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1. Valuations

“{c shall be concerned only with rank 1 valuations, so for brevity, valuation
will mean “rank 1 valuation”,

MD A A valuation || on a field k is a function defined on k with
ues in the non-negative real numbers satisfying the following axioms.

(1) |a| = 0 if and only if & = 0.
(2) |ap| = |«||8].
(3) There is a constant C such that [1+¢| < C whenever |of < 1.

DEFINITION.
W The trivial valuation of k is that for which |«| = 1 for all

Note: This wi .
ote: This will often be tacitly excluded from consideration.
42
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From (2) we have

11| = 1].{a},
SO ]1[ = 1 by (1). If now some power of wek is 1, say " = 1 we have

w| = 1 by (2). In particular th : :
ItriLial e, ¢ only valuation of the finite fields is the

The same argument shows that |—1| = 1 and so
|—a| = l«| allxe k.

DEFINITION.  Two valuations | |,, ||
. 1y | |2 on the same field k are equivalent i
there is a ¢ > 0 such that 9 tif

||z = [l (1.1)
Note: If |«|, is a valuation then |«|, defined by (1.1) is one also. Equivalence
is clearly an equivalence relation.
Trivially every valuation is equivalent to one with C = 2. For such a
valuation it can be shownt that

39 |B+7] < 18]+

(The “triangle inequality”.) Conversely (1), (2) and (3") trivially imply (3)
with C = 2. We shall at first be almost entirely concerned with properties
of valuations unaffected by equivalence and so will often use (3') instead

of (3).

+ We shall actually be concerned only with valuations with C = 1, for which (3") 1s
trivial (see next section), Or with valuations equivalent to the ordinary absolute value of
the real or complex numbers, for which (3°) is well known to hold: and we use (3) instead
of (3') (following Artin) only for the technical reason that we will want to call the square
of the absolute value of the complex numbers a valuation. For completeness, however,
we give the deduction of (3) from (3) with C = 2. First, |a, + 2| < 2 max |y}, |®al, ON
putting aa = aa; if, say, |aa| = |aa]. Then, by induction,

ar
‘j 2 ID'.';I < 2" max Iijl,

and so for any n > 0, we have

n
| 3 ey < 2"max o < 2n max [ayl,
J=1
where 27! < n < 2", on inserting 2" — n Z€ro summands. In particular
In| < 2n|l| =2n (n > 0).
But now
8+ o == A
!
< 2(n + 1) max [(DI1BY A"
< 4(n -+ 1) max (D1 1y
< 4(n + DB + YD

and (3") follows on extracting nth roots and making n — <.



. W. S. CASSELS

i formal consequence

the
r use we note -
For late Ilﬁl“h’” <|p—l
the ordinary absolute value. For one neg
re

the triangle inequality 10 the identity
p=1+f-71 77 B+ —P)-

(= - VY
on

of (3) where the outside l ] a

only apply

2. Typeﬂ ﬂf Vallla

two important :
W der lasses of valuation.

whole equivalence € i
DEFINITION. The valuation [ ] is discrete
1—-0< IDI‘ <140

properties of a valuation, both of which apply ¢,

if there Is a o > 0 such tha

implies |a| = 1. : a|, a€ek, a # 0 form
Lo pacacies, . This Iis the same as saying that the set of log Jo
i aloualute valsl N

,_ 1 1ti SUCI! a group 18 necessarily

free on one generator, i.¢. there 15 a ¢ < 1 such that ], « # O runs througt
precisely the set of ¢”, m € Z. If |o| = ™ we call m = m(a) the order of «

Axiom 2 implies
ord («f) = ord e +ord B.

DEerFINITION.  The valuation ‘ | is non-archimedean if one can take C = |
in Axiom 3, i.e. if

|B+7| < max (18] []}- (2.1)

If it is not non-archimedean, then it is archimedean.
We note at once the consequence

B+ =18 if[y| < 8]
of (2.1). For
[B] = [(B+7)—v] < max {|B+7], [»[}.

For non-arch. || the a with |¢| < 1 clearly form a ring, the ring o o/
integers. Two non-archimedean valuations are equivalent if and only If
they give the same o: for || < || if and only if By~ * €0, f 71y ¢ o (cf. §4)

T]f“’ set of o with [a[ < 1 form an ideal p in o, clearly maximal. It consists
precisely of the « € o with a™* ¢ o.

The notation o and p will be standard. The reader will easily prove the

for it to I;e dL;r |,m|' be ";:} rWchimedean. A necessary and sufficient condifio’
crete is that p is a principal ideal. »
We need later the pai ideal.

: LEMMA. 4 necessary
is that |n| < 1 for all

nin the ri :
Note: We cannot i L NASneraied by 1 in k.

dentify this ring with Z if k has a characteristic.

and sufficient condition that l I be non-archimeded!
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Proof. Necessity is obvious.
the triangle inequality

45
For sufficiency let l«| <1, and then by

[1+a|" = |(1 40|
< %Gl

<1l+1l4...41=np,

so (n = ©), |l +a| < 1.
COROLLARY.
archimedean.

For the ring generated by 1 in k is the field F of p el
ts.
then b*~! = 1 and so [b| = 1. p clements. 1If b eF,

If Chark =p # 0 then any valuation of k is non-

3. Examples of Valuations

The archetypal example of an arch. valuation is the absolute value on the
field C of complex numbers. It is essentially the only one:

THEOREM (Gelfand-Tornheim). Any field k with an arch. valuation is

isomorphic to a subfield of C, the valuation being equivalent to that induced
by the absolute valuation on C.

We do not prove this as we do not need it. See e.g. E. Artin, “Theory of
Algebraic Numbers’ (Striker, Géttingen), pp. 45 and 67.

The non-arch. valuations are legion. On the rationals Q there is one
for every prime p > 0, the p-adic valuation defined by

pufv|, = p~*

fora,u,veZ,p Y u,p £ v.

THEOREM (Ostrowski). The only non-trivial valuations on Q are those
equivalent to the | ‘ , or the ordinary absolute value | \m.

Proof. Let || be a non-trivial valuation on Q which (without loss of
generality) satisfies the triangle inequality.

Let a € Z be greater than 1. Every b€ Z can be put in the shape

b=b_a"+b,_,a" '+...+bg

where
0<b;<a 0<j<m)
and
log b
m < _E,_
loga

By the triangle inequality

log
|bl < M (m_._g_b 4 1) max {1, IH IEEH}

loga
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| where d|
= max
x 15d~==| .
: e nayv
; _ o and letting 7 = 0, W
On putung b=¢C log € (3 g
H 5111&1{11]“]‘““}- 1)
foreverya > 1 i
| in Z with [¢| > 1. Then o | ? e
First Case. 3¢ > Vet el
wd GBS 4 #
Nt Eo s le] D 1ed~halT bsolute value.

. : dinary a e
Kaeece ' ’ i 7" ltcl“c:ll'wal?c lE Zriﬂ by a Pl‘evious lemma I ‘ IS non-arch

SECTTJ'CEZE[; tl:;:!.rifl ; e Z with ]H‘ < 11is ﬂ”n“ﬂ;ﬂlljty and is
Since || 18 ~HVE ideal a is prime, say belonging tq
ideal. Since |bc| = lb”"l the 1

clearly a Z-idea ‘is L quivalent to | IF'

; ;c?wm;:tﬂfn;iiﬂ;' lﬁla:::l-::l and let k = kﬂ(r.). where 7 is trﬂnseenden'tal‘
If p = p(t) is ;n irreducible polynomial in the ring ko[t] we define a valuation

by
4 £ 29 a _ -g
}3} i.“t;{.h o Thx chosld Be C}ht _ l(.p(!)) u(I)IU(I)IF k2 (32.}
ot ived, aeZ and u(t), o(f) € kolth p(1) K u(t), p(6) 4 1(1)

/ where ]
i In addition there is the non-arch. valuation | | defined by

i~ df:v'clﬂﬂﬂ
1:5{'1'“& tht = {lj.-J, - Jrﬂf.‘u:? u(r) __"cgglrp-—dalub (3 1)
nén FruJ._._—{ "r-Hme'i,L reilyg. gt — . ; ey
(1)

Note the analogy between ko(t) and Q, which is however not perfect. If
s =171, 50 ko(t) = ky(s), the valuation ] ‘m is seen to be of the type (3.2)
belonging to the irreducible polynomial p(s) = s.

The reader will easily prove the
- LEMMA. The only non-trivial valuations on ky(t) which are trivial on kg
are equivalent to the valuation (3.2) or (3.3). .~

CoroLLARY. If F is a finite field the only non-trivial valuations on ¥(1)
are equivalent to (3.2) or (3.3).

4. Topology

A valuation || on a field k induces a topology in whi |
' pology in which a basis for the
nclghbnurhouds of « are the “s pen Spheres" gy

; Sd)={¢| |¢-a| <a)
or d > 0. Equivalent valuations induce the same topology. A valuation

satisfying the triangle in SR : _
: equality gives y
the distance from a to § o be ljﬁrtflﬂl. a metric for the topology on defining

GLOBAL FIELDS .

@+ 0)(B+)—ap| < 0111+ || 8+ | |o)

is small when |0], |¢| are small (2, B fixed).

LEMMA. If two 'uaiuﬂnc.m.& | [ [ |2 on the same field induce the same topolo
HIEH If:ey are E‘g”wa]e”; In Ih'e sense di?ﬁnf'd ﬂbﬂue P gy

Proof. | |Di[1 <] if.and only if o" — 0 (n — + o) in the topology and
!;1[1 < 1if :afnd only if |rx‘3 < L. On taking reciprocals we see tha%y‘:x‘ :?
if and only if ||, > 1 so finally |cx11 = 1 if and only if o, = 1 :

Let now 8, y € k and not 0. On applying the fmregcingztu |

& =) m,n (X8 T <=4
we see that " ( =& ;U “})* RUE = )
m log |, +nlog ], = l
according as T
mlog|f|,+nlog [y, 0 A ~
and so VrEg = e,

lng ‘ﬁll B lng‘ﬂl ; ‘ e AR

log ||, logly|, "0 T
.2 w3y, C L EBLE = g

5. Completeness

A field K 1s complete with respect to a valuation || if it is complete as a
metric space with respect to the metric |a—f| («, fe k) ie. if given any
sequence o, (n = 1,2,...) with

5 T X

o

o, — o, —= 0 (m,n— o0, c0)

(a fundamental sequence), there is an o* € k such that

o, —F ? w.r.L. ”

(1.e. ]Df”--fx*‘ — 0).

THEOREM. Every field k with valuation l ] can be embedded in a complete
field k with a valuation ‘ [ extending the original one in such a way that k
is the closure of k with respect to | |. Further, k is unique (up to fmmalrp.fu'sm)*

Proof (sketch). We define k£ as a metric space to be the completion of k
as a metric space with respect to ||. Since the field operations +, x and
inverse are continuous on k they are well-defined on k. Q.E.D. |

COROLLARY 1. || is non-arch. on k if and only if it is so on k. If that is

so, the set of values taken by I ‘ on k and k are the same.
Proof. Use second lemma of §2. Alternatively, if k is non-arch., the

functional inequality

)

B+7| < max (|
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. now pEK P N = 3. By the = .

holds also in & by canunuifyl.?llf Converse trivial. AP REp— y the case N—1 there is a ¢ & k such that
B—7| < |B] and th;n lﬁLa-;uﬂffﬂﬂ'Pf”er ving EfnbEdd;;g d #h>1 Wl<t @sacwn —1)

COROLLARY 2. Ay ©%0 4 to an embedding of K. and by the case N = 2 there is a \ € k such

ld K can be uniquely continué such that
ﬁE ' 1.. ll‘pll > 11 ‘l;!’lp; it 5.
6. Independence . valent valuations are 1n lact Then put

; erts that 1MEQUIVETFT" b ,

The following theorem ass$ ' our pUIPOSES it will be superseded by the & 1ol <1
Imost totally independent. Ko F
a r .

ult of § 15. el ».  Let || (1<n<N) be g PV if |¢]y = 1
mLEJ-MA (“weak app ST thEﬂ?ZH;C For each n let k, be the topo- b

: » tions of a field k. 10T & - ¢
inequivalent nan-le;;‘;; U:}&f;w set of elements of k with the mpa!uijf IE’HFT 1+ if gy > 1
gﬂgﬁﬂ Jijfic;frhﬂ image of k in the Iﬂpﬂfﬂgw‘ﬂ product H iswEN where r € Z 1s sufficiently large.
P | |ae .
] where dense in H ;

(with the product topology). Then ﬁ:ﬂ 1: EU;;ycxpfﬁ“ d in a less topological 7. Finite Residue Field Case

The conclusion of the lemma T2 d real ¢ > 0 there is a £ € k such Let k be a field with non-archimedean valuation ||. Then the set of a € k

with |¢| < 1 form a ring o, the ring of integers for || The e e k with |¢] = 1

manner: given any &,
are a group under multiplication, the group of units. Finally, the set

that simultaneously:

N L] . L] " "
R (1‘ <n< _) s 2 siiuend a5 i of a with |a| < 1 is a maximal ideal p, so the quotient ring o/p is a field.
Note. If k = Q and the I are p-adic valuations this 15 ¥ 5 We consider the case when o/p has a finite number P of elements.
ole. ¥ " but the strong app[ﬂ){]l‘ﬂﬂ.ﬂﬂﬂ theorem 1s S further. that l et Th . o i
“Chinese Remainder Theorem™ ', buU uppose u r, tha ] 1s discrete. en p is a principal ideal (n), say,
the real generalization. h and every « is of the form a = =", where ¢ is a unit. We call v the order
Proof. We note first that it will be enough to find 6, € k such that of . If also p = (n') then n/n" is a unit and conversely, so the order of «
| )y > 1, 9.[:- <1 (n#m) (6.1) is indeger_ld;ntdﬂi;i thtfi ch?ige of @ rr. ) s B e s thesd
+ 00 we have Let 0, p be defined with respect to the completion k of k. Then clearly
where 1 sn < N, 1 <m < N. For sugde) B 5/p = o/p and p = (m) as an o-1deal.
0 1 £x Lwrt. H' LEMMA. Suppose, further, that k is complete with respect to H then o is
1407 146, |0w.r.t. |[s m#n precisely the set of
and it is enough to take a=Y an (7.1)
LIS 4 j=0
JE=.-.=.;|1+ﬂ:ﬂ" where the a, run independently through some sef Y. of representatives in
with sufficiently large r. o of o/p. o P Rp—
By symmetry it is enough to show the existence of 6 = 6, with By (7.1) is meant of course the limit of the fundamental seq
fli>1  [fl.<t  @<n<N) S a,n as J — oo, o, Bgrag af Vi oiilnn. P55
and we use induction on N. j<OFor there is a uniquely defined d, &3, such that ‘T—aAurlldin.un
N = 2. Since ||, and ||, are unequivalent there is an « such that a, = n~!(a—a,) € 0. Now define a, € ), by g —ay| < 1. '

TueoreMm. Under the conditions of the preceding lemma o is compact

o<1, ez =1

- ith respect to the | |-topology. .
and similarly a f such that . : ts covering 0. We must
me family of open sets
lﬂh 21, lﬁl <1 hPmﬂ-]f LFt OE (i:sﬁga:;v:f We suppose not. .
2 show there 1s a nni : nion of the finite

and then 0 = fa~! will do. Let ¥ be a set of representatives of o/p. Then o is the u
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Hence for at least one dy

of the O;. Then simi
nitely covered. And SO on. Let

A. Since O;, is open,

50
number of sets a+ 70 (ae)
is not covered by finitely many

such that an+aln+n2n is not fi
¢ = dot+ay®t. ... Then «€ O, for some 2o €

«+7’0 c 0, for some 7. Contradiction.

is locally compact.
f k is locally comp

COROLLARY. K _
.. valuation ||

[The converse is also true. I

then
(1) k1is complete; .
(2) the residuc field is finite;
(3) the valuation is discrete.

For there is 2 compact n:ighbaurhnud c of 0. Then 7’0 < € for sufﬁcicn}ly large v SO
' pact. Since | | is a metric, © is sequentially

290 js compact, being cl : ! ric, 0 15
; ce in o has a limit, which implies (1). Let

compact, 1.e. every fun _ :
ax (A€ A)beaset of representatives in 0 of ofp. Then 04 : € — .:u'! < 1 isanopen cOVErng
of 0. Thus (2) holds since o0 is compact. Finally, p is compact being 2 clpﬁcd subset of o.
Let S. be the set of a €k with [a| <1 — 1/n. Then S.(1<€n< w) is an open CoOver
of p, s0 P = Sa for some n, i.c. (3) is true.

If we allow || to be archimedean the only further

with | | equivalent to the absolute value.]

act with respect t0 @ non-arcl

possibilities are k=Rand k =C

We denote by k™ the commutative topological group whose points are
the elements of k, whose law is addition and whose topology is that induced
by || General theory tells us that there is an invariant measure (Haar
measure) defined on k™ and that this measure is unique up to a multiplicative

constant. We can easily deduce what that measure 4 1S.
Since u is invariant
p(a+7"0) = f,
is independent of . Further
at+n’o= U (a+n'a;+7"" o)

15j<P
where a; (1 < j < P) is a set of representatives of o/p. Hence
| Mo = Pllys 1.
If we normalize y by putting
p(o) = 1,
we have 7
Hey = P .

Conversely, without the th
_ sely, . eory of Haar measure, it is easy t
1S a];, :n:;tt;c invariant measure on k™ subject to (7.2) <o e
erythi ' | ] W
ng so far in this section has depended not on the valuation ] |

but only on its equi
quivalence class. The abo i i
: . ve :
out one valuation as particularly important, Somdatations. Row Sngie

EFINITION.
D ION. Let k be a fie 1

- Id with i
, : ! discrete 1 !
ﬁgfd with P < oo elements. 1 say that HE’ fL valuation ] l and resicd I

, s normalized | HAREREIGSY
zed if

where p = (7). }”! = P!
THEOREM. S“PPG-FE, ﬁfr”'l{’

* . r, Ih ]
malized valuation I | Then at k is complete

with respect to the nor-

. “{T'—*‘ﬁl]}:
th:‘;e pis the Haar measure on k* ;mrmuf'lm [
e Can CXpress . ized by pu(o) =
ek, B #0 Iajnd lctthi L‘-’-‘hu'it of the theorem in j. ;1({}1)'& S ’ :

_ pt be a Haar measure on £+ uggestive way. Let
as in the theorem). Then we can def n k" (not necessarily normalized
utting p,(E) = p(fF 1 _‘ ctine a new Haar me > e
ﬂ"lultipli:ai(ivg t::mi%(fliz (E'= k). But Haar measure ?SSUJL'“ﬂ oy B
ant and 0 o) = W) e P

all measurable

sets £, where the f:
ot _ flct_ﬂrfdcpencis only on 8. The ti
jus W st el ilition . icorem states that f is

[The theory of locally co :
dual (character) group .t:f.)rr',".;+ mﬁatm tDp‘Dng]Cﬂ]. groups leads to the considerati

6 for clats Beld. theory m.d urns out that it is isomorphic to &* -,,w‘fldt:mtmn of the

thesis (Chapter XV of thi; hn{:?]\TDl Em‘-‘c it here. For a proof and ::;pplit::at{? novARSE s

ol JJor Lang: “Alg : ‘ 1ons see Tate's

for generalizations; Weil: * : gebraic Numbers” (Addi ; .

: "Adcles and Algebraic Groups” [Priné;tgnl?s;tuh:rmﬂf)’)nnd*

¢ notes) and

Godement: Bourbaki seminar
A 5171 : i
P B~ i Tocal dlasecfeld theory) and 176. The determination of the character group

The set of non-zero
clements of & form % :
Clearly multiplication and taking the reci ]ﬂ ngup k" under multiplication.
to the topology induced in kK~ a; a 'Sllbﬁt".'tl {:?? . Sﬂqﬂilﬂllﬂus N e
with this topolopy.+ We have UL , S0 k7 1s a topological group
- k' 2 E=E;
where E : _ 5
e Elitﬁ}:lcvg.:;:mp of units of k£ and where E, is the group of cinseinheiten
i‘rlik"" - 5\_1 1 18.—11 < 1. Clearly E and E, are both open and closed
Obr‘ Il'-' 'l ‘:_x!- ) ' . S A4 and © =1 (nmuad ,'.31-'5 (:‘:ﬁ l\hr"" ERS 9 ],:':"LI':_: I} = : {ELLY 2N
1 j.fmus y k*/E 1s isomorphic to the additive group 7.7 of integers with
the discrete topology, the map being )
nE—-v (veZ).

li::lurther,, E/E, 15 is‘nmﬂrphic to the multiplicative group x° of the non-zero
; Emfnts Tf the residue class field, where the finite group x* has the discrete
opology.t Further, £ 1s compact, so * is locally compact, Clearly the

t We shall later have to consider the situation for topological rings K, where R* In

Eﬂ;ﬂ'fﬂj is given a different topology from the subsct topology.
x* is cyclic of order P — 1. It can be shown that A always contains a primitive

g‘— 1-th root of unity p and so the clements of k™ are just the a°p¥c, € € Ey, 1.e. k™ 1 the

irect product of Z, Z/(P — 1)Z and E,.

U.In fact let f(X) = X"~* — 1 and let « € 0 be such th

1 @] <1, |f(a) =1. Then by Hensel's Lemma (App. C)
(p) =0, p = a (mod V).

at @ mod p generates «7. Then
there is p € k such that



er multiplication SO gives
k* in an
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additive Haar measure on
a Haar measure On E,:
obvious way.
Finally we note the
Lesma. kY and k”

points).
Beweis. Klar.

I i :ant und
E, 15 qlso 1nvarl *
and this gives the Haar measure 0

s a
are totally disconnected (the only connected sets are

h mentioning that k* and L+ are locally :somorphic if k has charac-

: haps wort .
e P he exponential map

teristic 0. We have t

—

(# 4
x—>expa =X B
valid for all sufficiently small « with its inverse
(=)~ — 1"
log & = & =

valid for all sufficiently near to 1.]

8. Normed Spaces
DerINITION. Let k be a field with valuation | | and let V be a vector space
over k. A real-valued function | || on Vis called a norm if

(1) [la] > 0foraeV,a # 0.
@ [a+0] < [af+[ol- v
(3) nmn = Ir::] ]Iu“ (x ek, a € &).

DEFINITION. Two norms || ﬂu ﬂ
there exist constants ¢, ¢, such that

ol <culols ol 5 ealol,

This is clearly an equivalence relation.
LEMMA. Suppose that k is complete with respect 10 1 I and that V is finite-

dimensional. Then any two norms on V are equivalent.

Note. As we shall see, completeness is essentiall
Proof. Let a,,...,ay be any basis for V. We define a norm | o bY

(DIRSLH
It is enough to show that any norm | | is equivalent to || [o. Clearly

|2 &naal < 2 [0} o]
< 6|3 &aallo

€y = Zu“n“-

|, on the same space are equivalent if

o = max |&,].

with

GLOBAL FIELDS
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nﬂ‘l)n < cl“““-

Then for any & > 0 there exist ¢, E. siich
P10 1at

0< |} Eatt,| < Emaxlajnl_

By symmetry we may suppose that

max
and then by homogeneity that

<

- ‘{:Hl

é,-; — 14.
Form=1,2,...,wethushave {, (1 << N—1) with

N—1
“ Z én_mnn_}-nh'l]l —* U (”1 e 'L'J':)),

n=1

S0

N-1
HHZI@H,:: — &m0 (¢,m— 0, ).

T[‘ hi lcm?m lsﬁin{i ?:rriviiz;.ldfur N =1, we may suppose by induction that it
is true for the — 1)-dimensional
sl space spanned by a,,...,ay_, and

rc—Enml =0 (£, m > 0, 0)
for 1 <n < N—1. Since k is complete there are £ € k with

n m—En| =0 (m— ).
Then
N—-1 i N—-1 N—1
IS E2a,tay] < || T Enmtat@] + T 168 —Ennloa] 20 (m— o)
in contradiction to (1), Q

t“ L
SIhCe, ﬁi_l‘f;*"qt"'” 0 kot

Il 2.1 by Th 'illl = :"

e B L [

9. Tensor Product

We need only a special case. Let A4, B be commutative rings containing a
field & and suppose that B is of finitc dimension N over k, say with basis

| = wy,wz,..., W
Then B is determined up to isomorphism by the multiplication table
W, WOy = Z Ctmn Whn Cemn € k.

We can define a new ring C containing k whose elements are expressions of

t+ When k is not merely complete with respect to | | but locally compact, which will be
the case of primary interest, one can argue more simply as follows. By what has been
shown already, the function lla]| is continuous in the || [lo-topology, and so ﬂtrams its lower
bound & on [lallp = 1. Then 6 >0 by condition (i), and then llallo < 67 lall tj}’j‘{rff‘

i

mlt}' fﬂl’ﬂuﬂ. (E'r- {_IIL =-_|-._,.":-_;h .,, I;:!i 'E"l.lu“ ~oo N 1§ 1% :;,_- A WL 1-,1 -_,_,1|,:-.J|1=J

'I‘.'LL‘ all fue 1i‘.]

[
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i Y 0O € A
the same multiplication rule
md'mrn e Z f‘.fmnmn

morphisms
j:a—aw,

where the m,, have

as the w,,. There arc ring 180

o jzz;'mwmﬂz;‘mmm |
is clear that C 18 defined up to 1somor-

of A and B respectively into C. It e the perticular choice of Basit.a.

phism by 4 and B and is independent

We write
C=A®:B

s, in fact, a special case of the ring tensor-product.

since it 1 .
e reader will have no difficulty in checking that C together wit
the defining Universal Mapping Property.]

h the maps i, j possesses

at A is a topological ring, i.e. has a

Let us now suppose, further, th 0logIC |
topology with respect to which addition and multiplication are continuous.

The map

Z a,m,, —(a,.. . ay)
is a 1—1 correspondence between C and N copies of A (CW}SidﬂWd &
sets). We give C the product topology. It is readily verified (1) tl}?.t this
topology is independent of the choice of basis wy,... @y and‘(n)_ that
multiplication and addition in C are continuous with respect to it; 1.e. C
is now a topological ring.

We shall speak of this topology on C as the tensor product topology.

Now let us drop our supposition that 4 has a topology but suppose
that A, B are not merely rings but fields.

LEMMA. Let A, B be fields containing the field k and suppose that B is a
separable extension of degree [B:k] = N < 0. Then C = A ®, B is the
direct sum of a finite number of fields K ;» each containing an isomorphic
image of A and an isomorphic image of B.

Proof. By a well-known theorem (appendix B) we have B = k() where
J(B) = 0, for some separable f(X) € k[X] of degree N irreducible in k[X].

Then I'Hﬂ_’i“'ﬁf_l is a basis for B/k and so A ®, B = A[B] where
Icpze) B arc_lu}early i_ndcpendcnt over 4 and f(ff) = 0.

Although f(X) is irreducible in k[X] it need not be in A[X], say

IX)= T g4
1<j<J

where g(X) e A[X] is irreducible. The g(X) are distinct because f(X) 15

separable. Let K, = A(B)) where a,(8) 55

given by

h(f) e IIU}) h(X) e A@f]

is a ring homomorphism
We thus have a ring hcmmmorphiSm

H:E}-.-lﬁ:j#:

- & K,
l=)=<] +* (91)

Let A(f), h(X) € A[X] be in the kernel. Then #

g{(X), so also by f(X), i.e. h(B) = 0. Th
sides of (9.1) have the same dj us (9.1)

an isomorphism, as required.
It remains to show that the ring homomorphisms

A®,B

'(X ) 1s divisible by every
IS an injection. Since both

Mension as vector spaces over A it must be

H
%fLB-ﬁidﬁng_il{j

are injections. If 2,(f) # 0 for any f e B then Ai(By) # 0 for all By #0

because 4,(f) = A,(8,)2,(8p . )- Hence all we have to show is that /., does
not map the whole of B onto 0: and this is trivial.

) ??RD;_.LARY. ‘I_:er aeB a{zd let F(X)ek[X], G(X)ed[X] (1 <j<
e the characteristic polynomial of o over k and of the image of « under
over A respectively. Then
F(X)= ] G(X). (9.2)
1<j<J

Proof. We show that both sides of (9.2) are the characteristic polynomial
T(X) of the image of « in 4 ®, B over A. That F(X) = T(X) follows at
once by computing the characteristic polynomial in terms of a basis
@y,... Wy, Where wy,..., w, is a basis for B/k. That T(X) = IIG(X)
follows similarly by using a base of

composed of bases of the individual K;/A.
CorROLLARY. For a € B we have

Iqﬂrﬂh”km== IT IQGHHHHAR
15jsd

Traceg,a = ), Traceg, 2.
1<j<)

Proof. For the norm and trace are just the second and the last coefhicient
In the characteristic equation.
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nsion of Valuations :
10. Bee tions on k, K respectively.

be valua

Let k c K be fields and | |» | _ !

that | | extends | | if 6] = ] for all bek. o
THEOREM. Leéf i be complete Wit to the valuali

: here is precisely one

an extension of k with [K: k] =
(10.1)

to K namely
ﬂf” ”g" = 'Nnrmmcr]””
a vector space Overl k and then

Hence any two extensions |1l
lent as norms and so induce the same topology 1n K.

o valuations which induce the same topology are
= | |5 for some ¢. Finally ¢ = 1 because

We say

W
ion k and let K be
extension

K may be regarded as

Proof. Uniqueness. -
sense defined earlier.

| ] is a norm in the :
and | [|, of | | are equiva
But as we have scen tw
equivalent valuations, e | 1
18] = 5], for all bek.

Existence. For a proof of existenc
“Theory of Algebraic Numbers” (Striker,

valid for separable non-arch. discrete valuations
1, Corollary. Here We give a proof (suggested Dby Dr.

conference) valid when & is locally compact, the only case
used. In any case it is easy tO Se€ that the definition (10.1) satisfies the

conditions (i) that [la = 0 with equality only for « = 0 and (ii) [aB| =
laf [|B]: the difficulty is to show that there is a constant C such
that o] < 1 implies [1+af < C. Let | [lo be any norm on K considered
as a vector space over k. Then |«| defined by (10.1) is a continuous noN-zero
function on the compact set [aflo =1, so A= le| = & > 0 for some

constants A, 6. Hence by homogeneity

e in the general case se€ €.E. E. Artin:
Gottingen) and for a proof

see Chapter I, § 4, Prop.
Geyer at the

which will be

o
AEHEﬁ}O. (alla # 0).

Suppose, now, that [la] < 1. Then [af, < 67" and so
l1+af < Al1+a],

< A(|1]o+|a]o)
< A(1fo+677)
=C (say),

as required.
Formula. 's exi
nutingmti:t ﬁe::lr s existence proof also gives (10.1). But it is perhaps wort!
follows. Let L :cha;e (lf?'!) s a consequence of unique existence a;
o 2 ks cxtensiaunn;}c[liﬂtmal extension of k. Then by the al;c:w:
. o L whi
If o is an automorphism of L/K then which we shall denote also by || |.

H“IL = ||mx||

GLOBAL FiELDS

is also an extension of | | to L, 5o I |, = |1, ie !
I loa| = o (anwer)
Normg, o =
k&= Ulmgzﬂ, o O
for & € K, Where ay,...., Oy are automorphisms l::rf”;k H
. Hence
[Normy | = [Normy,, a|
&3 | ||o,«a
l<ngN
ey N
as rﬂquifﬂd. uﬂ' |
»

COROLLARY. Let w
* 13+ + vy mH be a b .
Cyy C2 such that asis for Klk. Then there are constants

for by,..., by € k (not all 0).
Proof. For
f. 1> b,w,| and max |b,| are two norms on K considered as a

vector space over K.
COROLLARY 2. A fini i
Jinite extension of a completely valued field k is complete

with respect to the extended valuation
For by the precedin i
g corollary 1t :
When k is
THEUREh; E‘C;Ih;;l?er complete under | | the position is more complicated:
: e a separable extension of k of degree [K: k] = N < m‘

T y
(lhiﬂ;fzrj)are Lielr E:usi N extensions of a valuation || of k to K, say | ||
< : t k, K; be the completion of k resp. K with res ’4? t j E©
resp. “ HJ Then PESE H’ | Q &) |
k@, K= @ K
bt ¥ (10.2) . \:1.@

algebraically and topologically, where the R.H.S. is given the product topology |

P ;
2 rgﬂ?‘; We know already that K ® K is of the shape (10.2) where the K;
= Km e extensions of £. Hence there is a unique extension | |} of || to
, and the K, are complete with respect to the extended valuation.

Further, by a previous proof, the ring homomorphisms
are injections. Hence we get an extension | ]|, of || to K by putting
18], = |48

iiu;thcr, X = 2,(K) is dense in K; with respect to | [; because K = k @, K
ense in k£ ®, K. Hence K| is exactly the completion of K.
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are distinct and

Then || | extends by con-
tion also to be denoted

58 that they are the only

It remains to show that the | [Is

i f[]to K. }
EXE:ESTI[]]SI; LLy valuation of X

tinuity to @ real-valued function ©

b . By continuity we have
i te gl < max [l IBI) 5 peE@ K

1] = =l 1Al

estriction of || | to one

extending [ l
f k@, K, afunc

af| # 0 for some

of the KJ‘- If I
|[}” + 0. Hence

9’-'01!'1 K‘;SD

We consider the I

x -1|| for every p

xe K, then|] = 8] Ja~"] for € o on K.
. L% : 4 t induces a valuation J

cither | | i jdedticaly 0 o7 © % Iatin::rn on two of the K. For

Further, | || cannot induce a valu

(2,000. .. ©0). (002, &0. . @0) = (090. .. ®0)

and so
o[ Joa] =0 €Ki %2€F2

Hence | || induces a valuation in precisely one of the K; and it clearly extends

the given valuation | | of k. Hence | | = | |; for precisely one j |
It remains only to show that (10.2) is also a topological homomorphism.

Fﬂr (ﬂl!i L ﬁJ)EKI@- " -@KJ’ put
H(ﬂ;,- : .,)5'_;)]|ﬂ = max ”ﬁf“r
1<j<J

Clearly, || [lo is @ norm on the R.H.S. of (10.2), considered as a vector
space over k and it induces the product topology. On the other hand, any
two norms are equivalent, since k is complete, and so | o induces the
tensor product topology on the left-hand side of (10.2).

COROLLARY. Let K = k(B) and let f(x) € k[X] be the irreducible equation

for 8. Suppose that

f(X) = H Q’j(x)

1<j<sJ

in k[X), where the g; are irreducible. Then K; = k(f;) where g;(f;) = 0.

11. Extensions of Normalized Valuations
Let k be a field with valuation | |. We consider the three cases:

(1)‘ || is discrete.nun-arch. and the residue class field is finite.
(2(9) The completion of k with respect to | | is R.
(2(i1)) The completion of k with respect to | | is C.

[In virtue of the remarks in :
ia locally compaét] 37, these cases can be subsumed in one: the completion

1
cas.: (;Es; \Erle) ;eﬁai:e alrcac!y deﬁn&d a normalized valuation (§7). In
y normalized if it is the ordinary absolute value and in

GLOBAL FELDS
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the

case (2(i1))

- e O e 14 Ee b+ (2ek)
of the additive group £* of the
on k¥ by |::cl: and this ch
equivalent ones.

LEMMA. Let k be complete i
| ith respect ¢ .
i Kb st o L 1 s o |
- 1e normalized

valuation || || of K which is equi
quivalent to th . :
given by the formula € unique extension of [ [ to K is

completi ¢ ipli
SO 5;tmn of k multiplies the Haar measure
€s the normalized valuation among

[|o:|| = [Nnrmmk n:| (x € K).
Proof. By the preceding section we have

|| = [Normy o (xek) (11.1)

ﬁ;{r '5[}11‘.1(3 real ¢ > 0 and all we have to do is to prove that ¢ = 1. This is
trivial in case 2 and follows from the structure theorems of C.haptcr I

in case 1. Alternatively one can argue in a unified way as follows. Let
wy,. .., Wy be a basis for K/k. Then the map |

'-::'ZgnmnH({flv-*:‘:‘:H) (éll***:PHE k)

giv?s an 1somorphism between the additive group K* and the direct sum
@"k* of N copics of k™, and this is a homomorphism if the R.H.S. is
given the product topology. In particular, the Haar measures on K+ z;nd
@®Vk™* are the same up to a multiplicative constant. Let be k. Then the

map

of K* is the same as the map
(61: oW 61‘1*) — (béh* v vy b‘fh’)

of ®@k* and so multiplies the Haar measure by |5|", since | | is normalized.
Hence

o] = [b]"-
But Normg,, b = b" and so ¢ = 1 in (1L.1).

In the incomplete case we have
THEOREM. Let ‘ ‘ be a normalized valuation of a field k and let K be a
finite extension of k. Then
[T [Jol; = [Normgpel,
15jsJ
where the “ H jare the normalized valuations equi

HI&K.

valent to the extensions of
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Proof. Let e
k@R CILL :
where k is the completion of K. Then (52 |
= orm !Eﬁf "
Normg y % 15151( X,

The theorem DOW follows from the preccding lemma and the results of § 10.
c

ither a finite extension of the rational
f F(t), where F is a finite field and
attention in the exposition on the

t is transcenden ¢) leaving the extension of F(¢) (func-

extensions of Q (al

' ader. |
m{ﬁ;ﬁwﬁrtz E:Eﬂr;e in the global field k. Then there are only finitely

many unequivalent valuations || of k for which
[u:] > 1.

Proof. We know this already for Q and F
of Q, so

gebraic number cas

(t). Let k be a finite extension

a’+ﬂ1ﬁ"-1+---+ﬂn=0

for some 1 and dy,. . ., ay If | | is @ non-arch. valuation of k we have

lul' = I—ﬂlﬂ’_l— ‘o *—ﬂni
< max(1, |o""*)max(|a,,. . ., |a.))

and so
|«| < max(1, o |a,))-
Since every valuation of Q has finitely many extensions to k and since there

are only finitely many arch. valuations altogether, the theorem for & follows

from that for Q.

All the valuations of a global field k are of the type described in § 11,
since this'is true of Q and F(¢). Hence it makes sense to talk of normalized
valuations.

THEOREM. Let o € k, where k is a global field and « # 0. Let | |, run through
all the normalized valuations of k. Then |a|, = 1 for all except finitely many

v and
[Tlelo=1.

Note. We shall later give a less computational proof of this.

t This condition is not really n ‘ '

B _ ecessary. If k is any finite extensi '

iy oy : nsion of F(¢) there 15 8
parating clement” s, i.e. an s € k such that k is a finite separable extension of F(s).

Proof. By the lemma 2|, < 1 for 61

many). Similarly ]ofi\u <1 fo almost all v (je. g .
r alm - all except fi
Let ¥ run through all the nﬂrmalizztd pon i l“\ﬂ = 1 for almost aI{u:T]y

u| V to mean that the restriction valuations of Q [or F Wi
of v to 1S equi (I)] and rite
Q is equivalent to V. The
. Then

1:1 Mu = 1:_[ (ﬂ\“lv) = 1;1 \Nurmkm aly,

by the preceding section. This

Biit if now reduces the theorem to the case k = Q.

b= p
4 1;[ PP eq,
where p runs through all the primes and B,eZ, we have
P 3

lblp =p~F
for the p-adic valuation | |, and

bl =T] p*
for the absolute value | | .. ’ Q.E.D

Let K be a finite separable extension of the global field k. Then for ever
valuation v of k we have an isomorphism d

ku®kK=K1@...@KJ

where k, is the completion of k with respect to v and K|,. .., K}, are the
completions of K with respect to the extensions Vy,..., ¥V, of v to K (§ 10),
the number J = J(v) depending on v. We shall later need the

LEMMA. Let w,,. .., @y be a basis for K|k. Then for almost all normalized

v we have {2
mlu@mzn:r@...@mﬁn:ih@...EB!DJ (12.1)

where N = [K: k), o = o, is the ring of integers of k for ||, and O, < K,
is the ring of integers for |y, A <)< J) Here we have identified a € K

with its canonical image in k, ® K. |
Proof. The L.H.S. of (12.1) is included in the R.H.S. provided that

man; <1 (l<n<N,1 <j<J). Since Irx]p- < 1 for almost all V it

follows that L.H.S. = R.H.S. for almost all v. -
To get an inclusion the other way Wwe us¢ the discriminant

D(}'Ir' i vy }'H) = dern@;—u(traceﬂk ?m?n‘]l

where y,,..., Iy €k, ®c K. 1L 1n € RHS. (1 <n < N) we have (§9)

Yy traceg k¥m¥n €0 = Oy

tracCen ¥ Yo =
RHEERER 1<js/

and so
D(}llm- ' “E}TH) € 0.
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Now sup

pose that ¢ € R.H.S. and that

12.2
ﬂ = i b,w, € R.H.S. ( |
1

('bn € k'-’)

Then for any 7, 1 <m< Nwe have
-D(mlr*":mm—ltﬁrmm+li** * 3

ﬂnd SO db:l €0, (1 < m < N)

where
d = D(w,-- >N Ek

But (Appendix B) we have d # 0, and O [d|l, _ 1 for almost all v. For

almost all v the condition (12.2) thus implies
b, e0, (1<m=N)

1.e.

R.H.S. c LH.S.

This proves the lemma.

LLAR ¢ all v are unramified in the extension K[k.
S e g ry and sufficient condition for v to be un-

by the results of Chapter I a necessary
rai?ﬁredjrfs that there are ¥1,...» /8 € R.H.S. with [D(71,-«+» va)ly = 1. And for almost

all p we can put ¥, = «" %]

13. Restricted Topological Product

We describe here a topological tool which will be needed later:

DEFNITION. Let Q, (A € A) be a family of topological spaces and for almost
allt 1 let ©, < Q, be an open subset of Q,. Consider the space Q whose points
are sets & = {0;}1cn, Where a; € Q, for every ) and a, € ©, for almost all /.
We give Q a topology by taking as a basis of open sets the sets

[1T.
where T, < Q, is open for all 2 and T'; = ©, for almost all A. With this
topology S is the restricted topological product of the Q, with respect to the © ;.
COROLLARY. Let S be a finite subset of A and let Qg be the set of o € ()
withe, € ©, (L€ S), i.e.
Qs =[] QX[ ] ©,. (13.1)

leS A¢S

Then Qg is open in Q) and the topology induced in Qg as a subset of Q2 is the
same as the product topology.

Beweis., Klar.

The restricted topological product depends o *
pe th
but not on the individual ©,: AgRfonlity of the O,

T i.e. all except possibly finitely many.

| GLOBAL FiELDg
!
LEMMA. Let O) = Q, be o 63

, pen
that ©, = ©} for almost alf ) sets dﬁ'ﬁnedfar almost ql] ; and suppo

b x se

ed product of the Q, with

respect to the O} is the same ast ¢
Beweis. Klar. duct with respect 1o the O,

LEMMA. Suppose that the Q

Then the restrict
he restricted pro

3 dare

: !
compact. Then Q is locally compac; ocally compact and that the ©, are

Proof. The Qg are locall
Y compact by (13.1) s * .
Q = U Qg and the Qg are open in Q, the res(ult'fczllsmlz'? % 18 B Sty

DEFINITION.  Suppose that measures

1,(0,) = 1 when O, is defined. We (¢
: : efine
be that for which a basis of measurable sets is :Eepfﬂd”{‘f measure i on Q to

[[M,
A

where M; < Q; has finite -
a-measure and =
where M, = O, for almost all ) and

i are defined on the Q, with

1 (1:[ Ml) = [ p(M)).
A
COROLLARY. The restriction of u to Qg is just the ordinary product measure.

14. Adele Ring (or Ring of Valuation Vectors)

Let k be a global field. For each normalized valuation l \ of k denote by
k, the completion of k. If \ lu 1s non-archimedean denote 11133! o, the ring of
integers of k,. The adele ring ¥V, of k is the topological ring x:hnsc under-
lying topological space is the restricted product of the k, with respect to
the o, and where addition and multiplication are defined componentwise:

(@p), =B, (@tP,=a+p. % peV (14.1)

It is readily verified (i) that this definition makes sense, ie. if a, p e V, then

af, &+ p whose components are given by (14.1) are also in V; and (ii) that "

addition and multiplication are continuous in the V,-topology, so ¥y is a
topological ring, as asserted.

V, is locally compact because the k, are locally compact and the o, are
compact (§ 7).

There is a natural mapping of k into F; which maps « € k into the adele
every one of whose components is o this is an adele because €0, fqr
almost all v. The map is an injection, because the map of k into any k? is
an injection. The image of k under this injection is the ring of principal
adeles. It will cause no trouble to identify k with the principal adeles, so

we shall speak of k as a subring of Vi
LemMA. Let K be a finite (separable) extens
Ve @K = Vk

ion of the global field k. Then
(14.2)

+ A purist would say “‘canonically isomorphic to".
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64 .« porrespondence k Ox K=K< Vi®K,
. 1 and topologically- 1" S
algebraically ' mapped identically on 10 & F ‘he two sides of (14.2) as
where k © Vi ? tablishgl an isomorphism © d let v run through
ol t:SL':t ) wy be a basis for K]:{k atllll L.H.S. of (14.2)
: 3 go s 9 _ t the L.K1.5. vty
topological spaces. == 1 f k. It is easy to S€€ R
: tions of X£. 1t 7 : duct of the
- n?]% ;:il:iict topology, is Just the restricted prﬂ’ e
with the kﬂ@tKr—'kuml@"'@k"mH
' t to the 14.4
Wlth rcspec u“ml @ . e @ ﬂumﬂ- ( }
f, §10), (14.3) is just
But now (°f §10 (V|- -+ Val?) 45

KV @ - s @ KVJ! '
J= Jl(u) are the normalized extensions of v to K. Further

1 of (14.3) with (14.5) identifies (14.4) with

Oy, ®... 0Oy, | (14.6)
ce the L.H.S. of (14.2) is the restricted prc}dm:.:t of
4), which is clearly the same thing as the restricted
’pect to the Oy, where ¥ runs through aLl l:he
his 1S ] This establishes
' :ns of XK. This is just the R.H.S. of (14.2). |
it sides of (14.2) as topological spaces. A

an isomorphism between the two sides . s
: i ion shows that it is also an algebraic 1somorp :
moment’s consideratio Q.ED.

where Vn. .9 ?’J, :
(§ 12) the identificatio

for almost allf v. Hen
(14.3) with respect to §14.
product of the K, with res

COROLLARY. Let V! denote the topological group obtained from V, by

forgetting the multiplicative structure. Then
VK+ — V;.%. . .@ V:- (N e [K . k]).
—_ —
N summands
In this isomorphism the additive group K t < V& of the principal adeles is

mapped into k* @ ... ®k™, in an obvious notation.
Proof. wV,' < V;, for any non-zero w € K, is clearly isomorphic to

V;* as a topological group. Hence we have the isomorphisms
V=V, K=0,V'®.. 00V =V D... 0V .
THEOREM. k is discretet in V, and V' [k* is compact in the quotient
topology.
Proof. The preceding corollary (with k for X and Q or F(¢) for k) shows

that it is enough to verify the theorem for Q or F(¢) and we shall do it for Q.
To show that Q* is discrete in V¢ it is enough because of the group

T This was proved there only when @, = a"~? =
take this choice of w,. ! , Where K = k(). We should therefore
1 It is impossible to conceive of any other uni : :
: . ; quely defined topology in k. This meta-
mathematical reason is more persuasive than the argument that follows!

structure to find a neighboyrp

of . We take for U the get o0 Ualo which

of @ = {aﬂ} e VQ+
|fxﬂ3‘m ":1

Whﬂre | ‘F‘ | ‘m are I'ESpE‘:CtiVEl ;
: ¥ the p-ad
If b€ Q N U then in the first Place b E;EEEL};

then b = 0 because |b], < 1,
Now let W < VJ consisty of the o = {a

Ixmtm < B lf-‘-'plp <1
We show that every adele 8 is of the shape

Lok "'-l‘:guf}
For each p we can find an

ﬁ:b+a’ beQ, aeWw.

contains no othe

absolute values op ).
se |b], < 1 for al p) and

u} with
(all p).

(14.7)

r — tp i
p zp/p (-’-FEZ, IFEZ, Ip}_,[])

such that
P lﬁP— rpip |

and since # is an adele we may take

r, =0 (almost all p).

Hence r = ) r, is well defined and
P

‘ﬁp—*rl <1 (all p).

Now choose s € Z. such that

lﬁm—-r—s‘ -

Gl:_l'."_ﬁ-lh‘

Then b = r+s, f =s—+# do what is required.
i{ence the continuous map W — V5 /Q* induced by the quotient map
Vo = Vo /Q" is surjective. * But W is compact (topological product of

|:xm‘m < % and the o,) and hence so is V5 /Q™. A

v

As already remarked, V," is a locally compact group and so it has an

invariant (Haar) measure. It is easy to

see that in fact this Haar

measure is the product of the Haar measures on the k, in the sense described

In the previous section.

COROLLARY 1. There is a subset W of V, defined by inequalities of the

ype |fulﬂ < &,, where 6, = 1 for almost all
be put in the form

0 =0+7y, 0e W,

v, such that every @ € Vy can

yEK

Proof. For the W constructed in the proof is clearly contained in some W

of the type described above.
COROLLARY 2. V,'/k™ has finite measure
by the Haar measure on V.

in the quotient measure induced
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66 : ot of the particular choice
of course, indepe 2 .. We do not here go

: t 1s,
te. This statemen . easure on re
of }:;fu muItiplicative constant 11 the Haar i /k"’ in terms of our explicitly

: . +he measure of Pk , ‘
into the question o ﬁndmgr te’s thesis, Chapter Xy gb ihils TR hich i
given Haar measure. (See 1a of Q or F(#), which is

. vilarly to the €ase
Proof. This can be rcduceg:ﬁirr:llda; }[;uva . { for our Haar

almost immediate: thus W

 For cover V" [k*
s A .+ o measure follows from compactness. k
Alternatively finite It set of finite measurc. The

' open
with the translates of F, wh?rﬂ F lﬁﬁiﬁg ;Zﬂsure_
existence of a finite subcover implies

. tive proof of thc‘ _
[We give an alternd e Pihen multiplicati

We have seen that if 4 "nm if B = {B} € Ve multiplication by

& ;t?f Il?:t 1?; [??{p II:-:lleparti:ular multiplication by the principal adele ¢ magnifies Haar
m vy vloe

. ' + and so gives a

ipli by & takes k+ € V,! into k* an

measure by IT [l But now mu“'ph?tﬁ,ﬂ:}k?‘ihich magnifies the measure by the factor
k

_defined 1 — 1 map of V! [k* ont “
?Hﬂf Eenccﬂ 1Ele = 1 by the Corollary.]

In the next section we shall need the |
LemMA. There is a constant C > 0 depending

with the following property:
Leta = {a,} < V; be such that
[1]e}e > C- (14.8)

= k, € # 0.
+ formula 1T |¢ls =1 for ¢€X, ¢ # 0.
pmg::cby B, magnifies the Haar measurc in K,

B magnifics Haar measure

only on the global field k

Then there is a principal adele pek < Vi, B # 0 such that
‘ﬁ|u£'1au‘ﬂ (all v).
Proof. This is modelled on Blichfeldt’s proof of Minkowski’s Theorem
in the Geometry of Numbers and works in quite general circumstances.
Note that (14.8) implies ||, = 1 for almost all v because r:r,,[,, < 1 for

almost all v.
Let ¢, be the Haar measure of V' /k™ and let ¢, be that of the set of

y = {y,} = Vi with

Yole < 75 if vis arch.

Yol <1  Mies if v 1s non-arch.

Th_'-‘ﬂ 0<co<ow and 0 < ¢; < w because the number of arch. v’s 1
finite. We show that

C —_ CD/C1
will do.
The set T of ¢ = {r,} = ¥} with
|t]o < 512l if v is arch.

tlo < ||, if v is non-arch.
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Ci IU]

Hence in the quotient map . * o
ints of T whi k< r Vg [k
points of 7" which have the s

JIUL’ > C= Cp.

lhﬂ['l] must bﬂ 1

ame image in .t

k /'H, say anke Sistinct

and

Then

for all v, as required.

L : k| 4 -d-
ICDRD ‘L:XI«:L}’; ;EI Vo be a normalized valuation and let 6, > 0 be gives
all v # vo with o, = 1 for almost all v. Then there is a f tE K, B # g ';ﬁ}r
‘ : with

lﬁL, <90, f(allv# ).

Proof. This is just a degenerate case. Choos *
g2 ¢ case. Choose o, ek, with 0 <

ECHEL Y _ f ’ II
and [rj,'u , = 11fé, = 1. We can then choose % €k, sothat T] |

:’:U

, <5,
el

allvine. v

O

Then the lemma does what is required.

[The character group of the locally compact group ¥, is isomorphic to V,* and k*
DaySIA Spi::-’:u:-_ll mllc' Sec Chapter XV (Tate’s thesis), Lang: *Algebraic Numbcrﬁ"jiﬁhdisﬂm
Wesley), Weil: “Adeles and Algebraic Groups™ (Princeton lecture notes) and Godement:
Hﬂurba_kl seminars 171 and 176. This duality lies behind the functional equation of £ <
L-functions. Iwasawa has shown (Annals of Math., 57 (1953), 331-356) that the Iing:; of
adeles are characterized by certain gencral topologico-algebraic properties.] ,

15. Strong Approximation Theorem

The results of the previous section, in particular the discreteness of k 1n
V. depend critically on the fact that a/l normalized valuations are used in
the definition of V,:

THEOREM. (Strong approximation theorem.) Let vy be any valuation of
the global field k. Define ¥~ to be the restricted topological product of the
k, with respect to the o,, where v runs through all normalized v # vy. Then
k is everywhere dense in Y.

Proof.t It is easy to see that the theorem is equivalent to the following
statement. Suppose we are given (1) a finite sct S of valuations v # vy,
(ii) elements «, € k, for all ve S and (iii) ¢ > 0. Then there is a f§ € k such
that |f—a,| ,< ¢ for all ve Sand |B], < 1forallvgs, v+ to

By Corollary | to the Theorem of § 14 there is a W < V, defined by
inequalities of the type ]cjp\u < o, (6, =1 for almost all v) such that every

t Suggested by Prof. Kneser at the Conference.
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@€V, is of the form

0 =0+, gecW, 7€k (15.1)
ma of §14, there is a 4 ek, A # 0 such that

By the corollary to the last lem
i, <o, ' (veS), -

A, <o, (WESY # Vo)
— i~ !gin (15.1) and multiplying by 4 we see that every

Hence, on putting @

a € ¥, is of the shape avth,  WEN, Bek, (15.3)

the set of A&, e W. If now we Jet & have components the

Whees AW where, it is easy to see that f has the

given o, at V€S and (say) O else

properties required.
uantitative form of the theorem (i.e. with a bound for |B[y,).

ly gives a q = ; '
Fu?h;pnr?nmini:;?aglpmach. see K. Mahler: Inequalities for ideal bases, J. Australian

Math. Soc. 4 (1964), 425-448.]

16. Idele Group |
The set of invertible elements of any commutative topological ring R form

a group R* under multiplication. In general, R™ is not a tf}pnlogical gronup
if it is endowed with the subset topology because inversion need not be
continuous. It is usual therefore to give R™ the following topology. There
is an injection
x—=(x,x71) (16.0)

of R™ into the topological product Rx R. We give to R* the corresponding
subset topology. Clearly R* with this topology is a topological group and
the inclusion map R* — R is continuous.

DEFINITION. The idele group J, of k is the group V,* of invertible elements
of the adele ring V, with the topology just defined.

We shall usually speak of J as a subset of ¥, and will have to distinguish
between the Ji- and V-topologies.t

We have seen that k is naturally embedded in Ve and so k™ is naturally

embeddedinJ,. W x . ML
CEE k- weshall call £* considered as a subgroup of J, the principal

LEMMA. k™ is a discrete subgroup of J,.

Proof. For k is discrete in ¥, and so k* is ini ,
as a discrete subset, k 2GS0 7 1s Injected 1nto ¥} x ¥, by (16.0)

LEMMA. J, is just the restricted topological product of the k) with respect

1o the units U, < k, (with th ‘
o K];I w, ( e restricted product topology).

T Let a@ : :
s Sl 1{;; a;}:fﬂl ?nﬁcq be the element of J,, with components a(® — g, al® —
g~ @) in the V4-topology, but not in the oy M

GLOBAL FIELDS

DEFINITION.  For a = (o} = Ji we define cla) =

LeMMA. The map o > c(a) is a continyoys

group Jy into the multiplicative group of the (stri
BE“FEES' Klar-

Lemma. Let @€ J,. Then the map &
nn[ v+ by a factor c(a). & = a§ of

Beweis. Klar.

Note also that the Ji-topology is that a '
PPropriate to a group of operators on V. a

basis of open sets is the S(C, O) where C,0< ¥V} are respectively V—cnmpactkand
i

Vx-open and S consists of the a € J, such that (1 — a)c < 0. (] — a")C < 0.)

V¢ onto itself multiplies Haar measure

Let J, be the kernel of the map o — c(a) with the topol
of J,. We shall need the pology as a subset

LEMMA. J,f considered as a subset of V, is closed and the Vi-subset topology
on J! coincides with the Ji-topology.

Proof. Let aeV,, a¢J,. We must find a V,-neighbourhood W of «
which does not meet J;.

Ist Case. []l|e|o < 1 (possibly = 0). Then there is a finite set S of v

such that

(i) S contains all the v with ||, > 1 and

i) ] \aﬂ‘ﬂ < 1. Then the set W can be defined by
veS

E—al,<e veS
), <1 v¢S

for sufficiently small e.
2nd Case. H lﬂfu‘u = C (say) > 1. Then there is a finite set S of v such

that (i) S contains all the v with |o,[, > 1 and (1) if v¢ S an inequality
‘Zf,\,, < 1 impliest ‘éju[u < }C. We can choose ¢ so small that [éu—{xl.lﬂ o
(ve S) implies 1 < [ |&,| < 2C. Then W may be defined by

vES

éﬂ—-ﬁct,lu <e (vel)

& <1 (vgS)

and V,-topologies on Ji are the same.
d of & contains a Vj-neigh-

We must now show that the Ji- )
If @ € J! we must show that every J -neighbourhoo

bourhood and vice-versa. .
Let} W< J! bea V. -neighbourhood of . Then it ¢
: i ralue group
he p-adic valuation then 1{hu:: value
e pis enough for (it) to include in S all

' < 2C. Similarly if k 2 F(f‘).
i ‘makes no use of the special

above that the inclusion

tains a V,-neigh-

tIfk>Qandvisa normalized extensio :
of v consists of (some of the) powers of p. Hence it is
the arch. v and all the extensions of p-adic valuations :rln ’
t This half of the proof of the equality of the t]Dpt” ctgnmf: :
properties of ideles. It is only an expression of the fa
R* — R is continuous for any topological ring R.
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t
bourhood of the type ]c,‘.,-&’u[ﬂ P (uES)} (16.1)

EJos1 @E5)

of v. This contains the Jk-ncighbuurhﬂnd in which

where S is a finite sc; :
. (16.1) is replaced by =-
51:11;12 let)H cJ; be a Jkﬁnclghbﬂurhnnd.

bourhood of the type

Then it contains a Jy-neigh.

&, —a), <& (WE S)} (16.2)
Eh=1 (©¢5)

where ' ' h. v and all v with In:,;,;é |

he finite set S contains at east all arc] oo #

Sinzc ]tl [Tr] — ] we may also suppos¢€ that ¢ is so small that (16.2) implies
v

T1[E]s < 2

D .
is the samet as that of (16.1) with

Then the intersection of (16.2) with b
J1, i.e. (16.2) defines a ¥,-neighbourhood.
By the product formula we have k* < J;.

importance in class-field theory.
THEOREM. Ji/k* with the quotient topology is compact.
Proof. After the preceding lemma it is enough to find a V,-compact sct

W < ¥, such that the map

The following result 1s of vital

Waldl-Ji k™

is surjective.
We take for W the set of & = {£,} with

1ol < [te]o
where @ = {a,} is any idele of content greater than the C of the last lemma

of § 14.
Let p = {B,} €Ji. Then by the lemma just quoted there 1s a n € k™ such

that
nl, < [Bs '], (allw).

Then np € W, as required.

[Ji/k* is totally disconnected in the function field case. F ]

( . For the structure of its connected
E?“m%;“smﬂ number theory case see papers of Artin and Weil in the “Proceedings
ot Taw):nPOSIUESS z_;t_lhg::r;i:l'c i;l;?}?zghmrﬁ 1955" (Science Council of Japan)

: “Class ‘ y darvard, 19 7). The d | '
the character group of Ji,/k* is global class field theory.] el oidegpemintion ol

17. Ideals and Divisors

S & & L]
kutlgpgzc thﬂ;af‘ r:: 1S hae 1fi:‘lmtc extension of Q. We define the ideal group 7, of
abellan group on a set of symbols in 1—1 correspondence

1 See previous footnote.
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with the non-arch. valuations p of k ;
» Le. formal sy
ms

z n,.v

“ﬂﬂ“*ﬂrch,
where 11, € Z and n, = 0 for almost a]] addit; : D
wise. We call (17.1) an ideal and cqy| ;t ; ition bein

language is justified by the existence o
integral ideals and the ideals (in the org;

D —_— ﬁ D -
non-arch.

of. Chapter I, §2, Prop. 2.
There is @ natural continuous map

Jk s Iﬁ:
of the idele group on to the ideal groupt given by

@ = {a,} - Y (ord, ). v.
The image of k™ < Ji 1s the group of principal ideals
M. The gr ] : '

']:'HEORE te group of ideal classes, i.e. I, modulo principal ideals, is

finite.
1 3 3 5

| P;auﬂ nfi?; 2:; I’i:ll; Jy —; I;; 15 surjective and so the group of ideal classes
is the co _ ge ol t e cmmpact group Ji /k* and hence compact.
But a compact discrete group is finite,

When k is a finite separable extension of F(¢) we define the divisor group
D, of k to be the free group on all the v. For each v the number of elements
in the residue class field of v is a power, say ¢°* of the number ¢ of elements
in F. We call d, the degree of v and similarly define ) n,d, to be the degree
of ¥ n,.v. The divisors of degree 0 form a group DY. One defines the prin-
cipal divisors similarly to principal ideals and then one has the

THEOREM. D] modulo principal divisors is a finite group.
For the quotient group is the continuous image of the compact group

JHEX.

18. Units

In this section we deduce the struc

about idele classes.
Let S be any finite non-empty sct
that S contains all the archimedean valuations. The

ture theorem for units from our results

of normalized valuations and suppose
set of n € k with

lnj,=1 (@ ¢ S) (18.1)
are a group under multiplication, the group Hs of S-units. When ?jni?s

and S is just the archimedean valuations, then Hg is the group ©

fout court.
t I being given the discrete topology.
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Imonl Let0<c<
c<l,sC (ES) (18.2)
is finite. |
' = with
Proof. The set W of ideles & = {¢%}
: c<lal,<C WES) (18.3)

lulll =1 (U ¢ S),

i t sets
is compact (product of compac _
is just the intersection O

required set of units 1 . e
s both discrete and compact, en :
g i that ‘EL, = ] for every v.

LeMMA 2. There are only finitely many &€ k such

They are precisely the roots of unity in k.
Proof. If eis a root of unity it is clear that le|, = 1 for every v. Conversely,

by the previous lemma (with any S and c =C=1) there are nnl_y jﬁujt‘ely
many ¢ € k with |e|, = 1 for all . They form a group under multiplication

and so are all roots of 1. | |
TueoreM. (Unit theorem.) Hg is the direct sum of a finite cyclic group

and a free abelian group of rank s—1. Cs=¥
Proof. To avoid petty notational troubles we treat only the case when

Q c k and S is the set of arch. valuations.
Let J; consist of the ideals a = {«,} with o], = 1 (v¢S) and put

with the product topology). The
f W with the discrete subset k'

\deles i T 5 I,
Clearly J? is open in J; and so
JHs=J3/(Js 0 k™) (18.4)
g ;}pen in J}/k*. Since it is a subgroup, it is also closed, and so compact
C?;Eidﬂl‘ the map
1:Js-R*OR'"@®.T.OR",
; s times j

where R¥ is the additive group of reals, given by

o — (log lﬂfllnlﬂg |*1zlzs- .+, 108 l“:ls)x
where 1, 2,.. ., s are the valuations in S. Cl ] '
o . Clearly 4 is both continuous and
ﬂ’[‘he kernel of 4 restricted to Hy consists just of the & with le|], = 1 for
ery v, so is a finite cyclic group by Lemma 2. By Lemma 1 there are only

finitely many n € Hg with
}1<|l, <2 veSs (
. : 18.5)
Hence the group A (say) = A(Hj) is discrete.
Further, T = A(Js) is just the set of (x,,. .., x,) with

X1+X3+...+x, = 0,

1.6 AR S'._l dlm? nsional real vector Space. Final] 13
uous 1imn . na :
the continl age of the compact get (18.4 Y, T/A is compact. bei
generators, as asserted. 4). Hence A is free r::n “%
, .

Of course this structure-theorem (Dijy
- . irich
qumber (Mmkc}wlskl) are older than idele;m} and the f;
b3 .
compactness of Jy/k™ from these theorems i

o niteness of the class-
S more usual to deduce the
nstead of vica versa.

19. Inclusion and Norm Maps for Adeles, Tdeles and Tdeals
3 Ea_

Let K be a finite extension of the
. global field k
(§ 14, Lemma) that there is a natural isommpllisdmfh We have already seen
"l =T (19.1)

algebraically and topologically. Hence ¥, = ¥, @, k ¢

rcgarqed as a sljbrmg ﬂf Vx which is closed in tlf:e tgpnlnan ﬂ?t;rally e

injection of ¥V 1nto ¥y 1s called the injection map or the T e e

is written CUNQEM, THAH ARG
con. «4—Cong = C[}nﬂmm & VH (I'.'I e V}_)

Explicitly if A = con a, then the components satisfy
AV=mkau‘: Ki’ (19.2)
where .V runs thrﬂ}lgh the normalized valuations of K and v is the normalized
valuation of k which extends to V. It Kk = L < K it follows that
Cong & = cony (cong,  @). (19.3)
Finally, for principal adeles the conorm map is just the usual injection of

k into K.
It is customary, and usually leads to no confusion, to identify cony,

with e.
One can also define norm and trace maps from V, to ¥ by imitating the

usual procedure (cf. Appendix A). Let @y,..., @ be a basis for K/k. Then
by (19.1) every A € Vi is uniquely of the shape

into V, is continuous by
). Hence if we define

(19.4)

and the map A — o, of Vi the very definition of

the tensor product topology (§ %

by
AH}I:ZGEU{:UI (19'5)

the nxn matrices (o) give & 2 continuous representation of the ring Vg
over ¥,. In particular, the
SxpA = 2 % (19‘?
Ny A = det (@) A
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v ctions of A and have the usual formal properties
n

tinuous fu |
o 5 Sx(A1 +A;) = Sk + Sk 2 (19.8)
(19.9)
S CONg /& = ne
v (19.10)

Nﬁ'fk(AlAZ) = NxuAi NxpAz
] (19.11)

perations are compatible with the embedding
ie. if Ae K < Vg we get the same answer
in K or in V, so there is no ambiguity

Further, the norm and tI‘B:CE 19
of k, Kin Vi Vk respectively,
whether weé cﬂmPUtﬂ NKIRAI SgﬁA

in the notation. c V, c Vg (on regarding conorm as

Finally if K o L 2 k we have Vj | 1
an idcnn?'ﬁcatinn), and so the usual relations (cf. Appendix A)

SuSeinA) = Sxnd (19.12)

and .
NLH:N}:{LA= ﬂNx,zkA' (19.13)

We can express the maps (19.6), (19.7) componentwise if we like. Let
Vy,..., Vy be the extensions of any given valuation v of kK to K. Then (§9)

K,(say)= ® K;=k,®,K= @ ko (19.14)
J

1<js 1<si<n
where k,, K; are the completions of k, K with respect to v, V; respectively.
Any A € Vi can be regarded as having components

Ay ®... @ Ay, = A, (19.15)

in the K, and then the components in the matrix representation (19.5) of A
are just the representations of the 4,. In particular

and
NK!EA = {qufk"AH}' (191'?}
Finally, making use of the final remarks of § 9, we deduce that
and
NEH:A — {[ILNKHH‘(A’}’ (19.19)

where Vlu means “V is a continuation of »”.

W i _
frﬁmﬁtﬂ‘:vg C;qsfder the consequences for ideles. If e is an idele, it is clear
efinition (19.2) that cong, « is an idele, so we have an injection

# % Cﬂnxtrk:ufk—*-]x
which is clearly a homomorphism of Ji with a closed subset of V. Further,
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ifAe]x © Vi,50 Als i:wr:rtible, it fo
s an element of J,.

14,10
llows from (t9:9) that & .

" . H ] " - .
ie. i CNCC We have a map kA isinvertible,

WhiCh iS CﬂntiHUDUS by the dﬁﬁﬂitinn of the ;
clearly satisfies (19.10), (19.11), (19.13) a;dldalc topology (§16) and which

the definition of trace does not go gyer g idﬂlcf‘lg}* On the other hand,

Finally, i consider the conorm and norm maps for ide
finite extension of Q. The kernel of the map @?)* r1deals, where k is g

J;“—%'Ik

of the idele group into the ideal group s |
a = o, Which have |o|, = I for every non-archimedenn . °
extension of &, 1t 1s clear that

cong, Uy < U,
and from the Lemma of §11 and (19.17) we have
NH;’L; Uk c U,
Hence on passing to the quotient from J, we have the induced maps
CoNg, - Iy —= I,
Ngpw: Ix = I

with the usual properties (19.10), (19.11) and (19.13); and these maps are
compatible with the norm and conorm maps for elements of K and k£ on
taking principal i1deals. By definition (19.2) we have

Flu
where the positive integers e, are defined by
lHUiV — IHI’ ';,l’, (19.21)

m, and IT, being prime elements of k,, Ky respectively. Similarly, it follows
from (19.19) that

Nr};;k I:" — fIr" U, (1922)

where f;, is the degree of the residue class field of V over that of v. We note

in passing that (19.11), (19.20) and (19.22) imply that
z Erf}r — ”1.
Viv
as it should since
ey fv = [Ky: ky J.
s ; rm
Similarly, when & is a finite extension of F(t) onc defines conorm and no

of divisors, with the appropriate pr operties.
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APPENDIX A

Norms and Traces v over R of dimen.

ith 1. By a vector space

ommutative ring W

I'ﬂR b:.: L;hall mean a free R-module on n generators, say ®@i,..., o,
?mza:if) If wj w! 1S another basis, there are u;;, Uy € R such that
a : A,

w:=2uuw},w}=>3vuw; (A1)

J
and
(A.2)

Z U on = Z Vyyjn = Ot
j
(Kronecker 9).

The set of all R-linear endomorphisms of V' 1s a I:ing, }#hich we denote
by Endg V. The ring R 1S injected into Endg, V if we identify b € R with the

module action of b on ¥, and we shall do this. The ring Endg V' is isc}‘mm‘
ing of all n x n matrices with elements in R,

phic but not canonically, to the ri _ | '
The isomorphism becomes canonical if ¥ is endowed with a fixed choice

of basis. In fact if f € Endg (V) and ;
. ﬁmi=¥buwﬁ (bijER)

the 1—1 correspondence between B and the transposed matrix (b;;) 1s a

(A.3)

ring isomorphism.
For f e Endy, we denote by
Fy(x) = det (xd;;— by))
the characteristic polynomial of R. On using (A.2) it 1s easy to see that Fy(x)
is independent of the choice of bases of ¥. The Cayley-Hamilton theoremf

states that

(A.4)

Fy(B) = 0. (A.5)
We define further the trace
Sm(ﬂ) e S(ﬁ) o ; bjj
= —coefficient of x"~* in F(x) (A.6)
and the norm
NF}R(:B) = N(f) = det (bu) (A7)
= (—)" constant term in F p(x),
T Proof. Write (A.3) in the form
I} 0y — by)w,; = 0.

Working i do :
..mm,%?gm‘ﬁgﬂﬁﬂﬂ R[p] multiply the equations (*) by the cofactors of the
15 add. Then w,,...,®, are “eliminated” and one obtains

Fp(B)oy = 0. Similarly Fg(f)a, = 0 (2 < j < n) and so Fa(f) = 0.
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which are independent of the choice of basis because (x) i K
x [
S(By+8,) = S(B)+S(8,) a. R
S(b)=nb (beR) (A.8)
leﬁz) = N(ﬁl)N(ﬁl) (iih‘lg)
N0 =b" (beR), A 1?))

because the correspondence (A.3) between § ¢ Eng
s a ring isomorphism.
LemMA A.1. Let t be transcendental over R. Then,

. . NU=F)=Fy(o. (A.12)
pedantically, what 1s meant is, of course, that we consider a vector 513;-1(; %
e

with basis @, . . ., ®, defined over R[¢] and a § p;
Proof. We have B given by (A.3).

r (V) and the matrix b..
i

(t=Plo; = ;(Iau“ bipw;
and SO
N(t—B) = det (15— b;))
= Fy(1)

by (A.4) and (A.7).
CoROLLARY. (A.12) holds for any t € R.
LEMMA A.2. Let f,...,B,€ Endg V and let t be transcendental over R.

Then

N1 B 1" % o 0= 1770 0 b g (A.13)
where gy,. . ., gm € R and in particular
g, = S(By); gu = N(By). (A.14)

Proof. Similar to that of Lemma A.l and left to the reader.

Now let R and P — R be commutative rings with 1 and suppose that R
regarded as a P-module is free on a finite-number, say, m of generators
Q,,...,Q, (i.e. an m-dimensional P-vector space). Let J/bean n-dimensional

R-vector space with basis @y, .., @, Then ¥ can also be regarded as an

mn-dimensional P-vector spacc with basis

inj (lﬂiﬂf“, 15},{_”)
and there is an obvious natural injection of Endg (V) into Endp (V). We

have now the key

THEOREM A.l. Let (A15)

8 e Endg (V) < Endp (V)

Then
(A.16)
Sy;pb = SRJP(SI’ffiﬁ)* A17)

Ny;pb = NHIP(‘NWH[D‘
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Further (A.1 §)

ic polynomials of f iy

®(x) = Ng/pF (%)

where @©(x) e P[x], F(x)€ R[x] ;:re the characteris!
respectivel). ‘
e o (V)by (i.B) let y € Endg (V) be given by

Proof. If p is given

= wy — 2, bij®;
Y@y 1 j;l (A.19,

}’U}j — bllwi (1 > 1).

Then for « = yf we have
awy = by @y
aw; = by 0y T 2. (byy bij—bus by)w;
j>1

= by oy + ), 419; (say)- (420
j>1
Hence
ngm 2 "-:'llll-'ZI"'T‘.H"';"R":.":IiIIt (A?‘i)

where W is the n—1 dimensional R-vector space spanned by wj,. .., ®,
and o is the R-linear map

w; = Z ﬂum_’f (i > o 1)-
j>1

Consequently
NR;F(NFIR"I) o Nﬂ;r bn-Nﬂ;P(Nwmﬂ*)- (A-QEJ

We now use induction on the dimension 7, since the Theorem is trivial
forn = 1. Since W has dimension n— 1 we have by the induction hypothesis

NR,’P(NHTRE*) = NH’;’P'I*' (A23]
On the other hand, it follows directly from (A.20) that

Nypo = NR;P bllNH",'F’x*
and so
Ny;pot = Ngjp Ny pct. (A.24)
Further, clearly
NVH'? > NR;'.FN}’!P? o (Nx;pbu)"-I.

Since @ = By and both Ny, and Ng,p N inlicati
: /P are multiplicative (by (A.10)),
it follows from (A.24) that wR d WL

(Ngpb11)"™"Ny;pB = (Ng;pb11)" *Ng;p(Nyx B). (A.25)

If Ngjpby, were invertible, this would give (A.17) at once. In general,
however, this is not the case and we must use a common trick.

GLOBAL FIELDS

Let ¢ be a transcendental over R 5,4
rom f by replacing by, by b,
Then (A.25) applied to f#, gives

F ';’HJEI 4

All the norms occurring in (A.26)
® * ﬁre F . %
coefficients of powers of ¢t in (A.26), Stalsiﬁnmmmls in t.

19

Wi mation obtained
‘Maining b, unchanged.

let B, b
¢ DC the
+ 1 but leaving t ansiop

(A.26)

NyipBe= Npp(Ny 0 B) (A27
because the coeflicient of the highest power of tin N -

(A.17) follows on putting ¢ = 0.
We now prove (A.18). By Lemma 1 we have

D(x) = Ny p(x—p), F(x) = Ny p(x—=p)

and so (A.18) is just (A.17) with x—§ for .

Finally, (A.16) follows from (A.18) on wusin

’ ‘ g (A.6) and ti

of (A.14). ) and the first half

When R = k 15 a field thm;c 1S some simplification, since every finitely-
generated module V over k 1s free, i.e. is a vector space. Further each
B eEnd, (V) has a minimum polynomial, 1.e. a non-zero polynomial f(x)
of lowest degree, with highest coefficient 1, such that f(f) = 0. Then
g(B) = 0 for g(:-:? € k[x] if and only if f(x) divides g(x) in k[x]. In particular
the Cayley-Hamilton theorem (A.5) now states that f(x) divides the charac-
teristic polynomial F,(x).

Finally we have

THEOREM A.2. Let K be a field of finite degree n over the field k and let
Be K. Then the degree m (say) of the minimum polynomial f(x) of p over k
divides n and

R;P(bu'i"f) 1S 1. Then

F(x) = (f)"™,

where F(x) is the characteristic polynomial of f. In particular
I
Sﬁfk(ﬁ) - ;1(ﬁ1+ ' +ﬁm):

NH;L-(;B) = (ﬂlsﬁz:- : -:ﬁm)”fm,

where f,,. .., B.. are the roots of f(x) in any SP””f”glﬁfM- o i
Prac:f;:l Supggse first that K i k(B). Then the minimum pﬂlyllﬂgli:lil {l(c’;)t
and the characteristic polynomial F(x) of f# have the same degrcclili‘;n G‘gf o
coefficient, so F(x) = f(x) by the remarks preceding the enunck
Lemma.
The general case now folloy

P = k on using (A.11).

e o= KB,
vs from Theorem Al with V' = K, R = k(P)
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ApPENDIX B

v interested 10 separable algebraic field exten.

ICcS.
recall their most important elementary properti

Let K, M be extensions of finite degree of the field k. Then

L] L 4 "-'. rH".i,j 3
LemMA B.1. " K into M which leave k elementwise
+. k] injections of
there are at most [K: B
fixed. . .1 when K = k(o) for <ome a on considering the minima|
Proof. Trnvia {'% we have a chain

For genera
k:Kﬂ:KIEKz...

' ' J.
= «,_ ) and use induction on J. | |
whszlﬁf'rlof / *},g,;' ﬁlnfre field extension K|k is sgparr?b{e ;f r!zeT ;?fif”i
ite exrensfa;: M |k such that there are [K: k] distinct IHjECIIﬂJ:IS.G o {]b
)jv:ich leave k elementwise fixed. If K [k is not separable then it 15 said 10 be

pﬂ[ynﬂmiﬂl for a. cK,= K (B.1)

fméif:ﬁ:ikl’ 1. Let Ko L2k If K[k is separable then so are K|L
and L|k. (L: k] distinct injections of L

of. By Lemma 1 there are at most :
in:;nj!{andyby Lemma 1 again each of these can be extended in at most

[K: L] ways into injections of K into M. By definition, there are
[K:k]=[K:L][L:k]
injections of X into M, and so there must be equality both times.
COROLLARY 2. Let o€ K where K[k is separable and let dy,. ., %n be
the roots in M of the irreducible polynomial f(x) for a over k. The.*f the
oo (1 <i<n=[K:Kk]) are just the oy,. .., %y each taken n/m times,
where 7,. .., 0, are the injections of K into some M.
Proof. For put L = k() in the preceding argument.
COROLLARY 3.

Sxfrk(u) == z ﬂ“iﬂi.
Proof. Follows from Theorem A.2 and the preceding Corollary.

LemMA B.2. Let K/k be a finite field extension and let o be an injection of &
into some field M. Then there is a finite extension M| of M and an injection

o, of K into M, which reduces to o on k.

Proof. Trivial if K = k(a), and then follows for general K on using @

chain (B.1).

THEOREM B.1. Let K/L and Lk be separable extensions. Then K [k is d

separable extension.
Proof. Let U/L be a finite extension and

:K-U (1<i<[K:L))

be jnj?ctinns extending the Identity op . 81
extension and

which extend the o;,. Then the o1, give

e f [K:L][L:klz[}{:k]
distinct injections of K into M extend; i

COROLLARY. [In characteristic ;:nggir:m ldﬂntlty on

Proof. For asimple extension k(x)/k clea
to a tower of simple extensions.

THEOREM B.2. Let K[k be a separable extension
K = k(y) for some y. |

Note. The converse is, of course, false.

Proof. 1f k 1s a finite field then so is K and so indeed K = () f
some o € K, where IT is the prime field, by the structure thec};;r Gfaﬁnﬁz
fields. Hence we need consider only the case when k has infinitely many
elements. Suppose first that K = k(x, f) and let o,,. . ., 6, where n = [K: k]
be the distinct injections of K into M (say). If i # j, distinctness implies
that

ﬁm:re field extension is separable.
rly is, and then apply the theorem

Then it is simple, i.e.

either cu#06;0 or o f#a,f

(or both). Hence we may find a,bek to satisfy the finitely many
inequalities
a(o,a—0o;00)+b(of—a;f)# 00 #)).

Put

v = ax+bf,
SO

o,y #o;7 U 7 J)-

The o,y are all roots of the irreducible equation for y over k and so

[k(y): k] = n.
But k(y) = K, so K = k(»).

For the general casc when K = A%y, %,
induction on J. We have k(... %) = k(p
k(ay, ) = k(). |

THEOREM B.3. Let K/k be a separable extension. Then

S(a, f) = Sxfk(fiﬁ)
bilinear form on K considered as a veclor

., o) with J > 2 one uses
) for some f and then

is @ non-degenerate symmelric

- 8pace over k.



praﬂf. Let @y, --» Wa be a base

D (say) = det {Ska(wimj)}lgign # 0

1s/<n
Let 0 s be distinct injections of K into some M. By Lemma B.l
19t "*? n

we have
Corollary 3 B = A?

where
A = det(0;0))151<n°
1<j=<n

m B.2 we have K = k(y) and so can take @; = y/~1. Then

A= ]_—[ (ﬂj?_gi?)

i</

0,

By Theore

as required.T
We now consider when a simple extension k(x)/k is separable. Let f(x)

be an irreducible polynomial In k[x] and let f'(x) be its derivative. If
f'(x) # 0 it must be coprime to f(x), since it is of lower degree, and so there
are a(x), b(x) € k[x] such that
a(x)f(x)+b(x)f'(x) = 1.

Hence f(f) = 0 for f in any extension of k, implies that f'(f) # 0, and
so B is a simple root. Hence the number of roots of f(x) in a splitting field
is equal to the degree. On the other hand, if f'(x) = 0, every root of f(x)
is multiple, and so the total number of roots is less than the degree. In the
first case we say that f(x) is separable, in the second inseparable. The second
case occurs if and only if f(x) = g(x*) for some g(x) € k[x], where p 1s the
characteristic.

LEMMA B.3. A necessary and sufficient condition for k(a)/k to be separablc
is that the irreducible polynomial f(x) € k[x] for « be separable.

Proof. Clear.

COROLLARY 1. Let K o k, and suppose that k ‘ !
K@K 15 separable pp (0)/k is separable. The

Proof. For the irreducible polynomial F(x)e K[x] over K divides f(x)-
: COROLLARY 2. A necessary and sufficient condition that K [k be separabl
is that every element of K be separable |[k.

Proof. Suppose that every element of X 1 S
by a chain is separable and that K 1s giver

k=Kui:K1C,_'(‘:KJ=K

sctT ulipﬁi::?it;i:mtl‘g [he fact t!lat K = k(y) we could have used Artin’s theorem that any
of one field into another is linearly independent. See Artin: “Galois

Th " o 2
eory” (Notre Dame) or Adamson: “Introduction to Field Theory” (Oliver and Boyd):

for all fekK.

where K; = 'K_;_l(ﬂij_I)- Then Kﬂi}{j v 83
and so K/k is separable by Theorem | parable by the previous corollary

The converse follows from Lemma | ©
In striking contrast to Theorem B 3 “Smllar};.
2 WE have

THEOREM B.4. Let K|k be i
1k be nseparable. Then (he rrace Sy ,.(f
€ Sgulfl) vanishes

Proof. Suppose, first, that K — k(a) where oP
o

characteristic. Then €k, gk and p is the

m:[:l,ﬂ.}l:ﬂ‘." W ——QP—I
" . YT 3 p-_.
is a basis for K/k. If = by +bya+.. 4p -t with £
P Ith b; € k, then

ﬁmlz:zb”ﬂ]; biJEk
where clearly
biy=b, (1l <i<p)
Hence
Sk = E{. b= pb, =0.

| Nm:.r let K/k be any inseparable extension. By the latest Corollary there
is an 1n5.{:p£11'lablc o € K. Put L = k(x), M = k(¢"), so L/M is an extension
of thf.:‘k}nd just discussed. The general result now follows because of the
transitivity of the trace:

S}._".rk ﬁ o S,\f{'k{SL;’H(.SHJLH}}‘

APPENDIX C
Hensel’s Lemma

In the literature a variety of results go under this name. Their common
feature is that the existence of an approximate solution of an equation or
system of equations In a complete valued ficld implies the existence of an
exact solution to which it is an approximation, subject to conditions to the
general effect that the approximate solution is “‘good enough’. These
results are essentially just examples of the 'pmccss of solution by HLH.?CESSHIFE
approximation, which goes back to Newton (at least). In this appendix

we give a typical specimen.
LEMMA. Let k be a field complete with respec
valuation | I and let

( to the :mu—m'c'hhnfr!cm:

f(X) e o[ X], (C.1)

where o < k is the ring of integers for [

PRPIO .

where f ‘(X) is the ( formal) Jerivative of f(X). Then there 15 d .mfunaz .:;_f "
f)=0, |x—%|= @)/ @ (&l

Let g €0 be such that

(C.2)
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Proof. (Sketch.) Let f{(X) e o[ X] be defined by {hf identity .
f(X+7Y) =f(X)+f1(X)Y+...+fJ(X)Y C TP (C.4)

where X, Y are independent variables, so f1(X) = f'(X). Define 8, by
f(ﬂn)‘f'ﬁﬂfl(%) = 0. (C.5)

Then by (C.4) and since fi(ap) € 0 We have |
| f(otg + Bo)| < max fi(20)B4)

j22

< max ﬁulj
je2

= |f('3’-'ﬂ)l2”fi(%)lz
< ]f(%)l- (C.6)
On using the analogue of (C.4) for f,(X), it 1s easy to verify that
'fl(':‘n +ﬁu)‘f1(“ﬂ)f = ’fi('-"‘fn)l-
Thus on putting «; = %o+ fSo, W€ have
If(fﬁ)l = ‘f(ﬂu)F/Ifl(%)‘z:
If:(ﬂh)l = lfl(ﬂ'u)l

and
I'Il = “u‘ < [f(“u)[/lf: (’Iﬂ)‘-

On repeating the process with ay, etc., we get a sequence o, &y, &y,
which is easily seen to be a fundamental sequence. By the completeness of

k there is an « = lim a, € k, which clearly does what is required.
n= o

In fact, the solution of (C.3) not merely exists, but is unique. For if
a+p, B # 0 is another solution one readily gets a contradiction by putting
X=a Y=pin(C4).
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P Cyclntnmic Fields

Let K be any field of characteristic zero. ang n,
is a minimal extension L/K such that ¥ — | spl;
of " —1 form a subgroup of the multiplicative group of L; this subgroup is
cyclic (since every finite subgroup of the multiplicativ “ P

X f this sub multiplicative group of a field is).
The generators ol this subgroup are called the primitive mth roots of unity
If { is a primitive mth root of unity then every zero of (x"—1) is 2 power of
¢, and L = K({). Clearly, L is a normal extension of K3 we write L = K(Y/1).

.If F_IS an element of t_hﬂ Galmﬂa group G(L/K), then ¢{ must be another
!Jnmltwe nrthlm_c}‘t of unity, so ol = (" for some integer k, (k,m) =1. 1f{°
18 anr{ther primitive root G.f unity then o(® = {*; accordingly, ok is a
canonical map of G(L/K) into the multiplicative group G(m) of residues
modulo m prime to n1. In particular, [L: K] < d(m).

If m =rs where (r,s) = 1 then there exist integers a,b with ar+bs =1,
(=), so K() = K(",[*); one obtains the extension K({) by com-
posing K({") and K({®). So to some extent it is enough to consider K1)
when m is a prime power. If p is odd then the group G(p") is cyclic, so if
m=p", L=K(Qfl), then G(L/K) is cyclic; on the other hand G(2') 1S
generated by —1 and 5, so if we write 1 = [+ where {*" =1 then
K() = K(i,n) and G[K(n)/K] is cyclic. »

We are particularly interested in the extensions Q(Y/1) and Q{.(qllli by
Chapter I (Section 4 and start of Section 5) the study of the factorization of
the prime p in the extension Q(I/1)/Q 1s essentially the same as r.!u: study of
the extension Q (ﬂl)/Q  As one of my jobs is to supply explicit ﬂxf‘implf:s

P P : ; chs 'mes OVer b}’ dlffcrcnt
for abstract theorems, 1 will prove things scxerfﬂ times OV o
routes. Good accounts of cyclutmuic extensions arc given by weyl:

“Algebraic Theory of Numbers” (Princeton U.P.. Annals of Math. Studies
8

> | be an integer. Then there
ts completely in L. The zeros



