Math 129: Algebraic Number Theory Homework Assignment 1

William Stein

Due: Thursday, February 19, 2004

Notes:

- Unless otherwise noted, if you can figure out how to use a computer program to solve a problem, please do. For complete credit you must describe exactly how you used the computer (commands typed, output, etc.) You might find http://modular.fas.harvard.edu/calc/ useful.
- You are allowed to work with other people on homework problems, but you must acknowledge their assistance.
- Copying a homework solution if you find it in a book is allowed, but you must reword it in your own way and *cite your sources*. Learning to use the literature is valuable.
- If you have questions, email me at was@math.harvard.edu.

The problems:

1. Let
$$A = \begin{pmatrix} 4 & 7 & 2 \\ 2 & 4 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (a) Find invertible integer matrices P and Q such that PAQ is in Smith normal form.
- (b) What is the group structure of the cokernel of the map $\mathbb{Z}^3 \to \mathbb{Z}^3$ defined by multiplication by A?
- 2. Let G be the abelian group generated by x, y, z with relations 2x + y = 0 and x y + 3z = 0. Find a product of cyclic groups that is isomorphic to G.
- 3. Prove that each of the following rings have infinitely many prime ideals:
 - (a) The integers **Z**. [Hint: Euclid gave a famous proof of this long ago.]
 - (b) The ring $\mathbf{Q}[x]$ of polynomials over \mathbf{Q} .
 - (c) The ring $\mathbf{Z}[x]$ of polynomials over \mathbf{Z} .

- (d) The ring $\overline{\mathbf{Z}}$ of all algebraic integers. [Hint: Use Zorn's lemma, which implies that every ideal is contained in a maximal ideal. See, e.g., Prop 1.12 on page 589 of Artin's *Algebra*.]
- 4. (This problem was on the graduate qualifying exam on Tuesday.) Let $\overline{\mathbf{Z}}$ denote the subset of all elements of $\overline{\mathbf{Q}}$ that satisfy a monic polynomial with coefficients in the ring \mathbf{Z} of integers. We proved in class that $\overline{\mathbf{Z}}$ is a ring.
 - (a) Show that the ideals (2) and $(\sqrt{2})$ in $\overline{\mathbf{Z}}$ are distinct.
 - (b) Prove that $\overline{\mathbf{Z}}$ is not Noetherian.
- 5. Show that neither $\mathbb{Z}[\sqrt{-6}]$ nor $\mathbb{Z}[\sqrt{5}]$ is a unique factorization domain. [Hint: Consider the factorization into irreducible elements of 6 in the first case and 4 in the second. A nonzero element *a* in a ring *R* is an *irreducible element* if it is not a unit and if whenever a = qr, then one of *q* or *r* is a unit.]
- 6. Find the ring of integers of each of the following number fields:
 - (a) $\mathbf{Q}(\sqrt{-3}),$
 - (b) $\mathbf{Q}(\sqrt{3})$, and
 - (c) $\mathbf{Q}(\sqrt[3]{2}).$

Do not use a computer for the first two.

- 7. Find the discriminants of the rings of integers of the numbers fields in the previous problem. (Do not use a computer.)
- 8. Let R be a finite integral domain. Prove that R is a field. [Hint: Show that if x is a nonzero element, then x has an inverse by considering powers of x.]
- 9. Suppose $K \subset L \subset M$ is a tower of number fields and let $\sigma : L \hookrightarrow \overline{\mathbf{Q}}$ be a field embedding of L into $\overline{\mathbf{Q}}$ that fixes K elementwise. Show that σ extends in exactly [M:L] ways to a field embedding $M \hookrightarrow \overline{\mathbf{Q}}$.
- 10. (a) Suppose I and J are principal ideals in a ring R. Show that the set $\{ab : a \in I, b \in J\}$ is an ideal.
 - (b) Give an example of ideals I and J in the polynomial ring $\mathbf{Q}[x, y]$ in two variables such that $\{ab : a \in I, b \in J\}$ is not an ideal. Your example illustrates why it is necessary to define the product of two ideals to be the ideal generated by $\{ab : a \in I, b \in J\}$.
 - (c) Give an example of a ring of integers \mathcal{O}_K of a number field, and ideals I and J such that $\{ab : a \in I, b \in J\}$ is not an ideal.