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Explicit Approaches to Elliptic Curves and Modular
Abelian Varieties

1 Introduction

Intellectual Merit: The projects in this proposal would generalize the highly
influential tables of Cremona to the next (ordered by discriminant) totally real
number field and to higher dimensional modular abelian varieties. This would
improve on algorithms available for computing with elliptic curves and abelian
varieties, and provide useful data and tools for number theory researchers. The
proposed research would also advance techniques for constructing points and coho-
mology classes on elliptic curves, and for understanding the arithmetic of elliptic
curves over number fields. This project would have as a concrete deliverable new
publicly available tables and software that will be of use to many number theorists.

Broader Impact: The PI is co-authoring a popular expository book with Barry
Mazur on the Riemann Hypothesis, co-authoring a graduate level book with Ken-
neth Ribet on modular forms and Hecke operators, and intends to release a new
edition of his modular forms book [Ste07b]. The PI has tables of data that are
freely available online, and whose creation has been supported by NSF FRG grant
DMS-0757627, and the proposed research would expand these tables further. He
will also continue to organize the development of the free open source NSF-funded
Sage mathematical software project that he started (see [S+11]). The PI organizes
dozens of “Sage Days” workshops that involve many undergraduate and graduate
students, and touch on number theory, algebraic topology, combinatorics, special
functions, numerical computation, and other areas. The PI is also a co-PI on the
UTMOST NSF grant (DUE-1020378), whose goal is to make Sage more accessible
to high school and college teachers and students.

Overview: Section 2 is about generalizing many existing tables of elliptic curves
over Q to the next totally real field, which is Q(

√
5). Section 3 discusses creation

of tables of Chow-Heegner points, numerical computation of triple product L-
functions, and applications of such computations. Section 4 is about the problem of
systematically enumerating all simple modular abelian varieties over Q, problems
about computing invariants of modular abelian varieties, computation of p-adic
L-functions, and generalization of some of this to Q(

√
5). Section 5 discusses

determining the set of prime orders of torsion points on elliptic curves over all
number fields of bounded degree. Section 6 involves application of congruences to
studying visibility of Shafarevich-Tate groups and the use of Heegner points and
congruences to construct cohomology classes on elliptic curves of rank at least 2.
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1.1 Results from Prior NSF Support

The PI was partly supported by an NSF postdoctoral fellowship during 2000–2004
(DMS-0071576) in the amount of $90,000. The PI was awarded NSF grant DMS-
0555776 (and DMS-0400386) from the ANTC program for the period 2004–2007.
The PI has received a SCREMS grant (DMS-0821725) that supported purchas-
ing computer hardware, an FRG (DMS-0757627), and two COMPMATH (DMS-
0713225 and DMS-1015114) grants that support Sage development. He is currently
a co-PI on a CCLI type 2 grant (DUE-1020378).

The PI was mainly supported by ANTC (DMS-0653968) for the period 2007–
2010, and this is the award most closely related to this proposal, so we report
in more detail about this award. It resulted in numerous published papers on
the arithmetic of elliptic curves, modular forms and abelian varieties, including
[JS07, BMSW07, KSW08, JLS09, SP10, Ste10, BS11], and one undergraduate
number theory book [Ste09]. It also resulted in the submitted papers [SW10, Ste11,
SW11] and the graduate level textbook [Ste07a] on the Birch and Swinnerton-Dyer
conjecture.

2 Elliptic Curves over Q(
√
5)

Tables of Birch et al. from the 1970s [BK75], the book of Cremona [Cre97] and
associated tables [Cre], and the Stein-Watkins tables of elliptic curves [SW02,
BMSW07] have together had a profound impact on number theory. We propose
to create comprehensive and easy-to-use tables, but over the field Q(

√
5). Elliptic

curves over totally real fields such as Q(
√

5) are of particular current interest due
to the plethora of extra structure (Heegner points, Zhang’s formula, modularity
results of Taylor, Kisin, Gee, Fujiwara, etc.) arising from Hilbert modular forms
and Shimura curves. There are challenges over Q(

√
5) that do not occur over Q,

for example: we do not know modularity in general; the complete list of degrees
of isogenies is not yet known; there appears to be no good analogue of modular
symbols in the case of even degree fields (see [GV10]); and canonical definitions,
e.g., of global minimal models when they exist, are more subtle due to units.

The main challenges to generalizing tables to Q(
√

5) are: (1) finding equations
for all curves of given conductor, since unlike the case of elliptic curves over Q,
there is no known algorithm to do this in general; and (2) many algorithms for
elliptic curves over number fields (such as Q(

√
5)) have only been incompletely

implemented anywhere, and the existing implementations are sometimes orders of
magnitude slower than the implementations over Q.
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Specific Goals:

1. Compute data about all elliptic curves over Q(
√

5) of norm conductor up
to 26,569 (smallest known norm conductor of a curve of rank 3), where the
norm conductor is the absolute norm to Q of the conductor.

2. Create a Stein-Watkins style table of over a hundred million elliptic curves
over Q(

√
5) with norm conductor up to 108 and bounded discriminant.

3. Prove that every elliptic curve over Q(
√

5) is modular, or at least carry
out relevant computations that may be needed for this.

2.1 Enumeration and Creation of Tables

We give an outline of the main techniques for computing elliptic curves over
Q(
√

5). Many of these techniques were refined during a successful NSF-funded
REU (DMS-0757627) that the PI ran during Summer 2011 at University of Wash-
ington, which resulted in a complete table of curves over Q(

√
5) of norm conductor

up to 1831. (The PI hopes to organize another REU on this topic during Summer
2012.)

Goal 1 is to create tables similar to Cremona’s, but for all elliptic curves over
Q(
√

5) with conductor a given nonzero ideal N of the ring R of integers of Q(
√

5).

1. Enumerate Hilbert Modular Newforms: Using arithmetic in the Hamil-
ton quaternion algebra over Q(

√
5), we compute a complete list of the Hilbert

modular newforms of level N and weight (2, 2) with eigenvalues in Q. The
PI spent substantial time implementing a highly optimized algorithm for
doing this, based on ideas from [Dem04] and J. Voight, but with many re-
finements. Nonetheless, there is still much room for improvement, especially
in the sparse linear algebra part of the computation. Also, the PI is not sat-
isfied with current algorithms for computing Hecke operators at bad primes
yet in this setting. The PI estimates that it will be feasible to run this com-
putation for all N with norm up to 200,000. Moreover, the implementation
is efficient enough that it can compute the Hecke eigenvalues ap(f), for all
p with norm up to 50,000, in a few hours. The PI also proposes to enu-
merate non-rational newforms, which should correspond to certain abelian
varieties over Q(

√
5), and the PI intends to consider problems like those in

Section 4 for these abelian varieties. Together with the “wide” tables of S.
Donnelly and Voight of Hilbert modular forms over many fields, this data
should provide a good resource for the community.

2. Enumerate Weierstrass Equations: To each rational Hilbert newform
f found above, there should be an associated isogeny class of elliptic curves
over Q(

√
5) with L-series equal to L(f, s). Though the PI knows of no

algorithm in general that is guaranteed to compute some elliptic curve E in
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this isogeny class, there are many techniques for finding E. The PI with his
students and postdocs intends to fully implement and optimize the following
techniques as part of this project:

• Generalize Stein-Watkins: efficiently enumerate Weierstrass equations
of a certain form. This requires generalizing algorithms (see [SW02])
for computing minimal twists, conductors, and traces of Frobenius, and
taking account of extra units (ongoing thesis work of Aly Deines).
• Torsion families: We can tell from several ap(f) whether some curve in

the isogeny class is likely to have a torsion point of some order n > 1.
If so, searching through curves with a torsion point of that order may
yield the sought for curve. With input from Noam Elkies, one of the
2011 REU students (Ben LeVeque) wrote code to do this for many n.
• Traces of Frobenius: Fix some ap(f), and use the Chinese remainder

theorem to search through curves with those ap(f), checking further
when one is found with the right factors dividing its discriminant. The
REU students (mainly R. Andrew Ohana) wrote highly optimized code
to do this. We can modify this implementation to search for hundreds
of curves at once with the same ap(f).
• Special values: Use Dembele’s strategy (see [Dem05]), which involves

computing mixed periods by computing special values of twists L(f, χ, s),
where χ is a character of Q(

√
5). During the summer 2011 REU, the

postdoc Jon Bober explored and implemented this approach, and used
it to find several new curves that had stumped all other methods.
• Bad reduction: Use the method of Cremona-Lingham (see [CL07]) to

find many curves with good reduction outside the set of primes dividing
N . This relies on finding S-integral points on many auxiliary curves,
and works well for certain N , but less well for other N . Also, use a
similar (unpublished and less developed) effective method that Elkies
came up with at Sage Days 22 that uses the λ-invariant and finding
solutions to S-unit equations in number fields.
• Congruences: When f is congruent modulo 7 to a newform correspond-

ing to a known elliptic curve of lower level, use [Fis11].

3. Data about each curve: There are algorithms and code for most of the
steps below, but substantial work remains to make them efficient and robust
enough to succeed at the goals listed above.

(a) Enumerate all the curves in the isogeny class of E using the (surprising)
algorithm of [Bil11] to find a finite list of possible degrees of isogenies,
then Velu’s formulas to write down the actual isogenies. This approach
was implemented by Ashwath Rabindranath as part of the 2011 REU.

(b) Compute lower and upper bounds on the rank (which eventually hope-
fully agree) and search for generators using (Denis Simon’s) 2-descent,
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then use the Silverman bound and a further search to saturate.
(c) Compute the invariants in the Birch and Swinnerton-Dyer formula,

solve for the conjectural order of X(E/Q(
√

5)), and check that the
number we obtain is close to a perfect square.

(d) It would also be of interest to compute the degree of each Shimura curve
parametrization of E; the PI intends to investigate whether there is an
analytic algorithm like [Wat02] in this setting.

(e) If E has analytic rank ≤ 1, one can often compute a nonzero Heeg-
ner point on E and obtain an explicit upper bound on #X(E/Q(

√
5))

from work of Zhang [Zha01, Zha04]. This was done by Ashwath Ra-
bindranath as part of the summer 2011 REU; he worked with a curve
of norm conductor 31 and used Zhang’s height formula, which proved
in this case that #X(E/Q(

√
5)) = 1. This is an extension to Q(

√
5)

of [GJP+09, Mil10, MS11].

2.2 Modularity

The PI has written only published paper [BS02] on modularity of Galois represen-
tations. However, this elliptic curve enumeration project would greatly benefit if
we knew modularity of elliptic curves over Q(

√
5). The PI asked R. Taylor about

this problem, and Taylor explained how current results likely prove modularity
over any abelian (over Q) totally real field in which 3 and 5 are not ramified.

Taylor, May 2011, personal communication: “Suppose E is an elliptic
curve over an abelian totally real field F . By [Kis09, Thm. 3.5.7], as
extended by [Gee06], if E[3]|GF (ζ3)

is absolutely irreducible then E is

modular (by the usual argument using Langlands-Tunnell). Using the
3-5 trick this also tells us that E is modular if F does not contain

√
5

and E[5]|GF (ζ5)
is absolutely irreducible. It may be possible to remove

the condition that
√

5 6∈ F . If so, one is left to examine elliptic curves
E/F with both E[3]|GF (ζ3)

and E[5]|GF (ζ5)
absolutely reducible. These

all correspond to F -rational points on certain modular curves (see e.g.,
[CDT99, Lem. 7.2.3]). For F = Q there are finitely many such elliptic
curves, but some of the modular curves are genus 1, so over a general
totally real F might have infinitely many points. Also, F. Calegari has
observed that one can make use of the prime 7 using an idea of Jayanta
Manoharmayum’s, which should allow for somewhat stronger results.”

Thus the PI intends to consider the curves of [CDT99, Lem. 7.2.3] over Q(
√

5).
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3 Chow-Heegner Points

Chow-Heegner points, as are being actively pursed by Darmon, Rotger, et al., are
quite general. We consider a special case that has a simple concrete description
due to Shouwu Zhang (see [Tao]). Fix an elliptic curve E over Q. Suppose F is
any other elliptic curve over Q that is not isogenous to E. Let N be the least
common multiple of the conductors of E and F , and fix choices of minimal modular
parameterization maps φE : X0(N)→ E and φF : X0(N)→ F that take the cusp
∞ to the zero point of each curve. Choose a point t ∈ F (C) that is unramified for
the map φF . Define a rational point P ∈ E(Q) by P = PE,F =

∑
z∈φ−1

F (t) φE(z),

where the sum uses the group law on E. The point P does not depend on the
choice of t, since there is no nonzero morphism F → E.

Example 3.1. Let E be 37a and F be 37b. Then P = (6, 14) and [E(Q) : ZP ] = 6.
This follows from [MSD74, Prop. 3, pg. 30]; in addition, they remark: “It would
be of the utmost interest to link this index to something else in the theory.”

There is an analogue of the Gross-Kudla triple product L-function formula
[GK92]; this analogue gives the height of P in terms of other L-values. It is
a generalization of the Gross-Zagier formula, but with the ring class character
replaced by an elliptic curve. It implies that the above construction can only
produce points of infinite order when ords=1 L(E, s) = 1.

Specific Goals:

1. Compute a table of Chow-Heegner points P = PE,F ∈ E(Q) for all pairs
(E,F ) of elliptic curves over Q of equal conductor less than 1000.

2. Compute the corresponding triple product L-functions for the pairs above.
(The PI has extensive experience with Dokchitser’s method [Dok04] for
numerically computing L-functions.)

3. More generally, numerically compute the triple product L-functions for
many pairs of newforms f, g that we can compute to sufficient precision.

4. Compute tables of Chow-Heegner points associated to (E,F ), but with F
varying in a family of quadratic twists.

3.1 Numerical Computation of Chow-Heegner Points

As a result of discussions with S. Zhang, X. Yuan, Darmon, and Rotger, the
PI has refined and implemented a numerical method for computing the point
P = PE,F defined above; a first report on this work will appear as an appendix to
[DDLR11]. The primary goal of the proposed project is not provable correctness of
results, but instead flexible and easy-to-understand code that efficiently produces
a likely correct result, which will provide helpful data, e.g., to those generalizing
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the Heegner-Gross-Zagier-Kolyvagin machinery to this setting. It also provides a
double check on the afformentioned other work to compute Chow-Heegner points.

Assume for simplicity that E and F have the same conductor. Our numerical
strategy is partly inspired by work of Delaunay [Del02].

1. Choose a random (probably) transcendental point t ∈ R/ΩF ⊂ F (R).

2. For some B, e.g., 2000, numerically compute all double precision complex so-
lutions to the real polynomial equation

∑B
n=1

an(F )
n qn = t using balanced-QR

reduction of the companion matrix (implemented in [GSL11]). As necessary,
repeat this and the following steps with integer multiples of ΩF added to t.

3. Using Newton-Raphson, and a much larger choice of B that depends on the
imaginary part of each root, numerically refine the roots to large precision.

4. Divide the roots in the upper half plane into Γ0(N) orbits. If the number
of orbits equals the modular degree of F , map representatives (with largest

imaginary parts) to E using
∑B′

n=1
an(E)
n qn, for B′ sufficiently large. Then

sum up the result and apply the elliptic exponential to obtain a numerical
approximation to the point P = PE,F ∈ E(Q).

5. Simultaneously, as we find roots in Step 3, map them to E(C), and if we
find enough distinct images, add them up to obtain P . By “enough”, we
require that the number of images equals the generic cardinality mE,F of
the map R 7→ πE(π−1F (R)). Of course, mE,F is bounded by the modular
degree of F , but it will be strictly smaller in many cases, e.g., if some Atkin-
Lehner involution fix both E and the fiber π−1F (R). The PI intends to more
fully understand the invariant mE,F ; initial numerical data shows that the
“obvious guess” about how to compute it is right in many but not all cases.

There are numerous subtle parameters in the above strategy. Also, aspects of
the strategy are useful for other investigations. For example, computing informa-
tion about the points on X0(N) over points on higher rank curves (see [Del02]).

The PI’s current implementation can do many examples with conductor up to
a few hundred in a few seconds each, but there are cases, e.g., when the modular
degree of F is large, where it can take many hours.

Similar results can be obtained, with different complexity, using (1) the iter-
ated integral formalism of Darmon et al. mentioned above (see [DDLR11]), and
hopefully (2) by using a new formula of Yuan-Zhang-Zhang [YZZ11] and numeri-
cal computation of triple product L-series to compute the height of PE,F without
computing PE,F . The PI’s initial investigations reveal that the conductors of the
relevant triple product L-series are enormous, which makes (2) challenging, but
not impossible, from a purely computational perspective.
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3.2 The Triple Product Formula

Let f1, f2, f3 be three newforms of weight 2. Consider the degree 8 triple product
L-function L(s, f1, f2, f3) of [GK92], normalized so 1/2 is the center of the critical
strip. Assume ε(1/2) = −1. Let Σ = {v : εv(1/2) = −1} which includes ∞, and
assume #Σ is odd. When Σ = {∞} let X be a modular curve X0(N), with N
divisible by the levels of all the fi. Otherwise, let X be an appropriate Shimura
curve associated to the definite quaternion algebra over Q ramified at Σ− {∞}.

Now suppose the fi correspond to optimal elliptic curves Ei. We have a map
X → E1 × E2 × E3. Suppose moreover that εp(1/2) = 1 for all finite p, so
that Σ = {∞}, hence X = X0(N). Let ∆mod ∈ CH2(E1 × E2 × E3)0 be the
cohomologically trivial modified version of the diagonal ∆ ⊂ X ×X ×X.

Theorem 3.2 (Yuan,Zhang,Zhang). L′(1/2, f1, f2, f3) = (∗) · 〈∆mod,∆mod〉BB,
where the pairing is the Beilinson-Bloch height pairing, and (*)> 0 is “harmless”.

As part of this project we will, of course, have to nail down (*) explicitly. Now
suppose f2 = f3 and the fi correspond to elliptic curves. First,

L(s, f1, f2, f3) = L(s, f1) · L(s, f1,Sym2 f2).

Also, let P be the Chow-Heegner point defined above. We have 〈∆mod,∆mod〉BB =
〈P, P 〉NT, so (L(s, f1) · L(s, f1,Sym2 f2))

′|s= 1
2

= (∗)〈P, P 〉NT.

Now assume that ε(f1) = −1. Then

L′(1/2, f1) · L(1/2, f1,Sym2 f2) = (∗) · 〈P, P 〉NT. (1)

This is analogous to the Gross-Zagier formula, which is

L′(1/2, f1) · L(1/2, f1, ηχ) = (∗) · 〈PK , PK〉NT, (2)

where ηχ is the theta series corresponding to a quadratic character, and K is the
corresponding quadratic field.

3.3 Applications

Extensive numerical data about Chow-Heegner points may provide insight about
some questions. When PK is the Heegner point corresponding to K, the sum∑
〈PK , PK〉qD is a modular form of weight 3/2. Assume that E(Q) is of rank 1.

Question 3.3 (Asked to the PI by X. Yuan). Is there a parametrization of elliptic
curves F so that the points P = PE,F fit into a generating function that is a
modular form of some type?
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Question 3.4. The gcd of [E(Q) : ZPK ] over allK is expected to be
√

#X(E/Q)·∏
cp. Is there an analogue of this for the indexes [E(Q) : ZPE,F ]? In par-

ticular, Gross-Zagier and Kolyvagin’s work connect the index [E(K) : ZPK ] to√
#X(E/K) ·

∏
cp. We speculate that there is a similar relationship between

[E(Q) : ZPE,F ] and the arithmetic of the motiveM attached to L(s, f1, Sym2 f2).
This would address the question of Mazur–Swinnerton-Dyer raised in Example 3.1.

4 Modular Abelian Varieties

Specific Goals:

1. Compute J0(N)(Q)tor and J1(N)(Q)tor when they are cuspidal, for as
many N as we can. Are they always cuspidal?

2. Make a conjecture about the extent to which torsion on modular Jacobians
is cuspidal, and investigate generalizing results of [Maz77].

3. Find an algorithm that given a newform f ∈ S2(Γ0(N)), outputs a com-
plete list of representative abelian varieties in the isogeny class of Af .

4. Create a table of all Q-simple modular abelian variety factors of J0(N)
over Q for N ≤ 1,000, and a similar table for J1(N).

5. Formulate a generalization to higher dimensional abelian varieties of the
p-adic analogue of the Birch and Swinnerton-Dyer conjecture.

6. Attempt to extend to Q(
√

5) the algorithm from [CS01] for computing
Tamagawa numbers of purely toric modular abelian varieties.

4.1 Torsion

The PI made the following conjecture in [CES03, Conj. 6.2]:

Conjecture 4.1. For every prime p, the group J1(p)(Q)tor is generated by the dif-
ferences of cusps on X1(p) over the cusp∞ of X0(p); equivalently, #J1(p)(Q)tor =
p

2p−3

∏
ε6=1B2,ε, where the product is over even Dirichlet characters of conductor p.

In [CES03], the PI verified the above conjecture for all primes p ≤ 157, except
for p ∈ S = {29, 97, 101, 109, 113}. He did this by using modular symbols to
compute the characteristic polynomials of Hecke operators, hence of Frobenius,
hence compute #J1(p)(F`) for many `, and deduced a multiple of #J1(p)(Q)tor.
For any modular Jacobian J , there is the following more refined (and initially
much slower) approach to computing a group that contains J(Q)tor. For ` - N , let

η` = T` − (1 + 〈`〉`) ∈ End(J),
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where 〈`〉 is the diamond bracket operator. Using the Eichler-Shimura relation,
we see that J(Q)tor ⊂ J [η`]. Let C be the subgroup of J(Q)tor generated by
differences of cusps, and I the ideal generated by η` for all `.

Question 4.2. Is it always the case that J [I] ⊂ C?

The PI has an algorithm to answer Question 4.2 in any particular case. Also,
[Ste82] computes the action of GQ on C, so one can compute C(Q). Thus when
J [I] ⊂ C, we have an algorithm to compute J(Q)tor = C(Q). The PI arrived at
this approach in joint work with Löıc Merel in Summer 2010.

Applications:

• Computing J1(29)(Q)tor was needed to efficiently rule out the existence of
a 29-torsion point on an elliptic curve over quartic field (see Section 5).

• If we can compute J(Q)tor, then it is straightforward to compute Af (Q)tor
for each abelian variety Af ⊂ J attached to a newform using a straightfor-
ward application of the representation in Section 4.2.

• Complete understanding of Question 4.2 in the case of J0(p) was one of the
main contributions of the landmark paper of Mazur [Maz77], and it would
be useful to have at least a conjectural sense of how that result extends.

• Determining J0(N)(Q)tor for various composite N arises in recent unpub-
lished work of Elkies on computing certain Shimura curves.

4.2 Enumeration

A simple abelian variety A over Q is of GL2-type if End(A) ⊗ Q is a number
field of degree dim(A). A theorem of Ribet [Rib92] combined with the proof of
Serre’s conjecture [KW08] implies that every GL2-type abelian variety over Q is a
quotient of J1(N) for some N (and conversely). The main goal of this project to
generalize some aspects of Cremona’s tables of elliptic curves to higher dimension.
First we need to find an algorithm for enumerating all simple GL2-type abelian
varieties over Q. The algorithms discussed in this section do not make any use of
defining polynomial equations, so they allow us to treat all dimensions uniformly,
reducing most questions to problems of linear algebra and module theory.

We represent modular abelian varieties over Q explicitly as follows. For sim-
plicity, assume J = J0(N) for some N , though everything generalizes. Fix a
modular abelian variety A and a finite degree homomorphism ϕ : A → J . Then
there is an isogeny from the image B = ϕ(A) ⊂ J back to A whose kernel we
denote by G, so A is isomorphic to B/G and B ⊂ J :

J

0 // G // B
?�

OO

// A //ii

ϕ
__@@@@@@@

0
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It remains to explain how we specify G ⊂ B ⊂ J .
We specify B as follows. The inclusion B ↪→ J induces an inclusion of rational

homology H1(B,Q) ↪→ H1(J,Q) and B is determined by the image V of H1(B,Q)
in the Q-vector space H1(J,Q). We explicitly compute a basis for H1(J,Z) and
H1(J,Q) = H1(J,Z)⊗Q using modular symbols [Ste07b], and specify B by giving
a basis in reduced echelon form for a subspace V ⊂ H1(J,Q). Not every subspace
is valid, but there is an algorithm to determine which are.

We specify G as follows. Suppose V defines B ⊂ J . By the Abel-Jacobi
theorem, we have J(C) ∼= H1(J,R)/H1(J,Z), and letting Λ = H1(J,Z)∩V we have
B(C) ∼= (V ⊗R)/Λ. In particular, B(C)tor ∼= V/Λ, and we specify G ⊂ B(C)tor
by giving the lattice L with Λ ⊂ L ⊂ V such that L/Λ ∼= G.

We represent morphisms in terms of the above data. The PI has found an
effective algorithm (unpublished) that, given simple modular abelian varieties A
and B, either proves that A and B are not isomorphic, or returns an explicit
isomorphism between them. The main idea is to use an explicit isogeny B → A
to embed Hom(A,B) in a number field, then solve a norm equation.

To enumerate modular abelian varieties of given level, we first enumerate new-
forms f using modular symbols and linear algebra as in [Ste07b]. To f , we consider
Af ⊂ J , presented as above. Using module theory of the Hecke algebra T, we
hope to devise an algorithm to write down all candidate isogenies Af → B. Then
we find one representative abelian variety in each isomorphism class, and finally
construct the minimal isogeny graph between the representatives. The PI is not
sure how to do this, but has some ideas, e.g., using that the Galois representations
ρssf,p determine the isogenies and are determined by f .

4.3 p-adic BSD

J. Balakrishnan’s 2011 MIT Ph.D. thesis contains a generalization to Jacobians
of genus 2 modular curves in [FpS+01] of the conjecture for elliptic curves in
[MTT86]. Part of that thesis involved computing p-adic L-series of modular
abelian varieties, which was joint work with the PI, and another part involved
computing p-adic regulators (using Coleman integration), which involved collabo-
ration with Jan Steffen Mueller. The conjecture she gives is still not complete, in
that there is a potential sign ambiguity that has not yet been pinned down.

The PI intends to continue collaborating with Balakrishnan on this project.
In addition to generally assisting with enumerating data about modular abelian
varieties that will be useful in formulating a general p-adic BSD conjecture (with
evidence to back it up!), he intends to carry out the following specific projects:

1. Riemann Sums: Create an optimized implementation of the Riemann sums
algorithm for computing p-adic L-functions associated to arbitrary new-
forms. The PI has substantial recent experience with this in the case of
elliptic curves as a result of the large tables he created for [SW11].
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2. Overconvergent Modular Symbols: Create an optimized implementation of
the Pollack-Stevens-Greenberg approach to computing high precision p-adic
L-functions using overconvergent modular symbols. The PI has done prelim-
inary work on planning such an implementation while attending the lectures
by Pollack-Stevens on this algorithm at the 2011 Arizona Winter School.
Ben Lundell, who is a new postdoc at Univ. of Washington, was in the
Pollack-Stevens project group at AWS, and intends to collaborate with the
PI on this implementation.

4.4 Tamagawa Numbers of Abelian Varieties over Q(
√
5)

The algorithm of [CS01] makes it possible to compute the odd part of the Tam-
agawa number of any optimal simple modular A = Af over Q at a prime p of
purely toric reduction. Some reasons Tamagawa numbers are of interest include
their appearance in the Birch and Swinnerton-Dyer formula, and their relation
to congruences between modular forms. The main inputs to the algorithm in
[CS01] are computation of the modular degree of A, and computation of a certain
local-at-p analogue of the modular degree of A using rational quaternion algebras.

Now suppose instead that A is a purely toric modular abelian variety over
Q(
√

5) associated to a Hilbert modular newform f , and that some prime p exactly
divides the level. The algorithm (of [Dem04]), which uses quaterion algebras to
compute f , may yield an analogue of the local-at-p modular degree mentioned
above. The PI is optimistic that there is an analogue of [Wat02], which might
lead to an algorithm to compute the global modular degree of A as a quotient
of the Jacobian of the relevant Shimura curve. Combining all this may yield an
algorithm to compute the odd part of the Tamagawa number of A at p.

5 Torsion on Elliptic Curves over Number Fields

Specific Goals:

1. Write up and publish a theorem that classifies the possible primes p that
divide #E(K)tor for some elliptic curve E over a quartic field K. (Joint
with Sheldon Kamienny, Michael Stoll and Maarten Derickx.)

2. Generalize these methods to classify what we can about the primes that
divide #E(K)tor for E an elliptic curve over number fields of degrees 5,6,7.

The PI, Maarten Derickx (a graduate student of Bas Edixhoven in Leiden, Hol-
land), Sheldon Kamienny, and Michael Stoll have been collaborating on a project
to explicitly determine possible torsion points on elliptic curves over number fields.
In particular, we have devised, implemented, and run code to verify the following:
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Theorem 5.1. Suppose E is an elliptic curve over a number field K of degree 4,
and p | #E(K)tor. Then p ∈ {2, 3, 5, 7, 11, 13, 17}, and every such p occurs.

The PI intends to write this result up for publication, including incorporat-
ing new work of Maarten Derickx that makes the modular symbols part of the
computation very efficient (with these improvements, the computation takes only
minutes!): this is an application of [Par00] that rules out primes with 29 < p ≤ 97.

Dealing with 19 < p ≤ 29 involves application of results of [CES03] and compu-
tation with models for modular curves using Riemann-Roch spaces (see [Hes02]).

Maarten Derickx has coded an unpublished refinement of the above strategy,
which yields results for degrees up to 7, and specific computational challenges, as
summarized below. Let S(d) be the set of primes that divide the order of a torsion
point on an elliptic curve over a number field of degree ≤ d, and let P (N) be the
set of primes ≤ N . Our current knowledge of S(d) is:

S(d) ⊂ P ((3d/2 + 1)2) Merel-Oesterlé

S(1) = P (7) Mazur

S(2) = P (13) Kamienny-Mazur

S(3) = P (13) Parent

S(4) = P (17) Kamienny-Stein-Stoll

S(5) ⊇ P (19) Derickx

S(5) ⊆ P (19) ∪ {29, 31, 41} Derickx

S(6) ⊆ P (41) ∪ {73} Derickx

S(7) ⊆ P (151) Derickx

6 Congruences, Visibility, and Heegner Points

This project involves proving new results and develop computational techniques
related to congruences, visibility, and Heegner points.

Specific Goals:

1. Study visibility of elements of order 7 and 11 of X(E/Q), jointly with Tom
Fisher. Exhibit examples of visible of elements of order 7, and prove that
there is some c ∈ X(E/Q)[7] that is not visible in any abelian surface,
showing that the visibility dimension is sometimes larger than 2.

2. Construct cohomology classes on rank 2 curves using Heegner points. In
particular, for every (optimal) elliptic curve E over Q of conductor up to
1000 and every prime p = 3, 5, 7, use congruences to construct a nonzero
cohomology class in Sel(p)(E/Q) attached to a Heegner point.
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6.1 Visibility of Shafarevich-Tate Groups in Abelian Surfaces

Let E be an elliptic curve over Q. Mazur proved in [Maz99] that each c ∈X(E)[3]
is visible in an abelian surface, which means that associated to c there is an abelian
surface A and an inclusion ι : E ↪→ A such that c 7→ 0 under the induced map
X(E) → X(A). Klenke [Kle01] proved the same result for elements of order 2
in H1(Q, E). Note that F = A/ι(E) is an elliptic curve, and A ∼= (E × F )/Φ,
for some subgroup Φ of A, so we can view A as built from E and F by gluing
along a finite subgroup. For p = 7, there are finitely many elliptic curves F with
E[7] = F [7] and recent work of Fisher ([Fis11]) provides powerful techniques for
finding many of these curves. He has considered hundreds of examples from [Cre]
of E with 7 | #X(E/Q), and in many cases finds another curve F which explains
an element of order 7 in X. In some of the explicit remaining cases, we expect
that there is some c ∈X(E/Q)[7] that is not visible in any abelian surface.

Challenge 6.1. In collaboration with Fisher and M. Stoll, prove (assuming GRH)
in at least one case that c ∈X(E/Q)[7] is not visible in any abelian surface. This
may involve rational point computations on twists of the Klein quartic X(7).

Moreover, in cases when c is not visible in an abelian surface, the next step is
searching for a 2-dimensional modular abelian variety Af such that E[7] ↪→ Af [7],
and then establishing that c is visible in an abelian 3-fold that is isogenous to
E × Af . Here, we may assume the BSD conjecture, since computing algebraic
ranks of higher analytic rank abelian varieties without explicit equations is often
not feasible. This will shed light on the following conjecture and question:

Conjecture 6.2 (-). Every element of X(E/Q) is modular, i.e., visible in some
modular Jacobian J0(N).

In [AS02, §2], the PI introduced a notion of visibility dimension of c ∈X(E/Q),
which is the smallest dimension of an abelian variety A such that E ↪→ A and
c 7→ 0 ∈X(A/Q). For example, if c has order 2 or 3, then the results above show
that visibility dimension of c is 2; in general, a restriction of scalars construction
of the PI (see [AS02, §1.3]) shows that it is at most the order of c.

Question 6.3. If c ∈X(E/Q) has order 7, is the visibility dimension at most 3?

This project would improve tables and software for computing with modular
forms. We will have to search for many degree 2 newforms of relatively high level,
and compute their L-series and some arithmetic invariants.

6.2 Kolyvagin Classes and Visibility

The PI has written three papers about Heegner points on elliptic curves of rank
≥ 2, and Kolyvagin’s construction of cohomology classes. Without going into
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technical details, for any elliptic curve E over Q, quadratic imaginary field K
satisfying certain hypotheses, and certain squarefree integers λ and prime powers
`n, there is a cohomology class τE,λ,`n ∈ H1(K,E[`n]), which is constructed in a
natural way from the Heegner point yλ ∈ E(K[λ]), where K([λ]) is a ring class
field. Kolyvagin’s conjecture is that for every ` there is some n and λ such that
τE,λ,`n 6= 0. This implies a structure theorem for the Selmer group (see [Kol91a]).

The PI’s first paper, [JLS09] uses numerical techniques to directly compute a
Heegner point over an extension of the field K = Q(

√
−7) on the rank 2 elliptic

curve E =389a over Q, and verifies that this point gives rise (via [Kol91a]) to
a nonzero class in Sel(3)(E/Q). This was the first example that showed that
Kolyvagin’s construction gives rise to a nonzero class. The second paper, [Ste10]
used the construction to define subgroups of E(K) that conjecturally satisfies a
higher rank analogue of the Gross-Zagier formula. The third paper [Ste11] mimics
and refines the argument of [Cor02] and uses rational quaternion algebras to verify
algebraically that many specific Kolyvagin classes are nonzero.

The proposed project (Goal 2 on page 13 above) involves a fourth strategy for
investigating Kolyvagin classes, which is illustrated by the following (unpublished)
theorem, whose proof is a relatively easy exercise in Galois cohomology.

Theorem 6.4 (–). Suppose E and F are optimal elliptic curves of the same
conductor N , and that E[`] is irreducible. If E[`] = F [`] as subsets of J0(N),
then τE,λ,` ∈ H1(K,E[`]) and τF,λ,` ∈ H1(K,F [`]) are identified by the canonical
isomorphism induced by the equality E[`] = F [`] in J0(N).

For example, take for E the curve 681c of rank 2, for F the curve 681b of
rank 0, take ` = 3, and K = Q(

√
−8). We have [CM00, AS05] that E[3] = F [3] ⊂

J0(681). Thus Kolyvagin’s conjecture would follow if we knew that some τF,λ,3 6= 0.
A computation shows that ord3([F (K)/tor : ZyF,K ]) = 1, and visibility (as in
[CM00]) shows that 9 | #X(F/K)[3]. Kolyvagin’s structure theorem [Kol91b]
applied to F then implies that some τF,λ,3 6= 0. Usually, verifying the hypothesis
of Theorem 6.4 amounts to showing that ord`([F (K) : ZyF,K ]) = 1 and using
visibility to show that X(F/K)[`] is nontrivial ([GJP+09, §3.5] is helpful).

1. Verify the hypothesis of Theorem 6.4 in as many cases as possible given the
speed of the algorithms mentions above.

2. Generalize Theorem 6.4 to cover the case of congruent elliptic curves of differ-
ent conductor. In general, this is significantly complicated by the existence
of several degeneracy maps between the modular curves of each level.

3. Generalize Theorem 6.4 to replace F by an abelian variety Af attached to
a newform of any level. The main difficulty in applying this result would be
that the PI does not know of any way to verify the analogue of the hypothesis
that ord`([F (K) : ZyF,K ]) = 1. The PI hopes to find a way in particular
cases or prove a general congruence theorem that, under suitable hypotheses,
ensures the existence of such an Af .
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J. Théor. Nombres Bordeaux 20 (2008), no. 2, 373–384. MR 2477510
(2010d:11047)

[KW08] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (i),
Preprint (2008).

[Maz77] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes
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