Math 129: Algebraic Number Theory Homework Assignment 7

William Stein

Due: Thursday, April 8, 2004

- 1. Let S_3 by the symmetric group on three symbols, which has order 6.
 - (a) Observe that $S_3 \cong D_3$, where D_3 is the dihedral group of order 6, which is the group of symmetries of an equilateral triangle.
 - (b) Use (1a) to write down an explicit embedding $S_3 \hookrightarrow \operatorname{GL}_2(\mathbf{C})$.
 - (c) Let K be the number field $\mathbf{Q}(\sqrt[3]{2},\omega)$, where $\omega^3 = 1$ is a nontrivial cube root of unity. Show that K is a Galois extension with Galois group isomorphic to S_3 .
 - (d) We thus obtain a 2-dimensional irreducible complex Galois representation

 $\rho : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Gal}(K/\mathbf{Q}) \cong S_3 \subset \operatorname{GL}_2(\mathbf{C}).$

Compute a representative matrix of Frob_p and the characteristic polynomial of Frob_p for p = 5, 7, 11, 13.

- 2. Let $K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7})$. Show that K is Galois over \mathbf{Q} , compute the Galois group of K, and compute Frob₃₇.
- 3. Decide on a final project for this course. Here are some possible ideas, though you need not do a project on one of these. Joint projects are a possibility (see me).
 - (a) How to compute class groups of number fields.
 - (b) How to compute the unit group of a number field (we didn't even prove the unit group is computable in class).
 - (c) How to solve the norm equation $\operatorname{Norm}_{K/\mathbf{Q}}(x) = d$.
 - (d) Explore relations between quadratic reciprocity and class field theory for **Q**.
 - (e) The Chebotarev Density Theorem: read about it and explain what the point is, and something about why it is true (e.g., for quadratic fields).
 - (f) Give a proof of Dirichlet's theorem on primes in an arithmetic progression (connected to the Chebotarev project above).
 - (g) Connection between ideal class groups of quadratic imaginary fields and classes of positive definite binary quadratic forms. Gauss's class number problem.
 - (h) The conjecture that there are infinitely many number fields of class number 1. What is known? What do the Cohen-Lenstra heuristics predict? Why is this problem so hard?
 - (i) Quadratic imaginary fields and complex multiplication elliptic curves.
 - (j) Elements of Shafarevich-Tate groups: give complete examples with proofs of equations like $3x^3 + 4y^3 + 5z^3 = 0$ that have a solution (with not all x, y, z zero) over every *p*-adic field \mathbf{Q}_p and over \mathbf{R} , but not over \mathbf{Q} .