
6.4 Elliptic Curve Cryptography 113

6.4 Elliptic Curve Cryptography

In this section we discuss an analogue of Diffie-Hellman that uses an elliptic
curve instead of (Z/pZ)∗. The idea to use elliptic curves in cryptography
was independently proposed by Neil Koblitz and Victor Miller in the mid
1980s. We then discuss the ElGamal elliptic curve cryptosystem.

6.4.1 Elliptic Curve Analogues of Diffie-Hellman

The Diffie-Hellman key exchange from Section 3.1 works well on an elliptic
curve with no serious modification. Michael and Nikita agree on a secret
key as follows:

1. Michael and Nikita agree on a prime p, an elliptic curve E over Z/pZ,
and a point P ∈ E(Z/pZ).

2. Michael secretly chooses a random m and sends mP .

3. Nikita secretly chooses a random n and sends nP .

4. The secret key is nmP , which both Michael and Nikita can compute.

Presumably, an adversary can not compute nmP without solving the dis-
crete logarithm problem (see Problem 3.1.2 and Section 6.4.3 below) in
E(Z/pZ). For well-chosen E, P , and p experience suggests that the discrete
logarithm problem in E(Z/pZ) is much more difficult than the discrete log-
arithm problem in (Z/pZ)∗ (see Section 6.4.3 for more on the elliptic curve
discrete log problem).

6.4.2 The ElGamal Cryptosystem and Digital Rights

Management

This section is about the ElGamal cryptosystem, which works well on an
elliptic curves. This section draws on a paper by a computer hacker named
Beale Screamer who cracked a “Digital Rights Management” (DRM) sys-
tem.

The elliptic curve used in the DRM is an elliptic curve over the finite
field k = Z/pZ, where

p = 785963102379428822376694789446897396207498568951.

In base 16 the number p is

89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits of e, π, and
√

2. The
elliptic curve E is

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934.



114 6. Elliptic Curves

We have

#E(k) = 785963102379428822376693024881714957612686157429,

and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655).

Our heroes Nikita and Michael share digital music when they are not
out fighting terrorists. When Nikita installed the DRM software on her
computer, it generated a private key

n = 670805031139910513517527207693060456300217054473,

which it hides in bits and pieces of files. In order for Nikita to play Juno
Reactor’s latest hit juno.wma, her web browser contacts a web site that
sells music. After Nikita sends her credit card number, that web site allows
Nikita to download a license file that allows her audio player to unlock and
play juno.wma.

As we will see below, the license file was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
file to unlock juno.wma. However, when she shares both juno.wma and the
license file with Michael, he is frustrated because even with the license his
computer still does not play juno.wma. This is because Michael’s computer
does not know Nikita’s computer’s private key (the integer n above), so
Michael’s computer can not decrypt the license file.

We now describe the ElGamal cryptosystem, which lends itself well to
implementation in the group E(Z/pZ). To illustrate ElGamal, we describe
how Nikita would set up an ElGamal cryptosystem that anyone could use
to encrypt messages for her. Nikita chooses a prime p, an elliptic curve E
over Z/pZ, and a point B ∈ E(Z/pZ), and publishes p, E, and B. She also
chooses a random integer n, which she keeps secret, and publishes nB. Her
public key is the four-tuple (p,E,B, nB).

Suppose Michael wishes to encrypt a message for Nikita. If the message is
encoded as an element P ∈ E(Z/pZ), Michael computes a random integer r



6.4 Elliptic Curve Cryptography 115

and the points rB and P +r(nB) on E(Z/pZ). Then P is encrypted as the
pair (rB, P + r(nB)). To decrypt the encrypted message, Nikita multiplies
rB by her secret key n to find n(rB) = r(nB), then subtracts this from
P + r(nB) to obtain

P = P + r(nB) − r(nB).

We implement this cryptosystem in Section 7.6.3.

Remark 6.4.1. It also make sense to construct an ElGamal cryptosystem
in the group (Z/pZ)∗.

Returning out our story, Nikita’s license file is an encrypted message to
her. It contains the pair of points (rB, P + r(nB)), where

rB = (179671003218315746385026655733086044982194424660,

697834385359686368249301282675141830935176314718)

and

P + r(nB) = (137851038548264467372645158093004000343639118915,

110848589228676224057229230223580815024224875699).

When Nikita’s computer plays juno.wma, it loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB) = (328901393518732637577115650601768681044040715701,

586947838087815993601350565488788846203887988162).

It then subtracts this from P + r(nB) to obtain

P = (14489646124220757767,

669337780373284096274895136618194604469696830074).

The x-coordinate 14489646124220757767 is the key that unlocks juno.wma.
If Nikita knew the private key n that her computer generated, she could

compute P herself and unlock juno.wma and share her music with Michael.
Beale Screamer found a weakness in the implementation of this system that
allows Nikita to detetermine n, which is not a huge surprise since n is stored
on her computer after all.

6.4.3 The Elliptic Curve Discrete Logarithm Problem

Problem 6.4.2 (Elliptic Curve Discrete Log Problem). Suppose E
is an elliptic curve over Z/pZ and P ∈ E(Z/pZ). Given a multiple Q of P ,
the elliptic curve discrete log problem is to find n ∈ Z such that nP = Q.



116 6. Elliptic Curves

For example, let E be the elliptic curve given by y2 = x3 + x + 1 over
the field Z/7Z. We have

E(Z/7Z) = {O, (2, 2), (0, 1), (0, 6), (2, 5)}.

If P = (2, 2) and Q = (0, 6), then 3P = Q, so n = 3 is a solution to the
discrete logarithm problem.

If E(Z/pZ) has order p or p±1 or is a product of reasonably small primes,
then there are some methods for attacking the discrete log problem on E,
which are beyond the scope of this book. It is thus important to be able to
compute #E(Z/pZ) efficiently, in order to verify that the elliptic curve one
wishes to use for a cryptosystem doesn’t have any obvious vulnerabilities.
The naive algorithm to compute #E(Z/pZ) is to try each value of x ∈ Z/pZ
and count how often x3 +ax+ b is a perfect square mod p, but this is of no
use when p is large enough to be useful for cryptography. Fortunately, there
is an algorithm due to Schoof, Elkies, and Atkin for computing #E(Z/pZ)
efficiently (polynomial time in the number of digits of p), but this algorithm
is beyond the scope of this book.

In Section 3.1.1 we discussed the discrete log problem in (Z/pZ)∗. There
are general attacks called “index calculus attacks” on the discrete log prob-
lem in (Z/pZ)∗ that are slow, but still faster than the known algorithms for
solving the discrete log in a “general” group (one with no extra structure).
For most elliptic curves, there is no known analogue of index calculus at-
tacks on the discrete log problem. At present it appears that given p the
discrete log problem in E(Z/pZ) is much harder than the discrete log prob-
lem in the multiplicative group (Z/pZ)∗. This suggests that by using an
elliptic curve-based cryptosystem instead of one based on (Z/pZ)∗ one gets
equivalent security with much smaller numbers, which is one reason why
building cryptosystems using elliptic curves is attractive to some cryptog-
raphers. For example, Certicom, a company that strongly supports elliptic
curve cryptography, claims:

“[Elliptic curve crypto] devices require less storage, less power,
less memory, and less bandwidth than other systems. This al-
lows you to implement cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, smart
cards, and thin-clients. It also provides a big win in situations
where efficiency is important.”

For an up-to-date list of elliptic curve discrete log challenge problems
that Certicom sponsors, see [Cer]. For example, in April 2004 a specific
cryptosystem was cracked that was based on an elliptic curve over Z/pZ,
where p has 109 bits. The first unsolved challenge problem involves an
elliptic curve over Z/pZ, where p has 131 bits, and the next challenge after
that is one in which p has 163 bits. Certicom claims at [Cer] that the 163-bit
challenge problem is computationally infeasible.


