Bl‘ 1 01 -9 28‘1‘ 1 \— 4,5,1 \ 4,51 \2,5,11 I4,05.1; \
001 N =501 =3-167 (1 isogeny class) 001
ALl 1 1 0 3 olo] 2 [= 2,1 21 | 21| L, [2:2
A2 1 10 —12 ~1500] 2 |+ 1,2 L2 | 1,2 | Lo, |2:1
003 N =503 =503 (3 isogeny classes) 003
Al[ 1 01 —32 i [- 1 [ 1 ] o1 Lo
Bl| 1-1 0 2 -1jof1 |- 1 | 1 | 1 I |
Ci|/1 00 -210 -1189[0|1 |- 1 | 1 | 1 L
504 N =504=23.32.7 (8 isogeny classes) 504
Ao 00 -6 o[1] 2= 43,2 [ 0,02 [222] LI, [2:2
A2l 0 0 0 -—111 4501 2 |+ 83,1 | 00,1 [2,2,1| I ILL [2:1
BI| 0 00 -5  —135]0] 2 |+ 4,91 | 0,0,1 [2,2,1|IILIIT* I, |2:2
B2, 0 0 O 81 =702 (0] 2 | — 8§,9,2 0,0,2 (2,2,2] I7,IIT"I5 |2:1
Ci] 0 00 9 -5410| 2 |— §,6,1 0,0,1 2,2,1| IT,I5I; [2:2
c2 0 00 -—171 —-810(0| 4 |+ 10,6,2 | 0,0,2 |2,4,2 | III"I5I, |2:1,3,4
C3] 0 0 0 —2691 —53730|0| 2 |+ 11,6,1 | 0,0,1 |1,2,1| II*I50 |2:2
c4|l 0 0 0 —531 3726 [0 2 |+ 11,6,4 | 0,0,4 |1,2,2| II*I31, |2:2
DI| 0 00 —54  —243]0| 2 |— 4,92 | 0,0,2 [2,2,2|TILIT* 15| 2:2
D2| 0 0 0 —999 —12150|0| 2 |+ 89,1 | 0,0,1 |4,2,1| XL |2:1
E1| 0 00  —6 501] 2 |+ 43,1 | 00,1 2,21 ILIILL, |2:2
B2 0 0 0 9 21| 2 |- 83,2 | 0,02 |4,22] L |2:1
FI| 0 00 —66 205|1] 4 |+ 4,7,1 | 0,1,1 [2,4,1] ILI5L |2:2
F2| 0 0 0 —111  —110{1| 4 |+ 882 | 0,2,2 |4,4,2| I} |2:1,3,4
F3| 0 0 0 —1371 —19514|1| 2 |+ 10,10,1| 0,4,1 |2,4,1| III*I:1, [ 2:2
FA| 0 0 0 429  —866|1| 2 |— 10,7,4 | 0,1,4 |2,2,2| IIT*,I5,, |2:2
Gl 0 0O —66 —-1339 10| 4 | — 4,9,4 0,3,4 (2,4,4| IILIZ I, [2:2
G2 0 0 0 —2271 —41470|0| 4 |+ 8,12,2 | 0,6,2 |4,4,2| I7,I5I, |2:1,3,4
G3| 0 0 0-36291 —2661010 (0| 2 |+ 10,9,1 | 0,3,1 |2,2,1| III*I5,I; |2:2
G4 0 0 0 —3531 9686 |0 | 2 |+ 10,18,1] 0,12,1 |2,4,1 |III*I,.1, | 2: 2
milan n 0o e 7 10lnl o1 “ne1l nno1 o014l 1T1+T. [o.0




TABLE 1: ELLIPTIC CURVES 505A-510F 175
ai asas ay ag|r||T|| s ord(A) | ord_(j) Cp Kodaira |Isogenies
505 N =505=5-101 (1 isogeny class) 505
Al 1-1 0 —-10 1501 2 |+ 1,1 1,1 1,1 L, |2:2
A2/ 1-10 -5 26|11 2 |— 2,2 2,2 2,2 I, |2:1
506 N =506=2-11-23 (6 isogeny classes) 506
Al 1 01 —48 —1301] 1 [+ 71,1 | 7,1 | L1 | L |
B1| 1-1 0-290561 60356981|0| 1 [+ 3,7,1 | 3,7,1 | 1,1,1 | I3IzI; |
Cl] 1 01 —12 8lo] 3 |+ 1,31 | 1,3,1 | 1,3,1 | I;I5,I; [3:2
c201 01 —397 —3072|0| 1 |+ 3,1,3 | 3,1,3 | 1,1,1 | I3L;,I3 |3:1
D1 1-1 0 —-935 11229|1] 1 |+ 5,5,1 | 5,5,1 | 1,5,1 | I5Is0; |
El| 1-11 —4 —1[1| 1 |+ 3,1,1 | 3,1,1 | 3,1,1 | I3I;I; |
Fl‘ 1 00 —86 292|1\ 1 \+ 13,1,1 \ 13,1,1 \ 13,1,1 \ Lz, I \

N =507=3-132

(3 isogeny classes)
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176 TABLE 1: ELLIPTIC CURVES 510G-522D

ai as as ay ag |7 ||T|| s ord(A) |ord_(5) Cp Kodaira | Isogenies
510 N=510=2-3-5-17 (continued) 510
Gl 1 0 0 25  —375|0] 6 |—6,3,3,2|6,3,3,2(6,3,3,2 |Is,]I3,I3]5 | 2:2;3:3
G2/ 1 00 —655 —6223[0| 6 |+ 3,6,6,1[3,6,6,13,6,6,1 |Is,I6,I6,1;|2:1;3:4
G3| 1 0 0 —3275 —72435|0| 2 |—2,1,1,6(2,1,1,6 |2,1,1,2 |Io,I;,1; I [2:4;3: 1
G4| 1 0 0—52405 —4621873 0| 2 |+ 1,2,2,3(1,2,2,3(1,2,2,1 |1;,I5,I5,I5[2:3;3:2
513 N =513=3%-19 (2 isogeny classes) 013
Al 1-10 —42 12711 ]- 11,1 | o1 | 1,1 | my |
Bl‘ 1-1 -5 6‘1‘ 1 ‘— 5,1 ‘ 0,1 | 3,1 | V.1, ‘
514 N =514=2-257 (2 isogeny classes) 514
Al 1-11 —91 —245(1| 4 |+ 16,1 | 16,1 | 16,1 | TigL; [2:2
A2 1-1 1 —1371 —19189|1| 4 |+ 8,2 8,2 8,2 Is,Jo [2:1,3,4
A3| 1—1 1-21931 —1244565 (1| 2 |+ 4,1 4,1 4,1 I, [2:2
Ad| 1-1 1 —1291 —21589(1| 4 |— 4,4 4,4 4,4 Iy, [2:2
Bil|1 00 —4 oj1| 2 |+ 4,1 4,1 4,1 L [2:2
B2 1 0 0 16 4012 |- 2,2 2,2 2,2 I, [2:1
516 N =516 =2%-3-43 (4 isogeny classes) 516
Al 0-1 0 —4 —slo[ 1]- 81,1 | 01,1 ] 1,1,1 [IveI,L |
Bl1| 0-1 0 11 =471 1 | = 8,4,1 | 0,4,1 | 3,2,1 | IV I.I; |
cilo 10 -13 —2810] 2 |- 4,1,2 | 0,1,2 | 3,1,2 | IVI, I, |2:2
C210 10 —228 —1404[0] 2 |+ 82,1 | 0,2,1 | 3,2,1 [IV*Ip; |2:1
DI| 0 1 0 —44  —732]0] 3 |- 89,1 | 0,91 | 3,9,1 |IV*]Io,]; [3:2
D2( 0 1 0 —7604 —257772|0| 1 |— 83,3 | 0,3,3 | 1,3,3 |IV*]I3,]5 [3:1
517 N =517=11-47 (3 isogeny classes) 517
Al 0-1 1 36 —3l0[ 1]- 32 | 32 | 1,2 | Il |
Bl| 0 01 -16 -26[0| 1 |- 1,2 | 1,2 | 1,2 | I I |
01\ 0-1 1 =52 —3863‘1‘ 1 ‘— 3,4 ‘ 3,4 | 3,4 ‘ I3.1, ‘
520 N =520=2%.5-13 (2 isogeny classes) 520
AL[ 0 00 —23 4211 2 |+ 81,1 | 0,1,1 | 2,1,1 | I |2:2
A2/ 0 0 0 —43 —42(1] 4 |+ 10,2,2 | 0,2,2 | 2,2,2 |II* 1,1, |2:1,3,4
A3/ 0 0 0 —563 —5138|1| 2 |+ 11,4,1| 0,4,1 | 1,2,1 | II* 1,0 [2:2
A4l 0 0 0 157  —322(1| 2 |— 11,1,4 | 0,1,4 | 1,1,2 | I[*I;I; |2:2
Bl| 0-1 0 =20 —2810] 2 |+ 81,1 | 0,1,1 | 41,1 | ItI;,I; |2:2
B2| 0-1 0 0  —100|0| 2 |- 10,2,2 | 0,2,2 | 2,2,2 |II*IyI, |2:1
522 N =522=2-32.29 (13 isogeny classes) 522
Al 1-10 12 —208[1] 1 [- 59,1 ] 501 | 1,2,1 15,1171 |
Bl| 1 -1 0 —2046 36244 |0] 2 |— 22,3,1]22,0,1 | 2,2,1 | Iy, IILT; |2:2
B2| 1 -1 0-32766 2291092|0| 2 |+ 11,3,2 | 11,0,2 | 1,2,2 | I, [2:1
cil1-10 -6 —54(0] 3 |- 1,3,3 | 1,0,3 | 1,2,3 | I,,IILI3 |3:2
C2| 1-1 0 —1311 —17947(0| 1 |— 3,9,1 | 3,0,1 | 1,2,1 [IIII*L; |3:1
T T P e T e T TP T R Ry



TABLE 1: ELLIPTIC CURVES 522E-528C 177

ay as as ay ag |7 |[|T|| s ord(A) |ord_(j)| ¢ Kodaira |Isogenies

022 N =522=2-32.29 (continued) 522

El|1-10  —45 1391 1 [— 1,91 | 1,3,1 | 1,4,1 | L1350 |

[ 1-10 45 —203|1| 1 |- 10,6,1 | 10,0,1 | 2,1, 1] Lot [5:2
,5 12713,15 5:1
—18416  —960173 |0 — 22,91 ]22,0,1 [22,2,1 |1o9,III* I
—294896 —61564589 [0 | 2 |+ 11,9,2 | 11,0,2 |11,2,2 |11 I1I* I,

—146 713(0] 3 |- 3,3,1 | 3,0,1 |3,2,1 | I3,II,I; |3:2
1 1,2,1 | 1,,0T" 15 |3:1

14,41 ] LI |2:2
2 2,4,2 IQ,IE,IQ 2:1
411,24 LILL [2:2
1 2:2

—69341 —33115291
619564 858878903

—11,27,1]11,21,1[11,2,1 | 113,15, [3:2
—33,13,3 33,7,3 [33,2,3| I33,I5 05 |3:1

—_ =

524 N =524 =22.131 (1 isogeny class) 524

ALl 0 10 —309 19911 1 |— 8,1 0,1 1,1 | IVe],

525 N =525=23-52.

)
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isogeny classes
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178 TABLE 1: ELLIPTIC CURVES 528D-537C

ay as as ay ag |r | |T|| s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
528 N =528=2%.3.11 (continued) 528
DI 0 1 0 —12 12|10 2 |+ 81,1 | 0,1,1 |2,1,1 | IZL,I; [2:2
D2 0 1 0 —32 —60|0| 4 |+ 10,2,2 | 0,2,2 | 4,2,2 | I5],I, [2:1,3,4
D3| 0 1 0 —472 —4108(0| 2 |+ 11,4,1 | 0,4,1 | 2,4,1 | 5140, |2:2
D4 0 1 0 88  —300|0] 2 |— 11,1,4 | 0,1,4 | 4,1,2 | I;,I, |2:2
El1| 0-1 0 3 0lo] 2 |- 4,21 ] 0,21 |1,21] I, [2:2
E2| 0-1 0 —12 12|10 2 |+ 81,2 | 0,1,2 | 1,1,2 | 31,1, [2:1
F1| 0-1 0 —720 —5184|0| 2 |+ 22,5,1 | 10,5,1 | 4,1,1 | I3, 15y |2:2;5:3
F2| 0—-1 0 1840 —35904 (0| 2 |—17,10,2| 5,10,2 | 2,2,2 | I3.L10,I |2:1;5:4
F3| 0—1 0 —161040 24927936 (0| 2 |+ 14,1,5 | 2,1,5 | 4,1,1 | IZ1; 15 |2:4;5:1
F4| 0 -1 0 —160880 24979776 (0| 2 | — 13,2,10| 1,2,10 | 2,2,2 | Iz,I5,110 | 2:3;5: 2
G1| 0-1 0 —88  —272|1| 2 |+ 14,3,1 | 2,3,1 | 4,1,1 | IZ1s 0y [2:2:3:3
G2l 0-1 0 72 —1296(1| 2 |— 13,6,2 | 1,6,2 | 4,2,2 | I g, [2:1;3:4
G3| 0-1 0 —1288 18160|1| 2 |+ 18,1,3 | 6,1,3 | 4,1,3 | I*;,1.I5 [2:4;3:1
G4| 0—-1 0 —648 35568 |1| 2 |— 15,2,6 | 3,2,6 | 4,2,6 | Iyl [2:3;3:2
HI| 0 1 0 —104 3721 2 |+ 12,3,1 | 0,3,1 | 4,3,1 | I g0y [2:2
H2| 0 1 0 —184  —364|1| 4 |+ 12,6,2 | 0,6,2 | 4,6,2 | It Ig,I |2:1,3,4
H3| 0 1 0 —2344 —44428|1| 2 |+ 12,3,4 | 0,3,4 | 2,3,2 | I35, |2:2
H4[ 0 1 0 696 —2124 (1| 4 |—12,12,1| 0,12,1 [4,12,1| I5 150, [2:2
mlo 10 —77  =330]0| 2 |- 4,10,1 | 0,10,1 |1,10,1 | IL,I;0,I; |2:2
2|0 10 -1292 —18312(0| 2 |+ 8,52 | 0,5,2 | 1,5,2 | I3 151, [2:1
Jlo 10 —32 —12]0| 2 |+ 16,1,1 | 41,1 | 4,1,1 | IZIL [2:2
J200 10 =352 24200 4 |+ 14,2,2 | 2,2,2 | 4,22 | I;II, |2:1,3,4
J310 1 0 —5632 160820(0| 2 |+ 13,1,1 | 1,1,1 | 4,1,1 | IE LI [2:2
Jilo0o 10 —192 A788 (0| 4 |— 13,4,4 | 1,4,4 | 2,44 | I5 1.0, |2:2
530 N =530=2-5-53 (4 isogeny classes) 530
Al1[ 1 01 —14  —188|0| 3 |- 2,2,3 | 2,2,3 |2,2,3 | L, L3 |3:2
A2 1 01 -2029 —61244(0| 1 |— 6,6,1 | 6,6,1 | 2,2,1 | IgJs,I; [3:1
Bl1| 1-1 0 —4 ol1] 2 |+ 4,1,1 | 4,1,1 | 2,1,1 | I.I;,I; [2:2
B2 1-1 0 16 —1201] 2 |— 2,2,2 | 2,2,2 2,22 | Il [2:1
Cl| 1-1 0 1226 30580 (1| 1 |- 10,10,1|10,10,12,10,1 |I10,110,11 |
Dl\ 1 11 9 13\1\ 1 \— 6,2,1 \ 6,2,1 ‘6,2,1 \ Is,In,I; \
532 N =532=2%2.7-19 (1 isogeny class) 532
A1 0 0 0 4 500 2 |— 4,21 | 0,2,1 | 1,2,1 | IV,Io,]; |2:2
A2 0 0 0 —-31 5410 2 |+ 8,1,2 | 0,1,2 | 1,1,2 |[IV*I;,I|2:1
534 N =534=2-3-89 (1 isogeny class) 534
Al 1 11 —14 1111 + 6,2,1 | 6,2,1 |6,2,1 | Il [2:2
A2 1 11 26 1071 2 |— 3,42 | 3,4,2 |3,2,2 | ;L. |2:1
537 N =537=3-179 (5 isogeny classes) 537
Al 1 10 -120 9090 1 |- 131 [ 131 | 1,1 | Ly |
Bl| 0 1 1 —-75  =277|0| 1 |- 2,1 | 2,1 | 2,1 | Iy |
P N Elal 2l e 1 0 a1 U 2T 1T ey T




TABLE 1: ELLIPTIC CURVES 537D-544E 179

ai az as ay ag |7 | |T| | s ord(A) |ord—_(j) | ¢p Kodaira | Isogenies
537 N =537=3-179 (continued) 537
DI 1 0 1 1 1ol 1]- 1,1 | 11 | 1] nL |
E1| 0 1 1 —340  2308|0| 5 |- 10,1 | 10,1 |10,1]| Ty0,i |5:2
E2| 0 1 1 2450 -39812]0| 1 |— 2.5 2.5 | 2,1 Ly |5:1
539 N =539 ="72-11 (4 isogeny classes) 539
A1l 0 -1 1 —4377 —110013|0] 1 |— 81 2.1 | 2,1 I, |3:2
A2 0-1 1 —2417 —210708 0| 1 |— 12,3 6,3 2,1 | P B 3:1,3
A3l 0-1 1 21593 5467657 |0 1 |— 8,9 2,9 2,1 I5.1o 3:2
Bl1| 0 01 98 -8 |0 1 |— 81 | 2,1 | 21| I3L |
Cl| 1 0 1 170 —3237|1] 2 |- 9,2 3.2 | 4,2 L, [2:2
2| 1 01 —2525 —45279|1| 2 |+ 12,1 | 6,1 | 4,1 L |2:1
DIl 0O 11  —16 66|11 |— 6,1 0,1 | 2,1 1, |5:2
D2 0 1 1 506  7774|1| 1 |— 6,5 0,5 | 2,5 s |5:1,3
D3| 0 1 1-38319691174234|1| 1 |- 6,1 0,1 | 2,1 1, [5:2
540 N =540=2%-3%.5 (6 isogeny classes) 540
A1 0 0 O —-33 731003 |- 43,1 00,1 (3,1,1| IVILI; |3:2
A2/ 0 0 0 27 2970 1 | = 4,93 | 0,0,3 |1,1,1| IV,IV*I5 |3:1
Bl 0 0 0 3 (1] 1 [= 431 00,1 |[1,1,1] IV,JILI; |3:2
B2/ 0 00  —57 1691 3 |— 4,53 | 0,0,3 [3,3,3] IV.IV,I; |3:1
Ci| 0 0O —648 637211 3 |— 89,2 | 0,0,2 |3,3,2|IV*IV* ]I, |3:2
c2| 0 0 0 1512 33588|1| 1 |— 8,11,6| 0,0,6 |1,1,2|IV*II*Is |3:1
DI[ 0 0 0 97 971 3 | 4,91 0,0,1 |3,3,1| IVIVI, |3:2
D2| 0 0 0 —513 —4563|1| 1 |— 4,11,3| 0,0,3 |1,1,1| IV,II*I; |3:1
EL| 0 00 —72  —236[0] 1 | 83,2 00,2 |1,1,2] IV*ILI, |3:2
E2| 0 0 0 168 —1244 (0| 3 |— 8,56 | 0,0,6 |3,1,6| IV<IV,Is |3:1
F11 0 00 3 -11/0} 3 |- 4,3,3 | 0,0,3 |3,1,3| IVILI3 |3:2
F2| 0 00 —297 —1971|0| 1 |— 4,91 | 0,0,1 |1,3,1| IVIV*I, |3:1
542 N =542 =2-271 (2 isogeny classes) 542
ALl 1 11 —37 —149]0] 2 |- 14,1 | 141 [141] 1.5L [2:2
A2/ 1 11 —677 —7061]0| 2 |+ 7.2 7.2 | 7.2 LI, |2:1
Bl‘ 1 11 -8 9\1\ 1 ]— 7.1 \ 7,1 \ 7,1 \ I;.I; \
544 N =544 =2%-17 (6 isogeny classes) 544
A1l 0 00 —5 a1l 2 [+ 6,1 0,1 | 21 | 1ri |2:2
A21 0 0 0 5 1811 2 |— 9,2 0,2 | 1,2 L [2:1
Bl 0-1 0 —-22 810 2 [+ 61 0,1 | 21 | mri [2:2
B2 0-1 0  —17 65(0| 2 |— 12,2 | 0,2 | 2,2 L [2:1
Ci|0 10 —22 —48 |10 2 |+ 6,1 0,1 2,1 IILI, 2:2
c2l 0 10  —17 “65/0] 2 |- 12,2 | 0,2 | 22 L [2:1
DI[ 0 0 0 -5 —4lo| 2 |+ 6,1 0,1 | 21 | 1Ly [2:2
D2| 0 0 0 5 —18l0| 2 |~ 9,2 0,2 | 2,2 L [2:1
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180 TABLE 1: ELLIPTIC CURVES 544F-550E

ay asas ay ag|T||T|| s ord(A) |ord_(j) Cp Kodaira |Isogenies
544 N =544 =2°-17 (continued) 544
F1{ 0 10 —6 —8/0| 2 [+ 6,1 0,1 2,1 LI, [2:2
F2( 0 10 —16 12100 2 |+ 9,2 0,2 1,2 I, [2:1
045 N =545=15-109 (1 isogeny class) 045
Al 1-10  —284 19151 2 [+ 3,1 3,1 3,1 I, |2:2
A201-10  —289 1848(1] 4 |+ 6,2 6,2 6,2 IsI, [2:1,3,4
A3[1-10  —914 —8277|1] 2 |+ 3,4 3,4 3,4 I;.1, |2:2
A4l 1-1 0 256 76251 4 |— 12,1 12,1 12,1 Loy |2:2
546 N =546=2-3-7-13 (7 isogeny classes) 546
Al[1 10  —108 —486[0] 1 |- 1,5,3,11,5,3,1 | 1,1,1,1 |1,,15,I5,1, |
Bi|1 01 -8 —-10/0] 1 |- 5,1,1,1]5,1,1,1 [ 1,1,1,1 |I5,I3,I;.I; |
Cil1 01 —57 —164[1] 2 |+ 8,3,1,1(8,3,1,1]2,3,1,1 | Ig,I5,I;,I; [2: 2
c2(1 01  —137 380(1] 4 |+ 4,6,2,2[4,6,2,2(2,6,2,2 |14.16,15,15(2:1,3,4
C3[1 01 —1957 33140(1] 4 |+2,12,1,1(2,12,1,1(2,12,1,1|I5,I12,I1,1; |2 : 2
C4[1 01 403 2756/1| 2 |— 2,3,4,4(2,3,4,4(2,3,2,4 |I5,I51414 |2:2
Di| 1 01 13 182]0] 3 |- 3,9,1,1(3,9,1,11,9,1,1 |I3.I9,I;,I; [3:2
D21 01  —122 —4948(0] 3 |- 9,3,3,319,3,3,3(1,3,3,3 |Io,I35,I3,I5|3: 1,3
D3| 1 01 —26057 —1621108|0| 1 |—27,1,1,1(27,1,1,1|1,1,1,1 |To7,I3,I3,1;|3: 2
E1| 1 1 1 —100484 —12372091(0| 1 |-17,7,1,5[17,7,1,5|17,1,1,1|T17,I7,13,I5]|
F1| 1 0 0 714 —82908(0| 7 |- 7,7,7,1 | 7,7,7,1 | 7,7,7,1 | 17,17,17,I; |7 : 2
F2| 1 0 0-3674496 —2711401518(0| 1 |— 1,1,1,7 [1,1,1,7|1,1,1,1 |I3,0;, 1,17 |7 : 1
Gl|1 00 —7 —710] 2 [+ 4,1,1,14,1,1,14,1,1,1 | I,,];,I;,I; [2: 2
G2(1 00 —27 45(0] 4 |+ 2,2,2,212,2,2,2(2,2,2,2 | 15,I5,I5,I5[2:1,3,4
G3[1 00  —417 3243(0| 2 |+ 1,1,4,1|1,1,4,1(1,1,4,1 |I;,I;,I,,; [2:2
G4 1 00 43 25500 2 |— 1,4,1,4 [1,4,1,4 |1,4,1,2 | 11,014,011, |2: 2
049 N =549 =3%2.61 (3 isogeny classes) 049
Al| 1-1 0 3 0|1} 2 |- 3,1 0,1 2,1 LI, [2:2
A2[ 1-1 0 ~12 91| 2 |+ 3,2 0,2 2,2 LI, [2:1
Bl| 1-1 1 25 —26]1] 2 |- 9,1 0,1 2,1 <1, [2:2
B2 1-11  —110 —134[1| 2 |+ 9,2 0,2 2,2 I, [2:1
01\ 1-10 —18 —27\0\1|— 6,1 | 0,1 \ 2,1 | I |
550 N =550=2-5%-11 (13 isogeny classes) 550
Al 1 10 —25 12511 1 |— 3,7,1 | 3,1,1 | 1,4,1 | I3 51, [3:2
A2 1 10 225 —-3125|1| 1 |— 1,9,3 | 1,3,3 | 1,4,1 | I, 513 [3:1
Bl| 1 01 249 —6102/0] 1 |- 5,11,1 | 5,5,1 | 1,2,1 | I;,IEL [5:2
B2| 1 0 1 —148501 —22038602/0| 1 (- 1,7,5 | 1,1,5 | 1,2,5 | I;,I*I; |5:1
Cil1 01  —206 —1152[0| 1 |- 11,2,1 | 11,0,1 | 1,1,1 | I3 ILT; |
D1| 1 01 49 48l0/ 3 |- 1,8,1 | 1,0,1 | 1,3,1 | I, IV*]1; |3
D2[1 01 =576 —6202/0/ 1 |— 3,8,3 | 3,0,3 | 1,1,1 |I3IV*I5|[3:1




TABLE 1: ELLIPTIC CURVES 550F-555B 181

ay as ag ay ag |7 ||T|| s ord(A) |ord_(j)| ¢ Kodaira |Isogenies
550 N =550=2-52-11 (continued) 550
F1|1 01 —701 —7202|1| 1 |- 1,9,1 | 1,0,1 | 1,2,1 | I;,II*]; |5:2
F2 |1 0 1 4924 75298 (1] 1 |— 5,95 | 5,0,5 | 1,2,5 | I, III*I5 |5:1,3
F3 | 1 0 1-758201 254051548 |1| 1 |— 25,9,1 | 25,0,1 | 1,2,1 |Io5,III* 1, |5:2
Gl|1 01 —6 8|1] 2 |- 4,3,1 | 4,0,1 |2,2,1 | ILILL [2:2
G201 01 —106 408 (1] 2 |+ 2,3,2 | 2,0,2 |2,2,2 | I,,JILT, |2:1
H1| 1 1 1 2 1jol 1]- 1,21 | 1,0,1 |1,1,1 | ILILI; [3:2
H2| 1 11 —23 —5910| 1 |- 3,2,3 | 3,0,3 |3,1,1| I3ILI3 |3:1
|1 11 —223 395311 1 |- 7,7,3 | 7,1,3 | 7,4,3 | I;,I* I3 [3:2
12 | 1 1 1 7412 212781 |1| 1 |— 21,9,1 | 21,3,1 [21,4,1| I, I3 |3:1
J[1-11 —15 87|1| 1 |- 11,3,1 | 11,0,1 [11,2,1 ] Iy JILT; |
Ki|1 11 —28 —69(0| 1 |- 1,3,1 | 1,0,1 | 1,2,1 | I;,IILT; |5:2
K2[1 11 197 6810 5 |- 5,3,5 | 5,0,5 | 5,25 | I;,JILT; |5:1,3
K3| 1 1 1 —30328 2020281|0| 5 |— 25,3,1 | 25,0,1 |25,2,1| Io5,IILT; |5:2
L1111 —138 103110] 2 |— 4,91 | 4,0,1 | 4,2,1 | L, II*1; [2:2
L2(1 11 —2638 510310| 2 |+ 2,9,2 | 2,0,2 | 2,2,2 | I,III*I, |2:1
Ml‘ 1 1 1 —5138 —143969‘0‘ 1 ]— 11,8,1 ] 11,0,1 \11,1711111,1\/*,111
551 N =551=19-29 (4 isogeny classes) 551
Al[1 01 1 11— 21 | 2,1 | 21 | L |
Bl|1 00 —11 411 |- 2,1 | 2,1 | 2,1 | LI |
Ci|o 11 -2376 —61851|1| 1 |- 7,2 | 7,2 | 7.2 | I;L, |
D1| 0 11 —116 444‘1| 1 |— 1,2 | 1,2 ‘ 1,2 | I, |
552 N =552=23.3.23 (5 isogeny classes) 552
A1 0-1 0 —64 —260|1| 2 |— 10,6,1 | 0,6,1 | 2,2,1 | II*Ig,I; [2:2
A2 0—-1 0 —1144 —14516|1| 2 |+ 11,3,2 | 0,3,2 | 1,1,2 | II* 151, |2:1
Bl| 0-1 0 —2908 61876 | 0 — 8,14,1 ] 0,14,1 | 2,2,1 | 1,1y |2:2
B2 | 0—-1 0 —46648 3893500|0| 2 |+ 10,7,2 | 0,7,2 | 2,1,2 | III* ;15 |2:1
Cl| 0-1 0 4 —12]0] 2 |- 8,2,1 ] 0,2,1 |2,2,1| It LI [2:2
C2] 0-1 0 —56 ~132]0] 2 |+ 10,1,2 | 0,1,2 | 2,1,2 | II* 1,1, [2:1
DI| 0-1 0 —207  —1080|1| 2 |+ 4,3,1 | 0,3,1 |2,1,1 | I, [2:2
D2 0-1 0 —212 ~1020(1| 4 |+ 8,6,2 | 0,6,2 | 4,2,2 | I*IsI, [2:1,3,4
D3| 0-1 0 —752 6972|1| 4 |+ 10,3,4 | 0,3,4 | 2,1,4 | [II* Ig,I; [2:2
D4| 0—1 0 248 5252 |1 —10,12,1] 0,12,1 | 2,2,1 |III* 15,01, |2 : 2
El1| 0 10 —4 3201 4 |- 8,41 | 0,4,1 | 4,41 B0 [2:2
E2(0 10 —184 896 (1| 4 |+ 10,2,2 | 0,2,2 |2,2,2 | III*,,], |2:1,3,4
E3[0 10 —304 544 (1] 2 |+ 11,1,4 | 0,1,4 | 1,1,2 | II*I;,I; [2:2
E4| 0 1 0 —2944 60512 (1| 2 |+ 11,1,1 | 0,1,1 | 1,1,1 | II*I;,I; [2:2
555 N =555=3-5-37 (2 isogeny classes) 555
Alf o0 11 —1 —2900] 1 |- 1,51 | 1,51 [ L1,1] LI,L |

rR1|l n 1 1 _9ANE A7ecalonl 2 | o 121 l121 /121! 1..1.71. |2.9




182 TABLE 1: ELLIPTIC CURVES 556A-561D

ay as as ay ag | v | |T| | s ord(A) | ord_(y) Cp Kodaira | Isogenies
596 N =556=2%2-139 (1 isogeny class) 956
A1 0 00 -8 911 1 |— 4,1 0,1 3,1 IV,I
557 N =557 =557 (2 isogeny classes) 557
Al[ 1 10 0 iftf1|- 1 | 1 [ 1 ] n |
Bl| 0-11 -28 181/0] 1|+ 1 | 1 | 1 | ©L |
558 N =558=2-32-31 (8 isogeny classes) 558
Al 1-1 0 0 2[1] 1 |- 1,3,1 ] 1,001 | 1,2,1 | L, |
Bl| 1-1 0 -48 288 10| 3 |- 5,3,3 | 50,3 | 1,2,3 | I5II,I3 |[3:2
B2| 1 -1 0 417 —6067|0| 1 |— 15,9,1 | 15,0,1 | 1,2,1 |I5III*I; | 3:1
Cl| 1-1 0 6  —28|0| 2 |- 4,6,1 | 4,0,1 | 22,1 | I,I5I |2:2
C2| 1 -1 0 —18 —928(0| 4 |+ 2,6,2 | 2,0,2 | 2,4,2 | L,J5I, |2:1,3,4
C3| 1 -1 0 —2976 —61750 0| 2 |+ 1,6,1 | 1,0,1 | 1,2,1 | I, I3 |2:2
C4| 1 -1 0 —276 134(0) 2 |+ 1,6,4 | 1,0,4 | 1,2,2 | TI;,I514 |2:2
DI| 1-1 0 135 —243|1| 1 |- 5,11,1 | 5,51 | 1,4,1 | I5I:0 |5:2
D2| 1 -1 0 —12555 544887 |1| 1 |— 1,7,5 | 1,1,5 | 1,4,5 | I;,I1I5 |5:1
El1|] 1-11 -2 =53|0| 1 |- 1,91 | 1,0,1 | 1,2,1 | I,II*]1; |
F1| 1-1 1 46 209 | 1] 3 | — 15,3,1 ] 15,0,1 | 15,2,1 | Iy5,II1,T; | 3 :
F2 | 1 -1 1 —434 —7343|1| 1 |- 5,93 | 50,3 | 52,3 | I5,JII*I5 | 3:1
Gl|1-11 —-149 749|1| 1 |- 7,7,1 | 7,1,1 | 7,41 | LI} |
H1| 1-1 1 -752 9213\0\ 1 \— 1,17,1 \ 1,11,1 \ 1,2,1 \ 11,15, \
560 N =560=2%.5-7 (6 isogeny classes) 560
At o 10 -1 -5f[o|1|-381L1| 01,1 |1L1L1]| L |
Bl| 0 00 -—412 -3316|0| 1 |- 8,53 | 0,5,3 | 1,5,1 | I3 IsI5 |
ci1|o-1 0 —21 =35|0] 1 |- 12,1,1] 0,1,1 | 1,1,1 | II*I;,I; |3:2
2| 0-1 0 139 610 1 |—12,3,3| 0,3,3 | 1,1,1 | 1I*]I3,I3 |3:1,3
C3| 0—-1 0 —2101 39485 (0| 1 |— 12,9,1| 0,9,1 | 1,1,1 | II*Ig,I; |3:2
DI| 0 0 0 37 138]1] 2 | —16,2,1 | 4,2,1 | 42,1 | I3,y |2:2
D2 0 0 0 —283 1482 |1| 4 |+ 14,4,2| 2,42 | 4,22 | 5l |2:1,3,4
D3| 0 0 0 —1403 —18902 |1| 2 |+ 13,8,1| 1,81 | 2,2,1 | IfIgI; |2:2
D4| 0 0 0 —4283 107882 |1 | 4 |+ 13,2,4| 1,2,4 | 42,4 | I3]0y |2:2
El| 0 00 32 -212|1] 1 |- 81,5 | 0,1,5 | 2,1,5 | I§I;Is |
F1| 0-1 0 —5 251 1 |- 83,1 | 0,3,1 | 2,31 IgIsI; |3:2
F2| 0-1 0 —805 9065|1| 1 |— 81,3 | 0,1,3 | 21,1 | I¥I; I3 |3:1
561 N =561=3-11-17 (4 isogeny classes) 561
Al[ 0-1 1 —3729 —86416 | 0] 1 |- 10,1,1 | 10,1,1 | 2,1,1 | Tio,1.I; |
Bl| 0 1 1 -269 1628 |1| 1 |— 2,51 | 2,5,1 | 2,5,1 | IzI5,I; |
C_1_|__0___1__1____—_8______8_\_1_] 1 |- 41,1 | 41,1 | 41,1 | LI |
DI| 1 00 —12 15002 [+ 1,1,1 | 1,1,1 | 1,1,1 | I;,I1; [2:2
D21 00 —17 010 4 |+ 2,2,2 | 2,22 | 2,22 | Il [2:1,34
N 1 N N 1R _OR7 1 N ) 1T 1 1 A 1 1 A 1 1 A T. 1. 7T 9 .9




TABLE 1: ELLIPTIC CURVES 562A-570F 183

ay asas ay ag|r||T||s ord(A) | ord_(y) Cp Kodaira |Isogenies
562 N =562=2-281 (1 isogeny class) 562
A1 10 4 o[ 2]+ 4,1 4,1 2.1 LI |2:2
A201 10 16 20[0] 2 = 2,2 2,2 2,2 LI, [2:1
563 N =563 =563 (1 isogeny class) 563
Alj1 11 —15 16]2| 1 |— 1 1 1 I
564 N =564 =2%.3-47 (2 isogeny classes) 564
Alo-10 —221 —1191\ \ + 851 | 0,51 [ 1,1,1 [ Vi1 |
B1|0 10 ~37 L 83,1 | 0,31 | 33,1 | V-1, 3:2
B2l 0 10  —517 —4681 + 81,3 | 0,1,3 | 1,1,1 | IV*I, I3 |3:1
565 N =565=5-113 (1 isogeny class) 565
Al 1 01 19 “33fo[1 = 31 3,1 1,1 L1,
566 N =566 =2-283 (2 isogeny classes) 566
Al 1-10 -2 a1 41 | 41 | 21 | L |
Bl‘ 1 00 1 —1\0\1\— 1,1 \ 1,1 \ 1,1 \ I,.I; \
567 N =567=23"-7 (2 isogeny classes) 567
Al 1-10 0 3]~ 42 | o2 | 12 | mL, |
Bl‘ 1-11 -2 82‘1‘1’— 10,2 \ 0,2 \ 3,2 \ IV* Iy \
068 N =568 =23.71 (1 isogeny class) 068
A1l 0—1 0 —792 —o12l[ 1 [+ 11,1 0,1 1,1 I
570 N=570=2-3-5-19 (13 isogeny classes) 570
All1 10 98 372l 2 |- 8,3,1,218,3,1,2 [2,1,1,2] Ig, 15,111 [2: 2
A2l1 10 —1618 24388[1] 2 |+ 4,6,2,1 | 4,6,2,1 [2,2,2,1 | I4,I5,I,I; [2:1
Bil1 10 78 —97210] 2 |~ 14,2,3,1|14,2,3,1|2,2,1,1 | T1a,I2,I3,11 |2 : 2
B2 1 10 —1998  —351480| 2 |+ 7,1,6,2 | 7,1,6,2 |1,1,2,2 | .1, Ig.Ip [2: 1
Cil1 10 17 691 2 [— 4,1,3,2 | 4,1,3,2 [2,1,3,2 | 1o,11,I5,I5 |2: 2
c2l1 10  —397 2881[1] 2 [+ 2,2,6,1 | 2,2,6,1 [2,2,6,1 | In,Ip,Is1; |2:1
DIf1 01 3676 —514654[0] 2 |- 28,5,1,2]28,5.1,2[2,5.1,2 |Tog,I5,11,I2 |2 : 2
D21 01 78244 —7985758|0| 4 |+14,10,2,4|14,10,2,4|2,10,2,2{I14,110,I2,14|2:1,3,4
D3| 1 0 1-1233444-527363678(0 2 |+ 7,20,1,27,20,1,2 [1,20,1,2|T7,Ta0,1;,I2 |2 : 2
D4/ 1 0 1 —233764 335691860 2 |+ 7,5,4,8 | 7.5,4,8 [1,5,2,2 | I7,I5,1,Ig |2 : 2
Ell1 01 12 141 2]— 8,2,1,1 | 8,2,1,1 |2,2,1,1 | Ig,Io, Iy, [2:2
2| 1 01 68 —142(1] 4 |+ 4,4,2,2 | 4,4,2,2 [2,4,2,2 | Ty,14I0,I5 [2:1,3,4
E31 01  —968  —11662[1] 2 |+ 2,2.1,4 | 2,2.1,4 [2,2.1,2 | To,Io.I;,I, |2 : 2
4|1 01  —448 3506/1) 4 |+ 2,8,4,1 | 2,8,4,1 |2,8,4,1 | I,Ig, 15,1 [2:2
F1|1 01 —23 506/0| 6 |— 6,6,3,1 | 6,6,3,1 [2,6,3,1] Is,Is,I3,I; (2:2;3:3
F2{1 01 —1103 13898/0| 6 |+ 3,3,6,2 | 3,3,6,2 |1,3,6,2 | I3,I3,Is,I2 [2:1;3:4
ml 1 N 1 9N _1aco4lnl ol 1991 2l1e 91 2l99 1 2T, T.T.T.19. 4.9 .1




184 TABLE 1: ELLIPTIC CURVES 570G-574C

ai asas ay ag|r||T||s ord(A) ord_(j) p Kodaira |Isogenies
570 N=570=2-3-5-19 (continued) 570
Gl|1 11 —31 530 4 [+ 4,1,2,1 | 4,1,2,1 | 4,1,2,1 | L4 I |2:2
G201 11 —51 —510| 4 |+ 2,2,4,2 | 2,2,4,2 | 2,2,2,2 | LJyI;]5 [2:1,3,4
G3[1 11 —621 —6207)0| 2 |+ 1,1,8,1 | 1,1,8,1 | 1,1,2,1 | I;,LIg,L; |2:2
G4|1 11 199 1510 2 |— 1,4,2,4 | 1,4,2,4 | 1,2,2,2 | I;,I4 15,0, [2:2
H1|1 11 0 =3[ 2 ]- 2,2,1,1 | 2,2,1,1 | 2,2,1,1 | I,,LI L [2:2
H2| 1 11 —30 7500 2 |+ 1,1,2,2 | 1,1,2,2 | 1,1,2,2 | LI}, [2:1
1|1 11  —1900 32525000 4 |- 8,5,1,4 | 8,5,1,4 | 81,1,4 | IgI5I;,I; [2:2
121 11 —30780 20656770 4 |+ 4,10,2,2 | 4,10,2,2 | 4,2,2,2 | 141005 [2:1,3,4
31 11 —31160 2011565(0| 2 |+ 2,20,4,1 | 2,20,4,1 | 2,2,4,1 | Iy,Ip0,I40; |22
4|1 11 —492480 132819117)0| 2 |+ 2,5,1,1 | 2,5,1,1 | 2,1,1,1 | Ip,I5.I;,I; |2:2
J1[1 00  —1456 —21604[0| 2 |- 2,14,1,1 | 2,14,1,1 | 2,14,1,1 | L,I14. 01, [2:2
J211 00 —23326 —13731700| 2 |+ 1,7,2,2 | 1,7,2,2 | 1,7,2,2 | I1,I; 15,05 [2:1
K1|1 00 —25871 1614201[0] 6 |— 24,3,3,2 | 24,3,3,2 | 24,3,1,2 | I54,I5,I5,I, [2:2:3: 3
K2/ 1 00 —414991 102863225(0 6 |+ 12,6,6,1 | 12,6,6,1 | 12,6,2,1 | I;2,I6.1¢,1; [2:1;3: 4
K31 00 85489 84209850 2 |— 8,1,9,6 | 8,1,9,6 | 8,1,1,6 | IgIy,Ig]6 [2:4:3:1
K4[1 00 —463231 77449961/0] 2 |+ 4,2,18,3 | 4,2,18,3 | 4,2,2,3 |41 L1515 2:3;3:2
L1[1 00 9335 —737383|0/10|— 20,5,5,2 | 20,5,5,2 | 20,5,5,2 | I30.15.I5,15 [2:2:5: 3
L2|1 00 —87945 —8655975(0/10 |+ 10, 10, 10, 1{10, 10, 10, 1[10, 10, 10, 1{T10,I10,110,112 : 1;5 : 4
L3|1 00 —3301465 —2309192023(0| 2 |— 4,1,1,10 | 4,1,1,10 | 4,1,1,2 | L4510 [2:4;5: 1
L4| 1 0 0-52823445—147775056075(0| 2 |+ 2,2,2,5 | 2,2,2,5 | 2,2,2,1 | Iplo]o,I5 |2:3;5:2
Mi| 1 00 -10 200 4 |- 4,4,1,1 | 4,4,1,1 | 4,4,1,1 | I,L.IL [2:2
M2(1 00 —~190 992(0| 4 [+ 2,2,2,2 | 2,2,2,2 | 2,2,2,2 | I,Ip,I,,I, [2:1,3,4
M3 1 00 —220 6500 2 |+ 1,1,4,4 | 1,1,4,4 | 1,1,4,2 | I;1,0; 150, [2:2
M4/ 1 00  —3040 6426200/ 2 |+ 1,1,1,1 | 1,1,1,1 | 1,1,1,1 | 1,1 |2:2
571 N =571 =571 (2 isogeny classes) 571
All0-11  —929 —10595/0[ 1 |- 1 T
Bl‘ 0 11 —4 2\2\ 1 \— 1 1 \ 1 \ I \
572 N =572=22.11-13 (1 isogeny class) 572
A1[0 10 91 —1210[ 3 |- 8&,3,2 0,3,2 3,3,2 | IV*I3l, [3:2
A2/0 10  —1669 —274010| 1 |- 8,1,6 0,1,6 1,1,6 | IV LI |3:1
573 N =573=3-191 (3 isogeny classes) 573
Al1[1 00 3 oo[2 |- 21 2,1 2,1 I, [2:2
A2(1 00 —12 =300 2 [+ 1,2 1,2 1,2 L, [2:1
Bl 0 11  —1422 211210 1 |+ 5,1 51 | 51 | I |
01\ 011 —4 —2\1\ 1 \+ 3,1 3,1 \ 3,1 \ I3, \
574 N =574=2-7-41 (10 isogeny classes) 574
All1 10 —2 21+ 1,1 | 1,1 | oLur | Lo |
Bl|1 10  —2061 35165(1] 2 [+ 10,4,1 | 10,4,1 2,2,1 oL, |2:2
B2|1 10 —2221 291811 2 |+ 5,82 5,8,2 1,2,2 I5 0], [2:1
Al 1 1 7 S N D L L e N N A T




TABLE 1: ELLIPTIC CURVES 574D-576F 185

ay as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢, |Kodaira| Isogenies

574 N=574=2-7-41 (continued) 574

1 01 -31679 5254674 |0 —34,3,2134,3,2 | 2,3,2 |I34,I3,I5|2:2
D21 0 1 —687039 218902034 |0 1,6,2 |I17,16,14 |2 : 1

;3 | Is,I1,I3
1

—19353 958713 |1
—9611313 —11466507927 |1
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186 TABLE 1: ELLIPTIC CURVES 576G-583C

ay az as ay ag |7 ||T||s ord(A) |ord_(j)| ¢, | Kodaira | Isogenies
576 N =576=2°-32 (continued) 576
Gl 0 0O —27 0(0] 2 |+ 6,9 0,0 1,2 LI |2:2
G2/ 0 0O 108 00 2 |- 12,9 0,0 2,2 I (2:1
H1| 0 0 0 9 0l1] 2 |— 6,6 0,0 | 1,2 | ILL; |2:2
H2| 0 0 0  —36 0[1]4 |+ 1206 | 0,0 | 44 | LI |2:1,3,4
H3| 0 0 0  —396 ~3024(1] 2 |+ 156 | 0,0 | 2,2 | &I [2:2
HAl O 0 0  —396 3024(1] 2 [+ 156 | 0,0 | 4,2 | I |2:2
[0 00 24 56[1] 2 |- 10,7 | 0,1 | 2,4 | Ipn |2:2
200 00 —156 560 (1] 4 |+ 14,8 | 0,2 | 4,4 | T |2:1,3.4
13/0 00 —876 ~9520(1| 4 |+ 16,10 | 0,4 | 4,4 | IiL |2:2,5,6
40 00 —2316 42806 (1| 2 |+ 16,7 | 01 | 42 | I |2:2
I5 |0 00 —13836 —626416 (1| 2 |+ 17,8 0,2 2,2 75 [2:3
6|0 00 564  —37744|1| 2 |- 17,14 | 0,8 | 4,4 | I |2:3
578 N =578=2-17% (1 isogeny class) 578
A1l 1 11 —873 ste3lof 2 [+ 6,7 | 6,1 | 6,2 | Ie0; |2:2:3:3
A2] 1 1 1 —12433 528295|0| 2 |+ 3,8 3,2 | 3,4 | I [2:1;3:4
A3] 1 1 1 —20773 —1989473|0| 2 |+ 2,9 2,3 | 2,2 | L, |2:43:1
A4 1 1 1 -32663 —1583717]0| 2 |+ 1,12 | 1,6 | 1,4 | I,,I} [2:3;3:2
579 N =579=3-193 (2 isogeny classes) 579
Al] 0-1 1 -2 ol 1]- 51 | 51 [ 1,1 | I, |
B1| 1 0 0 3 ol1] 2 |+ 2,1 21 | 2,1 | II, |2:2
B2| 1 0 0 12 3112 |— 1,2 L2 | 1,2 | T, |2:1
580 N =580=2%-5-29 (2 isogeny classes) 580
ALl 0 00 -8 7] 2 [+ 421 [ 021 [321]1IVLI [2:2
A2 0 0 0 17 4201 2 = 81,2 | 0,1,2 |3,1,2 |[IV-1,I,|2:1
Bl| 0 00  —32 “3101] 2 |+ 43,2 ] 0,32 [3,32|1VII |2:2
B2l 0 0 0 113 —934|1| 2 [— 86,1 | 0,6,1 |3,6,1 |IV*IgI;|2:1
582 N =582=2-3-97 (4 isogeny classes) 582
Al 1 10  —15 —orl1] 2 [+ 6,21 [ 6,21 [2,2,1] IgLL; [2:2
A2 1 10 25 —99|1| 2 3,4,2 | 3,42 | 1,2,2 | I3)L.I, [2:1
BI| 1 1 1 —46658 —3898033|0| 2 |+ 12,14,1[12,14,1]12,2,1|1;5,L141; [ 2: 2
B2| 1 1 1746498 —248562097 (0| 2 |+ 6,7,2 | 6,7,2 | 6,1,2 | Ts,In,l» |2:1
Ci]1 11 —34 47|11 2 |+ 10,2,1 | 10,2,1 [10,2,1| I10,I5,1; |2:2
c2l1 11  —514 4271(1] 2 |+ 51,2 | 51,2 51,2 | Is,1,I, |2:1
DI|1 00 —14 “1200| 4 |+ 441 | 4,41 | 4,41 | LI, |2:2
D21 00 —194 ~1056 (0] 4 |+ 2,2,2 | 22,2 [2,2,2 | Too,lo |2:1,3,4
D3| 1 00 —3104  —66822]0| 2 |+ 1,1,1 | 1,1,1 |1,1,1 | I,,0,,I, |2:2
D4| 1 0 0 —164 —1386]0| 2 |— 1,1,4 | 1,1,4 | 1,1,4 | ;1,1 |2:2
o83 N =583 =11-53 (3 isogeny classes) 083
A1} 0 11 6 50[1]|- 1,2 | 1,2 | L,2 | LI |

B1| 1 10 —-358 -3595(0] 1 |— 4,3 | 4,3 | 4,1 | IIs |



TABLE 1: ELLIPTIC CURVES 585A-590A 187

ai as ag ay ag |7 |[|T|| s ord(A) |ord_(j)| ¢ Kodaira | Isogenies
0895 N =585=3%-5-13 (9 isogeny classes) 085
Al] 1-1 1 —218 1432(1] 2 |— 9,4,1 | 0,4,1 |2,2,1| IIT*I,I; |2:2
A2 1-1 1 —3593 83782 (1| 2 |+ 9,2,2 | 0,2,2 [2,2,2| IIT*I,I, |2:1
Bl 0 01 12 —21]0] 3 |- 3,1,3 | 0,1,3 |2,1,3] IIL,I;,I3 [3:2
B2 0 0 1 —378  —2842|0| 1 |— 9,3,1 | 0,3,1 |2,1,1| III*I3,]; |3:1
Ci| 1-10 —24 —45]0] 2 |- 3,4,1 | 0,4,1 |2,4,1] IIIIxL; [2:2
c2( 1-10 —399  —2970|0| 2 |+ 3,2,2 | 0,2,2 [2,2,2| HLI;,I, |2:1
D1 0 0 1 —42 105|1] 3 |— 3,3,1] 0,3,1 [2,3,1| HLI3I; [3:2
D2 0 0 1 108 560 (1| 1 [— 9,1,3 | 0,1,3 |2,1,3| II*I;,I3 |3:1
El| 0 01 —1713 —28022|0| 1 |- 13,1,3| 7,1,3 |2,1,1| I3 L.I;
F1| 1-1 0 —990  —11745|1] 2 |+ 10,1,1| 4,1,1 |2,1,1| I3 I;,I; [2:2
F2| 1 -1 0 —1035 —10584 (1| 4 |+ 14,2,2| 8,2,2 [4,2,2| I3 LI, |2:1,3,4
F3| 1 -1 0  —4680 114075 (1| 4 |+ 10,4,4 | 4,4,4 |4,2,4| T;I.0; |2:2,5,6
F4| 1-1 0 1890  —61479 (1| 2 |—22,1,1 | 16,1,1 |4,1,1| Tig ;I |2:2
F5| 1-1 0 -73125 7629336 (1| 4 |+ 8,8,2 | 2,8,2 [4,2,2| I3Igl, |2:3,7,8
F6| 1 -1 0 5445 533250 1| 2 |— 8,2,8 | 2,2,8 [2,2,8| I3IIg |2:3
F7| 1 -1 0—1170000 487402461 (1| 2 |+ 7,4,1 | 1,4,1 [4,2,1| I1I.I; |2:5
F8| 1 -1 0 —71370 8011575(1| 2 |— 7,16,1| 1,16,1 [2,2,1| I1.Iis]; |2:5
Gl 0 01 -3 1811 |- 7,1,1 | 1,1,1 |4,1,1] T I,
Hi| 1-1 0 -9 Ol1] 2 [+ 6,1,1 | 0,1,1 |2,1,1] IzI,I; [2:2
H2| 1-1 0 36 —27(1| 2 |- 6,2,2 | 0,2,2 |2,2,2| I3l |2:1
I1 \ 0 01 —597 8820‘1‘ 1 \— 9,7,1 \ 3,7,1 4,7,1\ I3 17,0
586 N =586 =2-293 (3 isogeny classes) 586
Al[ 1 10 -1 3lo] 1 ]- 31 ] 31 | L1 ] L
Bl| 1 1 —18 4151 1 |— 18,1 | 181 [18,1| Iis]y
Cl’ 1 11 -9 7\1] 1 \— 4,1 \ 4,1 \ 4,1 ] 1.
588 N =588 =2%2-3-72 (6 isogeny classes) 588
Al| 0-1 0 131 —167[0| 1 |- 8,5,4 | 0,5,0 [1,1,1] IV*I5,IV |
Bl1| 0-1 0 327 666 1| 2 |- 4,3,8 | 0,3,2 [3,1,4| IV,I3,I5 [2:2;3:3
B2| 0-1 0  —1388 6840 |1| 2 |+ 8,6,7 | 0,6,1 [3,2,4| IV*Ig,If [2:1;3:4
B3| 0-1 0 —5553 165894 (1| 2 |— 4,1,12| 0,1,6 |1,1,4| IV,I;,I5 |2:4;3:1
B4| 0-1 0 —89588 10350936 (1| 2 |+ 8,2,9 | 0,2,3 [1,2,4| IV*I,I} |2:3;3:2
C1| 0-1 0 -9 —6|1] 2 |+ 4,1,3 | 0,1,0 [3,1,2] IV,I;,IIT |2:2
2 0-1 0 —44 120(1] 2 |+ 8,2,3 | 0,2,0 [3,2,2| IV*IIII |2:1
D1| 0 1 0 6403 44463 |0| 1 |- 8,5,10] 0,5,0 |1,5,1| IV*I5,II*
El1] 0 10 —457 29600 2 |+ 4,1,9 | 0,1,0 [3,1,2| IV,I;,III* |2:2
E2] 0 1 0 —2172 —36828(0| 2 |+ 8,2,9 | 0,2,0 [3,2,2|IV*Ip,III*|2:1
F1| 0 10 —65 804|0| 2 |— 4,1,8 | 0,1,2 |1,1,4] IVI;,I5 |2:2
F2| 0 1 0 —1780 28244|0| 2 |+ 8,2,7 | 0,2,1 [1,2,2| IV* Il |2:1

N=590=2-5-59

(4 isogeny classes)

1Ep .

Al al_ A 429l 149 19 a

11 1.



188 TABLE 1: ELLIPTIC CURVES 590B-598B

ai as ag ay ag |7 ||T|| s ord(A) | ord_(j) Cp Kodaira | Isogenies
590 N=590=2-5-59 (continued) 590
Bl| 1-1 0 1 13lol 2 - 81,1 [ 81,1 [21,1 ] I, |2:2
B2 1-10 —79 2850 4 |+ 4,22 | 4,22 | 2,22 | LI, |2:1,3,4
B3| 1-1 0 —179 —495|0| 2 |+ 21,4 | 21,4 | 21,2 | LI, |2:2
B4| 1-1 0 —1259 17513|0| 4 |+ 24,1 | 24,1 | 24,1 | LL.I, |2:2
cij1-10 1 5011 [— 3,21 | 321 | 1,21 | L |
DI| 1 00 —350 2500|1| 1 |- 941 | 941 [941 ] Lk |
591 N =591 =3-197 (1 isogeny class) 591
Al] 0-1 1 3 211 1 [+ 2,1 2,1 2.1 LI
592 N =592 =2%.37 (5 isogeny classes) 592
Allo 10 -9 -3l 1 ]+ 81 | o1 | 1,1 | L |
BI|o 10 -3  —s8o|1]+ &1 | o1 | 1,1 | oL |
ctjo 00 —16 —16]0] 1 [+ 121 | o1 | 1,1 | 1L |
pDiIjo 10 -5 111+ 81 | o1 |21 | L |
El| 0-1 0 -53 —131]1|1 |+ 121 | o1 | 1,1 | II*I, [3:2
E2| 0-1 0 —373 2813 (1] 1 |+ 12,3 0,3 1,3 mIs (3:1,3
E3| 0-1 0 —29973 2007325 1| 1 |+ 12,1 0,1 1,1 =1 |3:2
593 N =593 =593 (2 isogeny classes) 593
Al 1 01 -2 i1 1 | 1 [ 1] n |
]éf‘"1__6_E)__"—_7""_—éd‘_d‘__2_"—"_é_"‘_"2_"‘_"2"[_"12_"‘5?5_"
B2 1 00 —12 —17(10] 2 |+ 1 1 1 I 2:1
594 N =594=2-3%-11 (8 isogeny classes) 594
Al] 1-1 0 —18 36|11 [— 4,51 | 40,1 | 23,1 1L,V |
Bi|1-10 -9 —9l0o[ 1 ]= 1,51 ] 1,0o,1 | ,1,1 |[T,IVL |
C1 } 1-1 0 —4146 103796 ‘_6 ‘ 3 ‘ — 59,1 ‘ 5,0,1 _‘_f,é:f |, IveI [3:2
C2| 1 -1 0 —3201 151613|0| 1 |— 15,11,3]| 15,0,3 | 1,1,1 | T,5,I1*,I5 |3 : 1
i1 Tiss T ns (1] 1| 8hs | 808 |5is [ Livis
El| 1-1 1 —1379 —131165|0| 1 |— 811,5 | 80,5 | 81,1 | IgII"T; |
FI|1-1 1 -8  325|0|1 |- 1,11,1 | 1,01 | L,1,1 [I,0° |
Gl| 1-1 1 —164 —809[0] 1 |- 4,11,1 | 4,0,1 | 41,1 |I0°0 |
H1 } 1-1 1 —461 —3691 ‘_6 ‘ 1 ‘ — 53,1 ‘ 5,0,1 _‘_5_,_1,_1_ ‘ ILILL [3:2
H2| 1 -1 1 =356 —-5497 0| 3 |— 15,5,3 | 15,0,3 |15,1,3 | I15,IV,I3 |3 :1
595 N =595=5-7-17 (3 isogeny classes) 595
Al| 0—1 1 —9996 388876 0| 1 |— 11,3,1 [ 11,3,1 | 1,1,1 | Iy 151, |
B[00 a0 1| san | st e [ hn [
G010 0] 1 S A L (1 | nad |
598 N =598 =2-13-23 (4 isogeny classes) 598
Al 1-1 0 -—112 492‘1‘ 2 ‘— 2,4,1 | 2,4,1 | 2,4,1 ‘ Io,I,.0, ‘2:2
A2l 1 -1 0 —1802 29898 |1]| 2 |+ 1,2,2 | 1,2,2 | 1,22 | ;.10 |2:1




TABLE 1: ELLIPTIC CURVES 598C—603F 189
ay as as ay ag |7 ||T]| s ord(A) |ord_(j)| ¢p Kodaira |Isogenies
598 N =598=2-13-23 (continued) 598
ci|1 11 -—14 —27lo[1]- 1,2 | L1,2 (L2 LT |
Dl‘ 1 11 4 —1443\1\ 1 \— 17,1,2 \ 17,1,2 \17,1,2\ Ii7,11,15 \
600 N =600=23-3-52 (9 isogeny classes) 600
Al 0-1 0 -383 30121 4 |+ 4,2,7 | 0,2,1 |2,2,4 | HLI,,I; |2:2
A2/ 0-1 0 —508 1012 1] 4 |+ 84,8 | 0,4,2 | 2,24 | I1L,I5 [2:1,3,4
A3 0-1 0 —5008 —133988|1| 4 |+ 10,2,10| 0,2,4 | 2,2,4 | II*I,,I; |2:2,5,6
A4l 0-1 0 1992 6012 |1| 2 |— 10,8,7 | 0,8,1 | 2,2,4 | II*Ig,I; |2:2
A5| 0—1 0 —80008 —8683988 1| 2 |+ 11,1,8 | 0,1,2 | 1,1,4 | II*I;,I5 |2:3
A6| 0—-1 0 —2008 —295988|1| 2 |—11,1,14| 0,1,8 | 1,1,4 | II*I;,If |2:3
Bl1| 0-1 0 7 =3|1] 1 |- 81,2 | 0,1,0 | 4,1,1 | IfI I |
Cl| 0-1 0 32 —68(0] 2 |- 10,3,3 | 0,3,0 | 2,1,2 | II*I3,III | 2:2
C2| 0-1 0 —168 —468 0| 2 |+ 11,6,3 | 0,6,0 | 1,2,2 | II*I¢,III |2:1
DI| 0 1 0 17 380 2 |- 4,1,6 | 0,1,0 |2,1,2 | OLI;,I5 [2:2
D2 0 1 0 -108 288 10| 4 [+ 8,2,6 | 0,2,0 |2,2,4 | It LI |2:1,3,4
D3| 0 1 0 —608 —5712|0| 4 |+ 10,4,6 | 0,4,0 | 2,4,4 | HI*I,,I; |2:2,5,6
D4l 0 1 0 —1608  24288|0| 2 |+ 10,1,6 | 0,1,0 | 2,1,2 | II*I;,I; |2:2
D5/ 0 1 0 —9608 —365712|0| 2 |+ 11,2,6 | 0,2,0 | 1,2,2 | II*IL,I5 |2:3
D6 0 1 0 392 -21712|0| 2 |— 11,86 | 0,8,0 | 1,8,2 | II*IsI5 |2:3
El| 0 1 0 -233 1563 (1] 1 |- 8,7,4 | 0,7,0 | 4,7,3 | I}I;IV |
F1| 0-1 0 92 —~188]0| 4 |- 81,7 | 0,1,1 |4,1,4 | T L,I7 |2:2
F2| 0-1 0 —408 —1188|0| 4 |+ 10,2,8 | 0,2,2 | 2,2,4 | HI*I,,I; |2:1,3,4
F3| 0-1 0 —5408 —151188|0| 2 |+ 11,4,7 | 0,4,1 | 1,2,4 | II* I, I} |2:2
F4| 0-1 0 —3408  76812|0| 2 |+ 11,1,10| 0,1,4 | 1,1,4 | II*I;,I; |2:2
Gl| 0-1 0 -583 207037|0| 1 |- 8,7,10 | 0,7,0 | 2,1,1 | I I, II* |
HI| 0 1 0 792 —6912]|0| 2 |- 10,3,9 | 0,3,0 | 2,3,2 |III* I3,IIT* |2:2
H2| 0 1 0 —4208 —66912|0| 2 |+ 11,6,9 | 0,6,0 | 1,6,2 | II*,Is,I1I* |2:1
I1 \ 0 10 167 —37\0\ 1 \— 8,1,8 \ 0,1,0 \2,1,1 \ I1I,, IV \
602 N =602=2-7-43 (3 isogeny classes) 602
Al 1-1 0 121  —4291|0| 2 |— 852 | 85,2 | 2,1,2 | Iglsly |2:2
A2 1-1 0 —3319 —69651|0| 2 |+ 4,10,1 | 4,10,1 | 2,2,1 | Iz Li0L; |2:1
Bl| 1 1 0-22564 1295312|0| 1 |— 17,5,1 | 17,5,1 | 1,1,1 | IizI5,1; |
Cl‘ 1-10 -1 —1\0\ 1 ]— 1,1,1 \ 1,1,1 \1,1,1\ I,.I,.I \
603 N =603 =3%-67 (6 isogeny classes) 603
Al 1-10 -3 00 2 |+ 3,1 0,1 2,1 LI |2:2
A2 1-1 0 12 —9]0] 2 |- 3,2 0,2 2,2 I, |2:1
Bi|1-11 -29 2810 2 [+ 9,1 0,1 2,1 1 |2:2
B2| 1-1 1 106 136 0] 2 |- 9,2 0,2 2,2 i, |2:1
Cl| 1-1 1 —7151 —230952|0] 1 |- 11,1 | 5,1 | 4,1 | ItL; |
D1| 0 0 1 15 -23]0| 1 |- 81 | 21 | 2,1 | LLi |
El| 1-1 0 -9 —54]1| 1 |- 91 | 31 | 2,1 | Iz, |




190 TABLE 1: ELLIPTIC CURVES 605A-610C

ay az as ay ag |7 | |T|| s ord(A) [ord_(j) | ¢, |Kodaira |Isogenies
605 N =605=5-112 (3 isogeny classes) 605
ALl 1-1 0 —1414 —44027|1] 1 |- 58 | 50 | 53 | I;Iv* |
Bl| 1-1 1 98 =316 1] 4 |- 1,7 1,1 1,4 LI |2:2
B2| 1-1 1 =507 —2494|1| 4 |+ 2,8 2,2 2,4 L5 [2:1,3,4
B3| 1 -1 1 -7162 —231426|1| 2 |+ 4,7 4,1 4,2 I, [2:2
B4| 1-1 1 -3532  79786|1| 2 |+ 1,10 1,4 1,4 LI [2:2
01\ 1 -1 1 —12 36\1\ 1 \— 5,2 \ 5,0 \ 5,1 1 I5,11 \
606 N =606=2-3-101 (6 isogeny classes) 606
Al 1 01 35 —136 0] 2 | — 12,3,1| 12,3,1 | 2,3,1 | I12,I5,I; |2:2
A2 1 0 1 —285 —1544|0| 4 |+ 6,6,2 | 6,6,2 | 2,6,2 | Ig,l,Io [2:1,3,4
A3 1 0 1 —4325 —109816 0| 2 |+ 3,12,1 | 3,12,1 [1,12,1 |I3,D5,I; | 2:2
A4 1 0 1 -—1365 17896 |0| 2 |+ 3,3,4 | 3,3,4 | 1,3,2 | I3I3,]4 |2:2
Bl| 1 0 1 4 211 1 |— 3,21 3,2,1 | ,2,1 | I3,Ib.1; |
Ci| 1 11 —33 —87]|0| 1 |- 1,2,1 | 1,2,1 | 1,2,1 | I;,L.1; |
DI| 1 1 1 -1314 —65361[0| 1 |- 7,17,1| 7,17,1 | 7,1,1 | I7,Ii7.]; |
El|1 00 —120 576 |1 1 |- 9,6,1 | 9,6,1 | 9,6,1 | IoJg,L1 |
Fi| 1 00 —90 324]0] 5 |- 5,51 | 55,1 | 5,51 | IsI5; |5:2
F2| 1 00 600 —10626 0| 1 |— 1,1,5 | 1,1,5 | 1,1,5 | I;,I;,I5 |5:1
608 N =608=2°-19 (6 isogeny classes) 608
A1} 0 0 0 -8 —16[1] 1 [- 121 | o1 | 21 | mrL |
Bl1| 0 0 0 —56 4848 |0 1 |— 12,5 | 0,5 | 2,1 | OI*I5 |
Cl| 0 0 0 5 2101 |- 91 | o1 | 1,1 | I |
D1| 0 0 O -8 1611 |- 12,1 | o1 | 2,1 | HI*I |
El1| 0 00 —56  —4848 1| 1 |- 12,5 | 0,5 | 2,5 | HI*I5 |
Fl‘ 0 00 5 —2|1‘ 1 ‘— 9,1 ‘ 0,1 ‘ 2,1 ‘ ;1 |
609 N =609=3-7-29 (2 isogeny classes) 609
Al 1 10 0 30102 [— 1,21 | 1,2,1 | 1,2,1 | I1,Ip,; |2:2
A2 1 10 —35 66 1] 2 [+ 2,1,2 | 2,1,2 | 2,1,2 | Ip,;I [2:1
Bl| 1 11 -784 8720 [ 1| 4 |— 3,8,1 | 3,8,1 | 1,8,1 | I3,Ig,I; [2:2
B2| 1 1 1 —12789 551346 (1| 8 |+ 6,4,2 | 6,4,2 | 2,4,2 | IgIylo |2:1,3,4
B3| 1 1 1 —13034 528806 | 1| 4 |+ 12,2,4 | 12,2,4 | 2,2,4 |I19,I5,]4 | 2:2,5,6
B4| 1 1 1 -204624 35542050 | 1| 4 |+ 3,2,1 | 3,2,1 | 1,2,1 | I3Ib.]y |2:2
B5| 1 1 1 —42469 —2756140 | 1| 2 |+ 24,1,2 | 24,1,2 | 2,1,2 |Iag,I3,I5 | 2:3
B6| 1 1 1 12481 2376092 |1| 2 |— 6,1,8 | 6,1,8 | 2,1,8 | Is.I;,Ig |2:3
610 N =610=2-5-61 (3 isogeny classes) 610
Al 1-1 0 =35 —75lo] 1 [- 531531 1,1,1 | kL |
Bl| 1-1 0 —164 848 1] 2 |+ 8,3,1 | 83,1 |2,3,1 | Iglz]; |2:2
B2| 1-1 0 —244 0[1] 4 |+ 4,6,2 | 4,6,2 | 2,6,2 | Iy,lg,]o |2:1,3,4
B3| 1 -1 0 —2744 —54500|1| 2 |+ 2,3,4 | 2,3,4 |2,3,4 | I,I3,14 |2:2
B4| 1-1 0 976 —732 (1| 4 | — 2,12,1 | 2,12,1 [2,12,1 [I5T40,1; [ 2:2




TABLE 1: ELLIPTIC CURVES 611A-618G 191

ay as as ay ag |7 | |T]| s ord(A) |ord_(j)| ¢p Kodaira |Isogenies
611 N =611 =13-47 (1 isogeny class) 611
A1l 0 0 1 —1 1o 1 |- 1,1 1,1 1,1 I,I;
612 N =612=2%2.32.17 (4 isogeny classes) 612
Al| 0 0 0 —456 3748 (0| 3 |— 83,1 | 0,0,1 |3,2,1 [IV*IILT; [3:2
A2 0 0 0 —216 7668 [0 1 |— 8,93 | 0,0,3 | 1,2,1 [IV*III*I3|3:1
Bl1| 0 00 —24 —284|1| 3 |- 83,3 | 0,0,3 |3,2,3 | IV*IILI3 |3:2
B2| 0 0 0 —4104 —101196|1| 1 |— 89,1 | 0,0,1 | 1,2,1 [IV*II*I;|3:1
Cif o 00 —48 1961 1 |— 87,1 | 0,1,1 |3,4,1 ] IV*I}{]I; |
Dl‘ 0 0 0—14592 679412‘0‘ 1 |— 8,17,1 \ 0,11,1 \ 1,2,1 ‘IV*,I}‘l,Il \
614 N =614=2-307 (2 isogeny classes) 614
Al 1-11 61 97|11 ]- 61 | 61 | 61 | Il |
Bl| 1 00 27 1/1] 3 |- 12,1 12,1 | 12,1 Iipl;  |3:2
B2| 1 00 -373 —2991|1| 1 |- 4,3 4,3 4,3 I,,Is |3:1
615 N =615=3-5-41 (2 isogeny classes) 615
Al 1 11 —6 —6(1] 2 [+ 2,2,1 | 2,2,1 | 2,21 IylpI; [2:2
A2 1 11 19 —16|1] 2 |- 4,1,2 | 4,1,2 | 2,1,2 | I 0L, |2:1
Bl‘ 0 11 79 —214\1\ 1 |— 7,4,1 \ 7.4,1 \7,2,1\ I7,14,1 \
616 N =616=23-7-11 (5 isogeny classes) 616
A1 0 0 0 85 86|1] 2 |- 10,3,2 | 0,3,2 |2,1,2 | III*I3,I, |2:2
A2 0 0 0 -355 702(1| 2 |+ 11,6,1 | 0,6,1 | 1,2,1 | II*IgI; [2:1
Bl| 0-1 0 3828  95348|0| 2 |— 8,5,6 | 0,5,6 | 2,5,2 | Ii 5l |2:2
B2| 0 -1 0-22792 936540 |0| 2 |+ 10,10,3| 0,10,3 [2,10,1 | IIT* I;0,I5 |2:1
Ci| o 10 —12 -32|0] 2 |- 81,2 | 0,1,2 | 2,1,2| IiLls |2:2
C2| 0 1 0 —232  —1440|0| 2 |+ 10,2,1 | 0,2,1 |2,2,1 | HI*I,,I; |2:1
D1| 0—-1 0 -1 1971 1 |- 82,3 | 0,2,3 | 4,23 IjLIs |
E1| 0 00 -26 —51|1] 2 |+ 4,1,1 | 0,1,1 | 2,1,1 | ILI;,I; |2:2
E21 0 00 -31 —30|1] 4 |+ 82,2 | 0,2,2 [4,22| It I, [2:1,3,4
E3| 0 0 0 -251 1510 (1] 4 |+ 10,4,1 | 0,4,1 | 2,4,1 | II*I40; |2:2
E4| 0 0 0 109 —226 (1| 2 |— 10,1,4 | 0,1,4 | 2,1,2 | TII*I;,I4 |2:2
618 N =618=2-3-103 (7 isogeny classes) 618
Al 1 10 2 a1 1= 41,1 | 41,1 | 2,10,1 ] LI |
Bl| 1 1 0 —2819 —58803|1| 1 |— 19,1,1 [19,1,1 | 1,1,1 | Tyo,I1,I; |
ci]1 01 -21 34|11 3 |- 1,3,1 | 1,3,1 | 1,3,1 | IIzI; |3:2
c2| 1 01 54 1961 1 |— 3,1,3 | 3,1,3 | 1,1,3 | I3I;,I3 [3:1
DI| 1 01 325 —7018|1| 3 |- 4,15,1 | 4,15,1 |2,15,1| I4Ii5,I; |3:2
D2| 1 0 1-20330 —1118500 1| 1 |— 12,5,3 | 12,5,3 | 2,5,3 | I1o,I5,I3 |3:1
El1|1 11 1 5011 |- 51,1 | 51,1 |511] I;3,L |
F1|1 00 -—185 1401 |1] 1 |- 11,7,1 | 11,7,1 |11,7,1| Iy1.I..L |




192 TABLE 1: ELLIPTIC CURVES 620A-6241

ay asz as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢ Kodaira | Isogenies
620 N =620=2%-5-31 (3 isogeny classes) 620
ALl o 10 —101 3591 3= 8,1,1 [ 0,1,1 [ 31,11V I, |3:2
A2/ 0 10 59 1495|111 |- 83,3 | 0,3,3 [ 1,1,3 | IV*Is]5 [3:1
B1| 0 0 0 —1052 131201 2 |+ 4,5,2 | 0,5,2 | 3,5,2 | TV.I5,I5 |2:2
B2 0 0 0 —1207 9006 |1] 2 |+ 8,10,1 | 0,10,1 |3,10,1|TV*I;0,1; |2: 1
Cl\ 0 00 8 4\1\ 1 \— 8,1,1 | 0,1,1 \3,1,1 ‘IV*,Il,Il‘
621 N =621=3%-23 (2 isogeny classes) 621
Al| 1-1 0 —123 sa8(0f 1 |+ 11,1 [ o1 | 1,1 [y |
Bl‘ 1-1 —14 —16‘1‘ 1 \+ 5,1 \ 0,1 \ 1,1 \ V.1,
622 N =622=2-311 (1 isogeny class) 622
Al 1-1 1 8 5111 ]- 71 7.1 | 7,1 Ir.1,
623 N =623=7-89 (1 isogeny class) 623
Al 1 10 28 157]1 — 6,1 6,1 | 6,1 Is.1,
624 N =624 =2%-3-13 (10 isogeny classes) 624
Al] 0-1 0 3 611] 21— 41,2 ] 01,2 [1,1,2] LI, |2:2
A2 0-1 0  —68 240(1] 2 |+ 82,1 | 0,2,1 |2,2,1| It |2:1
Bl| 0-1 0 5 —14(1] 2 |- 4,32 | 0,3,2 | 1,1,2] TLIs0 |2:2
B2| 0-1 0  —60 —144(1] 2 [+ 86,1 | 0,6,1 |2,2,1| Itle L |2:1
C1| 0-1 0 7 “olo 2 |+ 4,41 ] 0,41 | 1,2,1 | ILII, |2:2
C2|/ 0-1 0 —52 1600 4 |+ 8,2,2 | 0,2,2 |2,2,2 | I§I I |2:1,3,4
C3| 0-1 0  —832 9520(0| 2 |+ 10,1,1| 0,1,1 | 21,1 | ILL.L |2:2
C4| 0-1 0 8 4480 4 |- 10,1,4 | 0,1,4 | 4,1,4 | LI |2:2
DI 0 1 0 3 olo] 2 |+ 4,21 ] 0,2,1 | 1,2,1 | ILI,I, |2:2
D2] 0 1 0 12 1200/ 2 |- 81,2 | 0,1,2 [2,1,2] Iz, |2:1
E1] 0 1 0 —651  —6228]0] 2 |+ 4,10,3 | 0,10,3 |1,10,1] T,I10.I5 |2:2
E2| 0 1 0 564  —25668(0| 2 |— 85,6 | 0,56 | 2,52 | I5Is I |2:1
F1| 0 10 -39 108|112 [+ 42,1 | 0,21 | 1,2,1 ] TLI,L |2:2
F2| 0 10  —44 —84|1] 4 |+ 84,2 | 0,42 | 24,2 | ItLI |2:1,3,4
F3|0 10 —304 1892 (1] 4 [+ 10,8,1 | 0,8,1 | 4,8,1 | I3l ], |2:2
F4| 0 1 0 136 444 (1] 4 |- 10,2,4 | 0,2,4 | 2,2,4 | Iy |2:2
Gl 0-1 0  —13 401 2 |+ 46,1 | 0,6,1 |1,2,1 | TLIsL |2:2:3:3
G2 0-1 0 —148 —644(1] 2 [+ 83,2 | 0,3,2 | 1,1,2 | 5l |2:1;3:4
G3l 0-1 0 —733 7888 (1] 2 |+ 4,23 | 0,23 | 1,2,3 | TLII; |2:4:3:1
G4l 0-1 0  —748 7564 (1] 2 |+ 81,6 | 0,1,6 | 1,1,6 | I5II5 |2:3;3:2
HI| 0 1 0 8 20[0] 2 |- 12,1,1] 0,1,1 |4,1,1 | ILL.L |2:2
20 10  —72 180(0] 4 |+ 12,2,2] 0,2,2 [4,2,2 | I1LI, |2:1,3,4
H3| 0 1 0 —312  —2028|0| 2 |+ 12,1,4| 0,1,4 | 2,1,4 | T5i0.0 |2:2
HA| 0 1 0 —1112 13908 0| 4 |+ 12,4,1 | 0,4,1 | 4,4,1 | T1I,L [2:2
IL|0 10 —312 —44460|0] 2 |- 28,5,1]16,5,1 | 4,5,1 | I3.Is,L; |2:2
20 10 —20792 —1150380|0| 4 |+ 20,10,2] 8,10,2 |4,10,2]| Iiyli0.Io |2:1,3,4
9ol n 1 n _9221229 _7aceianin!l 9 L 1ee 4l 4224 lossl 1*7.7T. |9.9




TABLE 1: ELLIPTIC CURVES 624J-630D 193

ay asas ay ag|r||T||s ord(A) |ord_(j)| ¢ Kodaira |Isogenies
624 N =624=2%-3-13 (continued) 624
J10 10 -5 60| 2 |+ 4,2,1 | 0,2,1 [ 1,2,1 | ILI,I [2:2
J210 10 —20 240 2 |+ 8,1,2 | 0,1,2 | 1,1,2 | Ix LI, [2:1
626 N =626 =2-313 (2 isogeny classes) 626
Al 1-1 0 —7 91| 2 |+ 2,1 2,1 2,1 L [2:2
A2/ 1-1 0 —17 13|12 |+ 1,2 1,2 1,2 L [2:1
Bl‘ 1 01 —2210 39796‘0‘1‘— 19,1 ] 19,1 \ 1,1 \ Lig,Ii |
627 N =627=3-11-19 (2 isogeny classes) 627
Ao 11 -1 —2[1 |- 1 [ L1 [Lu | L |
B1| 0 1 1 —363 —29950] 3 |— 9,3,1 | 9,3,1 [9,3,1] IoIsI; [3:2
B2( 0 11 —30063 —2016358/0|1 |— 3,1,3 | 3,1,3 [3,1,3 | I3L,Is [3:1
628 N =628 =2%2-157 (1 isogeny class) 628
A1l 0-1 0 4 8o 1]— 8,1 0,1 1,1 | IV
629 N =629 =17-37 (4 isogeny classes) 629
Al 1-10 11 8] 31 | 31 | 1,1 | L |
B1/ 0 0 1 —211 116500/ 1 [+ 2,3 | 2,3 | 2,1 | Ipls |
C1l0 01 —40 a8 1]+ 41 | 41 | 41 | I |
Dl‘ 1-11 —171 1904\1\ 1 \— 1,5 \ 1,5 \ 1,5 \ I..I5 |
630 N =630=2-32-5-7 (10 isogeny classes) 630
Al 1-1 0 ~105 44100] 6 |+ 2,3,1,3 [2,0,1,3(2,2,1,3| I, I111;,I5 [2:2;3 : 3
A2 1-1 0 —75 6750 6 |— 1,3,2,6 |1,0,2,6(1,2,2,6|1; 111,15 |2:1;3:4
A3 1-1 0 —420 —2800(0| 2 |+ 6,9,3,1 |6,0,3,1(2,2,1,1[T¢,II1* I3,I;|2 : 4;3 : 1
A4l 1-1 0 660 —15544(0| 2 |— 3,9,6,2 |3,0,6,2(1,2,2,2|I5 I11* Is,I5[2 : 3;3 : 2
Bl|1-1 0  —5124 1421600 2 |+ 14,3,1,5 [14,0,1,5(2,2,1, 1[T14, 1111, 15]2 : 2
B2 1-1 0  —3204 248528(0| 2 |— 7,3,2,10 [7,0,2,10(1,2,2, 2|17 II1,I5,1;0(2 : 1
C1l1-1 0 1890 —24300[0] 2 |—16,10,2,1[16,4,2,1(2,2,2,1| 114,15, 15,1, [2: 2
C201-1 0  —9630  —210924(0| 4 |+ 8,14,4,2(8,8,4,2(2,4,2,2| Is,I5 1,1, [2:1,3,4
C3] 1-1 0 —135630 —19186524(0| 2 |+ 4,22,2,1 [4,16,2,1(2,4,2,1| 14,155, 10,11 [2: 2
C4l 1-1 0 —67950  6682500(0| 4 |+ 4,10,8,4 |4,4,8,4(2,4,2,2| 1,15 Is,I4 [2:2,5,6
C5] 1—1 0 —1080450 432540000(0| 4 |+ 2,8,4,8 [2,2,4,8(2,4,2,2| Io,I51,,I5 [2:4,7,8
C6| 1-1 0 11430 21304296(0| 2 |— 2,8,16,2 |2,2,16,2(2,2,2,2|15,I5 116,15 |2 : 4
C7| 1—1 0—1728720027669604050(0| 2 |+ 1,7,2,4 [1,1,2,4(1,2,2,2| I;,F T4 [2:5
C8| 1—1 0 —1073700 438205950(0| 2 |— 1,7,2,16 [1,1,2,16(1,4,2,2|11,1; I,,116 [2: 5
D1| 1-1 0 90 436[1] 2 |- 8,7,1,2 [8,1,1,212,2,1,2| I, 5 L1 15 [2: 2
D2/ 1-1 0 —630 49001 4 |+ 4,8,2,4 [4,2,2,412,4,2,4[ 1, 15.15,1, [2:1,3,4
D3| 1-1 0  —3330 —69080(1| 2 |+ 2,7,1,8 |2,1,1,8(2,4,1,8| Io,IF 11 I5 [2: 2
D4 1-1 0  —9450 355936(1| 4 |+ 2,10,4,2 2,4,4,2(2,4,2,2| 1,15 1,1, [2:2,5,6
D 1T -1 N 15190 DDRAR7ARAIT! 9 | L 1 R 9 1 1T 991711 991171, T1T*T~-T7T. 9 -4




194 TABLE 1: ELLIPTIC CURVES 630E-637A

a1 asas a4 ag|r||T||s ord(A) |ord_(j) Cp Kodaira Isogenies
630 N=630=2-32-5-7 (continued) 630
Ell1-1 0 21 sall] 2 [- 4,6,2,1 [4,0,2,1]2,2,2,1 LI5LL [2:2
E2|1-10  —159 665(1| 4 [+ 2,6,4,2 |2,0,4,2(2,4,4,2 | I, I 1L, (2:1,3,4
E3|1-10  —780  —777711 2 |+ 1,6,8,1 [1,0,8,1(1,2,8,1| I;,I3.Is.I; |2:2
E4| 1-1 0 —2409 46115[1] 2 |+ 1,6,2,4 |1,0,2,4[1,2,2,2 | I, I5 I, |2:2
F1|1-1 0  —369 1053[0] 2 [+ 12,9,1,1[12,3,1,1[2,2,1,1 | 12,15, 11.1; [2:2;3: 3
F2| 1-1 0 —3249  —69795(0] 4 |+ 6,12,2,216,6,2,2(2,4,2,2 | IgIi oI, |2:1,4,5:3:6
F3| 1-1 0 —24129  1448685/0| 6 |+ 4,7,3,3 [4,1,3,3(2,2,3,3 | LIt I3 |2:6;3:1
F4| 1-1 0 —51849 —45312750 2 [+ 3,9,1,4 [3,3,1,4|1,4,1,4 | I3 Iz L |2:2:3:7
F5| 1-1 0  —729 —177147/0 2 |- 3,18,4,1[3,12,4,1|1,4,4,1 | I;,I5,, LT, |2:2:3:8
F6| 1-1 0 —24309  1426113(0|12|+ 2,8,6,6 [2,2,6,6(2,4,6,6 | I,I3.I6,l6 |2:3,7,8:3:2
F7| 1-1 0 —58059 —3373137/0| 6 |+ 1,7,3,12(1,1,3,12/1,4,3,12| I; I} I5,L;» [2:6;3 : 4
F& 1-1 0 6561 4778595101 6 |—1,10,12,3/1,4,12,3|1,4,12,3| I;,I},112,I3 |2:6;3 : 5
Gl| 1-1 1 —46118 —3792203[0] 2 |+ 14,9,1,5 [14,0,1,5[14,2, 1, 1[T14,ITT* 1, I5|2 : 2
G2 1-1 1 —28838 —6681419(0 2 |— 7,9,2,10 [7,0,2,10( 7,2, 2,2 [[;,I1T* I5,1;|2 : 1
Hi| 1-1 1 47 119[0| 6 |+ 6,3,3,1 6,0,3,1[6,2,3,1 | Ts,ITLT3,0; |2:2:3:3
H2| 1-1 1 73 551/0| 6 |- 3,3,6,2 13,0,6,2(3,2,6,2 | Is,ITLIg,I, [2:1:3: 4
H3| 1-1 1 —947  —10961[0| 2 [+ 2,9,1,3 2,0,1,3(2,2,1,3 |To,ITT* 1, T3 |2 :4:3: 1
H4| 1-1 1  —677  —175490| 2 |— 1,9,2,6 |1,0,2,6|1,2,2,6 |1,,IT1*I,,Is |2:3;3 : 2
1| 1-11 —4478 —114163[0| 2 |+ 8,9,3,1 [8,3,3,1(8,2,1,1 | IsIzI5,1; [2:2:3:3
12 1-11 —5198  —74419)0| 4 |+ 4,12,6,24,6,6,2 |4,4,2,2 | L. I5IgIo [2:1,4,5:3:6
13| 1-11 —13253  449597)0| 6 |+ 24,7,1,3 [24,1,1,3(24,2,1,3| Tos, It 11 15 [2:6:3: 1
14 1-1 1 —39218  2046557)0| 2 |+ 2,9,12,1(2,3,12,1/2,4,2,1 | I, I3 1o,y [2:2:3:7
15| 1-11 17302 —560419/0| 2 |- 2,18,3,4 (2,12,3,4/2,4,1,4 | 1.1, I, 14 (2:2;3:8
16| 1—1 1 —197573 33848381|0| 12|+ 12,8,2,6 [12,2,2,6(12,4,2, 6| I10,I5,I.Is |2:3,7,8:3 : 2
17 | 1-1 1-31610932164026557)0| 6 |+ 6,7,4,3 |6,1,4,3|6,4,2,3 | Is.I5,L.Is [2:6;3:4
I8 | 1-1 1 —183173 38980541|0| 6 |—6,10,1,12[6,4,1,12(6,4,1,12| Is,I5,I; 110 [2:6:3: 5
J11-11 32 5100 4 |+ 4,7,1,1 |4,1,1,1 4,4, 1,1 L.IL.L [2:2
J201-11 —212  —1101[0/ 4 |+ 2,8,2,2 [2,2,2,2(2,4,2,2 | L5, I, [2:1,3,4
J3|1-11 —3362  —74181)0| 2 |+ 1,10,1,1|1,4,1,1|1,4,1,1 | I;,I5,I,I; [2:2
Jal1-11 58 —39000| 2 |— 1,7,4,4 |1,1,4,4|1,2,4,2| 1;,I51,1 [2:2
632 N =632=2%-79 (1 isogeny class) 632
Ao 10 16 w61 1]+ 10,1 0,1 2.1 11" I,
633 =633 =3-211 (1 isogeny class) 633
All1 11 —17 o 1]~ 81 8,1 2,1 Is, Iy
635 N =635=05-127 (2 isogeny classes) 635
Ao 11 5 613 - 3.1 3.1 3,1 LI |3:2
A210 11 45 2091|1 |- 1,3 1,3 1,3 LI, [3:1
Bl‘ 0-11 —10 16‘1‘ 1 \— 1,1 \ 1,1 \ 1,1 \ I,.I; \
637 N =637="7%-13 (4 isogeny classes) 637
(A1l 1 1 n e aeAla Tl 41 T a1 T 11 T vt .0 |



TABLE 1: ELLIPTIC CURVES 637B-644B 195

ai as ag ay ag | 7 | |T|| s ord(A) | ord_(5) p Kodaira | Isogenies
637 N =637 =72-13 (continued) 637
Bl| 0-1 1 —359 —2507]0] 1]~ 71 1,1 41 | oL [3:2
B2| 0-1 1 621 —13238|0| 1 |- 9,3 3,3 4,1 I:1; |3:1,3
B3| 0 -1 1 5749 415463 0| 1 |— 15,1 | 9,1 41 | L [3:2
Cl| 1 -1 0-5252 —145223 1| 1 |- 10,1 0,1 1,1 | w1, |72
C2| 1-1 0 30763 6051758 |1 1 | — 10,7 0,7 1,7 mI;, |7:1
Dl‘ 0 0 1 49 —86\1\ 1 \— 7.1 \ 1,1 2,1 ] I3 1 \
639 N =639=3%-71 (1 isogeny class) 639
Al 1 -1 1 4 341 2] 81 2,1 41 | L [2:2
A2 1 -1 1 —131  —520|1| 2 |+ 7,2 1,2 4,2 Il |2:1
640 N =640 =27-5 (8 isogeny classes) 640
Al]l o 00 —13  —18l1] 2 [+ 71 0,1 1,1 | I, [2:2
A2 0 00 -8 3201 2 |- 142 | 0,2 2,2 | "1, [2:1
B1| 0O 00 —13 18)1] 2 [+ 7,1 0,1 1,1 I |2:2
B2/ 0 0 0 -8 32012 |- 142 | 0,2 2,2 | TII* I, |2:1
Ci{ 0 00 -2 410 2 |- 8,2 0,2 2,2 Inri, |(2:2
c2( 0 0 0 =52 —144 10| 2 |+ 13,1 0,1 4,1 15,1, 2:1
DI| 0-1 0 —15 —95]0] 2 |~ 84 0,4 2.4 | T, |2:2
D2 0-1 0 —265 —1575|0| 2 |+ 13,2 | 0,2 4,2 I |2:1
El| 0-1 0 —66 230|0] 2 |+ 7,2 0,2 1,2 M, |2:2
E2| 0-1 0 —61 2%1|0| 2 |~ 14,4 | 0,4 2,2 | mr*1, [2:1
F1l0 1 0 -66 -23]|0|2 |+ 7.2 0,2 1,2 M, |2:2
20 10 —61 -21|0|2 |~ 144 | 0,4 2,2 | mr*1, [2:1
Gl O 00O —2 411 2 |— 8§,2 0,2 2,2 Iri, |(2:2
G2l 0 0 0 —52 441] 2 |+ 13,1 0,1 2,1 L |2:1
HI| 0 1 0 —15 2%51] 2 |- 84 0,4 2.4 | T, |2:2
H2| 0 1 0 —265 1575 |1| 2 |+ 13,2 | 0,2 2,2 I, |2:1
642 N =642=2-3-107 (3 isogeny classes) 642
ALl 1 1 0 —49 s5]o] 2 [+ 10,31]10,31 21,1 |l |[2:2
A2 1 1 0 111 693101 2 | = 562 | 562 | 1,2,2 | IsJsl |2:1
Bi| 1 01 140 —790|0| 3 |- 3,12,1 ] 3,12,1 | 1,12,1 | I5,015,1; | 3:2
B2| 1 0 14315109978 |0| 1 | — 94,3 | 94,3 | 1,4,1 | To, LIz |3:1
C1 \ 1 11 79 335 | 1\ 1 \— 13,4,1 \ 13,4,1 \13,2,1 \ Ii3,14,11 \
643 N =643 =643 (1 isogeny class) 643
A1 1 0 0 —4 312 1 |- 1 1 1 I
644 N =644 =22.7-23 (2 isogeny classes) 644
A1l 0 1 0 6 43|11 [- 441 041 | 1,2,1 |1V | |



196 TABLE 1: ELLIPTIC CURVES 645A-650E

a1 az as ay ag |7 | |T|| s ord(A) |ord_(j) | ¢, |Kodaira | Isogenies
645 N =645=3-5-43 (6 isogeny classes) 645
Al 1 10 2 710 2 [ — 41,1 | 41,1 [ 2,1,1 | Igl,0; [2:2
A2 1 1 0 —43 8810 4 [+ 2,2,2 | 2,2,2 |2,2,2 | IIp,I, [2:1,3,4
A3 1 10 -118 —407 (0| 2 [+ 1,1,4 | 1,1,4 | 1,1,4 | I;,I;,I; | 2:2
A4l 1 1 0 —688 6667 |0 2 |+ 1,4,1 | 1,4,1 | 1,2,1 | Iy,Iu,1; [2:2
Bl|1 10 —22 3t{o] 2 [+ 3,2,1 | 3,2,1 | 1,2,1 | I3,Ix,]; [2:2
B2| 1 10 3 126(0| 2 |— 6,1,2 | 6,1,2 | 2,1,2 | Ig, 1,1, [2:1
Cl| 0-1 1-16780 855303 |0| 1 |— 14,2,3 | 14,2,3 | 2,2,1 |Iy4,I5,I5 |
DI| 0 -1 1-18000 —923542|0| 1 |- 6,2,1 | 6,2,1 | 2,2,1 | Is,Io,I; |
E1I| 0 1 1 1815 141239|1| 1 |- 12,81 12,8,1 |12,8,1| L1251y |
Fl‘ 0 1 1 10 44|1| 1 \— 6,2,1 \ 6,2,1 ‘6,2,1 \ Ig,Io.I; \
646 N =646 =2-17-19 (5 isogeny classes) 646
Al| 1 -1 0 —125 —507|0| 2 |+ 6,1,2 | 6,1,2 | 2,1,2 | I,I1,I |2:2
A2 1-1 0 -85 —867|0| 2 | — 3,2,4 | 3,2,4 | 1,2,4 | I3,,I; |2:1
Bi| 1 11 77 —7700] 2 |+ 4,3,2 | 43,2 | 4,1,2 | I;,I3], |2:2
B2| 1 11 303 —229 (0| 2 |- 2,6,1 | 2,6,1 | 2,2,1 | I,J5,I; |2:1
Cl| 1 00 -241 1413 (0] 2 |+ 2,1,4 | 2,1,4 | 2,1,2 | I;,1;,14 |2:2
C2| 1 0 0 —3851 91663 |0 2 [+ 1,2,2 | 1,2,2 | 1,2,2 | I;,Ip,I, [2:1
DI| 1 -1 1 —406 3237 1| 2 |+ 12,1,2 ] 12,1,2 [ 12,1,2 | I1p,01,15 [ 2: 2
D2 1 -1 1 —6486 202661 1| 2 |+ 6,2,1 | 6,2,1 | 6,2,1 | Ig,Ip,I; [2:1
El| 1 0 0 —153 5050 6 |+ 6,3,2 | 6,3,2 |6,3,2 | Ig,I5,Io [2:2;3:3
E2| 1 0 0 -913 -10287|0| 6 [+ 3,6,1 | 3,6,1 | 3,6,1 | I3,Ig,l; [2:1;3:4
E3| 1 0 0 —4573 —119379|0| 2 [+ 2,1,6 | 2,1,6 | 2,1,6 | Io,l;,Is [2:4;3:1
E4| 1 0 0-73163 —7623125|0| 2 |+ 1,2,3 | 1,2,3 | 1,2,3 | I3,Io,I3 [2:3;3:2
648 N =648 =23.3% (4 isogeny classes) 648
AL} 0 00 -3 1411 [~ 104 | 00 | 2,1 | o |
Bl1| 0 00 -3 —1|1| 1|+ 44 | 00 | 2,1 | ILI |
Ci| o o0 —27 —-378|0| 1 |- 10,10 | 0,0 | 2,1 |HI*IV*|
Dl‘ 0 00 —27 27111 1 \+ 4,10 \ 0,0 \ 2,3 ‘III,IV*
649 N =649 =11-59 (1 isogeny class) 649
Al 1 00 ~1 41101 |- 21 2,1 2,1 Io,I;
650 N =650=2-5%-13 (13 isogeny classes) 650
Al| 1-1 0 -167 =259 1| 2 [+ 87,1 | 81,1 | 2,2,1 | Ig,I5I; [2:2
A2 1 -1 0 —2167 38259 |1| 4 |+ 4,82 | 4,2,2 |2,4,2 | I, 051, [2:1,3,4
A3| 1 -1 0 —34667 —2475759 | 1| 2 |+ 2,7,1 | 2,1,1 | 2,2,1 | I,I5,I; [2:2
A4l 1 -1 0 —1667 —56759|1| 2 |— 2,10,4 | 2,4,4 | 2,4,2 | Io,5,I; [2:2
Bl| 1 10 -130 —780 1| 1 |- 18,2,1] 18,0,1 | 2,1,1 | I;5,ILL; |3 :2
B2| 1 1 0-11330 —468940|1| 1 [— 6,2,3 | 6,0,3 | 2,1,1 | I,II3 [3:1
Ci| 1-1 0 —22 461 1 |- 1,2,2 | 1,0,2 | 1,1,2 | LILT, |

1 _ 9109 _117=n=o Inl 9 | L Q 11 1|

Q = 1




TABLE 1: ELLIPTIC CURVES 650F-656B 197

ai as as ay ag |7 ||T|| s ord(A) |ord_(j)| ¢ Kodaira | Isogenies
650 N =650=2-52-13 (continued) 650
F1|1-1 0 —67 341001 1 |— 7,6,1 | 7,0,1 | 1,1,1 | I 050 [7:2
F2 | 1-1 0 —5317 —162409|0| 1 |— 1,6,7 | 1,0,7 | 1,1,7 | 1,51, [7:1
Gl|1 01 —26 4811 3 |— 2,4,1 ] 2,0,1 | 2,3,1 | LIV [3:2
G2/ 1 01 99 2481 1 |— 6,4,3 | 6,0,3 | 2,1,3 | I¢,IV,I3 [3:1
H1|1 11 12 3110] 1 |- 1,6,1 | 1,0,1 | 1,1,1 ] 13,51 [3:2
H2|1 11 —113 —969 (0] 1 3,6,3 | 3,0,3 |3,1,1| I3I3I3 [3:1,3
H3| 1 1 1 —11488 —478719|0| 1 |— 9,6,1 | 9,0,1 | 9,1,1 | IoI5I; |3:2
|1 11 —638 60310 1 |—2,10,1| 2,0,1 | 2,1,1 | I, II*1; [3:2
12 [ 1 11 2487 31031(0] 1 |—6,10,3| 6,0,3 | 6,1,1 | I,II*I5 [3:1
J|1 11 —813 853110] 2 |+ 4,91 | 4,3,1 | 4,2,1 | LI5EL, |2:23:3
J2 01 11 =313 1953110] 2 [—2,12,2] 2,6,2 | 2,4,2 | I,,IE1, |2:1;3:4
J3 1 11 —5188 —140219|0| 2 |+ 12,7,3|12,1,3 [12,2,1| ;5,515 |2:4;3:1
Ji |1 11 2812 —524219|0| 2 |— 6,8,6 | 6,2,6 |6,4,2 | IsI5ls |2:3;3:2
Ki|[1 11 12 1811 1 |- 7,4,2 | 7,0,2 | 7,3,2 | I;,IV.],
L1|1 00 —3263 —90983|0| 3 |— 18,8,1|18,0,1 |18,3,1|I15,IV*1;|3:2
L2 1 0 0-283263 —58050983|0| 1 |— 6,8,3 | 6,0,3 |6,1,3 | Is,IV* I3 |3:1
M1| 1-1 1 =555 5197\0| 1 \— 1,8,2 \ 1,0,2 |1,1,2 \11,1\/*,12|
651 N =651=3-7-31 (5 isogeny classes) 651
Al| 1 1 0 =5596 —164045|0| 2 |— 2,10,12,10,1 {2,10,1| Is,Ii0,L; |2:2
A2 1 1 0 —89631 —10365894 0| 2 |+ 4,5,2 | 4,5,2 | 2,5,2 | I,I5L, |2:1
Bl|1 10 -3 olo] 2 |+ 21,1 2,1,1 | 2,1,1] I,,,I; [2:2
B2|1 1 0 12 15(0] 2 |— 1,2,2 | 1,2,2 | 1,2,2 | I3,I,L, |2:1
Cl]1 01 3 5112 |- 2,21 ] 22,1 [2,2,1] LI, |2:2
2|1 01 —32 —61]1] 2 |+ 4,1,2 | 4,1,2 [4,1,2 | 1,5, [2:1
DI| 1 0 0 36 —81[1] 4 |- 4,4,1 | 4,4,1 | 4,41 ] I, [2:2
D21 0 0 —209 