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PREFACE

This book is a slightly expanded version of the series of four Ziwet Lectures which I gave in
November 1974 at The University of Michigan, Ann Arbor. The aim of the lectures and of
this volume is to introduce people in the mathematical community at large—professors in
other fields and graduate students beyond the basic courses—to what I find one of the
most beautiful and what objectively speaking is at least one of the oldest topics in algebraic
geometry: curves and their Jacobians. Because of time constraints, I had to avoid digressions
on any foundational topics and to rely on the standard definitions and intuitions of mathe-
maticians in general. This is not always simple in algebraic geometry since its foundational
systems have tended to be more abstract and apparently more idiosyncratic than in other
fields such as differential or analytic goemetry, and have therefore not become widely
known to non-specialists. My 1dea was to gel around this problem by imitating history: 1.e..
by introducing all the characters simultaneously in their complex analytic and algebraic
forms. This did mean that I had to omit discussion of the characteristic p and arithmetic
sides. However it also meant that I could immediately compare the strictly analytic con-
structions (such as Teichmuller Space) with the varieties which we were principally
discussing.

When 1 first started doing research in algebraic geometry, I thought the subject at-
tractive for two reasons: firstly, because it dealt with such down-to-earth and really con-
crete objects as projective curves and surfaces:; secondly, because it was a small, quiet
field where a dozen people did not leap on each new idea the minute it became current.
As it turned out. the field seems to have acquired the reputation of being esoteric, exclu-
sive and very abstract with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate: algebraic geometry is a subject
which relates frequently with a very large number of other fields—analytic and differen-
tial geometry, topology, k-theory, commutative algebra, algebraic groups and number
theory, for instance—and both gives and receives theorems, techniques and examples with
all of them. And certainly Grothendieck’s work contributed to the field some very ab-
stract and very powerful ideas which are quite hard to digest. But this subject, like all
subjects, has a dual aspect in that all these abstract ideas would callapse of their own
‘:Neight were it not for the underpinning supplied by concrete classical geometry. For
it has been a real adventure to perceive the interactions of all these aspects and to - &
as much as I could about the theorems both old and new of algebraic geometry. R
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th
ol .-' .
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lLecture I: What Is a Curve and How Explicitly

Can We Describe Them?

: In these lectures we shall deal entirely with algebraic geometry
over the complex*numbers C, leaving aside the fascinating arithmetic
and characteristic p side of the subject. In this first lecture, I
would like to recapitulate some classical algebraic geometry, giving
2 leisurely tour of the zoo of curves of low genus, pointing out

various features and their generalizations, and leading up to my first

main point: the "general" curve of genus g, for g large, is very hard

to describe explicitly.

The beginning of the subject 1s the AMAZING SYNTHESIS, which
surely overwhelmed each of us as graduate students and should really

not be taken for granted. Starting in 3 distinct fields of mathematics,

we can consider 3 types of objects:

a) Algebra: consider field extensions K 2@ Ywhere K is

Mw

; finitely generated and of transcendence degree 1 over C.

b) Geometry: First fix some notations: we denote by Ep the

projective space of complex (n+l)-tuples (XO,-*-,XH), not

all zero, mod scalars. XO,"',XH are called homogeneous

coordinates. P is covered by (n+l)-affine pieces.

sy (pts where X3 # 0) and X5 XO/Xi,"',Kn - Xn/Xi

(Xi omitted) are the affine coordinates on Ui‘ Consider

: n . ; by
algebraic curves C ©€ P : 1loci defined by a finite set of




CURVES AND THEIR JACOBIANS

homogeneous equations fa(xo,- -+,X_) = 0, and such that for
every x € X, C is "locally defined by n-1 equations with

independent differentials", i.e., = fal, A 1 Plus g,
Il—

with g(x) # O, such that for all a,

, ¢

n-1
gf = Z hysfy > some polynomials n, 3
AR B T 4

and

k(3%, /3%,(x)) = n-1
1

o
.

c) Analysis: consider compact Riemann surfaces: .
e

The result is that there are canonical bijections between the set of
“E;
lsomorphism classes of objects of either type. [A word about isc)morpl"i

in case (b): the simplest and oldest way to describe isomorphism in the

algebraic category i 5] N, _
gory is that Cl CIP - and (22 —~ P - are isomorphic if

there is a bijective algebraic correspondence between C

~ 1l.e., there is a curve D c ¢

: *l -! _-:.(- ' . e s
'.-_.i"' xq’ i R SRR

& 1) associ
R -aAD ate -
L to a curve C the field K of functions

e W oA
o )

= —>C U (o) given by restricting to C rational

- 2 T ij & L S oo x o e AL :r;'_'.‘ N

........
HOlharT o, R
,,,,,,
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LECTURE 1

associate to a Riemann surface X its field of meromorphic

i 2)

{ R

: functions; and any curve C which is the image of a holomorghic

| g

': embedd lng of X 1in ]Pn - - '

| o
5 o
' 3) from the field K, we recover C or X as point set just as the 3

set of valuation rings R, € ©€ R C K.

To X or C or K we can associate a genus g as usual: g

g = no. of handles of X

or
[space of holomorphic differentials w on X]
g = dim of{ |
[ space of rational differentials w = adx,(%gGK,
x € E:) on C with no poles]
or
2g-2 = (no. of zeroes) - (no. of poles), of any differential w.

For each g, we shall let Ty denote the set of isomorphilism classes of X

we shall discuss the structure of g in the

or C or K of genusig:

second lecture.

So much for generalities. Most of what I shall say later is best

understood by considering the computable explicit cases of low genus.
Let's take these up and see what we have:

: there is only one object here:

X = Riemann sphere @ U (o)
C = ]Pl itself

K= @(X), ¢




CURVES AND THEIR JACOBIANS

Here we have the famous theory of elliptic curves:

QO
I
-

X = €/L, L a lattice which may be taken to be

Z+X-w, Im w > O.

. : : 2
any non-singular plane cubic curve, 1.e., C C P

C

tkﬁﬁned.by f(x,y,z) = 0, £ homogeneous of degree B ?
with some partial non-zero at each root; in affine

coordinates, X,yY, C 1s given as the zeroes of a

cubic polynomial f(x,y) = O.

K = ¢(X,Y£(X)), where f is a polynomial of degree 3

with distinct roots.

The connections between these are given as follows: given X
>

form the Weierstrass p-function:

N R SN ¥
S(.) 22 aél [(Z:;)E _‘£§]
a0

a

and map €/L into by |
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LECTURE 1 &

is a line of inflexion. Then C is readily normalized to the form:

e
Yoo ifilx ), wdeg of w3,

Therefore the field of rational functions on C is ¢(x,/£f(x)). To go

back to X, look at the abelian line integral

(x,v) o
W = S Er'

(x_y )

taken on C; then

C = > C/L.

A few comments on this set-up: /L is clearly a group, and hence so

1S C - here the group law is characterized geometrically by the beautiful:

Il

X+Y +2Z O & Xx,y,2 collinear.

1]
O
N
i_a
-
)
t
o7
o
)
D
L
b
I

O &< x a point of inflexion. Since

e 1
22X = O === — :
=== X € 5L/I_.J,r there will be 9 of these. Now via X =~ @/L, we

-Bonnet theorem, it must be

ne at ‘

X ; : : 2
does fit symme;rlcally ln_ﬂ? - we will dliscuss this furth '
er 1n

/
Z w

e Ny i, ,.m‘f’ﬁ_ i



CURVES AND THEIR JACOBIANS

with a few exceptilions for very ¥ . eor

nd C 1S the Gelfond-Schneider result:
a

w € Q(V;E)) w and the coefficients of any isomorphic _ ..y
J

special w's, (i.e.,

uybic C are never simultaneously algebraic.
C

g:

K = ¢(XyE(X)), where degree £ = 5.

what this means is that the corresponding curve C admits a 2-1 mapping ,app:

to ot ramified at 6 points: the 5 roots of £ and the point at infinity inf
on ! o

This does not gquite give us C embedded in B' though. We can do 2 things 2 t

let 1
A s ,'P

. , = R
be the above map. F1X X1 5%, with fol = TTXE. Then one can prove that ‘o

C can be mapped to a plane quartic curve C_ bijectively except that X1 zhat

and X, are identified to a dounle point of Co' This means that at the & at

double point Cq 1s given by an equation

0O = Xy + fB(x,y) + fl.l(x-’Y)

where the double point equals the origin.

In this form, m(x,y) = X/¥; )

or geometrically, M: C —= TP is defined by "projecting from (0,0)." P°
This still doesn't represent C embedded in 4 . In fact, to doithis o <
you need n = 3, and at least 3 equations too. You start with a line it
L < IP), then take quadric and cubijc sur faces F,G C _‘pj’ containing 4. pnd
Then FNG will fall into » components - 4 plus a quintic curve C, E
and it can be proven that SVery curve of genus 2 occurs as such a C g
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.ﬁ |
civen such a C, there is only one 2-1 map T: C —— m and the

p: 5,
}‘-'- "‘:i 1.._"‘

‘""%}
most important points on C are the 6 points X where it ramifies.--'1

have 2 significances -
a) they are the Weierstrass points of C, 1.e., the points x.E-C 1
&
such that there is a rational function £ on C with a double pole'f
at x and no other poles, (if t is the coordinate on I}, 1et‘
(t-t(x)) ™)
b) they represent the "odd theta-characteristics," i.e

. 5 - LOOKE=TOR

differentials w with no poles and zeroes only with even

multiplicities: one writes this
(w) = 2 U
if (w) = divisor of zeroes and poles of w. In this case,

there are w, with one double zero at X Loel,

(wi) = 2x,

t-a,.
and no others (in fact if a, = tlx )l S dt ).

i ) gL t-a.
J;H 2

Analytically, C can be represented by a Fuchsian group:
c & H/T
where:
H= {z{Im z > 0]
I' = discrete subgroup of SL(2,R)/(+1).

Or by various Kleinian groups:

g p/T
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CURVES AND THEIR JACOBIANS

where
D = open subset of € U (o)

=

discrete subgroup of SL(2,T)/(+I)

which acts discontinuously on D. %.

I want to make only one remark on these representations in connection =

with my main question of how explicitly one can describe C. Start with

» Fuchsian I'. Choosing a standard basis of ﬂl(C), I’ is generated by

hyperbolic transformations Al,Bl,AE,B2 satisfying g
A B ACTBITACB AR T =e. :

) h) [ o0 v > N W 3
i

It is quite clear from the work of Fricke-Klein and of Purzitsky and Kﬁ&ﬂ

that there is a small number of inequalities on the traces of small words

in Al,---,BQ'which are always satisfied for Fuchsian ['’s, such that

conversely if A, ,---,B, € SL(2,R) satisfy these inequalities, they
generate a Fuchsian I'., (It would be nice to know these inequalities'
precisely.) This means that one can actually find all Fuchsian I 's -T#E

'-. #

explicitly. For Kleinian I''s no such simple inequalities are knawn}jf

»

and presumably do not exist. In the simplest case, the problem arisejf

— describe explicitly the set of pairs (A,B) € SL(2,¢)2'which generate {
free group of only hyperbolic elements acting discontinuously at some

z, €€, i.e., the Schottky groups. This looks very hard.



LECTURE |

H Here we encounter first the phenomenon of not having one easy

a

jescription of all C's at once: "almost all" C's can be described one 2i%§]

way,

'-.‘,' 3

4

.

-
S i ]

!

L4

-

.

o

but some are a special case and must be described a different*way.  {f3

The general type are the C's which are non-singular plane quartic curves. %;

The embedding of C in Eg is canonical and is given in the following

simple way: let wl,wg,mB be a basis of the differentials of first

xind (= with no poles) on C. For all x € C, let dt be a differential

near X with no zero at x so that witx) = ai(x)dt,a. a function.

L
Define:
C'———ﬁiﬁg
by
> Wl e (al(x) ’a2(x)’a3(x))

This is independent of the choice of dt because changing dt multiplies
the triple by a scalar. This procedure works in any genus and defines

the so-called canonical map

-1
§2nC ———%bng -

given, loosely speaking, by:

(%), 0 (x)),

where {mi] is a basis of differentials of 1St kind.

x —> (o

[;Note that there is a natual correspondence between linear functions

g=-1

in the homogeneous coordinates on IP° ~ and arbitrary differentials

G

zki¢i of 1°% xind on.c:] As is well known, there are 2 types of C's:

those for which é is an embedding (i.e., $ injective and Q(C)

ol

HJ
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CURVES AND THEIR JACOBIANS

10

$# is 2-1, and the 1image is isomorphlc

non-singular ), and those€ for which

to ]Pl. All C's which adm

~nd
it 2-=1 maps to ]FIl fall into the c category

' o — then
b s Calliad TyperedlipbiCums Fhus Lor (G OeiRes c = #(C)

$(c) in 4

' ' P meets
because each ®, has og-2 = 4 zeroes, each line in T

$(c) is a non-singular conic "with

points and #(C) is a quartic — or

Lplici ox o e LS | -S ] r conics are .
multiplicity 2, i.e., & 1S >~.1. As all non-singula :

isomorphic to E}; c is then hyperelliptic. In general, in the
non-hvperelliptic case, &(C) will have degree 2g-2, because the

hyperplanes H Ciﬂgﬂl correspond to differentials © of 1St kxind in

such a way that:

8(zeroes of @) = HN #(C).

Plane quartic curves C are intricate objects. They have lots of

special points on them:

a) their 24 points of inflexion are the Weierstrass points of C:

*

the points x such that there is a function f on C with a triple

pole at x and no other*,

b) their 28 bitangents — lines tangent to C at 2 points —
correspond to the odd theta-characteristics. Because if 4 is
tangent to C at x and y, then the differential @ corresponding ) o

to 4 has a double zero at x and v:

(@) = 2x+2y. V.

» ! 3]
You can find the function as follows: let x be a point of inflexion, leti ™

L be the tangent line to C at x. Then £ meets C at one further point v: &%

: X

X Y
C

Let u,v be affine coordinates such that y is the origin u=v=0, and 4 is
g .

the coordinate axis u = O. Conside :
: ; r the £ tion £ = v i |
o £.ig pogular at.v. but ar a £ pisia tri-le/%; snce B.snd.

-

v iy ! ki e
] ¥ 4 ‘tl | | " f.
o T ":._. ! IIJ - ad ”. . .‘?
{4 in Wi Fae
j My & i
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LECTURE |

"higher

cract, projective goometry yields a vast constellation of
Tn - L)

. .rstrass points’  tO0o0, such as the 108 points x for which there 1s a
welel

. . p touching C at x with contact of order 6. More generally, for
conic -

look at the points x for which there is a curve D of

any degree d,

. B
ee d touching C at x with contact "one more than is expected,
) *

-t

one more than 1s possible at most points of D. One can think

PN

= +his as some kind of analog on C of the finite set of points of order d,
of 1

EL¢LCMUI,in the*genus 1 case. This analogy goes quite far. For
d

instance, as d —> @, one can show that these points are dense 1n o
: .

. J . . N
~nd even fairly evenly distributed 1n the "Bergman metric, i.e., for

. : st .
any curve C, choose a basis ml,---,m of differentials of 1 kind

g

©. =Bl

for which
A
S P J 1]

G

Then using such a basis, we can normalize our canonical embedding

-1
§. C ;:ES

: 2
up to unitary transformations, in which case the standard metric ds

2

Cﬂlﬂgii has a restriction dsB to C independent of the choice of the

mi’s: this is the Bergman metric.

An interesting question that arises in this connection 1s the

relationship between the Bergman metric dsg and the Poincaré metric
2

dsP of constant negative curvature induced from the standard metric

on H

2 2 2
ds = dx +dy /Yg, zZ = X+iy




CURVES AND THEIR JACOBIANS

- H/T'. Kazdan suggested that it

via the Fuchsian uniformization C

' ©TI are subgroups of finite index and cofinal among such subgroups,

n
if Cpn = H/T and 1f ds2 is the Bergman metric on Cn pulled back
to H, then with suitable scalars A s
2 2
lim A ds = ds
n Bn D

$ e O 0

We won't say much about the hyperelliptic case: in genus g, if

C ——%rIg'is 2-1, then there are exactly 2g+c branch points, and the

corresponding fields are just E(X;Vf(x)), where deg £ = 2g+l1 or 2g+2.
[If £ has degree 2g+2, by a linear fractional transformation in X,

taking some root to w , C(X,Y£) = €©(X',/f') where deg £' = 2g+l]

These curves are special however in the following precise sense: one
can build a big algebraic family of curves of genus g:

 GREED, € > S
such that all curves of genus g occur as fibrestS:= f-l(s). Then the

set of s such thatjxS 1s not hyperelliptic will form a dense Zariski-

open subset of S.

g =4 Let é:(:———¢IP9 be the canonical map. If C is not
lyperelliptic, we saw that #(C) was a space curve of degree 6. 1In

fact, ¢(c) is the complete intersection FNG of a quadric and cubic

sur fac ]
€ meeting transversely. One could also ask, however, is C a plane

curve or 3 A
_ r 1s there a map W: ¢ — IP" of low degree? The answer to the

first ' ' '
question is that C must be glven singularities before it can be
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L] - - - C
ut 1n Iﬁ; the simplest way 1s to identify 2 pairs of points makling
P ? 3
* = w a J..-?ﬂ:'
nto a plane quintic C_ with 2 double polnts; as for T, one can always k
i

fgind a T of degree L

As the genus g grows, it gets harder and harder to represent the

general curve C of genus g either as a plane curve with relatively few

1 .
singular points, or as 4 covering of fairly low degree IP. For instance,

it can be shown that the lowest degree Ccurve representing such a C has

degree

2g +3
2

d = | )

In general, 1ts singularities will only be double points but the number

of these will be

which is asymptotic to 2ﬁq(g2). If g < 10, one can work backwards and
write down all equations f(XD,Xl,XE) defining curves of this degree d

and this number d of double points, hence having genus dJ. This 18
because the vector space of such f’s has dimension (d+1)(d+2)/2 (count
the coefficients), and for any point (ao,al,az), if we require the coeff:

cients of f to satisfy the 3 linear equations:

of
axl Olaljaz) r oy OJ
i
then f = O has a singularity at (ao,al,ae). Now if g ¢ 10, then

d+1l)(d+2 -
20 <& L—-—-—)-é-(———-l- (see table below), hence we can pick an arbitrary set

(aéi) (l) (l

of & points Pi -

) in IP:'and always find at least one
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14 CURVES AND THEIR JACOBIANS

curve C of degree d with singular points Pl’-..lpa; in general these
will be double points and C will have genus g. However if gfg_ll: if

we choose the & singular polints generically, there will be no such £,

£ the 5 double points will always satisfy some

i.e., the coordinates O
obscure identities. The upshot 1is that there 1s no reasonably explicit

way to write down the equations of these plane curves: one is 1in a

realm of unexplicitness almost as bad as with Kleinian groups.

I

Next, it can be shown that the lowest degree map WW: C —> .

i

has degree
2 T g+3
d = [—5—

(This is equivalently the smallest number of poles of any non-constant

function on the general curve C.) This also, to my knowledge, does not

lead to any explicit polynomial presentation of C, but it does lead to a

very explicit topological presentation of C. Namely, assuming the
branch points of T are all simple, then one can reconstruct C in
5 steps:
= : : :
) Choose the branch points [xi} arbitrarily: there are 2(g+d-1)

of them.

b) Choose a A " joini ]
) set of "cuts" joining the x; to a base point z:

- - — -— -

c) Choose 2(g+d-l1) trans Lt i '
positions Ui acting on {l,"-,d] such that

(Ul-ﬂ'en-..) = e.
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: . 1
d) Make a topological covering space C of P by glueing together

d copies of H}”via the transposition g, on the itP cut.

e) BY Riemann's existence theorem, Co has a unique algebraic

structure, i.e., there is a unique curve C and map - c-—_ﬂpE}

: : 1
such that C 1s homeomor phic to C_ as covering of IP.

unfortunately, step D is essentially topological and seems Very

deep from an algebraic point of view. For instance, if you want to
algebraize +his construction, you are led to ask: given prescribed
branch points, cuts and transpositions, £find an explicit multi-valued

algebraic sunction with these branch points and transpositions. Thus

if d = Q:W/TT(X“Xi) is such a function; if d = 5 or 4, the solvability
of 85,54 (the permutation groups) allows one to find such explicit

functions too. But I don't know of any general method for larger d.

We summarize these discussions 1in the following Table:
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LECTURE | 17

For general g, the simplest explicit polynomial presentation of C

seems to be one due to K. Petri in a paper that was until recently almost
forgotten. He was M. Noether's last student and collaborated with

E. Noether and appears to have written only 2 papers, I want to
conclude this lecture by describing his resulte in one of these
published in 1922. This is unavoidably a bit messy, but just to be able

to brag, I think it is a good idea to be able to say "I have seen every

curve once.'

Let C be a non-hyperelliptic curve of genus g. Petri starts by

choosing g points xl:'--,xg on C 1n a reasonably general position

(we won't worry about this). Let Pyt P be a dual basis of

differential forms, i.e.,

@ (x_)

= OLaf A %
i 2]
#..0 AL A=,
1 - s . ﬁ_l
Let X.,:--,X_ De the corresponding homogeneous coordinates in
1 g
for the canonical map §: C -—1MES_1, AlsoL, i E “Hud A L g, write
P = dti, ti a local coordinate at X; and then expand
A= kitidti =
$2 - “itidtl = .

(We may assume A: # 0 if 3 < i < g.) Then Petri's first step is to

write down a basis for the vector space of k-fold holomorphic

differential forms on C for every k: these are differential forms

|
{ y

ff
IS ;%-
T | -. .-_1 fad 1

i u.j.:'.
F g WP o B k
HOM (7

P }ﬁﬂﬁb'll

\

il
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a(x)(dx)k with no poles. For k > 2, they form a vector space of

A
J'..

dimension (2k-1)(g-1). The table below summarizes his results. LoOOK

at it carefully — each column displays a basis for k-fold differentials,

b i B~ R RS SRR ﬂ

1l < k ¢ 5. Within each column however, we group the differentials 1in

rows according to the multiplicity of their zeroes on L&dzf x3+‘--+x
k k

Thus the first row 1s always wﬁ,---,wg as each of these has no zero

g

st v il W '#I.“iﬂiil:'-' i

N

at one of the X., whereas all other monomials in the wi’s will Dbe
i

zero at least to 15% order at each point of (f . The second column

arises like this:

a) one checks that every quadratic differential which is 0 on Ul

]

is of the form @I( ) + wg( )

b) hence if 3hc jil¢ JCign ;9. can be rewritten as wI( I wg( Y

c) Omitting these mimj, the remaining 39-3 monomials form a basis

asS 1lndicated.

The third column arises like this:

2) one checks that the triple differentials mg( )+¢lm2( )+@§( )

are of codimension 1 in the vector Space of triple differentials

W, with double zeroes on (I ! This ls a reflection of the

"fundamental class on C": the condition for such an w to be

e 2
formed out of ml,wlmg,mg alone is that

(*) ) & 3
Y ) Bte,

all zeroes

y of ¢

except x

1
31--.-’}(

9
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b) Writing ﬂi as indicated, this has a double zero on (I and
every difference ﬂi—ﬂj satisfies (*).

c) Hence 7).-7), can be rewritten as indicated and this leaves
1

exactly 5g-5 remaining triple differentials as a basis.

The remaining columns are quite mechanical: the 2 ways of rewriting

di fferentials reduce us to the attached list, and, Dby counting, leave

us with exactly the right number to be a basis.

Let us write out the 2 sets of identities Dby which these reductions

. are made. They will be:

g
k=5
g
E: l Jo + V! .@ow, + Vi e
ni_nj 73 243t P12%2 /% 13182 131 e
K=
(here the ¢ is linear, the 5l is quadratic, the V’s are scalars,
and 3 < i,j < g, 1 # j). But what this means in terms of equations

in.Eg_l is precisely that 2 sets of homogeneous equations:

g
fij Sy Ejaijk(xl’XE)xk it SR by
k=35
g
2 E: .

SR E T a R )% 5 (% A XX L al;k e T
i 2
3 vlJXlX2

of degrees 2 and 3 generate the ideal of C!
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Petri now goes on to Prove 3 beantiful results —

I) These equations are related by syzygles:

= E iy : = X
R Siitn Fid e T P4k
g
b) S e 5 PSS gjaikif'z = P x5k
Xj.c *) =7 J L=9 J
LEK L# ]
. = . . 2
where D g_i,ij < G i,j,k distinct, and the pijk s are
scalars symmetric in 1, ] and k.
II) There are 2 possibilities: either pijk = aijk -~ 0 whenever 1i,j,K
are distinct, and then C 1s very special — it 1s a triple covering
of E} or if g = 6 it may also be a non-singular plane quintic; or

else most of the p’s and a’s are non-zero (precisely, one can write

(5 --r.gli= IlUI2 so that for all j € 1, X € IE’ there exists an 1

f

1 th oAkt IO
' pljk ¢

b

%5 ik < 0), and then the fij’s alone generate the

sdeal of C.

III) Given any set of fij’s, gij’s as above related by the syzygies 1in

O, and at least one p

(I), where all li iik

4 0, there exists a

e

curve C of genus g whose canonical image 1n ﬁg_l is defined by

these equations.

In my mind, (III) is the most remarkable: this means that we have

a complete set of identities on the coefficients a,a’',V,V' v" X\ W, 6 p
J

characterizing those that give canonical curves. It would be marvelous

to

use this formidable and precise machine for applications

b A T N N

;,_.- 5 A_..-"[ R
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Lecture II: The Modulil Space of Curves: Definition,

Coordinatization, and Some Properties

We now
In the previous lecture, we studied each curve separately.

us
want to discuss in its own right the space of all curves of gen d,

B

which we denote by'ﬂ%. Also very important 1is the allied space:

;

| l

m =t isomorphism classes of objects (C,xl,-~-,xn) |
g.,n } ;
where C is a curve of genus g, and xl,---,xn are E

G

distinct ordered points of C. J :

‘#'I-:i ¥ i1t

Let us begin as before by looking first at the simplest cases:

Stk Rl e b w

11 n- .
1) - 2 ~ [P -(0,1,®)] Pk (all diagonals) . J
O,n 2
In fact, if we have n distinct points xl,---an € E}, a unigque %
automorpnism of ! takes X, to 0, x, to 1, and X5 to @ The remaining :

n-> are arbitrary except for being distinct and not equal to O, 1 or oo.

el

1
m - . . * & N -
I1) 1.0 ﬂ&,l Bj (the affine line* with coordinate j).

Because curves of genus 1 are groups, their automorphisms act

G b el et e i el

transitively on them, hence MM = I ‘

. To determine thi %
g,0 g,1 S space, recallj

that all such curves are isomorphic to one of the plane cubics (':)\Jl defined

by

-IL-I'J-'- s A -

Y2 = x(x-1)(x=A).

Equivalently, Cy 1s the double cover of IPl ramified at 0,1,m .2\ ®)
J: [ ]

ne

* - w ™ |

?ut of habltﬁ I find it more comfortable to call
instead of € :

ground fields.

affine n-space AF

n
because & also denotes affine n-space over Other
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proves easily that Cll ﬁscxg if and only if there is an automorphism of
3" - |
P carrylng [0:1193:11} (unordered set) to {Ojl,an,lg}. This happens

if and only 1if

o R e 25F "1/0‘1"1)’ i 1/(1"}‘1)

[e.g., note that the map

(x,y) —m— (1-x,y)

carries CA to.C and the map

B
D

)

(XJY) - 2 (l;;}{_, Y/'IX
carrlies Ck to C

1/x37°

One must cook up an expression in A invariant under these

substitutions and no more. It 1s customary to use:
i (Rg—:wl)3
j = 250~ 5
A" (x-1)

(It is readily checked that this j 1s invariant under these 6 substitutions
and since 6 = max(deg. of numerator and denominator), no other \’s give

the same j.)

We then get a bijection between the isomorphism classes of genus 1

curves C and the complex numbers C by taking C to J R AEHE = Cy .

Analytically, if C'= C/L, the j-invariant of C can be calculated

2 Eid
from L in the following way: define

- *The stream of funny constants can best be explained as making a certailn
Fourier expansion have integral, not just rational, coefficilents. This
makes the theory work well under "reductlon modulo p".




Then it can be shown that:

F‘
24 CURVES AND THEIR JACOBIANS ‘
3
>
:
%
s
:
:
! . 3 % 2 j

In particular, if L = Z+Z-W then j(w) = j(c/®+2:w) is the famous :

elliptic modular function. Its most important property is its invariance i

under SL(2,Z), which can be explained from a moduli point of view as

follows:
5 e € SL(2,%Z) such that
Ja € € such that AR c d
% aw._ +b
a(Z+ZW.) = Z+Z W 1
1 2 UJ2 = —
cwl+d

(This is trivial to check.) But

% -4 isomorphism

Ja € € such that
C/Z +%- w, = u:/:z+zz-w2 PR a ( Z+2Zw

T

j(e/z +2Z- w,) = j(¢/Z+z. w

1) = ZHBw,

2)'
Hence:

a b
7 d) € SL(2,%Z) such that

aUJl-i:b

w

*"-"'-'-i-
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I11) m%,o: this space was studied classically by Bolza among others,

and 1n recent years was analyzed completely by Igusa, and was attacked

as follows: describe a curve C of genus 2 as a double cover of E}
ramified in 6 points Ays°*',A;. This sets up a bijection:

Isom. classes of unordered distinct 6-tuples

C of genus 2 3 AT Feifel o £ SN2 HE }'madulﬂ automor phlsms

1 B 1 6

of IP, i.e., PGL(2,€).

' Describe an unordered 6-tuple [ki} by its homogeneous equation f(XO,Xl)

nce | of degree 6, a so-called binary sextic, and we arrive at the problem:

find polynomial functions of the coefficients of a binary sextic ftﬁyxf

. invariant under linear substitutions 1in XOJXl of determinant one. This

is a problem worked out by the classical invariant theorists. These

invariant functions are then coordinates on I . Without going into

2.0

any more detail, suffice it to say that the simplest way to describe the

answer you get 1s:

3 modulo Z/5%Z acting by
W 0 S &/ (2z,v,2) r— (&'x,0%y.002)
where CB = 1

M o 2
8

in.. 1

this, in turn, may be embedded in A
by the 8 functions

< &y ST .

.
s X Y,XY Y X 2,X2 ,Z2 ,Y2

For all g > >, m% 5 has never been explicitly described. This
J
rathier discouraging fact does not mean that the other T n’s have not
9,

been studied however. The lack of an explicit description is rather a
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challenge i) to find one and ii) to find the properties of Y] 2 even
F
without such a description!
The first point to be made about Il in general is why you call

9,n

1t a "space'" and expect it to be a variety in the first place. Recall

. . 3y . :
that a projective variety X C is defined to be the complete set of

zeroes of a set of homogeneous polynomials fi which generate a prime

ldeal 39 ClE[XD,---,Xn], and that a quasi-projective variety X cip i

e

defined to be the difference X_(Ylu"'UYn) where E}Yi are projective

varieties. We then say that a normal” quasli-projective varilety Mg = 1s

2

the moduli space if

i) we are given a bijection between ﬂ% n and the set of points
3

of M ;
g,n
ii) for every algebraic family of curves of genus g with n distinct

points, i.e., every”proper smooth morphism T; X ——= S of

varieties whose fibres are curves of genus g**, plus n

disjoint sections g.: S —> X," the induced set-theoretic
map @g: S —M defined by

g,n
p(s) =[ pt. of M corresponding via (i) to the curve

£
5 gaen
T “(s), and points Ui(s)

=

is a morphism of varieties.

|

closed in their quotient fleld. This is a mild &4ndition needed

for technical reasons.
* ¥

Again it is not essential to know in detail what these t

only

erms mean:

the idea i ' ' '
: 4 1S to generalize, for instance, the family of curves

Yy =x(x-1)(x-kl)(x—kg)(x—kB), which would represent an
family of curves of genus o parametrized by.ﬂ?.

algebraic
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1t is not hard to show that any 2 such M ,M' are canonlically

g,n” g,n
jsomorphic as varieties: hence we may speak of the variety EE L
RE ’
It is a non-trivial theorem however that such a variety M exists

g,n
at all.

The second point is to explain the relationship between T% 2
J

and the Teichmtiller space Ug il Define
2

T

free group on 2g+n generators Al,---,A ,B

QY. 0 ,C

1 mod one relation

n

-1 -1 -1 -1
----- A BIA B T C /Y MEiSaxe
AlBlAl'Bl gagiign g n

Define set-theoretically:
J = ' C e o0 X where C is a
A | set of objects ( e S s n)’
curve of genus g, Xy5%,X are distinct points
of C and

a: || —

> nl(c_{xl.! AT an})

is an isomorphism such that a(ci) is freely

homotopic to a small loop around X, in positive Kﬁ

[

e.g., via the intersection pairing (.),

(a(Al).u(Bl)) = +l]) modulo (Ca,X) ~ (€' ot et

-
——— -

if there is an isomorphism @: C =, ¢' such that

i
2
i
!
#
|
:
{
:
§ - sense [and if n = O, a is "orientation preserving,
1
{
'
i
!
j
1 ¢(Xi) xi and such that (ﬁ*)-u differs from o'

by an inner automorphism.
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Via the deformation theory of compact complex manifolds, it 1

to put a complex structure on

It is a deep theorem that

5 Wi 2g-=5+n.
convex domalin in C J

/
g,n

/

preserving in a suitable sensg) |

Then it follows easlily that TI'

g easy
39 n: this is the Teichmtiller space-
Jg n 1s, 1n fact, a bounded, holomorphically

Let

automorphism @ Df'TT such

that o(C.) =
i

(and.if n=0, @ is orientation

g,n
(CJain) e T (C,ﬂl'g‘,}{i)
and that
m =g SR :
g,n g,n g,n

cenjugate of C,

L

L

acts discontinuously on ¢

g,n

Inner

automorphls

via

In the case g=n=1, we just have again the situation mentioned above:

viz.

J =

i

I
1

al =

1M

In fact, given w € @, define (C,a,xl) as follows —

)

{wEElIm w > 0}

SL(2,z)/(+I)

{j6¢]=ajt

C = C/Z +%Z° W

XX o

1 image of O

and if we let the image

- 2
9 Ky TT FemS— nl(c-xl"Y) by

y of 1/2 € € be the base point C, define

T,

| L.

"o i LRIl SHe S L VEMG T T LBy

B Ll -l'ﬁ:-li-#—'n"'nL.“ #
mn (o] B o

e Jun
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H(Al) loop in C obtained by projecting:
%
s
1 m
E The third point we want to discuss 1S how one proves that g,n
g

'in fact, a quasi-projective variety, i.e., how one finds global

‘homogeneous coordinates for m  To tie this in, for instance, with

g,n

Petri's approach in Lecture 1, one can view his ideas as leading to

e a e i A N i I 5

' L ski1 : | .enLsinot on all
coordinates on some Zariski-open subset U Ciﬂ%’g. (i :

%
?of' m because the curve C had to be non-hyperelliptic and the g
t 9,9

§EUXiliarY pOintS xl:"'ng

1 [ L]
ispecial a position). In general, the hard part of this problem 1s

had to be carefully chosen not in too

:

+o make the coordinates work everywhere on m%;n

and not just on a

L

TZariski—open U however. These coordinates can be viewed as automorphic

' ‘ ichmiller
ﬁorms on the Teichmiiller space Jgjn*w1th respect to the Telc

;modular group [ however this approach to their construction has

g,n’

‘not been pursued. I know of 3 methods to obtain coordinates:
!

I. wvia "theta-null werte,"

II. via the cross-ratios of the higher Weierstrass points,

III. via invariants of the Chow form.
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The first method will be discussed in Lecture IV, and we will pass

over 1t for now.

Method II is like this: let C be any curve of genus g, For any

n.> 9, let Rn(C) be the vector space of n-fold differential forms

with no poles — it has dimension Q xi= (2n-l)(g—l)-—-and let

w(n) 1 L KTt c be a basis, Define

i ’ R 2R 2 1L A%
@n: C > Jdn
by
X :ﬁ(wgﬂ(x),---,wéz)(x))

just like the usual canonical embedding. Regardless of whether C

is hyperelliptic or not, these are all projective embeddings of C.

On én(c), there is a finite set of points x of hyperosculation,

l.e., points where for some hyperplane H, H touches $ (C) at x with
order >d_. Allowing these x to be counted with suitable multiplicity,
there are e = gdi of them: call them xin), <G S_en. These are
the n-fold Weierstrass points (our definition here is slightly

different from that of Lecture I, but is equivalenﬁ), Consider the

e Xdp-matrix giving the coordinates of the Weierstrass points:

(Wgn)(x(n)))-

1 J
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Note that the MI’S are not numbers, but rather products of differential

: : n
forms at the various points xg ) j € I, Now for large N look at

g

monomials in these minors:

£ I'r
M. = | | M

where I, > O and ;ﬁrI _ N for all i. Then these monomlals are
i€
n
products over all xgn) of nN-fold differentials at xg ). It follows

e ————

~ that although the Mr’s are not complex numbers, thelr ratios are. s

or if there are M possible choices of exponents T satisfying r_ 2500

and erI = N, the set of values Mr’ as r varies, 1s a well-defined
i€l

point in Bfwl. Finally we must symmetrize under permutations of the

xgn) which are not naturally ordered:

permla
of [l e

PR < nm#-“&mﬂnﬁ‘ﬂ

M; = Ej TE'MzG(I).
}

[~
i
L]
]

* Then the ratios M; /M; depend only on C, and not on the bases
' ) & 2

(n) (n),

3 or on the ordering of the X. s. Thus we get

Qi w'(c), ) e il

i
;
3
!
i
:
5 r
i

. depending only on C. One pProves a) that not all M;(C) are zero,

%and.b) that if C1.¢:C2’ Mr(cl) is not proportional to Mr(CZ)’ all T.

3
iThus'we have coordinates on X S i is very similar.

%

g,0 g,n

Method III is not so explicit. 1In general, for any curve

2, Cmm, we can describe C by its "Chow form": let XO, . -,Xm be

- coordinates on " and consider 2 hyperplanes: H defined by
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zﬁixi = O and Hv defined by viXi = O. Then it turns out that

there is one equation Fc(u;v) such that

Fc(u;v)=0 & >CﬁHuﬁHv#¢.

FC is called the Chow form nf C and it determines C. (For curves

im1]§z this idea goes back to Cayley.) Consider the Chow form

(n) of

F This depends on C and on the choice of basis W,

2a(f(el) ik

Rn(C). However, changing the basis [win)} changes the Chow form

F@ (C)(u;v) by the contragrediant linear substitution in u and v.
n

Writing out

F(u,v) = E:Faauavs,

this means that there is a natural representation of SL(dn,E) in the

space of forms F or of the space of coefficients F One proves

aB’

that there are "enough" invariant polynomials ci( so that

FaB)

a) for each curve C, at least one c.(F

; @n(C),&B) is not zero, and

At :
Vsl Cl.#:CE’ then the set of numbers ci(Fin(Cl),aB) is not

roportional to c.(F S n in ‘th
prop l( @n(cg)J&B) us again the map

C ®« 8 % = @B a ® & & @

P ( Jci(F@n(c)’aB)J )
embeds T% into projective space.
The fourth point I want to make about M is that although

g,n
1t 1s not compact, because a sequence of curves may "degenerate "
b

m has a B : : _
g,n natural compactification ﬂ%,n'obtalned'by casting out

your net further and attempting to make into a moduli SPace not only




and may even have several components. To be precise, we mean either
a) that as an analytic set, C is connected and everywhere is
isomorphic locally either to the unit disc A, or to 2 copies

of the unit disc ﬁlUQQ crossing transversely

or equivalently

that in the Zariski topology, C 1s connected and everywhere

is defined locally either by n-1 equations fl""’fn-l
with independent differentials df; or by n-1 equations

g,f2,"',fn_l where g vanishes to second order with leading

st

term(;,y)and.the fi’s vanish only to 1 order, with

dx,dy,df . ,df all independent.

LECTURE I
the non-singular curves, but also some Singular ones too. In Tacc
one looks at curves C c P which may have "ordinary double points”
{
' D) n-1
.
2
% For instance, we could take > non-singular curves and let them cross
:
transversely at one or more points; or we could take 1 non-singular
. 9 : .
curve and map it to P so that 1t crosses itself transversely at

one or more points. Or we combine both operations. Then ﬁ% 3
J

is to be the space of objects (C,xl,---,xn), up to isomorphism, where
C is a projective curve with only ordinary double points as defined
above and the x; are distinct non-singular points of C and g is the
sum of the genuses of the components of C treated as non-singular
curves, plus the number of double points, minus the number of

components, plus one: ¢ =§Igi-l) + 5 + 1; and finally if any

33
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] T
component C of C is isomorphlc toO E}, then there are at 1leas 2

! el B
points on C_ which are % ’s or where (l":::I meets other components ©
O i

m ' i ‘ iet
m is, in a natural way, a projective var Y

' theorem that
It 1s a g,n

esp. it is compact.

The last topic I would like to discuss at some length is the

curious ambivalence in the variety B% L to be in various sSenses
2

somehow hyperbolic on the one hand, yet in other senses it wants to

be elliptic. To explain this, it's best to go back first to'mﬁdlf

We can factor the map:

3 )
1)1 e pih)

H A? = H/SL(2,Z)

by considering subgroups I' € SL(2,Z) of finite index:

H > H/T ——— H/SL(2,Z),
The curves H/T are finite coverings of ﬂ& 1 and are called
2
1 y T . P
higher level" moduli spaces: I'll denote H/I' by It too

iy

can be naturally compactified by adding a finite set of points;

so we get finally the diagram:

i3

a

ra

31

l

7
\

m&

e Pl
-

‘.
e

l'C

3
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Now of course all curves lie in 3 classes:

glliptic Class: g=0; admits positively curved metric; no holo. k-forms

parabolic Class:g=1l; admits flat metric; one holo. k-form

for each k

Hyperbolic Class:g)>2;admits negatively curved metric; lots of holo.
S k-forms giving

proj. embedding

The point is that m& 1 is E},’hence is elliptic, while if I 1is
3
45T
moderately small, ﬂ& 1 is hyperbolic. The reason this flip 1is
3

possible is that B 1is ramified: in fact there are 2 finite points

>,

T=rOorana ) = 127 2at which-:'d — M 1 is respectively triply and
2

143 6

3

doubly ramified, and 1 infinite point j = @ over which the B's are

arbitrarily highly ramified. From another point of view, Ul 1

admits a canonical metric with negative curvature, 1.e.5

2 ~ : : :
d52 = dx2+dy2/y Tlifiz = x+iy € H = 31 1 1S the coordinate). This

induces a negatively curved metric on each ﬂg 1 In this metric,

ﬂ; has finite volume, but the metric has singularities, a) at

1,1
: . bk . =0 I

points where a is ramified and b) at points of m&.i—m& X CELT
J )

is small enough, a will be unramified and only (b) occurs.)

It is this constellation of facts that to some extent generalizes

to'ﬂé 3s In our present state of knowledge, the generalization 1s
2

very partial. To begin with, we get the same diagram:




——'——"

36 CURVES AND THEIR JACOBIANS

g 11 g,n
B
5; v
=t
g,n Emg,n

for each I' € I n ©of finite index. Let.me begin with the known

2

elliptic-type properties which are unfortunately weak: we assume

n = 0 for simplicity.

a) Assume also g > 4 for simplicity”. Then the singular

set S c:ﬂ% is the set of points of ﬂ%'where Eg ——f:ﬂ%

ramifies and is the set of points corresponding to curves

C with automorphisms. Then Bl(T%—S), the first betti

number, i1s zero, hence so 1is Bl of m%,m% and any

. * —
non-singular blow-up T% of T%. This means, e.g. that

the so-called Albanese variety of mg is traivial,

b) ﬂ% has lots of rational curves in it. In fact for any

algebraic surface X and rational function f on X, let

C., ©X Dbe the curve £(x) = t, and let (C ] € ﬂ% denote

the corresponding point. Then

t r————->[ct]
1s a morphism
1
P — '.mg.

*

If g =2 or 3, sing(m ) ;E (Ram.Pts., of § —> m )c{C with automorphisms }

J g
Always B, (M _g; i) —
1 ( g—Sing g) O, hence Bl(ﬂ%) Bl(ﬂb) = Bl(mg) )

I
I

bl e o T T
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) o IE g < 103 m% has the much stronger property of being

unirational. This means equivalently that the field.m(m%)

of rational functions is a subfield of E(tl,tg,-~',tn)

, : . n
for some n or that there is a Zariski-open set U € A and

a morphism £: U ——%pﬁ% with dense image*. In terms of
moduli, ﬂ% being unirational means that one can write
down a family of curves of genus g depending on parameters

tl,---,tn which can be arbitrary complex numbers satisfying

some inequalities fi(t) £ O, such that "almost all” curves
of genus g appear in the family: e.g., if g = 2, take the

family

LA NS - b 2
y =X —i—tlx +t2x +t5x +t4}c+t5

and if g = 3, take the family

AN 2 2 3 D
+ v (tlx+t2) + v (t5x +thx+t5) +'y(t6x +t?x +t4x+t8)

+ (tgx&+tlox3+tllx2+t12x+tl3) = 0,

Y

In fact, if g < 10 we may use the remarks in Lecture I about
realizing curves as plane curves with double points to write

2g+3, .
down a family of plane curves of degree d = [—23~J with free

parameters almost all of which represent curves of genus g

and which include almost all curves of genus dJ.

Whether more M ’s, g > 11, are unirational or not 1s a very
interesting problem, but one which looks very hard too, especially

if g is quite large. Now consider the hyperbolic tendencies of

to UNL,
hence

*If this holds, one can assume n = 35g-5 by restricting fn
L a sufficiently general 3g-3-dimensional subspace of & ;

?L' c(ﬂh) c:g(tl,...,tjg_B)'with finite index too.

37
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: ne of
m First of all, we can put 2 types of metric on Eg,n' =
g,n |
This is a finsler meLL L

these 1s the famous Te%chm@i}er metr;p pT.

so it's a bit messy. However, it equals the Kobayashi metric of

J so all holomorphic maps £: &-——ﬁpﬁg , are distance decreasling
2

g,n’

for pT and the Poincaré metric on A: 1S

a hyperbolic property.

unit balls have been determined and are quite amazingly wrinkled and

creased: this led Royden to prove the rigidity theorem that 1if

Aut(J ): esp. 9 is not at all a homogeneous
g»R a,

dim J ) ) =
im g,n ok L g,n

domain in C

2g->+n : Py A : H s
. 1+ On the other ‘hana, in‘*this tunny metric, ”g -
2

a straight space in the sense of Busemann, i.e., has unique indefinitely

prolongable geodesics, but contrary to a conjecture does not have
negative curvature in Busemann's sense (this fly in the ointment

shows that my general picture is not entirely accurate!) 3g ., carries
b

another metric Poite the Peterson-Weil metric*,'WhiCh 1s a Kdhler

metric, hence locally much nicer. Moreover, it has strictly negative
Riccl curvature and holomorphic sectional curvatures. In particular
: J

holomorphic maps f: A — J n Will also be distance decreasing for

2

Po_w (suitably normalized) by the Ahlfors-Pick lemma. All the spaces

I
m inherit both metrics (with possible singularities where

2

o

5 S § 'y ' { £34 : !
e S s 8 ramified), and, esp. with Po_w» this makes

them rather hyperbolic. a closely related hyperbolic Property of

; LS
g,n 1S:

¥*
If n> O, more pPrecisely, there is a family of P-W met

on assigning branch
g numbers ﬂi, 2 5-31 < ®©, to the ba

rics depending

S€ points x. .
1




The Rigiditz Theorem of Arakelov-Parsin-Manin-Grauert

(also called the "$afarevitch-Mordell conjecture in the
function field case"): Fix g > 2 and let C be any curve,
s a finite set of points of C. Then there are only

finitely many families of curves of genus g over C-S,

i.€.;
M: X —> C=S

which are "non-constant” (i.e., the fibres ﬂ—l(s) not all

ijsomorphic), and if

2(genus C)-2 + ¥ S < O

there are none at all; moreover, for each such family

there are only finitely many sections, and even for

"constant" families, there are only finitely many

non-constant sections.

Corollary: Fix g,n,C,S as above. Then there are only

finitely many non-constant mor phisms

p: C=S ———> N

g,n
which are locally liftable to d i et 1 e e =0,
g,n
and ¢(x) is a ramification point for d — R,
g,n g,n

one asks that in a small neighborhood of X, ¢ factor

through d :
P Tgn
A sketch of the proof is given in an appendiX below. Finally I

_want to conclude by giving a conjecture which 1 am hopeful will

very soon be a theorem.
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' inite
Conjecture: For each g,n, there is a 'y C:Pg,n of £
Y mf ' vari eneral
index such that for all T C'Po’ N 1s a variety of g sl

type in Kodaira's sense.

Here "general type" for a variety X of dimension n means that you

X X % j j ingular
compactify X to X, then blow-up X to X which is non-sing ’

and then you look for differential forms of type

)k

—. Ae s o A
W a(x)(dxl dxn

on X*, wilith no poles. It means that if k is large enough, you can

Iind n+2 such forms whose ratios generate the field of rational

functions €(X) on X.

Since on unirational varieties, there are no

non-=zero differential forms of any

type, the conjecture means that
for I' small, mg

,n 1s more or less the Opposite of being unirational.
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AppendiXx: The idea of the proof of rigidity

The proof has 2 steps. The first consists in showing that the

set of all families WT: X — C-S, and the set of all sectlons

s: C-8 —> X of families T, itself consists 1in a finite number of

=

families. The second consists in showing that given one T: X—— C-5

or one section s: C-S —— X of such a T, then one cannot deform T

or 8, i.e., that the only families ™ or s lie in are O-dimensional.
cince a finite number of O-dimensional families is just a finite set,

we are done.

To carry out the first step, one can use an explicit projective

embedding of ﬁg _, and for all p: C=-S ——%:ﬂ% _ with 4(C-s) # point,
J 3

extend ¢ to p: C ——%bﬁg . and seek a bound on degree BKC). Then by
J

general results, the set of morphisms B: C=S ——%:ﬂgjn with degree
 E(C) bounded can be grouped into a finite number of nice families,
the parameter space of each of which is some auxiliary variety.
}Equivalently, this means take a particular ample line bundle L on
ﬁg,n and seek a bound on cl(E*L). (In fact, the nicest line bundle
to pick is not quite ample, but near enough'tm make the proof go
through: we will ignore details like this here.) Choosing a nice L,
the next step is to identify B*L from the geometry of the family

M: X —> C-S and the section s. One extends the family T of non-

singular curves over C-S to a larger family

F:—X- e

over C of curves, some of which have double points (as in the
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25, ral L
definition of B, ,,). Then it turns out that for the most natu
J

.
9,0
_-* P~ g_ o~
= . ((3—
where aiyc denotes the line bundle whose sections are differential

forms on the curves ﬂ_l(s), i.e., the cotangent bundle to the fibres

Zy, |
(s) has a double point, the forms may have

of M, except that where T
_1(

simple poles with opposite residues at the 2 branches of T s) at

this double point. If one is dealing with n sections S. too, hence a

morphism @: C-S _—'}Hg,n with n > O, then B*L 1s a tensor product of

Ppowers of this bundle and the line bundles

f2is
£l
®i "X/

where s. : X |
€ 8,: C —> X is the extension of S;. Now, in fact, by using the

theory of algebraic surfaces, one gets a very good bound:
R lCA AR i - (el 4 B
1 * X/C __<_ gq- + _é_)(g_go)

where

0

Il |
#:tﬂ
8

0
7))
®

0
I
o7
[
=
(D
e
0
[
O
® |
O
Fh
o’
=
Q
Q
D
n
ct
v
o’
{"
jsd
[
o]
o)
<
47
H
}_l
()
t
N

which appears in the Jacobian of every

curve M “(s) of the family,

bound, However '
» following Grauert one can show that
Ohe exists p
Y

showing first that th
€ cotangent bun 2
gle &= (of rank 2) 1

almost all fibres ml(g) . y i
er and
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on ample vector bundles. A good explicit bound here would be very

interesting.
To carry out the second step, one applies Kodaira-Spencer-
crothendieck deformation theory to calculate the vector space of

infinitesimal deformations of TM: X —— C-S and of s: C-5 —> X.

S ———

More precisely, one looks at deformations of X such that the map

M. X — C extends to this deformation and all singular fibres remalin

. -1
concentrated in T “(S). It turns out that:
‘space of
infinitesimal l = ==1
_ = (—
deformations of H™(X, X/S)
1 8 4 > C=S
- and
/ Space of \ 5
lnflnlteglmal ~ HO(C,'E*E;- y
deformations of X/ €
\s: C=S —m™> X //
To show these vector spaces are (0), one shows — and this 1s
Arakelov's deepest contribution — that QE/C is an ample line bundle

on X. Then the first space is (0) by Kodaira's Vanishing Theorem,
and the second space is (0) because the line bundle has negative

degree. Amazingly, Arakelov's proof here involves studying the

curve D < X such that

D: M\ Tf-l(s)

Il

the Weierstrass points of TT_l(s)

and identifying via differentials the line bundle on X of which

D 1s a section.



: rise
Lecture III: How Jacobians and Theta Functlons A

: : way that
I would like to begin by introducing Jacobians in the b4

: : m
they actually were discovered historically. Unfortunately, MY

i ' hould
knowledge of 19th-century literature is very scant SO this s

not be taken too literally. You know the story began with Abel

and Jacobi investigating general algebraic integrals
I = Sf(x)d.x

where f was a multi-valued algebraic function of X, i.e., the

solution to

glx, £(x)) = 0, g polynomial in 2 variables.

I = 5 Yy dx

where Y is a path in plane curve g(x,y) = O; or we may reformulate

So we can write I as

this as the study of integrals

w
T —

d
E%F Y)dx P,Q polynomials
1 a = S 2 J
( ) a Q AsY J ajac} € plane curve C: g(X,Y) = ')
O

of rational differentials w on plane curves C,.

The main result

is that such integrals always admit an addition theorem: i.e
. @,

there is an integer g such that if a, 1s a base point, ang

al""’ag+l are any points of C, then one can determine up to
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permutation by, .- bg € C rationally in terms of the a’s” such that
al b
bg
S w + S S W+ oo F S w, mod periods of Sw.
a
4o a a_
For instance, if C = B}, w = dx/x, then g = 1 and:
S0
{ax . g_@z ) i ax
X X X
L } 1
Iterating, this implies that for all al,---,ag,bl,---,bg € C, there are
cl,.--,cg € C depending up to permutation rationally on the a’s and

(mod periods)

™~~1Q
- W
'_l

&

+
I 1@
pC—— U
}—h

&=

1l
I ™0
) 0

&

O
O

Now this looks like a group law. Only a very slight strengthening will
lead us to a reformulation in which this most classical of all theorems
will suddenly sound very modern. We introduce the concept of an
‘algebraic group G: succinctly, this is a "group object in the

category of varieties,'" i.e., it 1is simultaneously a variety and a
group where the group law m: GXG —> G and the inverse 1i: G —> G

are morphisms of varieties. Such a G is, of course, automaéically a
complex analytic Lie group too, hence it has a Lie algebra Lie(G),

and an exponential map exp: Lie(G) —>G. Now I wish to rephrase

%

E.g.,one can find polynomials gi(x: y;a) in x, y and the coordinates of the a's such

2 ' that the b, 's are the set of all becC such that g.(b;a) =

i
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Abel's theorem as asserting that if C 1s a curve, an

differential on C, then the multi-valued function
a
a b— S W
a
e

can be factored into a composition of 3 functions :

£
ex .
C-(poles of W) *———-é—; J & 2 -Syie Jili—= =

where:

i) J is a commutative algebraic group,

3908 i a linear map from Lie J to

iii) @ is a morphism of varieties; and, in fact, if g = dim J,

then if we use addition on J to extend & to

ﬁ(g): [ (C-poles w)x-++x(C-poles w)/permutations] — J

Sg

then 4 g) 1s birational, l.e., is bijective on a

Zariski-open set.

In our example

then J = P -(0,wm)

multiplication, ang ® 1is the identity, The point is that J 1s the

object that reali t ' - Sias
3 Zes the rule by which 2 g tuples (al, ’ag)’(bli"'fb )
are "added" to form a thirg be il
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g

.le(xi) becomes a homomorphism from J to €. A slightly less fancy way
1=

to put it 1s that there is a @g: c-(poles w) —>J and a translation-

invariant differential 7) on J such that

hence

g(a)
S n (mod periods).
6(3,)

|
v/ N
&

Among the w's, the most important are those of lSt kind, 1.e.

3
without poles, and if we integrate all of them at once, we are€ led to
the most important J of all: the Jacobian, which we call Jac. From

property (iii), we find that Jac must be a compact commutative algebraic

group, i.e., a complex torus, and we want that

$: C —>Jac,

should set up a bijection:

translation-
iv) ﬁ*: [invariant l-forms
) on Jac

} [rational differentiaISle
“Lw on C w/o poles

Thus

dim Jac dim R_(C)

1

genus g of C,

To construct Jac explicitly, there are 2 simple ways:
v) Analytically: write Jac = V/L, V complex vector space,

L a lattice. Define:
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V = dual of Rl(c)

set of 4 € V obtained as periods, 1:¢>

-,
I

t(w) = Sw for some l-cycle Y on C.

Y

Fixing a base point a_ € C, define for all a € C

Note that

vr =

vi)

é6(a) =(image in V/L of any £ € V defined by

/ L(w) = S w,

where we fix a path from a_ to a.

=

since Jac is a group,

(translation—invariant) :.(cotangent sp. to Jac at a) —
l-forms on Jac 7 any a € Jac =

Algebraically: following Weil's original idea, introduce

s9c

C X, sieiX C/Sg and construct by the Riemann-Roch

theorem, a "group-chunk" structure on SgCJ l.e., a partial

group law:

m : leU2 —_— U3

U, c s9c Zariski-open,

He then showed that any such algebraic group-chunk

prolonged automatically into an algebraic group J with

g
S Uy & (some Zariski-open U4).

[ — e m—
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an important point is that g is an integrated form of the canonical map

Eg—l |
$R G discussed at length above —

vii) & 1is the Gauss map of g, i.e., for all x € c, dg(T is

x,c)

a l-dimensional subspace of Tﬁ(x) , and by translation

,Jac
this is isomorphi ' Bg-l
phic to Lie(Jac). 1If = [space of
ra ] : -1
1-dim— subsp. of Lie(Jac)], then dg: C ——ﬁﬂ? is just 9.

(Proof: this is really just a rephrasing of (iv).)

The Jacobian has always been the corner-stone in the analysis of
algebraic curves and compact Riemann surfaces. Its power lies in the

y €.9.,

fact that 1t abelianizqg the curve and 1s a‘£gification of H1

viii) via g: C — Jac, every abelian covering T: Cl —> C 1s

the "pull-back" of a unique covering p: Gl > Jac

e, Cl = C EacGl)'

Weil's construction in vi) above was the basis of his epoch-making proof
of the Riemann Hypothesis for curves over finite fields, which really
put characteristic p algebraic geometry on its feet.

There are very close connections between the geometry of the

curve C (e.g., whether or not C 1s hyperelliptic) and Jac. We want
| to describe these next in order to tie in Jac with the special cases

studied in Lecture I, and in order to "see" Jac very concretely in low

genus. The main tool we want to use is:
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Abq}is_zpqg;em: Given x

lJ..'Jka Yl:'--,yk € CJ then

d rational function f

k
a ) —, = Y' .
(f)dEf (zeroes of .E)—(Pc-les of f) S > i_lﬁ(xi) 2= 1
= ILx,-Zy.
XL 2 L

When this holds, we say Exi Eyi, or Exi,Eyi are linearly equivalent.

For instance, when C = IPl, any 2 points a,b are linearly equivalent
via the function
X=-a
f(lx) = —— ,
( ) X =D

For every k, we consider the map:

X times
~ =N
G e e e N E > Jac

X
i ) i SIE i;;s(xi).

K ), <l ¢
If S'C denotes C divided by permutations, i.e., the kth

b

symmetric

Define
- 1. < X < g=-1

k) : : .
(4 sur jective if K>3 gl The fibres of this map* are called the

linear systems on C of degree k,

as follows:

-—--'l——___._,
* - L
A technical aside: th
oy € Complete ideal of functions on skc vanishij
o () is generated by the funct ing on
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K

a) Pick one point (N1 = E:x_ € skC.
: 1
1=1

b) Let L(%) = v. sp. of fcns. £ on C with (£f) + (N 2 0, L.e., |
poles only at X, order bounded by mult. of X,

M e U G J

7 K
c) Let U] = {set of divisors Eyi = (£f) + Exi, £ €L(N), L ¥ O} o

d) Then |J{| = ﬁ(k)_l(ﬁ(k)@ﬂ)). Note that it follows

. e !
1] £ projective space of l-dim— subspaces of L{X).

We also want to use the Riemann-Roch theorem that tells us that
diml{| =k - g + 1

where

i.J.
|

dim of v.sp. Rl(—tﬂ) of differentials

w € Rl(C)J with zeroes on (X

Now let's look at low genus cases:

1IIEIIIf Jac = (0)

g=1|: (a) p: ¢ —> Jac is an isomorphism, 1l.e.,

Jac. In fact, for any genus g > 1,

e

&

ﬁ(l): C ——> Jac

is an embedding, hence an isomorphism of C with

K : n
W ( Proof: the fibres of ﬁ( ) being IP s,

1°
ﬁ(l) would be either an embedding or C itself

would be I&Z)
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(D) Ve k> 2,

e

ﬁ(k): skc — JacC

makes SkC into a I#_l;bundle over Jac,‘whose;

4
O

fibres are the linear systems of degree k.
general, 1f Xk > 2g-2,

lé(k): Skc —> Jac

makes Skc into a ik—gébundle over Jac.

(Proof: This is a consequence of the

Riemann-Roch theorem since no differential

can have more than 2g-2 zeroes.)

Il
N

The interesting case is 1 < K < 2g=2, 1de.. Xk

the map

2 2
;:S( ): S C —— Jac.

Recall that there is a degree 2 map T: C ——ﬁhﬂgﬂ

. : 1
Since the points of I are all linearly equivalent

to each other, the degree 2 cycles ﬁ“l(x) are also

linearly equivalent. This gives us a copy E of

IPl inside Sgc. The

of E; i.e., that Jac is obtained by

2
E ©SC. Here is a picture:

"leWing down"
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Vgl
2 3
_ﬁ_) *kc

where, as is customary inthe theory of algebraic

2

surfaces, we draw real 2-dimensional manifolds in
place of manifolds of 2 complex dimensions, which
are 4 real-dimensional, hence undrawable! Going
backwards, we may say that 82C 1s obtained from

Jac by "blowing up" e = ﬁ(g)(E): this is a process
applicable to any variety X that replaces one of its
points X by the set of tangent lines to X at x,
giving you a new variety B (X) birational to the

X

first. We see here clearly that if we take the

group law m: Jac X Jac —— Jac and try to transfer

it to SEC, we get merely a group chunk as in Weil's

treatment because of E.

Consider first k = 3:

gi3) . ved

S C —>» Jac

For any x € C, consider the differentials w on C
zero at X: they form a 2-dimensional vector space

and have 3 zeroes besides xX. These zeroes form a

degree 5 cycle, and as W varies all these are
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; w_):
linearly equivalent (use the functions wl/ 2)

=

: urns out: .
this gives us a copy Ex of I’1 in SBC- It t ;

: Lnt
Jac = (S”C modulo collapsing each Ex to a pol ) 5

Or putting it backwards if Yy = locus of polints
ﬁ(j)(Ex), then

3

)

a2 C

(Jac, with a curve y c Jac, isom. to C, hlowny

Most interesting is the case k = 2:

ﬁfe): 2

S C —WwW_cC Jac.

But it ee ia Ezperelliptic,

YOu get one degree 2

linear system as in the g = 2 case, so

W

~ 2 :
i (s°Cc with a copy E of HJVblown down ) .

The image e € w

- of E is a now double point ang

1t loocks like thig:-
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In this case, I want to consider because of its

lmportance in Lecture IV only the case k = 3:

ol g

o SC———i-,r)W}CJac.

We mentioned briefly in Lecture I that either
a) C is hyperelliptic, or b) C was an intersection
in E} of a quadric F and a cubic G. Now we also

distinguish Db F a singular, hence a quadric cone,

1)

1s the most common

and Db F non-singular. D

2) 2)

case. Using the 2 rulings on a non-singular quadric,
it is a standard fact that such a quadric 1is isomorphic

to ]P]'XZIP]' Thus C = (]PlxIPl)('\G, and since G is a

) | 1)

cubic, C meets the curves (IP X pt.i) iaE (pt. xIP

in 3 points. Thus the 2 projections of E}xﬂ;'to I;

induce 2 maps ﬂl,ﬂé from C to E} of degree 5. The
1

2 families of degree 3 cycles {ﬂl (x)} and [ﬂ;l(x)]

form 2 linear systems El,E2 C SBC, with El ;'Ee Q'B;Z
Then:
~ D ;
case bé: W5 = (S C with El,E2 blown down to
2 polints el,eé) and
e, e, = ordinary double points of'WB.

In case bl’ the 2 rulings "come together"; in fact,

b

S“C contains only one non-trivial linear system E, and
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0

case b -(53C with E blown down TtO e) and

l: W3
&

higher double point of W}.

In the hyperelliptic case a, it turns out that there

5

is a whole curve of linear systems Ex C S°C depending

on a point x € C: in fact, take the degree 2 linear

system, and just add x to each of its members. Thus:

case a: W

I

3 (53C wlth the surface UEx blown )

down to a curve Y isomorphic to C

and

Y = double curve of W_.

5,

Enough examples: the moral is that the Wk’s and their singularities

display like an l1llustrated book the vagaries of the curve C from

which they arise. The general result is the following:

T j : ¥
heorem (Rlemann-Kempf). Let a € wk < Jac, let L = ﬁ(k) 1(&) CZSkC
)’/
and suppose I = ' '
PP . Then Wk has a Singularity at o of multiplicity

-K+4
(g ), and the tangent insi
g}, g cone to W, inside Ta,Jac(= tangent sp. to Jac

at a) is equal to:

(k)
ULLQLM (T, %)

]C) kK
Here Dﬁ 1ls the dlfferentlal ijﬁ( ) and it giVES rise to an t
exac

Sequence:

. (k)
X LR i > a,ske e k.

a,Jac °
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(n fact, this sequence actually "displays” the Riemann-Roch formula in

3 beautiful way: using the fact that

Rl(C) = translation-invariant differentials on Jac

1}

T* =
B Tac (= cotangent sp. to Jac at o), for all a,

,

then:

(Dﬁ(k))*[w] = 0 dn TE{SkC = w is zero on

Therefore

Coker Dﬁ(k) = . dual ot Rl(—LU, the space of

differentials zero on 1 .

therefore counting the dimensions of the vector spaces in (¥*):

(k)

. : ) < . .
3dim L = dim S C - dim Jac + dim Coker Dg

k - g + dim Rl(-tﬂ),

which is the Riemann-Roch theorem: What comes next is going to be

harder to follow, but we can go much further:

let [wi} be a basis of Rl(—L@ and let {fj} be a basis of L(W).

Then a general member of L 1is given by
)

UL, - L+ (_Z tjfj)
3j=0

L

and a basis of R.(-Ul,) is given by ( t £ )-w, ., Therefore
1 t e L 1

v i

3
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L
Ejt [f w, ] span the dual of the cokernel of

(k)
D&
thjskc QQ,Jac A

oL Zt*[f w.] = O are linear equations on T which define
; el g a ,Jac

the subspace Dﬁ(k)(TUQSkC)' It follows that if we put together a

big (4£+1)x(g-k+4)-matrix of linear functions OHIQJ,Jac out of [fJWl]

K
then all its (4+1)x(£+1l) minors vanish on each Dé( )(TU[SkC)’ hence

vanish on the whole tangent cone to W Kempf proved that these

k!
equations suffice, and that Wk itself has equations of this type:

Theorem (Kempf): There is a (£+1)x(g-k+4)-matrix of holomorphic

functions (fij) on Jac near a such thatwk is the set of zeroes of

all its (£+l)x(£+l) minors: i.e., Wk 1s a determinantal variety.

Moreover, [fjwi]:= linear term of fij and the tangent cone to W, is

the set of zerces of the (4+1)x(4+l)-minors of the matrix [f w,] of
§ LG
linear functions.

The feature of the Jacobian, however, which really gives it its

punch is the theta function. There are 5> very good reasons to look

next at the function theory of Jac —

a) to define projective embeddings of Jac, hence understandg

better its algebraic Structure, moduli, etc.
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b) because Jac is a group, one hopes that its function theory
will reflect this in interesting ways,

c) by pull-back, functions on Jac will define functions on
SgC,'hence on C, and may give a good way to expand functions

on C, prove the Riemann-Roch theorem, etc.

So write

Jac = Eg/L.

Instead of constructing L-periodic meromorphic functions £ on Eg,
one seeks L-automorphic entire functions £, 1.e.,

f(x4+a) = ea(x)-f(x), a €L, x € @

[ea} = "automorphy factor®."

Equivalently, such f are holomorphic sections of a line bundle L{e }
o

on Jac and clearly the quotient of 2 such f is always L-periodic.
The simplest choice of {ea} is something in the general form:

e (x) = es(x,a)+c(a)’ B bilinear.

(e = (constant) is too simple, because no f’s will exist.)

9

Now if g > 2, most complex tori mg/L have no non-constant meromorphic
functions on them at all, and are not algebraic varieties, and do not

. s * %
carry any but "trivial {ﬁa’s] . In the case of a curve C, however,

*
I.e., entire functions on Eg, nowhere zero, such that

ea+B(x) E.ea(x+B)-eB(x) :

*

-
{e,] is trivial if ey(x)

e(x+a)/e(x) for some e.

59
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special things happen; let's look for bilinear forms as candidates

for B. We saw above that on Rl(c) one has a positive definite

Hermitian form:

: : g
hence its dual, which is the universal covering space €~ of Jac gets

a2 Hermitian form that we will write H. But also Hl(C,ZZ) carries

an integral skew-symmetric form

Bt H LG I % Hl(C,%) > Z

1

given by intersection pairing. As we saw in (v) above, there is an

isomorphism Hl(C,EU = I, nence'lL carries such an B.' Tt is not hara

and that when (*) choice of

[ea}J viz.

Moreover, one has the beautiful Theorem:

Theorem: The existence of a positive definite Hermitian H on 9 and

an integral skew-symmetric E on L satisfying E = Im H is Neécessary ang

¥
The sign + is not canonical;
I don't want to discuss;
transformation

it satisfies some funn

Y identities t
any 2 choices, Bt

however, are related by a

e (x) = sla)e (x), L € Hom(L/2L, +1) .



LECTURE III

sufficient for a complex torus mg/L to carry g algebraically
independent meromorphic functions and if it has such functions, it

- - 3 n 3 p ;
admits an embedding into 1IP, some n, hence is a projective varlety*.

Here we see the principle emerging that a complex torus does
: : : n ol . 8. :
not fit easily in P : non-trivial identities (*) are required before

it will it at all. Now define a theﬁg—function** ef_prder n to be

an entire function f on @9 such that

m[H(x,a)+H(a,a) \"
f(x+a) = (+e i ) o B

—

and let Sn be the space of such £f. Then S = Esn 1s a graded ring.
Elementary Fourier analysis combined with the fact that E is a

unimodular pairing leads to
(%) dim § = n?, RIS

In particular, there i1s exactly one first order theta-function, up

*
By Chow's theorem, i1f you embed 1t in projective space at all, the
image is projective variety; and i1f you embed it in 2 ways, the 2
projective varietlies are isomorphic algebraically as well as
analytically.

* %

Since this is not exactly the classical definition, let me indicate

the connection. Clgésiégily, one splits L = L1+L2, when L, > g7 and
i

E(xl,xg) = O Aif X,,%X, are both 1in Ll or both in 'Ly, (For akl a6 L

define a complex linear (_: ¢? —¢ by qm(x) = BE(x,a) if x € L, -
Require instead

f(x+a) = f(x), a € L,

2min( 4, (x) 454 (o))

f(x+a) = e a f(x),Va € L

5
Then these f’s differ from the other f£’s by an elementary factor.

2 o

61
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to scalars. This important function, written ~) (x), is called

Riemann's theta function”. If, instead, we take any n > 3, and let

¢l""’*n9 be a basis of S_, we get:

J3
Lefschetz'qLembedq;ng theorem: Eg/L 1s embedded 1in Ey by

This makes sense because *i/*, are single-valued functions on

J
g, .
C°/L. This solves problem (a) raised above. (b) however is even

more remarkable. 1In fact, to introduce the group structure into the

Picture, for all B € Eg, define

(Tﬁf)('x) = f(x+B).

For all nowhere zero holomorphic functions e on Eg, define

(**), one finds
, there ' = ' '
eXlsts e such that UeTBSn = Sn 1f and only if

ii) Choosing such an e(B) for such B- € EL
n 2

this

4 Projective representation®* of EL/L on ‘s
n n'

representation is lrreducible.

——

< e
In the classical normalization, it is

9 oy Z e-eniua(xwgza(u))_
Q L2

1s a projective representation of G if
U

* %
I.e.,qg — U

992 9, 95’
all gl,g2 Cia.

B —— Ue( 8) --TE defines
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It seems to me remarkable that although mg/L 1S an abelian group,
its function-theory is full of irreducible representations of dimensions
bigger than one: in fact, these are ordinary representations of a

finite 2-step nilpotent group G :
n

1———>Z/n25—-—*,-<3n ::-I];L/L > 1

analogous to the nilpotent Lie group

1 —> IR =) 5 Ve > 1 (Vv = real vector space)

whose Lie algebra is the Heisenberg commutation relations” . This rather

easy lemma has lots of consequences,

Corollary: i) In the embedding Yn, translation by B on Eg/L extends

> 1% 9 1
guetet > g T if and only if B € ;L/L.

to a linear transformation

ii) Modulo the choice of distinguished generators for the associated
finite group G_, we get, up to scalars, a distinguished basis of SnJ

hence a normalization of

under projective transformations. In this normalization, translations

9 LY

Xxn- -matrices.

by . :B € lL/L acts on Yn(mg/L) by a simple set of explicit n
; n

O :
*ﬂ = set of triples (a,x,6), c € R, x €V, £ € V, with group law:

(a,x,g)-(a',x',ﬁ') RS (aml*‘(x:&'>: X+x', 5'*‘5')-

{
s
!
-J
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To be more explicit, start with -9 € Sl. Choose 9: % XZ

such that

E(p(n,m),qﬁ(n',m')) . (nrml) = (mjnl).l

and extend o to qumq nzgrﬂﬁm. Then if n = m2 a typical distinguished

)

basis of S 5 1s of the form
m
L exponential
9 [ﬁ](x) = {of suitable| ¢ Y (mx + b(a,B))
linear fcn.
where a,P range over coset representatives of %Zig modulo g. Thus

X ——( ~—e ,V [g)(x),===—- )

1s the normalized projective embedding of Eg/L. The most i1mportant

point here is that while translations by B8 € %L/L are normalized,

Yn(O) 1s not normalized. Hence YH(O) = (---,{g[i

invariant of the torus Eg/L and the distinguished generators of Gn'

J (@5, ek ) 18 ‘an

Q
These {}[5](0) are classically called the theta-null werte. We will

discuss their role as moduli at more length in Lecture IV.

Summarizing this discussion, you can say that you take

a) Eg/L, and b) P’ : both innocent homogeneous complex manifolds.

You marry them via ¥ and the children they produce are these highly

unsymmetric and intricate functions *9 ﬁl

¢’ /L

* * % 8 4, “ "% o 8 0 0 0 98 @
Wk
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We pass on now to problem (c): when Eg/L 1s the Jacobian of é,

pull back functions on mg/L to C and see what you get. We follow Riemann

and consider the basic function:

X
Ee(x)Y) 2 —9 ( E RE —é)
X
— g —> :
where e € €°, and W = (Lul,...,u}g), w, the basis of Rl(C) (recall

that -J 1s naturally a function on the dual space to Rl(c), and we

9. so {w,] is the dual basis of

have 1dentified this space with C i

Rl(C).) For fixed y and e, this is a multi-valued function on C that

changes by a multiplicative factor

X

(§ + const.) .

iy

When analytically continued around a cycle. Riemann showed that when

not identically zero it had exactly g zeroes zl""’zg and that there

was a point A € Jac (depending on the choice of sign + in the definition

of the automorphy factor [ea] for ~9 ) such that in Jac:

g
) Blz,) = Bly) +S + 8.
1=1

In fact, we saw that

;5(‘3) e~ B, Jac

was birational, and this shows that 1f € Sw d(y)+A we get an inverse

o ‘é(g) almost every'Where by “

—
p < ——2 g=-tuple of zeroes otf -9 (S? - e + -g )

Y
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Moreover, we find:

'\9 (3) = 0 & Ee(y"Y) = 0 &> some zi > 3 zl"”"zg-l € C
equals vy g-1 K
such that }Jﬁ(zi) : ;

This means that if we define the codimension 1 subset @ © Jac by

{x € Jac|9 (x) =

then, up to a translation, ® is just .Wg—l: This is the basic link

between theta-functions and the geometry discussed earlier. Moreover,

if we fix e such that Vv (€) = 0, and fix zl,---,zg_l € C  'such that

z;(zi) = ﬂ+;; then consider the function Ee(x,y) for variable x and

Y. It follows that so long as X F }>Ee(x,y) is not identically O,

its zeroces are x =y and x = z l.e., ignoring certain

12

bad points z, independent of y, E (x,y) is a Prime Form as a
function of x: has a unique variable zero at Y. Using this, we

can show that every rational function f on C has a unique

factorization:
3 65 ai = zZeroes of f
bi = poles of £
then
X
SW TT'E L3 a, i)
£f(x) = v sl

(for some w € R
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rhis beautiful decomposition is the higher genus analog of the

factorization:
TT(x=-a,)
f(}{) = C ie——— >
: : 1
of rational functions on I . Nor do these factorizations depend
much on 2, because if 9 (_51) - 19("32) = O, then

E (x,¥) = (fcn of x alone)(fcn of vy alone)Ee (x,y).

1 2

Using the Ee’s,‘we also get beautiful expressions for differentials

on C with various poles too, e.g.,

3 E (x. a)
(—— log = )dx
Ox Eefx,bj

is a rational l-form on C, with simple poles at a,b only, residues +1

respectively; and

2
(azgy—-log Ee(x,y)) dx
y=a

is a rational l-form on C, with a double pole at x = a and no others.



Lecture IV: The Torelli qgeorem and the SchottkY PIQE;QW

R e e

. : ] C
The purpose of this lecture 1S to consider the map carrying

to its Jacobian Jac from a moduli point of view. Jac is a particular

kind of complex torus and the Schottky problem is simply the problem of

characterizing the complex tori that arise as Jacobians. The Torelll

theorem says that Jac, plus the form H on 1its universal covering space,

determine the curve C up to isomorphism.

First of all, we saw that if g > 2, not all complex tori

X = Eg/L are even projective varieties: in fact, necessary and
sufficient for X to be a projective variety is that there exists a
positive definite Hermitian form H on Eg, such that E G Im H 1is

integral on LXL. The varieties that arise this way are called

abelian varieties. The forms H are called polarizations of X. Since

= (“‘l)gd ’

Lt

rk L = 2g, and E 1is skew-symmetric and integral on L, det ]
for some d € Z, d > 1l: d is called the degree of the polarization.

A polarization of degree 1 is called a principal polarization.,

Jacobians come with a natural polarization in which E is just the

L™

intersection form on L = H.(C,Z): this form is unimodular, so this

1!

i1s in fact a principal polarization. In general, 1f (Gg/L, H) is any

polarized abelian variety, one can find L. <€ L of finite index and

1
n > 1 such that (Eg/L lﬁ) ‘ : : : :
2 1042 1s a principally polarized abelian

variety — so in studying all abelian varieties, the Principally

polarized ones play a central role.
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Secondly, we saw in Lecture III that starting with any principal
polarized abelian variety (mg/L, H), we get Riemann's theta function
9 . o —> @, hence @ = (zerces of Vv ) © (I:g/L. A more succinct way
to describe how mg/L and H canonically determine the codimension 1

subvariety ® up to translation® is the following:

® = any codim. 1 subvariety D of mg/L whose fundamental
class [D] € HE(EQ/L, %) is represented by E, under the

canonical identification:

He(mg/L,ﬂn ( skew-symmetric, integral forms on L).

Up to a translation, the only such ® is the set of zeroes of -
This shows that H, or ® (up to translation) are equivalent data.

Moreover it is also possible toO describe which codimension 1

subvarieties D Cimg/L arise from an H and a 9 : for any a € € /L,
let - D = translate of D by a. For any D, choose al,---,ag so that
B sse Do —eet transversely and consider the number of intersections:
al g
Da m -~ K\Da .
L g

This is denoted (Dg) and is always divisible by g. Then:

D = some 6 {LE Bl (D7 )/ gy = 1

From Lecture III, © looks like it is unique even without a possible
translation: however, remember the annoying ambigulty of sign 1in
{e ] ——-thii means we actually only found @ up to translation by a
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We say such D’s are of degree one. Therefore, instead of

| : and
brincipal polarizations on @°/L as forms H with Im E integral

: : ietlies
unimodular on L, we can describe them as codimension 1 subvardl

® c ¢?/L with (@) = g! given up to translation.
This gives a completely algebraic way to describe such
polarizations. There are also quite simple ways to describe

algebraically polarizations of higher degree, but we do not need to

kKnow these*. We can now introduce the moduli space of principally

polarized abelian varileties:

(? = [ set of pairs (X,0), where X is
J an abelian variety and ® € X 1is a : . :
: : : lsomorphisms
codimension 1 subvarliety such that f H
T RN e TN
g ) 1 2
(87) = g!
such that

f@l - @2 —

but £ need not
take the i1dentity

O € Xl to 0.6 Xg'

As in Lecture II, it turns out that (}g has a natural structure of

normal quasi-projective variety. Moreover, we obtain a morphism:

t: M i '
3 '-b@g

b - . W -
Yy defining t(c) = (Jac,'wg_l). The Torelli theorem simply says that

€ 1s injective and the Schottky problem can be rephrased as asking for

a characterization of the image t(M ). Before studying these in more

detail, I would like,

*
The 2 methods are

to translation, or
wh Q;g :
ere /1) is the

in parallel with the treatment in Lecture IT to
3

i) by a suitable line bundle L on

g
L /L giv
ii) by a suitable homomarphism o mg/Lg"—iIECE;SA
dual" abelian variety.

4 "-.--lr"
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lld C Y on Of G via a4an 1nfi . v ]

ii) indicate how to explicitly coordinatize CYg, and 1iii) describe the

closure of t(M :
() in Q.

In regards to (i), we consider set-theoretically:

ibg = [ set of 4-tuples (V,L,H,a), where o)
V = a complex vector space

L = a lattice in V

4 H = a positive definite Hermitian fmrm.}

on V , _
@ = an isomorphism 77 xZ> — L S

with
LIm E(a(n,m),a(n' ;') = (n,m')=(n’,m)

)

( set of 3-tuples (X,®,a), where
X = an abelian variety

| ® = codim 1 subvariety with (@g) = 4l

<cr, = an lsomorphism z9x%z. 9 ——}Hl(x,m) } somor phism

where if [ @8] fundamental class of @,

then
L [@](a(u,m),&(u,m')) == (n:ml)_(nljm)J

——

(The connection being given by X = V/L, P« H as above.) Clearly,

forgetting a defines a map
._..._-....-——> )
%}g Ugq
and for all o € sp(2g,Z) = [group of 2gx2g integral symplectic matrices],

(X,@,a) ' > (XJ®:{X'Q)

defines an action of Sp(QQ,E) on 459 such that
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Qg = ‘fgg/sp(?gﬂ) -

u & & . m
On the other hand, given (V,L,H,a), there is a unique isomorphilS

I

, [ Y Eg such that ¥(a(n,0)) = n, i.e., such that the first g

generators of L are just the unit vectors in ¢?. Define the gXg

complex matrix Q by ¢(a(O,m)) = Q-m, i.e., the second g generators

of L are just the g columns of 1. Write H via a gxg Hermitian matrix

h via

H(x,y) = “¥(x)-h-¥(y).

Then the condition on Im H written out is:

c )
Im n-hem= 0
t =
Imtnﬁhﬂm=o \( Vn,mémg
| gl t
Im . n Q'h'm-=:- n-m i)

which works out as simply:

t

a0 el

,  he= (Im QO

On the other hand, if Q is any symmetric gxg complex matrix with

Im Q positive definite, then

v = ¢’

L = Z2° + Q.z°

H(x,y) = x-(Im Q)-l.y
a(n,m) = n¥i-m

is an element of ’ﬁ}g' This proves that

s

)

+1
e ngRset of mg(g e Of gXg complex Symmetrjc

matrices O, with Im O positive definite
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which 18 called the "Siegel upper half-space.'" Bringing in Teichmiiller

space again, 1t 1s not hard to see that we get the blg diagram:

23D ~ cI(g+1)/2

U U

B'g e e .ﬁp G Bounded Domains on this line
¥ t

X > Quasi-Projective Varieties on this
J 3 line

Pl

where t 1s even an equivariant holomorphic map for a homomor phism

A sp(2g,Z)

Pg - Teichmiiller modular group.

we want to mention how TO use theta-null

N
(] in a big projective space IP. To be

In regards to (ii),

E:Tiwerte to explicitly embed

fJF:precise, the ideas of Lecture III lead to the following: there is a

R

 fgubgrgup r C:sp(2g120 of finite index such that for all m > 2, the
por- m

'} functions «—8[(:;](0), a,B € %Zg running over cosets mod %> , which

* b

J i'are called the theta-nulls of the abelian variety X, are global

homogeneous coordinates not on Cfg but on the covering space

;;f; r
Q gm def ﬂ'}g/rm )

Qrm C.i.s Ip(mgj-l) |
f ;

| | " | _
Suitable polynomials in the theta-nulls {9[5](0), invariant under

-

ll™¥ - -
l i 1". 1'
- ﬁ"

the finite group Sp(Eg,Z)/T'm, will then be coordinates on Qg itself.

& '_
. g - }
L r [
T 4
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n cc:ordina tes

j ' itio
Assuming the injectivity of t, this gives Dby composit

: 1. Other
+his is method I alluded to 1n Lecture

once more on m%:
-~ functions ©R

ways to get coordinates on C}g are to use other modula

ect tO Sp(?-’gjz') ’

& S @ holomorphilic functions automorphic with resp

g

such as Poinca The coordinates gotten

ré series OXr Eisenstein series.

in particular,

in this way seem harder to interpret algebraically:

ries in terms

finding an algebraic interpretation of the Eisensteln se

via moduli seems to be a very interesting

of the definition of C}g

problem.

In regards to (iii), although unfortunately t(mg) is not closed

in @ , it is very nearly so. We can look at the compactification
g

T% of T% mentioned in Lecture II and study the "limit" of the Jacoblan

of a non-singular curve C as C approaches a singular curve C

representing a point of ﬁ%-ﬂ%. It turns out these Jacoblians have
limits which are still abelian varieties if and only 1if CO is made up
of a set of non-singular components {Di} connected together like a

tree, and that in this case the limit of the Jacobian of C 1is the

product of the Jacobians of the Di' From this one proves:

t(ﬁ%j 3 set of pairs (X,®) of the following type: )

X = Jac(Di)x---x J‘ac(Dk)J

L
)9 = 9

k
@ = ® 9% = ™ . 8 =
é:{ Jac(Dl) ) X 8; X 2 Jac(Dk).

D. non-singular curves of genus g,
i

e

)
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Note that 1inside tiﬂ%i, t(ﬂg) 1s readily characterized as the set of

(XJG)'With irreducible ©.

We now come to the final and most fascinating point (for me):
exploration of the special properties that Jacobians have and that
general principally polarized abelian varieties do not have. I would
like to thank Harry Rauch, as well as Alan Mayer and John Fay, who
introduced me to these questions and helped me see€ what a subtle thing

was going on. The first step 1s to reconstruct ¢ from Jac, 1.e., prove

t is injective (Torelli's theorem). Once this 1s proven, it follows
that

dim (W ) = 39-3

dim C(g = g(g+l)/2, ;
hence:

_(——S- G
g>)'|'—“‘—>tmg ?: @g'

The second point is to try to characterizeigﬁﬁgy‘by some special
properties (Schottky's problem). I know of 4 essentially different

a pproaches to these closely related questions. At the outset, however,
let me say that none of them seems to me to be a definitive solution

to the second question and that I strongly suspect that although many

special things about Jac are known, there is much more to be discovered

in this direction.
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Approach I: Reducibility of 8N0G,.

: 1
Recall that ©, denotes the translate of ® by a. Almost al

; : wa
classical work on Torelli's theorem is closely related in some Y

to the lemma:

Lemma : Let Jac be a Jacobian, ® its theta-divisor. Then given

a € Jac, a % O

for some x,y € C,

a = g(x) - g(y)

ane, < @bUQC
for some b,c € Jac & > {

distinct from O,a

In fact, what this means is that if a = g(x)-¢(y), then 8Nn@_ breaks
up into 2 components Wl’WE of dimension g-2, and Wl - ®b" W2 c ®c'
This lemma 1s fairly elementary: let's check the easiest i1mplication

- Using lecture 5, we recall that 8 = W

image of:

Then ©N0O, 1s the image under ﬁ(g_l) of:

gt e st pet s

hence if a = g(x)-4(y), by Abel's theorem:

W

-] 22

U= NL-x+y

ERTp—————
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clearly one way for (' to exist is if x is one of the points in the

givisor (I : i.e., Ul = L, +x, U =U{, +Y: thus

W>2W, = {set of divisors LﬂO+X, UID € Sg_QC}-

rhe only other way is if UI+y, (('+X are distinct linearly equivalent
divisors of degree g; but by Riemann-Roch, dim\U{+yﬂjZ'1 if and only
if there is a l-form w, zero on Ul +y. Such an w must have g-2 more
seroes: call these (ﬂo. Then

W w' = é\set of divisors Ul , where U(-i-U(O+y = zeroes§

Y g=2
of some w € Rl(c)’ U(O € (STIE

and

Therefore

Y
and it is not hard to see that:
(g-1)
W = (W
(g-1) (.,
W = (=W
p ( y) ( g—E)k-ﬁﬁ(Y)
2g -2
(where ;Wg-E is the set of points -=-x, X G'Wg_g; and Xk = iZ; é(xi)’

(x;} the zeroes of some W € R,(C)). Finally, if b = g(x)-g(z),

¢ = ¢$(w)-94(y), then the same argument shows:

ene = (Wg-,’a),é(x) " (_Wg-g)k“,é(z)

@Ne, = (Wg_g),é(w) iy (‘wg-e)k—;ﬁ(y)
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hence
@ﬂ@ac@b U @c

all cases

Weil investigated the deeper problem of classifying

where 0 N @a was reducible: it appears that for most curves, thlis

only happens if a = g(x)-¢(y) again. But for some curves of genus >

or 4 or for curves C which are double coverings of elliptic curves,

there are other a’s for which @N@, is reducible. However, for

general principally polarized abelian varieties X, 1t seems very likely

that @f}@a {s ip;edqcible for all a € X.

There are various ways to use variants of the lemma to prove
Torelli's theorem: one can stick to the implication "&", and
generalize it substantially, playing an elaborate Boolean algebra
game with all the translates of all the W_ S Jac. This leads
eventually to the conclusion that there are only two possible ways to
set up this whole Boolean configuration inside Jac, given the divisor
®: one being obtained from the other by reflection in the origin,

Or using the full strength of the lemma, one sees that ® determines

the surface

V = {,é(x)—;s(y) X,y € C} C Jac.

I L L] L4 L]
f C is not hyperelliptic, it turns out that the tangent cone T
V,0

$ precisel ' : _ _
, Y, 1f P is the projective Space of l-dimensional subspace
S

o T :
Jac,0* then the canonical curve $(X) sits in p
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TV,O = (union of lines 4, &4 correspondimg*ba)
points of &(C).

If C is hyperelliptic, other arguments are needed. Or one may use
variants of the lemma where a is infinitesimal. The geometric meaning
of ®NO,, a infinitesimal, is the following: let P be the
projective space of (g-1)-dimensional subspaces of Teic o Then we

)

get the so-called Gauss map:

. v
m: ©-(singular pts. of @) > P
defined by
m(x) = [ tangent space T® L3 translated)
b
to a subspace of T

Jac,0..

< Yo -1 v i
The divisors T (H), H € P a hyperplane, are the limits of the

intersections @©@NE, as a ———> 0. Thus the lemma says that at least

2 l-dimensional family of divisors m -(H) is reducible: in fact, note

v v
that hyperplanes 1in P are points in P, and if we let H, c P denote the

-1 !
hyperplane corresponding to X € P, the lemma says that T (Hx) is

reducible for X € ¥(cC). Andreotti showed that one could say more:

v
let B C P be the branch locus of T, then

B = "envelope" of the family of hyperplanes [Hx},
e
B = \ﬂ] (fo\Hx+6x) (6x = infinitesimal change
x€§(C) of x)

\_} (linear (g-E)-space of ; dual to the line
«€C in P tangent to #(C) at 3(x)).
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Again for non-hyperelliptic C’s, this enables me to reconstruct 5(C)
immediately from (Jac,®).
: : : A g/L and
Fay has given an analytic form of the lemma: if Jac = C

*9: Eg‘~—%>ﬁ is the theta function whose zeroces are ®, then he shows:

E(x,v).E(u,y)-9(Z + Sﬁ)-ﬁ(? + §1‘6)

u

) x—a X—a
+ E(x,u)-E(v,y) -7 (z + Sw)\gf_é’ + BLU)
x+y+
= E(x,y).E(u,v)'“S(E)- \9(;’ + g_&})

where E(x,y) is a certain "Prime form" on CXC. In particular 1t

follows that if x £ u:

/!

=0

19(§)=~9(E+S'JJ)=O=%19(§+S'LE)=O or $(2+§$)

which is the "&=" of the lemma. Another pretty way to interpret this

half of the lemma is via the Kummer variety: one uses the set of

theta-functions of order 2 to map Jac to a projective space

All these
functions are even, so the map factors through K = Jaq/(+l) (here
-1 = inverse of group law on Jac), and defines:
Y: xC— p* - 59,
Then we find that Y¥(K) has trisecants; more pPrecisely, for 5
3 ny

RN e e S P X AT potntiiia € Th e

= b = & -"I o0 Foa - ¥
an el e GRS e g -
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2a = p(x) + g(y) - p(u) - g(v).

1
write a F §(x+y—u—v) for clarity. Define %{x-y+u-v) and

%(x—-y-uw) as a-p(y)+¥(u) and as a-g(y)+b(v). Then:

(F(xty-u—v)), Y(F(x-y+u-v)),  ¥(S(x-y-us))

are collinear. Contrast this with the situation for generic principally
: : LT : BB .
polarlzed abelian varieties: because dim K <« dimIP for g large, 1t

seems very likely that VY¥(K) has no trisecants.

In connection with the Schottky problem, I would like to raise

the following questions: given a principally polarized abelilan variety
(X,8), suppose there is a 2-dimensional set of points a € X such that
®Ne, is contained in a U e, (b e} {0 a) = p). L iThen {s& Nia

Jacobian? or if not, are there some small extra conditions that

suffice to characterize Jacobians?

Approach II: © of translation type.

Since 0 = Wg—l’ ® is just the sum, using the group law of Jac,

of the curve $(C) Wl'with itself (g-1)-times. One can localize this

i

property and come up with the following:

n

Let H Dbe a germ of hypersur face at O € @ .

Then H is of translation type if there are (n-1) germs of
_____...._————-—-_"-_—-_

n
analytic curves Y. at O € @ such that H = Yl hews By

)

n
(+ represents vector addition pointwise of these subsets of @ .
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: . . . -P+K = ®
In fact, since up to translation © 1S symmetric, 1.€.,

' i € 18
for some k € Jac, whereas g(C) is symmetric only when

s ' bly of
hyperelliptic, we find that for non-hyperelliptic C, © 1s doub-y ©

for all x € ©, represent @ near X as a Sum.

translation type: 1ve., %E
(ge;m of @ at x) = Ygx) Vot i Yéfi + X };
Yix) = a l-dimensional germ at O.
Then if -8+k = ©®, so that k-x € @
(germ of © at x) = _ng—x) _..._Yéizx) 4+ iap

= representation of ©® as a hypersurface of translation type.

gives a o)
The beautiful fact, which was conjectured by Sophus Lie and proven by
W. Wirtinger, is that the only hypersurfaces doubly of translation type
are the theta divisors in Jacobians and certain degenerate limits.
Moreover, the theta divisor is never of translation type 1n a third
way, which then proves Torelli's theorem! The following sort of

answer to the Schottky problem is presumably a consequence — although

the details have not been written down: given a principally polarized

abelian variety (X,0),

fFG 1s doubly of translation

type at some point x € @
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gince ® is symmetric, one would hope that "usually" being simply of
'Zwtnﬂnslation type by analytic prolongation would force it to be doubly

i but thiS 1s not clear.

. 80 :

Recently, Saint-Donat discovered a very beautiful proof of the

'f’f';dﬁ’Wirtinger results that I want to sketch. It 1s based on the

-

Fos L. following beautiful criterion:

o o ETHIFang I Lat

'.-“ .- ; n
" rpheorem: Let H © P Dbe a hyperplane, let X
T d

Ay

*ﬁ""’Yd be germs of analytic curves at xl,---,xd-which cross H
transversely. Suppose tl""’td are coordinate functions on Yl""JYd
such that for all hyperplanes H' near H:
d
Z ti(H'ﬂ Yi) = 0.
i=1
Z;ﬁ.Then by analytic continuation, the Yl,---,Yd are part of an algebrailc

curve [ C P TOF degree d (possibly reducible), so that in some
d

ffﬂ-neighborhood U of H, I'NU = k}Yif\U-

This can be proven, e.g., by reducing to n = 2 and in this case

showing that in some neighborhood U of H, there is a meromorphic 2-form

w on U, with simple poles on UYir\U, such that

P
-

and finally using the pseudoconcavity of U to extend w to a rational

2-form on IQ;*Whose poles will be I'. To apply the theorem, let

s =iy i P
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il .
————— | —

H c:En

P . .

be a germ of hypersurface such that
n-1 n-1
H = E:Y = E,ﬁ : y.,b6. germs of analytic
: 1 N > 7 S ¢
i=1 A curves.

g I —

: . n
Let P denote the projective space of lines in @€ through O.

Associating to each point x of Y. or 5., the tangent line to Y, Of 5i
i i ®

at X and translating to the origin, we get germs of analytic curves

Yoo P, For each =z € H, write |

T |
n-1 n-1
(*) g V) = ) B (y,)
b 1T & 171
Th ' '
en TH,z defines a hyperplane H(z) < P, and since TH,Z = TYi’in Tai’yi,

it follows that Yi(xi)’éi(yi) € H(z). Now parametrize the branches Y

and ﬁi by any linear function L on En, l1.e

f B

L(Y,(x)) = x, L(6.(y)) =y

i Then it follows from (*) that:

|
-

n-1
; ). % = LY, (x,)) = 1(2) = n()s a0y
i ey | 1 i i ( ) ( l(yl)) | Yl
E: 1=1
i.—' A " {
| SSuming that all hyperplanes H' near H(0O) are of the form H(z), this |
= ' >
. Pproves that the 2n-2 br V. & : .
| anches Yi,ﬁi'W1th coordinate functions X 5 =Y .
| satis 3 |
a fy the condition of the theorem! Analytically Prolonging, the |
: J
% ;
i i
:
: :
g 2 A SRRty sk o R SR NS Glo 0 Grpv
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Yi’éi therefore are part of a curve C € P and one goes on to prove that

c is a canonically embedded curve of genus n (or a singular limit of

such) and H 1is its theta divisor.

Approach IIIl: Singularities of 0.
b T

We use the fact that = wg 1

and apply the results of Lecture ) 9 B &5

it foéifws that every a € ® 1is equal to ﬁ(g_lkLﬂ) for some divisor

A = -iji iRC. If A = dim|UR|, i.e.,
i=1

(g{9-1)y1(a) = 7,

then Kempf's results show in this case:

1) © is defined near a by an equation det(fij) = O where fij is

an (4+1)x(2%+1) matrix of holomorphic functions at a,

2) the multiplicity of ® at a is 4+1 and in fact the tangent

cone to ® is defined by the polynomial equation det(dfij) = O

on T A
a,Jac

Let Sing ® denote the set of singular points on ®. Then it is not hard

to see that Singg@, the set of double points, 1s dense in Sing ®; also,

by the results quoted in Lecture 1,
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at least one map 3 440 S ——"-'}]Pl of degree

L

d < g-1

Ly .
Bl Y Jt Yleant one UL €877 with dim|opi > "1

— Slng ® ?é Jé.

But if ¢ is a double point of ®, ©® is defined near a Dby an equation

- = 0,
fllf22 lefEl

= f (x) =

Therefore ® is also singular at any point x where fll(x) 15

le(x) = f (x) = 0. But 4 equations define a set of points of

codimension at most 4, hence:

3) Sing ® # 4 and all components have dim Z_g—#*.

In fact, a closer analysis shows that:

) \c hyperelliptic) -=J>(S:i.ng ® irreducible of dim. exactly g-}')

(C not hyperelliptic)-———-—>(z—111 ccl::rnp. of Sing ® have dim.)
exactly g-4.

Notice, for instance, that this was exactly what we found in Lecture III
1f g =3 or g = 4. This immediately distinquishes Jacobians from
generic abelian varieties when g > 4, because for almost all (x,8) € (O

g

® will be non-singular! 1In fact, Andreotti and Mayer prove:

*
A heuristic argument for ”prov%gg" this is to count the dimension of

the space S of coverings C of , of degree g-1, simple branching
an@ genus g. Simple topology shows that there must be hg-4 brancﬁ,
pclnﬁg, SO we get dim S = 4g-4, Looking at the curve C, we get a
morphism p: S ' '

P P -—ﬁ>5%, hence almost all fibres of P has dim g=l o el

almost all curves C admit of ' : : :
- al * g-l-dimensional family of maps 1r- 1
Aliﬂﬂlng f?r the 3-§lmensional automorphism group of Hﬂ; E£is‘ ?ﬁé)ﬂ? .
g=-4-dimensional family of l-dimensional linear systems I, C:Sg_iéves o
>

3
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Theorem: Let

qén) = {(x,0) € C?g dim Sing ©® > n}.

Then tfﬂ%j. is a component of Cpég“”i;Jr;;e proof of the former fact

and one ingredient of the proof of the theorem is the heat equation that

ﬁ9 satisfies: if we describe a principally polarized abelian variety X

as above

X = uzg/%g + Q-z°

then in the classical normalization:

_9 ()i Z e21‘ri(tnz - % tnﬁn)
n €z’

and it is immediate that considering -{; as a function of z and {i:

e ) 2
AN A oz .0z s 1] on .
i) 1]

If o €  is a double point, and Ha is the hyperplane
g

2 n
229 :
-dA, . = O/ the tangent space to ? at (X,8), then
=== (a)-df, 5
i:j=l zi Zj -

this shows that the singularity a "disappears" 1f you move (x,0)

in a direction transversal to Hd. The idea of Andreotti and Mayer's

proof is to show that for almost all curves C, corresponding to points

vy € J Z(Ug) is non-singular at E(Y) and its tangent space is the

g.‘l

intersection of these Ha’s, hence upstairs in_Jgg, t(Ué) and the

inverse image of (Iég—ﬂ) are both non-singular with the same tangent

space at t(yY). This will prove their theorem.
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Now 1f
g

X = ¢g/zzg + (% Jac(C):

' ' ing dz. to C; then
let w. be the differential on C gotten Dby restricting i ’

1

i ot § t ' ~si lar at
one shows that if C is not hyperelliptic, t(mg) is non-singu

= 0O

t - ' ' X, .df
t(Y) and its tangent space 1S defined by egquations E}ljd 111

' ' ‘ A w wvanishes
for all [xij] such that the quadratic differential Eﬁijwi 3

identically on C., More canonically, the point here is that the

cotangent spaces to Sg and ‘ﬁ}g can be identified as follows:

T = sR_.(C)s quadratic differentials on C
3g,Y 2
~ 2 ispace of transl.-inv.
* -—
?ﬁg,ﬂ = Symm"( l-forms on X )

ot

and when X = Jac, t° is multiplication taking quadratic expressions 1n

the w € R_(C) to the corresponding quadratic differentials; the kernel

o
is thus the quadratic forms in Rl(C) which vanish identically on C:

2

call this Ker(Symm R C) 'or I.. So what Andreotti and Maver

B 5

1 2

need is that for almost all curves C, 12 1is spanned by the forms:

: 2
O
q, = EJBzi&i;(a)'[wi]'[wj]’ a = double pt. of @,

Looking back at Lecture III, we can see what these special quadratic
forms are: we take W of degree g-1 such that dim|U| = 1, 1oe i

L(X) has a basis {1,f}. By Riemann-Roch, Rl(—UO is 2-dimensional:

let wl;w2'be a basis. It follows that ﬂi = fwi, 1 = 1,2, have no poles
3
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hence are in Rl(C). Then the 2 quadratic differentials ﬂltu and 'new

2 1

are equal_, i‘e. 7

is a quadratic form in.Rl(C) which vanishes on C (equivalently

-1 . .
vanishing on &(C)). According to the

represents a quadric in P2
results of Lecture III, 1f a = ﬁ(g-l)(ﬂj, then q, = constant-q .

It appears to be an open question whether or not for every non-

hyperelliptic C, these qUI’s span 12 = Ker(SymnglC ——~%rR2C).

However, Andreotti and Mayer were able to check this for C which were

. 1 : ;
triple covers of IP , hence 1t does hold for almost all C and thear

theorem 1is proven.

This approach does not establish Torelli's theorem for all curves C,

3
put it does show that for almost all C's, t (t(c)) = ilc) sTnitact,

for almost all C, 2 good things happen — i) in the canonical embeddling

$: C-——ﬁ:ESil; (C) is the intersection of the quadrics containing 1t

and ii) the space I, of quadrics through $(C) is generated by the

tangent cones g, to ® at its double points. Thus we have a simple

prescription for recovering C from (Jac,®) when C 1s "good":
ii) translate

e G ek g-1
to the origin of Jac and projectivize to get a quadric in IP™

i) take the tangent cone to ® at all its double points,

iii) intersect all these quadrics: this is generally the C you

started with!
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legant, do not Sseem to work without

These ideas, though very €

=4 esides t(M_).
exception — e.g., CP;S' ) has other components Db -

Approach IV: Przm1y§r;gties.

The final approach to the Schottky problem is due to Schottky

himself, in collaboration with Jung. One may start like this: since

can one use the non-abellan coverings

= - the curve C has a non-abelian TTlJ

of C to derive additional invariants of C which will be related by
certain identities to the natural invariants of the "abelian part of C",
1.€., " to the theta-nﬁlls of the Jacobian? And then, perhaps, use this
whole set of identities to show that the theta-nulls of the Jacobian

alone satisfy non-trivial identities? Now the simplest non-abelian

& '\‘I--] "l "-‘ "|. -

groups are the dihedral groups, and this leads us to consider unramified

e = T B S T
¢ il
S

e 1 .
by covering spaces:

? 02

Y

C

4 degree n, abelian covering, group A
i
! 1

degree 2
Y
C

where the involuti e C ' '
ution & N Cl of Cl over C lifts to an involution on

'f ot B el

5 -, al} @ € A, These, in turn, may be constructed by

starting with the degree ‘ i i :
g g 2 covering C,», taking its Jacobian Jaclj and
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taking the "odd" part of Jac, when it is decomposed into a product of

even and odd pieces under L. More precisely, we define:

Prym(Cl/C) (subabelian variety of Jac, of all)

points x-t(x), x € Jac,

Il

(\cannected component of the set of

x € Jac, such that t(x) = -x.

)|

There 1s a natural map

given Dby

O
"
Il

ﬁl(x) - L(ﬁl(x)), with

¢l; Cl ——ﬁ>Jacl the canonlical map.

Then the coverings C, in question are pull-backs of abelian coverings

of Prym via o .

Now Jacl is very nearly the product of Jac and Prym: in ‘fact

there are homomor phisms

such that a+B, B.a are multiplication by 2, and ker a, ker B are

genus of C).

: . 2g-1
finite abelian groups isomorphic to (Z/2%Z ) J (g

The genus of Cl'will be 2g-1, hence

921
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dim Jacl = 2g-1

g

dim Jac

dim Prym = g-l1,

The beautiful and surprising fact is that the new abelian variety

Prym carries a canonical principal polarization too. 1In fact, if

1S

Il

® € Jac, O, Jac, and =l € Prym are the 3 theta-divisors,

characterized by either of the properties:

c:-l(@l) ~ 20 + 25

ﬁ_l(®+'E:) ~ 28,

(where ~ means the fundamental classes of the divisors are cohomologous;
or equivalently that suitable translates of the divisors are linearly
equivalent). So far, these facts tie Jac, Jacl and Prym into a tight
but quite elementary configuration of abelian varieties, but one that
does not impose any restriction on Jac itself. Thus if 19,“91 and ¢
are the theta functions of these three abelian varieties, one can
calculate ‘\91 from - and £ and vice-versa, but v and € can be
arbitrary theta-functions of g and g-1 variables respectively. But

now the underlying configuration of curves comes in and tells us:

(*) (JacX(o)){\tl_lg = 0 + @

~ 7

where 7) € Jac is the one non-trivial point of order 2 such thattx(n) = 0

(i-e- the original doubl " "
: g e cover Cl/c corresponds" to 7)), Thig fol ok
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in fact directly from the interpretations ® = W

g-1
®l = w2g - Jacl. Now v and ¢ cannot be arbitrary any longer:

C Jac and

(*) turns out to be equivalent to asserting that the squares of the

theta-nulls of Prym:

£[a](0), a,8 € 2297

are proportional to certain monomials in the theta-nulls of Jac:

S50 - S [3er.  a e Ju

(after one make the correct simultaneous coordinatization of Prym
and Jac). A third way to interpret (#) is via the Kummer variety:

embed Jac/+l1 and Prym/il in projective spaces.

9
2 =1
$: Jac/41l © — IP = P
J
g-1
v: pPrym/+1C B om ]

(%) y(0)

I
od 34
F
|3
e

Since Im &, Im Y have such large codimension, one certainly expects
t+hat for most g and (g-l)—dimensional principally polarized abelian

varieties X, ¥, y(y) and &(X) would be disjoint.
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(m_) LN
The case when g = 4 is the first one where t EIJ?g ? ¢ g and 1

this case:
dim ﬂ4= 10

dim tf‘ﬂtqi = 9.

Schottky was able to show that the above identities on J and €

implied one identity on v alone, of degree 8, and Igusa has asserted

that this identity holds only on t(mMTE However , when g > 4, no

efficient method of eliminating ¢ from the above identities 1s known

and the ultimate problem of characterizing t(mgjiby simple identities
in the theta-nulls remains open. I am confident that Schottky's approach
has not been exhausted, however, and a full theta-function theoretic

analysis of the dihedral (or even higher non-abelian coverings of C)

remains to be carried out.

I hope these lectures have perhaps convinced the patient reader

that nature's secrets in this corner of existence are fascinating and

subtle and worthy of his time!



Guide to the Literature and References

Lecture I:

3

The best beginning book on the theory of curves is:

R. Walker, Algebraic Curves, (Dover reprint 1962).

With a little more background, the best modern book is:

J.-P. Serre, Groupes algebriques et corps de classes
Hermann, 1959). 3

A more analytical treatment can be found in:

R. C. Gunning, Lectures on Riemann Surfaces, (Math. Notes,
Numbers 2, 6 12 . Princeton Univ. Press).

C. L. Siegel, Topics in Complex Function Theory (3 volumes,
Wlley-Intersc1ence 1969 1975)

There is a huge classical literature, of which the following are

best known to me:

K. Hensel and G. Landsberg, Theorie der Algebraischen Funktionen
einer Variablen, (Chelsea reprint, 1965)

F. Severi, Vorlesungen #ber Algebraischen Geometry (Johnson
reprint, 1968) .

J. L. Coolidge, A treatise on algebraic plane curves
(oxford, 1931).

The most famous book which drew together clearly the topological,

analytical and algebraic strands 1is:

H. Weyl, Die Idee der Riemannschen Fldche (Teubner, Brd ed., 1955).

For elliptic curves specifically, one can look for instance 1in:

Ch. 7 of L. Ahlfors, Complex Analysis (2nd ed., McGraw-Hill,

1966): a good quick introduction to the analysis.




96 CURVES AND THEIR JACOBIANS

A. Hurwitz, R. Courant, Allgemeine Funktionentheorie und

Elliptische quktiaﬁgn_zSpringer, 1964) .

S. Lang, Elliptic Functions, (Addison-Wesley 1973) -

ished
J. Tate, Notes from Phillips Lectures at Haver ford, to be publ

. . . t{:’
J.W.S. Cassels, Diophantine eguations with special reference

" o C -
elliptic curves (Survey article: J. London, Math. SOocC.,

41 (1966), pp. 193-291).

The Gelfond-Schneider theorem quoted in Lecture I can be found 1n:

S. Lang, Introduction to transcendental numbers (Addison-Wesley,

1966), p. 22.

For higher Weierstrass points, see:

B. Olsen, On higher Weierstrass points (Annals of Math., 22_(1972);
pp. 357-364).

J. Hubbard, Sur les sections analytique de la courbe universelle
de Teichmiiller, (to appear in Memoirs of AMS) .

For the theory of theta-characteristics, some references are:

D. Mumford, Theta characteristics_gf an algebraic curve
(Annales Ecole Norm. Sup.,‘i 1971) ., p. 181):

Ch. 13, Vol. 2 of H. Weber, Lehrbuch der algebra, (Chelsea
reprint) — for the case of g = 3.

The details of the hyperelliptic vs. non-hyperelliptic story can be

found in most of the books cited above, e.qg., Walker, Hensel—Landsberg'

or Severi. Concerning the explicit description of the inequalities on

generation of Fuchsian groups, see:

R. Fricke, F. Klein, Vorlesungen dber die T

. heorie der Automor
Funktionen iJOhnson reprint 19555 esp. Vol, 1 Parshgn
- - s

Ch: 2 s
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N. Purz:.tskyé 2 generator discrete free products, (Math. Zeits
12 p. 209 and other papers in Math. Zeit., Ill. J‘{I

L. Keen, On Fricke Moduli, in Annals of Math. Studies 66, 1971
Kajdan's ideas on the metrics of varieties D/T are contained in:

D. Kajdan, Arithmetic varieties and their fields of quasi-
definition, (Actes du Cong Int., Nice, Vol. éT_

Proofs of the facts concerning representation of a general curve C of

genus g as a plane curve of lowest possible degree Or as a covering ot

1 : .
P of lowest possible degree can be found 1in:

S. Kleiman, D. Laksov, Another proof of the exlistence of special
divisors, (Acta Math.y, 1352 (1974))

e ———————————

Petri's work can be found 1in:
K, iPatrl Uber die invariante Darstellung algebraischer Funktionen
einer Veranderllchen (Math. Ann. 88 (FLS 2R

B, Saint-Donat, On Petri's Analysis of the Linear System of Quadrics
through a Canonlcal curve, (Math. Ann., 206 (1973))

K. Petri, Uber Specialkurven 1, (Math. Ann., b (1924)).

B e

—

Lecture I1I1:

I gave some introductory talks on moduli problems in general and

on E& o i.e., the elliptic curve case, in particular, 1in:

D. Mumford, K. Suominen, Introductlon to the Theory O Madull
1n.“Algebralc Geometry, 0slo, 19707 (ﬁolters—ﬂoordhoff,

1971) .

~f. also references given above for elliptic curves. The

For g = 1,

genus 2 case is in:

7.-I. Igusa, Arithmetic variety of moduli for genus two,

-.——-—--—_—_-—- — —
(Annals of Math. 72 (1960)).
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. ) : tlve
St e hat it is a asi-pro]jec
The precise definition of m% and proof tha qu

variety are in:

" # -n
W. Baily, On the theory of ©&-functions the moduli of apellan
. ’ 3 L ry endbustobieitestemiatiatotatt S50

' nals h.
varieties and the moduli of curves, (Annals of Math.,

75 (1962)).

——

D. Mumford, Geometric Invariant Theory, (Springer 1965).

" * ] " b
In particular, the first reference coordinatlzes ﬂ% essentially DY

theta-nulls; the second coordinatizes ﬂ% both by a variant of theta-null:
using cross-ratios of points of finite order on the Jacobilan, and also

; by invariants of the Chow form as in the text of the Lecture. The

'5 final method of using cross-ratios of higher Weierstrass points has

; been suggested by Lipman Bers. The method as described in the text

has never been published, but details can be filled in as follows:

2 (1) one must first assign multiplicities to the higher Weierstrass

points so that the divisor Ulk of all of them varies algebraically

with C — cf. Hubbard (op. cit.), (2) one proves that no x € C occurs

2

- - wreay 7
e % i e a1 = - - -
SRR T PR - . 5 S e iy
" = —r -

with multiplicity > g~ in UIk; (3) using this one deduces that &

x Uye)

1s stable in this sense of "Geometric Invariant theory" , Ch. &

(4) check that if a quadric contains @k(W'), then it contains & (c)
k k 3

and since ék(C) is an intersection of quadrics, ikﬁ{k) determines C

up to isomorphism; (5) apply the results of "Geometric Invariant

Theory", Ch. 3.
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Concerning Teichmiiller space, the best reference is the survey

article of Bers:

L. Bers, Uniformization, Moduli and Kleinian groups, (Bull. Lond.
Math., Soc. 4 (1972)).

m% of M see:

For the compactification g2

of the space of

36 (1969)).

P, Deligne, D. Mumford, The irreducibility
curves of given genus, TPubli. THES,

L. Bers, Spaces of degenerating Riemann Surfaces (in Annals of

Math. Studies fEI(I9fET:

2< well as forthcoming articles by F. Knudsen and myself. The references

for the "positive curvature" assertions on W% are as follows:

(thesis;

E. Arbarello, Weierstrass poilnts and moduli of curves,
to appear in Comp. Math.).

D. Mumford, Abelian quotients of the Teichmiller modular group,
(3. d'Anal. Math., 18 (1967)).

H. Rauch, The singularities of the modulus space, (Bull. AMS,

68 (1962)).

-

B. Segre, Sui moduli delle curve algebriche,(Annali di Mat. 7
(1930) ) .

Concerning the Teichmtiller metric and Petersson-Weil metrics on Jg,n’

See.

L. Ahlfors, Curvature properties of Teichmtiller 's space,
(J. d'Analyze, g_ilgél)).

L. Ahlfors, Some remarks on Teichmtller's space of Riemann

sur faces (Annals of Mafh.,IZE 1901) ).

H. Masur, On a class of geodesics in Teichmiiller space (to appear )

H. Royden, Automorphisms and isometries in Teichmiller space
(in Annals of Math. Studies 66 (1971)).
H. Rcyden,uMetrics on Teichmiller space (in Springer Lecture Notes,
00) - %
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For the Ahlfors-Pick lemma, ct.

ranscendental aspects of
(in Proc. Summer Institute

M. Cornalba, P, Griffiths, Some€ t
algebraic geometry,
on Alg. Geom. 1974, AMS ).

The rigidity theorem of A-P-M-G has usually been considered separately

in 2 parts: one on the finiteness of the set of sections of a fixed

family T: X —> C-S; the other on the finiteness of the set of

i families . Both have much deeper, still unsolved number -theoretic

analogs — viz. given a number field K, then one conjectures that

1) given a curve D defined over K of genus g > 2, D has only a finite

PRl P S . o e g sy
.

set of K-rational points and 2) given a finite set S of primes of K

and g > 2, there are only finitely many curves D defined over K with

o Mo SRRy e, L T RTTVRE A
— = - - 'I. ey, il A

%J "good reduction outside S” and of genus g. The first ig called

v
Mordell's conjecture and the second 1is called Safarevitch's conjecture

T
il .8

hi‘-ff o S = LTy -
> i

M -4 e bast TH
] i s MRS o Teal L .{IE."":" g

(cf. his talk at the Stockholm International Congress of 1962). If
one replaces K by the field of rational functions on a curve C over
€, these conjectures are equivalent to the Rigidity Theorem of the

\ lecture. The Mordell part was proven first, independently by Manin

Jmii™ W R

.
- L
- .o--m' hx.m i
il - il - e k. -

-
- ol

and Grauert:

H. Grauert, Mordells Vermutung Uber Punkte auf algebraischen
Kurven und Funktionenkdrper (Publ. IHES 25 (1965))

]
gl

Y. Manin, Rational points on algebraic curves over function

fields, (Izvestija Akad. Nauk, 27 T1963)5.

P, Samuel, La conjecture de Mordell pour les cor
: PsS de f *
(Sem. Bourbaki, exp. 287, 1964-65). onctions,
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i :
The Safarevitch part was proven by Arakelov using earlier partial

v,
results of Parsin:

S. Ju. Arakelov, Families of algebraic curves with fixed

degeneracles, (Izvest. Akad. Nauk 35 il9715i.

A.N. Parsin, Algebraic curves over function fields, (Izvest.

Akad. Nauk, 32 (19 .

Lecture III:

The Jacobian is introduced in the standard books referred to in
our notes to Lecture I: esp. Serre (op. cit.) shows that all rational
differentials W on curves C are pull-backs of translation-invariant

Ji fferentials 7} on algebraic groups J via some rational map p: C —>J.
Moreover Gunning (op. cit., esp. Math. Notes 12, subtitled "Jacobi

Varieties") treats in detail many of the topics of this and the next

Lecture. For Weil's original algebraic construction of the Jacobilan

and its application to the Riemann hypothesis, see:

A. Weil, variétés abéliennes et courbes algébrigues, (Hermann,

1948 ).

The result that I called the theorem of Riemann and Kempf on

the singularities of W, Wwas proved for k = g-1 by Riemann. Kempf's

results appear in:

G. Kempf, On the geometry of a theorem of Riemann (Annals of

Math., 2§_(197355-

G. Kempf, Schubert methods with an application to algebraic curves
(stichting Math. Centrom, Amsterdam, 1971).
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(%) is
The elegant proof of Riemann-Roch using the differential of s

worked out in detail is:

1C
A. Mattuck, A. Mayer, The Riemann-Roch theorem of algebralc

e

e
curves, (Annali Sc. Norm. Pisa, 17 (196}55

' - ore
Here are references for the theory of theta functions; and m
generally, function theory on abelian varieties:

of
W. Baily, Classical theory of theta functions (In AMS Proc.
Symp. in pure math., vol. 9).

F. Conforto, Abelsche Funktionen und algebralsche Geometrle
(SprlngerAVerlag, 1956)

J. Fay, Theta functions on Riemann Surfaces (springer Lecture
Notes 352).

J.-I. Igusa, Theta functions (Springer-Verlag, 1972) .

A. Krazer, Lehrbuch der Thetafunktionen (Teubner, 1903).

D. Mumford, On the equations defining abellian varieties

(Inv Math., 1 and 3 5 (1966-67) ) .

D. Mumford, Abelian varletiles (Tata studies in Math.), Oxford, 2nd ed.

1974
H. Rauch, H. Farkas, Theta functions with appllcatlonc to Rlemann

Surfaces, (Williams and‘Wllklns, 1974) o

My treatment in the lecture follows more or less my book Abelian

Varieties;

e.g., the 2 embedding theorems above are proven in Ch. 1

of this book. The group-theoretic aspects discussed in the lecture are

in my book, 823 , as well as in my paper and Igusa's book. The prime

form E“a and its applications is due to Riemann and is discussed at

length with many more applications in Fay.
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Lecture IV:

Besides th :
€ references give above on abelian varieties and moduli

problems, one can find further material in:

J.-L. Igusa, On the graded ring of theta-constants (Am. J. Math. ,

86 (1964) and 88 (1966)) i

D. Mumford, The structure of the modull spaces of curves and
abellan varletles fln Actes du Cong. Int. FNice g7 ) .

G. Shimura, Moduli of abelian varieties and number theory,
(in AMS Proc. of Symp. in Pure Math., vol. 9).

Because of thelir arithmetic and representation-theoretic importance,
there 1s a huge literature on various types of modular forms on jq,
and on other bounded symmetric domains. I am not competent even to
begin to list references on these topics, but I would like to emphasize
here as in the Lecture one big gap: the lack of a moduli-theoretic
interpretation of the Eisensteiln series.

Concerning Torelli and Schottky, good general references are the
pooks of Gunning (op. cit., notes to Lecture I, part I1I), Fay (op.scit.))
and Rauch-Farkas (op. cit.). In more detail, for Approach 1, see:

A. Andreotti, On a theorem of Torg}l;_(Am. J. Math., 80 (1958)).

e i

H. Martens, A new proof of Torelli's theorem (Annals of Math.,

78 (1963))- ]

T. Matsusaka, On a theorem of Torelli, (Am. J. Math., 80 (1958).

A. Weil, Zum Beweis des Torellischen Satzes, (Nachr. Akad. Wiss.
G8¥ttingen (1957
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D
: . . : I
Fay's formula is in his Springer LLecture Notes (op . ckti), P

(formula (45); the interpretation via trisecants follows from the
Proposition on p. 335 of my paper:

D. Mumford, Prym Varieties 1 (in: Contributions to Analysis,
Academlic Press, 1974).

Approach II can be found 1in:

W. Wirtinger, Lle's Translatlmnsmannlgfaltlgke1ten und Abelschea
Integrale, (Monatshefte ftir Math. und Physik, 46—(193 )E) -

S. Lie, Werke, Bund 2, Abt. 2, Teil 2, P. 431.
Approach III is 1in:

A, Andreotti, A, Mayer, On period relations for Abelian 1ntegrals
on algebraic curves (Ann. Scu. Norm. Sup. Pisa (19673).

My discussion of Approach IV follows my paper "Prym Varieties I°"
mentioned above. A more analytic approach is in Fay (op. cit.) or
Rauch-Farkas (op. cit.) as well as in the many papers of Rauch and

Farkas cited in their book. The original works of Schottky and Jung

are.

F. Schottky, Uber die moduln der thetafunktionen (Acta Math. 27
(1903)) . B

F. Schottky, H. Jung, Neue Sdtze Uber Symmetral funktionen und
die Abel'schen Funktionen f2 parts, Sltzungsber Berlin

Akad. Wiss., I (1909)).
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