
The number field sieve

A.K. Lenstra
Bellcore, 435 South Street, Morristown, NJ 07960

H.W. Lenstra, Jr.
Department of Mathematics, University of California, Berkeley, CA 94720

M.S. Manasse
DEC SRC, 130 Lytton Avenue, Palo Alto, CA 94301

J.M. Pollard
Tidmarsh Cottage, Manor Farm Lane, Tidmarsh, Reading, Berkshire, RG8 8EX, United Kingdom

Abstract. The number field sieve is an algorithm to factor integers of
the form r e ± s for small positive r and s . This note is intended as a
‘report on work in progress’ on this algorithm. We informally describe
the algorithm, discuss several implementation related aspects, and
present some of the factorizations obtained so far.

We also mention some solutions to the problems encountered when
generalizing the algorithm to general integers using an idea of Buhler and
Pomerance. It is not unlikely that this leads to a general purpose factor-
ing algorithm that is asymptotically substantially faster than the fastest
factoring algorithms known so far, like the multiple polynomial qua-
dratic sieve.

1. Introduction

Since the introduction of the elliptic curve factoring algo-
rithm in 1985 we have not seen any significant theoretical
advances in integer factoring algorithms. Existing algo-
rithms, like the multiple polynomial quadratic sieve algo-
rithm (mpqs, the fastest practical general purpose factor-
ing algorithm), have been polished both theoretically and
practically. Although these efforts have pushed our fac-
torization capabilities from the eighty digit range, through
the nineties, to integers having more than one hundred
digits [1, 4, 10, 14], cryptographers still feel confident
basing the security of some of their cryptosystems on the
supposed intractability of the factoring problem.

It is unlikely that the method presented here will have a
major impact on the security of cryptosystems. However,
it does make the integer factoring problem less intractable
than many people expected it to be. We will present a
special purpose factoring algorithm, the number field
sieve, that is asymptotically faster than any other algo-
rithm we know of, for the class of numbers it applies to.
The algorithm has proved to be quite practical: it took us
�����������������������������������

only a few weeks to factor numbers that would have taken
several years had we used mpqs. Several aspects of our
implementation will be discussed.

It seems that a suitable version of the number field
sieve factors an integer n of the form r e ± s in expected
time

(1.1) exp((c +o (1))(logn)1/3(loglogn)2/3),

with c = 2(2/3)2/3 ∼∼ 1.526, irrespectively of the size of the
factors of n , for r and | s | below a fixed upper bound.
This is substantially better than mpqs, which runs in
heuristic expected time

(1.2) exp((1+o (1))(logn)1/2(loglogn)1/2),

also independently of the size of the factors of n . Other
factoring algorithms achieve the same running time as
mpqs, heuristically or rigorously, but generally they are
less practical than mpqs. Some people suspected that the
running time in (1.2) would be the best we could ever
achieve for factoring.

Unfortunately we are unable to give a rigorous proof
that (1.1) is indeed the expected running time of the
number field sieve. Consequently, this paper does not
contain a rigorous mathematical result. In this context the
following quotation from Donald Knuth (cf. [6]) is of
interest: ‘One of my mathematician friends told me he
would be willing to recognize computer science as a
worthwhile field of study, as soon as it contains 1000 deep
theorems. This criterion should obviously be changed to
include algorithms as well as theorems, say 500 deep
theorems and 500 deep algorithms.’ The present paper
describes a deep algorithm for the solution of a fundamen-
tal problem, and it depends on techniques that have not
been of traditional use in this area. We therefore trust that
it is of interest to theoretical computer scientists, and that
they will appreciate the challenge posed by its rigorous
running time analysis. For a non-rigorous analysis, and a
further discussion of heuristic estimates in integer factori-
zation algorithms, we refer to Section 3.

- 2 -

As Joe Buhler and Carl Pomerance observed, the idea
of the number field sieve can be applied to general
integers as well. We present some suggestions how this
generalization can be made to work in theory. It is
suspected that the resulting algorithm runs in the same
heuristic expected time (1.1), with c = 32/3 ∼∼ 2.080. If this
turns out to be the case we would finally have an algo-
rithm that is faster than (1.2), thereby settling the question
about the optimality of (1.2). The practical consequences
of this new general purpose factoring algorithm remain to
be seen.

2. The algorithm

Let n be a composite integer of the form r e − s , for a
small positive integer r and a non-zero integer s of small
absolute value. Examples of such n can be found in the
Cunningham tables [2]. We describe a factoring algo-
rithm, the number field sieve, that makes use of the spe-
cial form of n . If n does not have the proper form, but a
small multiple of n does, as is often the case on the
‘wanted’ lists from [2], the algorithm can be applied to
this multiple of n .

The algorithm makes use of some elementary algebraic
number theory. For background on this subject we refer
to [15]. Given n = r e −s , we first select an extension
degree d ∈ Z>0. Given d , let k ∈ Z>0 be minimal such
that kd ≥ e , so that r kd ≡ sr kd −e modulo n . Put m = r k

and c = sr kd −e , so that m d ≡ c mod n , and let
f (X) = X d −c ∈ Z[X]. For a reasonable choice of d a
non-trivial factor of f will lead to a non-trivial factor of
n , so that we may assume that f is irreducible. This
enables us to define our number field K as Q(α), where α
satisfies f (α) = 0. By φ we will denote the ring
homomorphism from Z[α] to Z/n Z that sends α to
m mod n .

The irreducibility of f can easily be checked: f is
reducible if and only if either there is a prime p dividing
d such that c is a p th power, or 4 divides d and −4c is a
fourth power (cf. [8, Ch. VIII, Thm. 9.1]). So, for exam-
ple, if s = 1 we must have gcd(d , e) = 1, but gcd(d , e)
may be a power of 2 if s = −1.

Although it will not be the case in general, we will
assume that Z[α] is a unique factorization domain. This
implies that the ring of integers of K equals Z[α], so that
we do not have to worry about denominators in the
description of the algorithm. The algorithm can be made
to work in the general case as well. To give an example,
for 3239−1 (one of the numbers we factored, cf. Section 6),
we used the number field Q(31/5), so d = 5, m = 348, and
f (X) = X 5−3; the ring Z[31/5] is indeed a unique factori-
zation domain.

The idea of the number field sieve is to look for pairs of
small coprime integers a and b such that both the alge-
braic integer a +αb and the integer a +mb are smooth.

Because φ(a +αb) = (a +mb mod n), each pair provides a
congruence modulo n between two products. Sufficiently
many of those congruences can then be used to find solu-
tions to y 2 ≡ z 2 mod n , which in turn might lead to a fac-
torization of n . This method evolved from a method
based on Gaussian integers from [5].

An algebraic integer is smooth if it can only be divided
by prime ideals of Z[α] of small norm. We can restrict
ourselves to the prime ideals in Z[α] of prime norm, since
those are the only ones that can contain algebraic integers
of the form a +αb with a and b coprime. The set of
prime ideals of Z[α] of prime norms is in 1-1 correspon-
dence with the set of pairs p , cp , where p is a prime
number and cp ∈ {0, 1, ..., p −1} satisfies f (cp) ≡ 0
mod p : for each pair p , cp a prime ideal of norm p is
generated by p and α−cp , or equivalently, the prime ideal
is the kernel of the ring homomorphism from Z[α] to
Z/p Z that sends α to cp . In particular, a +αb is in the
prime ideal corresponding to p , cp if and only if
a +cp b ≡ 0 mod p .

The prime ideal factorization of a +αb corresponds to
the factorization of the norm N(a +αb) = a d −c (−b)d ∈ Z
of a +αb , if a and b are coprime: if a d −c (−b)d has
exactly k factors p , with k > 0, then a ≡ −cp b mod p for
a unique root cp of f modulo p , and the prime ideal
corresponding to the pair p , cp divides a +αb exactly to
the k th power. So, one ideal of norm p takes care of the
full exponent of p in a d −c (−b)d .

We give a more precise description of the algorithm.
After selecting K , we first fix a smoothness bound
B ∈ R>0. The value for B is best determined experimen-
tally. Let a and b be integers with b ≥ 1 and
gcd(a , b) = 1. Suppose that both N(a +αb) and a +mb
are B -smooth, i.e.,

(2.1) | N(a +αb) | =
p prime, p ≤ B

Π p vp ,

and

(2.2) | a +mb | =
p prime, p ≤ B

Π p wp ,

for vp , wp ∈ Z≥0. Suppose furthermore that we can use
the prime factorization of N(a +αb) to derive a factoriza-
tion of a +αb into units and prime elements, i.e.,

(2.3) a +αb = (
u ∈ U
Π u tu).(

g ∈ G
Π g vg),

for tu ∈ Z and vg ∈ Z≥0. Here U is some predetermined
set of generators of the group of units and G is a set of
generators of the prime ideals of Z[α] of prime norms
≤ B . It follows that

(2.4) (
u ∈ U
Π φ(u)tu).(

g ∈ G
Π φ(g)vg) = (

p prime, p ≤ B
Π p wp mod n),

where a minor change of the tu ’s, if necessary, takes care
of the sign of a +mb .

If we have more than #U +#G +π(B) (with π(B) the
number of primes ≤ B) of such pairs a , b , then we can
find integers x (a , b) ∈ {0, 1}, not all zero, such that at

- 3 -

the same time

(2.5)
a , b
Π(a +αb)x (a , b) = ((

u ∈ U
Π u t

�

u).(
g ∈ G
Π g v

�

g))2

and

(2.6)
a , b
Π(a +mb)x (a , b) = (

p prime, p ≤ B
Π p w

� �

p)2,

so that,

(2.7) ((
u ∈ U
Π φ(u)t

�

u).(
g ∈ G
Π φ(g)v

�

g))2 =

((
p prime, p ≤ B

Π p w
� �

p)2 mod n),

where t
�

u ∈ Z, and v
�

g , w
� �

p ∈ Z≥0. Such x (a , b) can for
instance be found by applying Gaussian elimination
modulo 2 to the vectors consisting of the exponents in
(2.4). From (2.7) we find integers y and z with
y 2 ≡ z 2 mod n . A possibly non-trivial factorization of n
then follows by computing gcd(n , y −z). It should be
noted that each new solution x (a , b) to (2.5) and (2.6)
gives a new pair y , z , and thus another chance of factor-
ing n .

To turn the above description into an algorithm, we
have to answer the following questions:

1 - Given B , how do we find ‘good’ pairs a , b , i.e., pairs
a , b such that both (2.1) and (2.2) hold?

2 - How do we find sufficiently many good pairs?

3 - How do we find a set U of generators of the group of
units?

4 - How do we find a set G of generators of the prime
ideals of Z[α] of prime norms ≤ B ?

5 - How do we turn (2.1) into (2.3)?

6 - What is the expected running time of the resulting
algorithm?

And, less important for the moment, but of considerable
practical interest:

7 - Can we take advantage of large primes in (2.1) and
(2.2)?

The remainder of this section will be devoted to Questions
1 through 5. Questions 6 and 7 will be discussed in Sec-
tions 3 and 4, respectively.

Finding good pairs.
Concerning question 1 we note in the first place that for
each fixed b the a +mb ’s can be tested for B -smoothness
using a sieve over some suitable interval of a -values. For
a prime p the starting point for the sieve equals
−mb mod p , so that the starting point for the sieve for
b +1 follows by subtracting m mod p from the starting
point for b . Sequences of consecutive b -values can there-
fore be processed quite efficiently (i.e., without divisions)
once m mod p has been computed for all primes p ≤ B ,
and the computation has been set up for some initial b .

For pairs a , b for which a +mb is B -smooth we could
test N(a +αb) = a d −c (−b)d for smoothness by trial divi-

sion. If there are only a few smooth a +mb ’s per b this
might be a reasonable idea. Usually however, there will
be far too many smooth a +mb ’s per b (only a few of
which, if any, will lead to a smooth N(a +αb)) to make
this efficient. We found that it is far more efficient to test
the norms for smoothness using another sieve.

This can easily be achieved if we use the pairs p , cp as
defined above, because a prime p divides a d −c (−b)d if
and only if a ≡ −cp b mod p for some cp . So, to be able
to sieve efficiently, it suffices to compute all pairs p , cp

with f (cp) ≡ 0 mod p for the primes p ≤ B . The number
of pairs we get in this way equals #G and will turn out to
be approximately equal to the number of primes ≤ B . The
pairs p , cp should be computed once, using for instance a
probabilistic polynomial root finder over finite fields (cf.
[7]), and stored in a file.

For each b and some interval of a -values we generated
the good pairs a , b as follows:

- Initialize all sieve locations to zero.

- Sieve the a +mb ’s by adding [log2p] to the appropriate
sieve locations for the primes p ≤ B . The starting
points can usually be found either by adapting informa-
tion from the previous b , or by using the end points
from the previous interval of a ’s. Small primes can be
replaced by their powers to make this step go faster.

- Check the sieve locations. For a location that contains
a value close to log2(a +mb) and for which
gcd(a , b) = 1, replace that sieve location by zero. Oth-
erwise, replace that sieve location by a sufficiently
small negative number.

- Sieve the a d −c (−b)d ’s by adding [log2p] to the
appropriate sieve locations for all pairs p , cp with
p ≤ B . The starting points are again easy to compute,
once the computation has been set up.

- Check the sieve locations. For a location that contains
a value close to log2(a d −c (−b)d), attempt to factor
a +mb by trial division using the primes ≤ B . If the
factorization attempt is successful, attempt to factor
a d −c (−b)d by trial division using the primes ≤ B . If
the factorization attempt is successful, a good pair a , b
has been found.

Notice that for each b and interval of a -values we sieve
twice but use the same memory locations for the sieve
locations. We found that this is faster than sieving with
a +mb and a d −c (−b)d at the same time, again using one
memory location per sieve location, because of the large
number of false reports we got in that case. This latter
problem can be avoided by using two memory locations
per sieve location.

Finding sufficiently many pairs.
To answer the second question, just apply the above to
b = 1, 2, ... in succession, until sufficiently many good

- 4 -

pairs have been found. There is one problem, however.
The bigger b gets, the smaller the probability that both
a +mb and a d −c (−b)d are B -smooth. In practice this
means that the yield becomes quite noticeably lower and
lower, and that it might be impossible ever to find
sufficiently many good pairs. For the moment there is not
much we can do about this (but see also Section 4). The
only remedy seems to be to select a bigger B , and try
again.

Finding U .
Let r 1 be the number of real roots of f , and
l = ((d +r 1)/2)−1. Notice that for our type of polynomial
r 1 will be 0, 1, or 2. The group of units is generated by an
appropriate root of unity u 0 and l independent elements,
say u 1, u 2, ..., ul , of infinite order. Notice that u 0 = −1 if
r 1 > 0.

Compute the norms of many elements of the form

i =0
Σ
d −1

ai αi ∈ Z[α] for ai ’s with small absolute value. In that

way it is usually not hard to find l multiplicatively
independent elements u 1, u 2, ..., ul with norm equal to ±1
that together with u 0 generate the group of units. Later
we will see that, if r 1 > 0, it is useful to require that some
particular real embedding of the ui ’s is positive. If r 1 > 0,
we fix one particular real embedding for this purpose. We
put U = {u 0, u 1, ..., ul }; if necessary we later change the
set U as explained below (‘Finding the unit contribu-
tion’). Finding U can also be done while finding G .

Finding G .
Finding a set G of generators of the prime ideals of Z[α]
of prime norms ≤ B is more challenging, but can be done
in more or less the same way. As we have seen above, the
#G pairs p , cp with p ≤ B are in 1-1 correspondence with
the prime ideals of Z[α] of prime norms ≤ B . So, for
each of the #G pairs p , cp it is our task to find a generator
g (p , cp) of the prime ideal corresponding to p , cp , i.e., an

expression of the form
i =0
Σ
d −1

gi αi ∈ Z[α] , with gi ∈ Z, of

norm equal to ±p for which
i =0
Σ
d −1

gi cpi ≡ 0 mod p . If r 1 > 0

we require that the real embedding, as fixed above, of
g (p , cp) is positive.

Let aB and CB be two positive constants depending on
B (and on K). First, put a (p , cp) = aB for all pairs on the

list. Next, for all h =
i =0
Σ
d −1

hi αi ∈ Z[α], with hi ∈ Z, for

which
i =0
Σ
d −1

hi2 | α | 2i ≤ CB and N(h) is of the form kp for

some prime p from our list of pairs and some non-zero
integer k with | k | < min(p , aB), do the following. Find
the root cp corresponding to p and h , i.e., cp such that

i =0
Σ
d −1

hi cpi ≡ 0 mod p ; if | a (p , cp) | > | k | then replace

a (p , cp) by k and put g
�

(p , cp) equal to h .
If aB and CB were chosen properly, we should now

have that a (p , cp) < aB for all pairs p , cp . In practice
most a (p , cp) will be equal to ±1; for those pairs we have

that g (p , cp) = g
�

(p , cp). For the pairs for which
a (p , cp) ≠ ±1, we compute g (p , cp) by dividing g

�

(p , cp)
by the appropriate generator of an ideal of norm a (p , cp);
this will require the computation of only a very limited
number of inverses of elements of K . If r 1 > 0, replace
g (p , cp) by −g (p , cp), if necessary, to make its real
embedding positive; if d is odd we can look at the sign of
N(g (p , cp)) instead. In the full version of this paper it
will be explained how aB and CB should be chosen; in
practice it suffices to try several values until it works.

Finding the unit contribution.
Now how do we use our good pairs, and our sets U and G
to produce relations that are useful for factoring n , i.e.,
how do we turn (2.1) into (2.3)? Above we saw how the
factorization of a d −c (−b)d can be used to obtain the fac-
torization of a +αb as a product of powers of prime
ideals. Replacing, in this product, the prime ideals by
their generators, we find an element that multiplied by a
suitable unit equals a +αb . The problem is to find this
unit, and to express it as a product of elements of U .

In principle one can find the unit by performing divi-
sions in the number field, and then express it in U by table
look-up. A faster method keeps track of some extra infor-
mation per generator, and uses vector additions instead of
polynomial multiplications modulo f . Let U = {u 0, u 1,
..., ul } be as constructed above. Choose l embeddings of
K into C such that no two are complex conjugates, and
denote, for x ∈ K , by xi the image of x under the i th
embedding, for i = 1, 2, ..., l . Let

v (x) = (log | x 1 | −(log | N(x) |)/d ,
log | x 2 | −(log | N(x) |)/d ,
..., log | xl | −(log | N(x) |)/d) ∈ Rl ,

for x ∈ K . Under the mapping v the group of units forms
a lattice in Rl . Let W be the l ×l matrix having v (ui)T as
i th column, for i = 1, 2, ..., l . Then the columns of W
form a basis for this lattice.

Now to write (a +αb)/Πg (p , cp)vg as a product of ele-
ments of U , simply compute

W −1.(v (a +αb)−Σvg
.v (g (p , cp)));

the i th element of this integral vector equals the number
of times ui occurs in the quotient, for i = 1, 2, ..., l . If
r 1 > 0, the u 0 contribution will be equal to the sign of the
real embedding of a +αb , if the ui and the g (p , cp) have
been chosen such that their real embeddings are positive
(where we use the real embedding that has been fixed
above). If r 1 = 0, the u 0 contribution can be found by
keeping track of the arguments of a particular complex
embedding of the ui and the g (p , cp).

In practice the mapping v and the entries of W −1 will
only be computed in limited precision, and the entries of
the above vector will have to be rounded to integers. To
avoid problems with limited precision computations, it
helps to select (or to change) U such that the columns of

- 5 -

W form a reduced basis for the lattice that they span. It
also helps to select (or to change) the g (p , cp) such that
the coordinates of v (g (p , cp)) lie between −1/2 and 1/2;
this can be achieved by multiplying g (p , cp) by some
appropriate product of units (to be determined using v).
Notice that the resulting v (g (p , cp)) need be computed
only once.

3. Expected running time

In this section we present a heuristic estimate of the
expected running time of the number field sieve.
Currently there are various factoring algorithms that have
a subexponential expected running time: the continued
fraction algorithm, the class group method, the quadratic
sieve algorithms, the elliptic curve algorithm, the number
field sieve, Dixon’s random squares algorithm, Vallee’s
two-thirds algorithm, and Seysen’s class group algorithm
(cf. [9]). Only for the last three algorithms a rigorous
analysis of the expected running time has been given, for
Seysen’s algorithm under the assumption of the general-
ized Riemann hypothesis. These three algorithms tend to
be less practical than the other algorithms mentioned
above, although for the latter nothing better can be done
than a run time analysis that is based on heuristic esti-
mates.

Each of the algorithms mentioned above draws a
sequence of integers from a certain distribution. Only
those integers that are smooth in a certain sense can be
used by the algorithm. Consequently, the expected
number of smooth integers in the sequence plays an
important role in the running time analysis. A satisfactory
estimate of this expected number can be given if each of
the integers is uniformly distributed over [1,B], for some
upper bound B . However, none of the algorithms men-
tioned above satisfies this uniformity condition. To obtain
a heuristic analysis, one simply assumes that the smooth-
ness probabilities are the same as in the uniform case.
This can actually be proved for the last three algorithms
mentioned above, and this leads to a rigorous analysis of
their expected running times (modulo the Riemann
hypotheses, in one case).

For the other algorithms, including the algorithm
described in this paper, nothing better can presently be
given than a heuristic analysis, which is better than having
nothing at all. Such heuristic analyses add to our under-
standing of algorithms that are practically useful. In addi-
tion, they enable us to compare the algorithms to each
other, and to make predictions about their practical perfor-
mance. If one insists on having fully proved theorems,
nothing better can be done than explicitly formulating all
heuristic assumptions that enter into the proof. For exam-
ples of such theorems we refer to [12]. For the number
field sieve we refer to [3].

To analyse the expected running time of the number

field sieve we use the following function L from [9,
(8.10)]. Let for γ, v ∈ R with 0 ≤ v ≤ 1 the function
Lx [v ; γ] be any function of x that equals
exp((γ+o (1))(logx)v (loglogx)1−v), for x → ∞. For fixed
γ, δ, v , w ∈ R with γ, δ > 0 and 0 < w < v ≤ 1, a random
positive integer ≤ Lx [v ; γ] has only prime factors
≤ Lx [w ; δ] (is Lx [w ; δ]-smooth) with probability
Lx [v −w ; −γ(v −w)/δ], for x → ∞ (cf. [9, (8.10)]).

Suppose that for a certain n = r e −s the extension
degree d has been chosen close to (3logn /(2loglogn))1/3.
If r and | s | are below a fixed upper bound, it follows that
m = Ln [2/3, (2/3)1/3]. Furthermore, let B = Ln [1/3,
(2/3)2/3], and let a and b both be bounded by Ln [1/3,
(2/3)2/3]. Notice that π(Ln [1/3, (2/3)2/3]) = Ln [1/3,
(2/3)2/3]. We make the heuristic assumption that
| N(a +αb) | = | a d −c (−b)d | and | a +mb | , both of which
are ≤ Ln [2/3, (2/3)1/3] if | c | is assumed to be small,
behave as random positive integers ≤ Ln [2/3, (2/3)1/3].
This would give each of them a probability
Ln [1/3,−(18)−1/3] to be B -smooth. The probability that
they are simultaneously B -smooth is therefore assumed to
be Ln [1/3, −(2/3)2/3].

It follows that the Ln [1/3, 2(2/3)2/3] pairs a , b can be
expected to produce the Ln [1/3, (2/3)2/3] relations of the
form (2.4) needed to factor n ; this takes expected time
Ln [1/3, 2(2/3)2/3]. Because the matrix of the exponent
vectors is sparse, a dependency can be found in the same
amount of time (cf. [16]), so that we expect a running
time of Ln [1/3, 2(2/3)2/3] to collect the relations and to
derive a factorization from them. The running time is
probably only affected by a factor Ln [1/3, 0] if large
primes are used as well (see below).

Compared to the collection and elimination steps, the
time needed to find U and G is in practice negligible.
This would suggest that the total factoring time becomes
Ln [1/3, 2(2/3)2/3] ∼∼ Ln [1/3, 1.526]. It seems difficult to
give a satisfactory asymptotic analysis of the method to
find U and G that we described in the previous section. It
is not unlikely, however, that alternative methods of
finding U and G can be shown to meet the above run time
bound.

4. Taking advantage of large primes

A considerable speed-up of the algorithm can be achieved
by allowing large primes in (2.1) and (2.2). The use of
large primes in factoring algorithms is well known [13].
In the quadratic sieve algorithms relations are collected
such that

x 2 = q t .
p primes, p ≤ B

Π p wp mod n ,

for some bound B , integer x , integer t ∈ {0, 1}, and
prime q > B . If more than B of such relations with t = 0
(so called full relations) are found, the factorization of n
can be derived as explained above.

- 6 -

Relations with t = 1 (partial relations) are, however,
much easier to find than full relations. Furthermore, two
partial relations with the same q can be combined (i.e.,
multiplied) into one relation that is equally useful (but
denser, see below) for the factorization process as a full
relation. Because the partials come in much faster than
the fulls, one expects to find quite a few double q ’s (cf.
birthday paradox), and consequently quite a few addi-
tional useful relations. In practice this leads to a speed-up
by more than a factor of two: for a certain n for which
we used B = 50,000, only 20,000 of the first 320,000 rela-
tions were full. But the remaining 300,000 partials
sufficed to generate the other 30,000 relations needed for
the factorization (cf. [10]).

In (2.1) and (2.2) the situation is similar, but allows for
more variations. In the first place we notice that there is
no problem at all in allowing a large prime at the right
hand side in (2.2), but no large prime in (2.1). It leads to a
relation as in (2.4) with a large prime at the right hand
side, a so-called fp, for full-partial-relation. Two fp’s
with the same large prime can be combined into a relation
that is as useful as (2.4).

A large prime at the right hand side of (2.1), but no
large prime in (2.2), a pf, leads to a slightly more compli-
cated situation. To be able to write down (2.4) we would
need a generator of the prime ideal corresponding to the
large prime (i.e., of the same norm, and having the same
root modulo the large prime as the corresponding a +αb).
Although such a generator would only be needed for large
prime ideals that will be matched, this still does not look
very appealing, at least not given our way of finding gen-
erators. Fortunately, there is an easy way out of this prob-
lem: combine relations with the same large prime ideal
by dividing them, instead of multiplying them. In that
way generators corresponding to the large primes are not
needed, but two pf’s with the same large prime ideal can
be combined as before into a useful relation. The only
difference is that we now have to allow for negative
exponents vg , v

�

g , wp , and w
� �

p in (2.4) and (2.7).
The fp’s and the pf’s already allow us to take advantage

of partial relations in a way that is similar to the quadratic
sieve algorithms. But we can do even more by taking the
pp’s, the relations having a large prime both in (2.1) and
in (2.2), into account as well. For example, the product of
an fp with large prime q 1 and a pf with large prime q 2

divided by a pp with large primes q 2 (in (2.1)) and q 1 (in
(2.2)) is a useful relation (if the prime ideals of norm q 2

are the same). Notice that combinations do not neces-
sarily have to begin and end with an fp or pf; cycles
among the pp’s also lead to useful relations.

If the fp’s and pf’s are easy to find compared to the ff’s
(the full-full’s, as in (2.4)), then the pp’s should be even
easier to find (see Section 6 for an example of actual frac-
tions between numbers of ff’s, fp’s, pf’s, and pp’s). Intui-

tively it should be the case that, if the fp’s have already a
reasonable probability to match among themselves, then
they will have a much higher probability to match with
the pp’s; the fp,pp pairs thus found should then still have a
reasonable probability to match with the pf’s, and a some-
what higher probability to match with the remaining pp’s.
That this indeed works in practice can be seen in Section
6.

While generating the combinations, care should be
taken that they remain independent, the extreme example
being that an fp can but should not be combined with
itself. In the full version of this paper we will describe
our algorithm to find a maximal independent set of com-
bined relations, including cycles among the pp’s. Our
algorithm cannot be guaranteed to find the shortest combi-
nations, but the combinations will never be more than
twice too long.

For relations that use fp’s, pf’s and pp’s the unit contri-
bution can easily be found by adding and/or subtracting
the relevant low dimensional vectors that were introduced
above. As noted above the combined relations give rise to
much denser rows of the matrix than the ff’s. This makes
the matrix elimination step much slower.

5. Additional remarks

There is yet another way to get some extra relations, the
free relations. Suppose that for some prime p ≤ B the
polynomial f mod p factors completely into linear factors
over Z/p Z. Then the ideal generated by p is equal to the
corresponding product of the prime ideals of norm p .
Hence p equals a unit times a product of the generators of
those ideals. This unit can be determined as above. The
density of the primes that split completely in this way is
the inverse of the degree of the normal closure of K ,
which divides d .φ(d) and is a multiple of lcm(d ,φ(d))
(with φ the Euler φ-function). So, for d = 5, we get about
#G /20 relations for free, which amounts to about 1/40 of
the relations needed.

It is of course not at all necessary to have two factor
bases of approximately the same size, although it is
asymptotically optimal. For any particular number n and
choice of d it might be advantageous to select a bigger
factor base on either side. Sizes that work satisfactorily
can usually quite easily be found experimentally.

Another idea that might be of practical value is to use
more than one number field. If we use smoothness bound
Bi in (2.1) for the i th number field Ki , and for all i ’s the
same smoothness bound B in (2.2), then we need approxi-
mately π(B)+

i
Σ(#Ui +#Gi) relations (2.4) to factor n ,

where Ui and Gi generate the units and the prime ideals
of norms ≤ Bi in Ki . So, each Ki should contribute at
least #Ui +#Gi relations to make using the i th field
worthwhile. The extension degrees of the number fields

- 7 -

do not have to be distinct, as the following example
shows. Let ζ be a 16th root of unity, then the number
fields Q(ζ2), Q(ζ−ζ−1), and Q(ζ+ζ−1), all of extension
degree 4, could all be used for the factorization of 2512+1.

We do not have any practical experience yet with this
multi-field approach. We expect that it is another way to
lower the total factor base size: for each new field we can
start afresh with small b values, which have a higher pro-
bability of success.

6. Results

The first factorization obtained by means of the number
field sieve (nfs) was the (already known, cf. [11]) factori-
zation of the 39 digit number F 7 = 227+1. This factoriza-
tion was carried out by the fourth author in twenty hours
on a Philips P2012, an 8-bit computer with 64K of
memory and two 640K disc drives. With f (X) = X 3+2,
one unit and 497 prime ideals for the factorizations in
(2.3), and 500 primes for (2.1), it took 2000 b ’s (and
a ∈[−4800,4800]) to find 538 ff’s and 1133 fp’s with
large prime < 10,000 (no pf’s or pp’s were used). This led
to 399 combinations, which combined with the 81 free
relations sufficed to factor F 7:

2128+1 = 59649589127497217 *
5704689200685129054721.

Several steps of this first nfs factorization were not car-
ried out as described in the previous sections. For
instance, only the a +mb ’s were being sieved, and for the
reports both a +mb and N(a +αb) were tested for smooth-
ness. The unit contribution was found by means of a table
containing u 1

i for i = −8, ..., 8. The fourth author was
able to reduce the time needed for factoring F 7 by a factor
of two by using some of the methods described in Section
2. Other numbers factored by the fourth author are 2144−3
(44 digits, in 47 hours) and 2153+3 (47 digits, in 61 hours):

2144−3 = 492729991333 *
45259565260477899162010980272761,

2153+3 = 5 * 11 * 600696432006490087537 *
345598297796034189382757.

For numbers in the 100+ range the nfs can be expected
to run faster than the multiple polynomial quadratic sieve
algorithm (mpqs), at least when applied to numbers of the
right form. But one still needs quite impressive computa-
tional resources to factor numbers that large.

In our implementation at Digital Equipment
Corporation’s Systems Research Center (SRC) we fol-
lowed the same approach as in our SRC-implementations
of the elliptic curve method (ecm) and mpqs as described
in [10]. In short, this means that one central processor
distributes tasks among several hundred CVAX proces-
sors, the clients, and collects their results.

For nfs tasks consist of short, non-overlapping intervals
of consecutive b values. When given an interval

[b 1, b 1+1, ..., b 2), a client starts sieving all pairs a , b for
| a | less than some predetermined bound, and for
b = b 1, b 1+1, ..., b 2−1 in succession. After each b , a
client reports the good pairs a , b to the central processor,
and it reports that it just processed that particular b . The
central processor keeps track of the good pairs it received,
and of the b ’s that have been processed. It also notices if
a client dies or becomes unavailable (for instance because
the owner claims his machine), so that it can redistribute
the b ’s that are left unfinished by that client. In this way,
all positive b ’s will be processed, without gaps, until
sufficiently many good pairs have been collected.

This is slightly different from our ecm and mpqs imple-
mentations where we do not worry at all about inputs that
have been distributed but that have never been processed
completely. For ecm and mpqs we could easily afford
that. For nfs it might be possible as well, but because
smaller b ’s are better than larger b ’s we decided to be
careful and not to waste any inputs.

In Table 1 we list some of the new results obtained so
far. For the factorization of the first two entries we did
not make use of the pp’s yet. Clearly, both these numbers
could have been factored with much smaller factor bases
had we used the pp’s as well. The first entry was the first
number we collected relations for. Still being quite unex-
perienced with the method, we chose the factor bases for
that number much too big, even without using the pp’s. In
the ‘run-time’ columns it should be kept in mind that the
relations were collected on a network of several hundred
CVAX-es, but the elimination was done in parallel on one
single machine containing six CVAX-es. For all factori-
zations in Table 1 we sieved for each b over the a in
[−5.106, 5.106), split up in intervals of length 500,000.
The limit for the large primes was 108. For the last three
cases we found that Z[α] is not a unique factorization
domain, a problem that was easily overcome because in
all cases the full ring of integers of K does have unique
factorization.

For the first two entries about 2/5 of the relations
needed were ff’s and the remaining 3/5 were split evenly
among the fp, fp pairs and pf, pf pairs. For the third entry
we had 10,688 ff’s, 103,692 fp’s, 116,410 pf’s, and
1,138,617 pp’s after 1,136,000 b ’s. This gave 5,058 fp, fp
pairs, and 5,341 pf, pf pairs. Furthermore we had 1,222
free relations of the type φ(u .Πg) = p for each prime
p ≤ B for which f mod p has d roots, where the product
ranges over d generators g of norm p and where u is a
unit. About 28,000 additional relations were required, and
these were obtained from more complicated combinations
containing pp’s. Because the yield was already quite low
for b around 1,100,000, we would never have been able
to factor that number with those factor base sizes had we
not used the pp’s as well.

For the last entry we had gathered 17,625 ff’s, and a

- 8 -

total of 1,741,365 fp’s, pf’s, and pp’s, which gave 62,842
combinations. Furthermore we had 2,003 free relations.

For all numbers in Table 1 the set U contained only −1
and two units which were easy to find. Finding G never
took more than about fifteen minutes on a CVAX proces-
sor.

Notice that the relation collection stage for 2457+1 took
7/2 times as much time as for 7149+1. This is approxi-
mately the same as (80,000/50,000)*(2,650,000/
1,136,000) and also approximately the same as we expect
from the run time analysis.

7. Generalization

To generalize the number field sieve to general integers,
i.e., integers which are not of the form r e −s for small r
and s (up to a small factor), it suffices to select some
integer d , an integer m close to and at most n 1/d , and to

put f (X) =
i =0
Σ
d

f i X i , where n =
i =0
Σ
d

f i m i with 0 ≤ f i < m .

Now use K = Q(α) with f (α) = 0. This was suggested by
Joe Buhler and Carl Pomerance.

In principle the algorithm could proceed as described
above. There are some serious problems, however, that
make part of that approach unfeasible, and for which a
satisfactory solution is still unknown. For number fields
with a relatively small discriminant as in Section 2, the
sets U and G are not at all difficult to construct. If the
discriminant gets bigger, as will in general be the case for
the polynomial f as constructed here, our method will not
work: the values for aB and CB would have to be taken
prohibitively large. Standard estimates suggest that the

coefficients of the elements of U and G , when written as
explicit polynomials in α, are so large that they cannot
even be written down in a reasonable amount of time, let
alone calculated.

It follows that actual computation of U and G should
be avoided. This can be achieved as follows. Suppose
that sufficiently many good pairs a , b have been found.
So, for each good pair a , b , we can write the ideal
(a +αb) as the product of prime ideals g of norms ≤ B ,

(a +αb) =
g

Πg vg ,

and the integer a +mb is B -smooth,

a +mb =
p prime, p ≤ B

Π p wp

(where −1 is among the p ’s). For simplicity, we assume
that K has an embedding into R for which all a +αb are
positive.

Let M be a matrix that contains, for each good pair
a , b , a row consisting of the concatenation of the vectors
(vg) and (wp mod 2), and let h be an integer slightly
bigger than l , where l is as in Section 2. One now finds h
independent relations, with integer coefficients, between
the rows of M ; in the left half the relations should be valid
in Z, in the right half they need only be valid in Z/2Z.
This yields, for each i with 1 ≤ i ≤ h , integers xi (a , b)
such that at the same time

a , b
Π(a +αb)xi (a , b) = (1)

as ideals, and

a , b
Π(a +mb)xi (a , b) = (

p prime, p ≤ B
Π p w

� �

ip)2,

- 9 -

where w
� �

ip ∈ Z. This leads to a relation of the form

φ(ui) ≡ (
p prime, p ≤ B

Π p w
� �

ip)2 mod n ,

where ui is a unit that can be written as
a , b
Π(a +αb)xi (a , b).

Use this expression to compute the vectors v (ui) ∈ Rl ,
where the mapping v is as in Section 2.

Each of the the h > l vectors v (ui) is contained in the
same l -dimensional lattice, so that a Z-relation between
them can be found by means of basis reduction. The
corresponding product of the ui ’s then leads to a solution
of 1 ≡ z 2 modn .

The most recent heuristic estimate of the expected run-
ning time of the relation collection and matrix elimination
stages of the generalized algorithm is Ln [1/3, 32/3]. It is
expected that the most serious practical problems with the
generalized algorithm will be caused by the elimination
over Z and the size of the integers involved.

References

1 Red Alford, C. Pomerance, personal communication.

2 J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tucker-
man, S.S. Wagstaff, Jr., Factorizations of b n ±1, b = 2,
3, 5, 6, 7, 10, 11, 12 up to high powers, second edition,
Contemporary Mathematics, vol. 22, Providence:
A.M.S., 1988.

3 J. Buhler, H.W. Lenstra, Jr., C. Pomerance, in
preparation.

4 T.R. Caron, R.D. Silverman, ‘‘Parallel implementation
of the quadratic sieve,’’ J. Supercomputing, v. 1,
1988, pp 273-290.

5 D. Coppersmith, A.M. Odlyzko, R. Schroeppel,
‘‘Discrete Logarithms in GF (p),’’ Algorithmica, v. 1,
1986, pp 1-15.

6 D.E. Knuth, ‘‘Computer Science and its relation to
mathematics,’’ Amer. Math. Monthly, v. 81, 1974, pp
323-342.

7 D.E. Knuth, The art of computer programming, vol. 2,
Seminumerical algorithms, second edition, Addison-
Wesley, Reading 1981.

8 S. Lang, Algebra, second edition, Addison-Wesley,
Reading, 1984.

9 A.K. Lenstra, H.W. Lenstra, Jr., ‘‘Algorithms in
number theory,’’ to appear in: J. van Leeuwen, A.
Meyer, M. Nivat, M. Paterson, D. Perrin (eds), Hand-
book of theoretical computer science, North-Holland,
Amsterdam.

10 A.K. Lenstra, M.S. Manasse, ‘‘Factoring by electronic
mail,’’ Proceedings Eurocrypt ’89, to appear.

11 M.A. Morrison, J. Brillhart, ‘‘A method of factoring
and the factorization of F 7,’’ Math. Comp., v. 29,

1975, pp 183-205.

12 C. Pomerance, ‘‘Analysis and comparison of some
integer factoring algorithms,’’ pp 89-139 in: H.W.
Lenstra, Jr., R. Tijdeman (eds), Computational
methods in number theory, Math. Centre Tracts
154/155, Mathematisch Centrum, Amsterdam 1982.

13 C. Pomerance, S.S. Wagstaff, Jr., ‘‘Implementation of
the continued fraction integer factoring algorithm,’’
Congress. Numer., v. 37, 1983, pp 99-118.

14 H.J.J. te Riele, W.M. Lioen, D.T. Winter, ‘‘Factoring
with the quadratic sieve on large vector computers,’’
report NM-R8805, 1988, Centrum voor Wiskunde en
Informatica, Amsterdam.

15 I.N. Stewart, D.O. Tall, Algebraic number theory,
second edition, Chapman and Hall, 1987.

16 D.H. Wiedemann, ‘‘Solving sparse linear equations
over finite fields,’’ IEEE Trans. Inform. Theory, IT-
32, 1986, pp 54-62.

