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INTRODUCTION

A more complete title might be “a survey of the arithmetic of qunnfrniun
algebras and their connection with modular forms on P'E(N) together with an
alporithm for computing modular forms on I,(N)."" Consider the modu!ar sub-
group T (N) of level N, Iy = (G Ye SL2,Z) | ¢ = 0(mod N)}. Tt is well-
Enown that there is  close connection between the theory of modular forrns. of
even weight £ = 2 on I'y(N) and the arithmetical theory of r:lllional quaternion
algebras. This connection was first noticed by Hecke [13_] in ]94!.? when he
conjectured that all cusp forms of weight 2 on Iy p), p a prime, are linear com-
binations of certain (explicit) theta series attached to the norm form of a
certain quaternion algebra. Hecke's conjecture (or rather a slightly weakened
version of it, the original conjecture being false—see Remark 2.16 bu1‘nw)
was proved Eichler [12] in 1956. Eichler's results have now been generalized
by Eichler [13, 14], Hijikata and Saito [21], and Pizer [36] so that we now can
handle the case of cusp forms of even weight k& = 2 on I'y(N), N not & perfect
square. In general, if NV is not prime, we do not obtain all cusp forms of given
weight on I,(N) as linear combinations of (generalized) theta series, but only
those cusp forms that lie in a certain subspace (which docs however contain all
the “newforms”—see Section 2) which can be described (see Corollary 2.29)
in terms of the “newforms” and “oldforms’ of Atkin and Lehner (sce [2]).

The purpose of this paper is to present an explicit algorithm based on the
above theory, which is suitable for computer implementation, for computing
the subspace of the space of cusp forms on I(N) that is gencrated by thet
series and for eomputing the matrix representation of the Hecke operators on
this subspace. Sections [ and 2 give a rather complete survey of the relevant
theory of quaternion algebras and modular forms. The remainder of the paper
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18 devoted 1o developing procedures for doing arithmetical caleulations in
rational quaternion algebras,

A major tool in our algorithm is a procedure for calculating the number of
times a positive definite integral quadratic form represents the positive integers
1,2, 3.... (the so-called representation numbers of the quadratic form). This
procedure, which we believe is quite efficient, may be of independent interest.
It is given in Section 6. In Section 5, we give a canonical basis for a maximal
order in any rational quaternion algebra ramified at precesely one finite prime.
This is very well-known for the quaternion algebra ramified precisely at 2 and
0, (*Hamilton's quaternions with cocfficients in 0"}, but daes not seem 10 Be
known in general and may be of interest,

The contents of the sections are as follows. In Section | we give a sketch of
the algebraic and arithmetic theory of rational quaternion algebras. Section 2
contains a sketch of a litle of the theory of modular forms on I,(N) and it= con-
neetion with theta series arising from quaternion algebras, Section 3 gives a
sketch of the algorithm and Sections 4 through 8 give in detail the major com-
ponents of the algorithm. The titles of these sections are: Section 4: Some Needed
Procedures; Section 5: Finding an Order of Level N; Section 6: Calculating the
Representation Numbers; Section 7: Finding Representatives of the Ideal
Classes; Section 8: Calculating the Theta Series and the Brandi Matrices. It
18 the Brandt matrices that give the action of the Hecke operators (see Section 2).
In Section 9 we give several numerical examples computed using the algorithm.
These illustrate important points in the theory of Brandt matrices. Also
Theorem 9.1 shows that the action of the canonical involution on S.( p) is given
by the Brandt matrix By( p; p, 1) and hence is explicitly computable,

From Definition 1.7 on the notational conversion preceding Defimition 1.7
will always be in effect, Also we let exp(x) = &7 and use this natation through-
out the paper.

The algorithm has been implemented in Dec 10 Algol 60 at the Brandeis
University Computer Center and also at the Medical Center Computing Facility
at the University of Rochester.

|. QUATERNION ALGEBRAS

Let F denote either the field © of rational numbers, the field Oy of p-adic
numbers (p a prime), or the field B of real numbers. A guaternion alechra A
over I is a central simple algebra of dimension 4 over . It is well-known (since
A contains a field of degree 2 over F) that any quaternion algebra A over /i
has a basis 1, i, j, k over F such that multiplication in A'is given in terms of the
basis by the following relations: 1 is (obviously) the identity of 4, * =
ji=b, ij = k = —ji, where a and b are some nonzero elements of F (see
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[7, Chap. g, Sect. 11, No. 2])- Conversely, given any a, be F* (in gullr.'rfll fu';
any ring R, we denote by R* the invertible elements of R); the nhru\-c basis ;Iln' .
rel.ations define a quaternion algebra oyer F (see [2.4. 1[!. 52]). We ‘.l:?,om l)nh
quaternion algebra by (a, &) or more simply by (a, 8)ifFF = 0, (a. :‘:)p‘n ; - O
b if F = R We will be careful so that there should be no t.u.n usion as
- (‘-JI. hr- {a, b) denotes the rational quaternion algebra or the greatest common
td‘,:!\?":l:l ::rf a':md b. For example (—1, -1),, is Hamilton's quaternions and
(;‘”Iﬁ; is just the {quaternion) algebra of 2 X 2 I‘.n:f.tl‘i(‘.l:s over (. All our c.({r:c{i;u.-
rations will be done in terms of the basis 1,1, j, & of the quaternion @lge i
: Engz;':.?;zlcl\' there does not scem 1o exist a good reference fn.r.llu: :t]gubr:uc.
and ar‘ithmelic‘lhmr_\‘ of quaterion algebras that we require. Thus it aur{ls
worthwile to sketch the theory we need giving references for most proofs. We
begin with the algebraic theory.
1f 4 is a quaternion algebra aver 0, welet 4, =

A ®g O, which is a quater-
_ Similarly we let O, = R, A, = A4 @R and call the
“infinite prime’” on Q0. If A = (a, b), (Ih\’iousiy A,
(a, b), - Over @, or R there is up to isomorphism _nnl_\' two, quaternion algebras:
the 2 % 2 matrix algebra and a unique quaternion dl\'lSl?n algebra (sce [24_1.
p. 154; 48, p. 184]). We can write (a, b), = 1 if (a, )5 15 tiu:_2. % 2 matrix
algebra and (g, ), = 1 if (a, b), is the unique quaternion division algeb;
over 0,. Similarly for (a, b). . With this convention (a, b), becomes the
ilbert symbol (see [24, p. 157)). I
Hﬂ[i';“; = (a, E('a] he[ a qiater{:lion algebra over 0. A 'p:"imc p of Q is s:u% t:
ramify in A if 4, is a division algebra and 18 Sfxid to sph:.m Aif A, 1s‘thc 2xX72
matrix algebra. The set of primes ramifying 1n A is finite and even 1in nufnber
(if we count the infinite prime) because of the pmduct.f{:rmula for .Hlibl:ﬂ
symbols [T,(a, &), = 1 for a, be Q= where the pro(.?ucl. is over all primes P
i;lcluding o (sec [24, p. 181]). Further, the set uf. ramlf?m? primes determines A
up to isomorphism and conversely given any sct S consisting of an cven number
of distinct primes, there exists a (unique) quaternion algebra over O ram1ﬁ|f_(l pre-
cisely at the primes in S (sce [30, Theorems 71.19, 66.6, anld 57.8]). Given a
and b e 0%, determining which primes ramify in 4 = (a, b) is an casy exercise
in evaluating Hilbert (or Legendre) symbols (sce [24, pp- 164 and 13?]), In this
paper we will only be concerned with quaternion algebras that ramify at pre-
cisely one finite prime (and hence also at o). Proposition 5.1 below gives for
each finite prime the corresponding algebra.
Let A — (a, b)s . We define conjugation on A by the
xi+y +zked, w %Y z,eF, then & = w0 — i

nion algebra over O,
absolute value on O the

following: if « = & +

depends only on 4 and is independent of the particular choice of a, b uf-::d to
define A (see [30, p. 145)). Easy calculations show thatas = a&, &+ B =& +p
pe A. The (reduced)

norm N and (reduced) trace Tr of A are defined by N(=) = ox and Tr(e) =

=& ifmdonlyiruEFfurallaeF,m,

af=PFa,E=nanda

— yj — ak. Conjugation
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o+ & Clearly if o = w+ xi+ yj + ke d = (a, b)p, then N(a) = w?* —
ax® — by* + abz? and Tr(s) = 2w. For example if 4 = Mat(2, F), then

a b
(¥l

Note that N can (and will) be viewed s a quadratic form on the four-dimen-
sional vector space A over F. Further if A = (a4, b) is a rational quaternion
algebra, then N is a positive definite form if and only if 2o ramified in A if and
only if @ < 0 and b < 0.

The above covers the algebraic theory that we need. We now sketch the
(less well-known) arithmetic theory. Let 4 be a quaternion algebra aver O
{or 0,). A lattice on A is a free Z (or Z,) submodule of A of rank 4. An order O
of A is a lattice on A which is also a subring containing the identity, For example,
Mat(2, Z)is an order of Mat(2, 0). It is easy to see that if a belongs to some order
of 4, then Tr(e) and N(a) belong to Z (or Z,) (see [41, Theorem 10.1]).

Now let 9 be a quaternion algebra over Q. If L is a lattice on U, we denote
byL, the lattice L (2, Z, of 2, . An order @ of % (or of ) is said to be maximal
if it is not properly contained in any other order of U (or 2U,). € is a maximal
order of 91 if and only if @, is a maximal order of 2 forall p < a0, i.e., for all
“finite’’ or non-Archimedian primes (see [41, Corollary 11.6]). If 2L is a division
dlgebra (p < o0), there is a unique maximal order ={xe U, | N(x)=Z}
(see [41, Theorem 12.8] or the sentence preceding Proposition 1.1 below). 1f
91, is split, then all maximal orders of 2, are conjugate to the order ZsZ3) by
an element of U7 (see [41, Theorem 17.3]). Also any order is contained in 2
maximal order (see [41, Corollary 10.4]).

Fix a prime p and let L denote the unique unramified quadratic field extension
of 0,. L = 0,(572) if p =2 and L = O (1) for p = 2 where ucZisa
quadratic nonresidue mod p (see [24, p. 161, Corollary 2.24 and p. 151, Remark
2.7)). Consider the O,-subalgebra A of Mat(2, L) given by

o

i M,oﬁ« iv) l“'ﬁe"‘i'

where @ denotes conjugation of LJQ, . A direct calculation shows that A is a
quaternion division algebra over @, . The norm NN and trace Tr of A are res-
pectively the determinant and trace of Mat(2, L) restricted to A. Let R denote the
| set of integers of L (R = Zy + Zu((1 + S'#)[2)if p = 2and R = Z, + Z,u'l*
if p > 2 in the above representation of L). A direct calculation shows that

1 — I
f J. N = det, and Tr = trace.
=g

(1.1)

[+ 4

o= ](pﬁ" ﬁ*']

s the (unique) maximal order of 4 since if « belongs to an order, then N(a) € Z,
which implies a € 0.

a.ﬁERl
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Prorosirion 1.1, Let U be a rational quaternion algebra ramified precisely
af Py s Pa ooy Poy and 0. Then an order € of N is maximal if and only if dise((V) =
(By: p-,}f, the discriminant being taken respect to the norm form N of .

Proaof. Tr(xy) = Nix + ¥) — N(x) — N(») is the bilincar form associated
w N If ¢ e, is @ Z-basis for a lattice L, then by definition disc(L) =
det(Tr{e.é,). 1f M is an order, obviously disc(M) € Z and disc(.-‘s_-f] = () as ‘.F'
is positive definite. Thus we need only show (since @ is |1l:l.‘<il“:l|.ll’ and only Ilf
@, is maximal for all p) that for p split, €, is maximal in 20 if and .Unl'r if
dise(0’,) = 1 (mod U.?), U, the units of Z, and for p ramified, C-.,, is maximal in
91, if and only if disc{d ) = p* (mod U,7). But easy caleulations shu\_v that
disc(ZrZs) = 1 and disc(€,) = pt where @, = {(,50 .,"")_I o, BER} Is l.ht
maximal order of A4 given by (1.1). This shows the “only if"" part. The “if"*
part then follows from 82.11 of [30] as any order is contained in a maximal order.

Deenamion 1.2, Fix a prime p. Let 9 be the rational quaternion algebra
ramified precisely at p and . Letr be a nonnegative integer and let M be any
positive integer prime to p. An order O of 9 is said to have level N = p*+'M
if @, is isomorphic over Z, (i.c., conjugate by an e!emfmt of U to (;-?'2‘_ 5:}
forall g = pand if @, is isomorphic over Z,, 10 {(,» 50 ¥2) | o, B € R} where 9
is identified with 4 as in (1.1) and R is the set of integersin L, the unramified
quadratic field extension of O .

Remark 1.3. Any positive integer N, not a perfect square, can be represented
as N — p*=1M for some p and M, p1 M.

Remark 1.4, The orders defined in Definition 1.2 are maximal if and only
ifr—0and M — 1. The case r = 0 and M square free was first studied by
Eichler [11] and are now called Eichler orders. The caser = 0 and M arbitrary
was studied by Hijikata in [19]. The general case has been studied by Pizer in

(33)-

T e T T T e e e e

Remark 1.5. Let N be a positive integer, not a perfect square. The orders '

of level N are of interest principally because of their connection with modular
forms on (V). One reason this may be s0 is because of the following. Cansider
@ — (% %), an order of Mat(2, ©). Then Fy(N) is “essentially’’ (i.e., has index
2 in) the unit group of @'. Now let N = p*~1M, p £ M for some prime p. Let U
be the quaternion algebra over O ramified precisely at p and oo and let @ be an
order of level g7 M in A, Then @ = @, for all g  p. Further G; (:-jz' R =
(paen B) = (5ip 55) = O, @), R where R is the ring of integers of L, the
unramified quadratic field extension of O, . Thus @, and @, are both essentially
subrings of (551, §) fixed by certain (different!) Galois actions induced by the
Galois group of L0, and thus they can be viewed as twisted versions of each
other. Hence @ and @ are locally isomorphic at all primes g 4 p while at p
they are almost isomorphic. Thus it should not be too surprising that there are
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close connections between theories involving @ and ¢. We should note that we
do not have to restrict our attention to quaternion algebraz which have only one
finite ramified prime. We ean define orders analogous to those defined in D‘;ﬁn]

2 . o 5 =
tion 2.1 for any rnlloqu] quaternion algebra (definite or not) and the arithmetic

of all of these orders is closely connected with the theory of modular forms on
T'y(N) (see [20, 36]). However, as this added generality does not allow us to

generate any more modular forms, for simplicity we restrict our attention to
the case covered by Definition 1.2,

Prorosition 1.6, Let U be as in Definition 1.2. An order
5 ¥ Ty e
PTAM if and only if Pl
(i) disc(0) = (g*r+1M)2,
(i) @, contains a subring isomorphic over Z, to R, the integers in L, the
unramified quadratic field extension of Q. , and

(iii) O, contains a subring isomorphic over Z, to Z, % Z, for all primes q | M.

Proof. Assume @ has level p**1M. Then (i) and (iii) are obvious and (1) is
shown by easy local calculations after Proposition 1.1. Conversely, by [35,
Proposition 2; 19, 2.2 on p. 65, (i1) and (iii) imply that @ is an order of level
pM for some s and MY, p £ M. Then (i) implies 5§ = r and M’ = M.

For the remainder of this paper fix a positive integer N, not a perfect square,
and a prime p such that N' = p*#10] with p + M. U will then always denote the
quaternion algebra over O ramified precisely at p and co. An order of level N
will always mean an order of level p*+1M in [

Dermvrmion 1.7, Let @ be an order of level N in 9. A left O-ideal 1 s a
lattice on U such that I, = @.a, (for some a, € U.7) for all p < o0. Two left
C-ideals [ and [ are said to belong to the same class if I = Ja for some a = 2=
Onc has the obvious analogous definitions for right O-ideals,

Dermvimion 1.8, The class numbers of left ideals for any order & of level
N = p2+10 is the number of distinct classes of such ideals. We denote this
class number by H( p*r=M).

Derisition 1.9, The type number of orders of level N = piriidl in 2 s
the number of distinet isomorphism classes of orders of level N in 9. We denote
the type number by 7'(p*r+iM).

Trrorem 1.10:  The class number H(p*~2M) is finite and independent of the
particular order of level N = p**+\M used in its definition. Further the type number
always satisfies T(p* M) < H(p M),
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Proof. This is classical for maximal orders (sec Artin [1] and Eichler [10]).
For the general case see Pizer [37, Propositions 2.13 and 2.15]. Sec also Proposi-
tion 1.21 below.

Remark 1.11. Explicit formulas for the class and type numbers exist. For
H(pM), M square free see Eichler [11]; for H( pM), M arbitrary see Pizer [34];
for T(p1) see Deuring [9]; for T(pM), M square free sce Pizer [33] or Peters
[32]; and for T(pM), M arbitrary see Pizer [34]. A formula for the type number
in the most general case is not yet known. However the class number formula
is known in the general case. As we need that result, we record it here as:

Tueorem 1.12. Let p be a prime and M a positive integer prime to p. Let r
be a nonmegative integer. Let @ be an order of level N = p*='M in the quaternion
algebra over O ramified precisely at p and co. Then the class number H(p*r'M)
of left O-ideals is given by

H(pM) = 2 (1 —})) il 1+ %]

(
%(l = ('_?4}) Il {l + (-_‘:—4” if 44N
2 if 4N
%(1 F (_73)) I (1+ (_73)) i 9rN

M

0 if 9|N.

4=
i

Here the product is over all distinct primes q dividing M and (*|*) is the Kronecher
symbol. In particular (—4/2) = (—3[3) = 0 and (—3/2) = —1.

Proof. The Brandt matrix By(1; p**!, M), sce Definition 2.13 below, is the
H X H (H = H(p*'M)) identity matrix (see Remark 2.20 below). Hence
H = Tr(B,(1; p*r+, M)) and we need only employ the general trace formula
for Brandt matrices given by Theorem 26 of Pizer [35].

Remark 1.13. Note the similarity of the formula for the class number with
the formula for the dimension of the space of cusp forms of weight 2 on I'y(N)
(=genus of H*[I'(N)), see Ogg [29, Chap. IV, Proposition 14]. The reason for
this is given by Corollary 2.29 below.

PEWITIGN 1.14. Let I be a (left or right) @-ideal for some order @ of level
Nin 9. The left order of I = {a e U | al C I} and the right order of I =
{faeW | [aC I}

Remark 1.15. If I is an ideal of an order of level N, then its left and right
on?.trs hzfve level V (see [37, Definition 2.14 and following]). Also if T is a left
O-ideal, its left order is obviously @ and similarily for right ideals,
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Derrxrrion 1,16, The norm of an ideal, denoted by N(I), 1s the positive
rational number which generates the fractional ideal of O generated by
(N(a) | @& I}. The conjugate of an ideal /, denoted by 1, is given byl = {a|ael}.
The inverse of an ideal, denoted by I, is given by [} = {ae U | Jal ST}

The set of ideals, left and right, attached to all orders of (a fixed) level N
in 91 form a Brandt grouppoid (see [41, p. 201]). If we have two ideals / and [
with the right order of I equal to the left order of [, then I [ (=all finite sums
Yy fyjy with iy £, jy € [) is an ideal with left order equal to the left order of 1
and right order equal to the right order of [ (see [41, p. 201]). Relations which
hold among the above concepts are given by:

Proposition 117, Let @ be an order of level N. Let I be a left O-ideal with
right order @'. Then

() I is a left O'-ideal with right order 0 and N(I) = N(I).
(b) I-Yis a left O'-ideal with right order 0 and N(I7*) = N(I)=
() Ir=0ad I =0
(d) II = ON(I) and II = ¢'N(I).
© I =N
(F) if [is a left O'~ideal, then N(I]) = N(I) N(}).
Proof. These facts are almost obvious. For help with the proofs one can sce

7).

Prorosition 1.18. Let I and | be left O-ideals. Then I and | belong lo the
same class 1f and only if there exists an element « & JI such that N(z) = N(I) N(J)-

Proof. Let O be the right order of J. Assume/and J belong to the same classs
i, there is a f €9 such that I = JB. Note that N(g) = N(I)/N(J). Then
JI= JJB = C/(N(J)B). Thus « — N()3 J1and N(&) = NU} NON(J) =
N(I) N(J). Conversely if a & JI with N(x) = N(I) N(J) = N(J) N(1) = N(J),
then @« C JI and N(@'a) = N(JI). Then an easy local calculation (see, e.g.,
[37]) shows that 0'a = JI. Hence N(J) = JJI = J0'a = Jox and I = JB
with B = «/N(J).

Remark 1,19, All elements of JI have norm divisible by N(I) N(J) so that an
a5 in Proposition 1,18, if it exists, would be a nonzero element of JI of minimal
possible norm, Thus our procedure REPRESENTATION. NO (see Section 6)
will quickly determine whether or not such an « exists,

Note that in the proof of Proposition 1.18 we have also proved

CoroLLARY 1,20, A left O-ideal I contains an element « with N(x) = N(I)
if and only if I is in the same class as 0 (in fact if and only if I = Cx).
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ProrosiTioN 1.21. Let & be an order of level N in . Let Iy oy Iy be
complete set of representatives of all the distinct left @-ideal classes. Let (0 be the
right order of Iy, j = Ly H. Then ITMy o I7M, is a complete set of representa-
tives of all the distinct left Opideal classes (for j = liws H). Further, the @,
represent (seith possible duplication) all the types (i.e., conjugacy classes by elements
of =) of orders of level N in 2.

Proof. Sce Propositions 2.13 and 2.15 of [37).

2. MopuLAr FORMS ON Iy(N) anp THER ConNECTION WITH QUATERNION
ALGEBRAS

There are many good references for the theory of modular forms on ().
For example Ogg [29), Shimura [46], Atkin-Lehner [2], Schoencberg [43]
Gelbart [15), Gunning [16], and Serre [44]. Thus we can '.1.nd wﬂll be very h1:u.-f
in our description of this part of the theory, The connections with quaternion
algebras are less well-known (the best reference being Eichler [14]) and we will
explain this more fully.

Let H={reC |Im(7) > 0} denote the complex upper half plane and let
H* = HU QU {ieo}, L. HT consists of all complex numbers with imaginary

art = 0, the rational numbers on' the real axis and, 2 point foo at infinity.
I = T(N) ={(¢ e SL2, Z)| c = O(N)} acts on H* by fractional lincar
transformations: (2 &) sends 7 to (ar + b)f(er + d)- 0w {ioo} are the cusps of
I = I'(N). We will continue to write ' for I,(N) if there is no confusion.
Modular forms on I are certain functions on H that behaye nicely with respect
to the action of I'. Specifically, we have (see Gelbart [15, p- 4])

Deemitios 2.1, A modular form [(7) of weight k (ke Z, k = 0) on I'y(N)
is a complex-valued function on H such that

(i) fis holomorphic on H,
(i) fis holomorphicat every cusp of Ty(N), i.e.,, on QU {1co}, and
(i) fl(ar + b)f(er +d)) = (cr + d)* f(7) for all (@ 5 e Ty(N):

The complex vector space of all modular forms of weight & on Ty(N) 18
denoted by My(N).

We explain the meaning of (i) above. Note that by (iii), f(r) = f(r + 1)
for all = and hence the function f(g) = f(7) with ¢ = exp(r) (=etri) is well-
defined for0 < | g| < landis holomorphic in the punctured dise 0 << | ¢ | < 1
by (i). To say that f(7) is “holomorphic at the cusp i’ means that f(q)
can be extended to a holomorphic function at g = 0. Note that the map

7+ g “sends” oo to 0. As any rational point on the real axis is sent to i

by some element of SL(2, Z), we can translate the above to obtai
F . S h tain the meani
of “f(7) is holomorphic at a cusp'’ (see [15]). S A0g

Remark 2.2, 1 i is odd, then by (iii) f{7) = f((—7 + O)(0 — 1)y = —f
Hence, nonzero modular forms can exist on Ly(N) only if & is even. H-enccf:.f:r,]l;
we assume this. The reader is warned that different authors mean different
things by “the weight of a maodular form™ (and some call it the “dimension™),
One is usually safe in assuming the weight means one of £k, £k2 (witi;
respect to our k), but beyond this one should be careful. n

Assume f(7) 18 a modular form on I'y(N). Hence f(7) is holomorphic at ieo
i.u_..f(r_:) is halomorphic at 0. The Taylor series expansion of f(g) at 0, f(q) o
T2 aqn is called the Fourier series expansion of f at the cusp ico (or I_hc.qcxpnn-
sion of f). a, is called the nth Fourier coefficient of f (at f2o). It is by computin
these Fourier coefficients of f (up to some limit) that we will "cc;mputc” thi
modular form f. By sending a cusp to {oo by means of an element of SL(2, Z)
we obtain the notion of the Fourier series expansion of 2 modular form at am_:r
cusp (see [15, p. 6]).

Deprxition 2.3, A modular form f (of any weight) on Ty(N) is called a
cusp form if it vanishes at every cusp, i.c., if its zeroth Fourier coefficient is zero
in the Fourier series expansion of [ at every cusp.

The space of cusp forms of weight & on I'y(N) is denoted by Su(N).

In studying modular forms one is primarily interested in the space of cusp
forms S(N). This is because M(N) = SuN) & EN) where Ey(N) is the
space of Eisenstein series, at least if k& = 2 (see Schocneberg [43, Chap. VIT,
Theorems 4 and 9]) and one feels “that we know"' Eisenstein series reasonably
well.

The major tool in the study of cusp forms is the notion of the Hecke operators
Ty(n). For each n = 0, (m, N) = | one has the Hecke operator Ty(n) which is
2 linear mapping on the space Sy(N). The Hecke operators bear the same relation
to the theory of cusp forms as the concept of an Euler product does to the theory
of Dirichlet series (see [29]). For the definition of the Hecke operators sec
Atkin-Lehner [2] or Shimura [46]. One has the major

Trzorem 2.4 (Hecke-Petersson). The Hecke operators: Tyln), (m N)=1
acting an Sy(N) generate a commutative, semisimple ring. Thus there exists a basts
filr), 1 < i < dim SN, of SuN) consisting of eigen functions for all Ty(n),
(mNY="1,

Proof. See [2, Lemmas 13 and 15, and Theorem 2].

Let N be a positive integer. Let M be a positive integer dividing Nand letd
be a positive integer dividing the quotient N/M. As [,(N) € Iy(M), any cusp
form () on I'y(M) is a cusp form on I(N) (see [13, p-T) or [2, p- 135]). Further
f(dr) is also a cusp form on [(N) (see [2, p. 143]). Let C-(N) denote the sub-
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space of Si(N) spanned by all f(dr) where f(r) is a cusp form on some (M) with
M a (positive) proper divisor of N and d any (positive) divisor of N/M. Denote
by S,%(NV) the orthogonal complement of C~(N) in S,(N) with respect 1o the
Petersson inner product (sce (2, Eq. 1.3]) on Su(N). (See Atkin-Lehner (2,
p. 145].) Following Atkin and Lehner we call S,2(N) the space of newforms
on I(N). A newgform on [(N) is an element of 5.°(N) which is an eigenfunction
for all the Hecke operators. A major result of Atkin and Lehner is

Remark 2.9, 1f P(x) is a constant, then our theta series are "regular® or
“nongencralized’’ theta series, The generalized theta series were first studied
by‘!-ichounhurg [42). ‘The important result is that they are modular forms of
weight &+ deg(P) = rf2 + deg(P) on Iy(N), N = level of O, but with #
?har;\clcr (see Ogg [29, Chap. V1]). In the case we will consider, this character
s trivial (see Theorem 2.14 helow).

The harmonic polynomials of Definition 2.8 will in our case arise as follows.
Let A be Hamilton's quaternions. Then inanalogy with(1.1), A can berepresented
a5 the subalgebra of Mat(2, €) given by A4 ={(% %) | 2, we C} where the
flverbar denotes conjugation of € over B. In this representation a basis of A
is given by 1= (%), [ =09, J=(23), and K =(G}). This gives 4
representation @ of A% on ¥ = C% Following Eichler [14] we denote by X,
the corresponding matrix representation in terms of the canonical basis & =
(1,0) and e, = (0, 1) of Vi (% 4 %l + ] +xK)=(57% with 2 =
%+ % and w = x; -+ x,0. @ = @, induces a representation @, of A* on the
sth symmietric power Sym,(V) of V. Sym,(V) = V& = @ V|K, the product 5
' times with K the “symmetric kernal.”" A basis for Sym () is given by the set af
dements {6 @ - @& B 6@ B (mod K)} which we write  as
{a'ea* | § = 0,..., s} (where we can consider the product as being in the Tensor
| alpebra (or rather symmetric algebra) if we wish). Then the representation @,
is given by

THEOREM 2.5.
SN =@ ¥ ¥ SO0
MIN dINTM
the direct sum being over all (positive) divisors M of N and d of N|M. Here if
5,(M) is generated by Si(@)seer fol7), then S)(M)* 15 the space penerated by
_ﬁ(‘}f),-",f’(d.-),

Proof. See Theorem 5 of [2].

We now give the connection with quaternion algebras, Let O(x) be a positive
definite integral quadratic form in an even number r — 2k of variables, Integral
means that O(x) £ Z for all x € Z7. Such a form can always be written as O(x) =
3x*dx, where ' = (F140) x,) and A = (ay) is 2 positive definite symmetric
matrix with 2, £ Z and ay; = 0 (mod 2).In fact A isjust the matrix of the bilinear
form (x, ¥) = O(x + ) — 0(x) - O(y). A is called the matrix associated 1o 0.
Recall that disc(Q) = (—1)" det(4). Dl @ Do @ 6@ Ba) = (@) a) @ B @) a)

@ (D) &) @ B (i) &),

.l read modulo K. The corresponding matrix representation of A with respect
1o the basis fe'e™ | i = 0,..., s} we denote by X, . Thus X, is a5+ 1-dimen-
sional representation. We denote by X the trivial one-dimensional representa-
tion of A7, With this we have

Derisimion 2.6, Let O and A be as above. The level (or Stufe) of @ (or 4)
is the least positive integer N such that the matrix NA™ has integer entries
with diagonal entries even integers. 0*(x) = x'NA™x is called the adjoint
form to .

Remark 2.7. One easily sees that the level of A is equal to the level of utAU
for any matrix U € GL(r, Z).

Let P(x) = P(x, ,.--s ;) be a homogeneous harmonic polynomial of degree v
in r — 2k variables. Harmonic means that p(x) satisfies Laplace’s equation
Ap(x) = (Ploxf + - #[6x®) plx) = 0. Further let Q(x) be a positive
definite integral quadratic form in 7 variables with Q(x) = }x'4x as above.
As O(x) can be diagonalized over R, there exists a real matrix 5 such that
(5 AS* =Tor A =5'S. With this we have the

Proposition 2,10, The entries of the matrix X(e) = Xl + %l + % I+
%K) are harmanic homogeneous polynomials p(xy oo x,) of degree 5.

Proof. In terms of the matrix representation o = (L25), Pile) ey = 260+
Lwey, and Py(0) & = — T T Fey. Thus @ (a)ley'er ) = (28, + woeg)' X
(e, + es)' We must expand this last expression and show that the
coefficients of eles™ satisfy Laplace's equation for j = 0., &. However,
this is very casy to do without expanding by treating ¢ and e, formally as
varigbles and then just checking that A((ze, + we,)(— e, + Fey)' ) =
4(*|da05 #lowen)(ze + wel(—Ta 4+ zet ) = 0. Here 3oz =
2)dx,), ere. (see [17, p. 4] and [14, p. 104]).

Derinirion 2.8, Let ©, S, and P beas above. The (generalized) theta series
attached to O and P is

0(r, 0, P) = zz P(Sn) exp(Q(n)) (2'1)1

Recall that exp(x) = 2% 8

Yo, — i 62y, 0/ = 4(@lo% +1

- provostrion 201, Let I be a left C-ideal for some order @ of level N =
M in a ( positive definite) quaternion algebra 9 over Q. Then the quadratic



form N(x)/N( I) for x €I is a positive definite integral quadratic form with level N
and discriminant N*.

What this means is the following. Let e ..., ¢ be any Z-basis
x.e)[N(I) is a positive definite

Remark 2.12.
for I. Then O v ¥2) = Nix,e,
integral quadratic form with level N and discriminant N®, Since any other
Z-basis of [ is obtained from ¢ .. & by operating on (& s ¢,) by a matrix
U & GL(4, Z), the level (scc Remark 2.7) and discriminant are independent of
which particular Z-basis of I we choase.

Proaf. O(x) = N(x)[N(I) is positive definite since 20, is Hamilton's quater-
nions and the norm form thereis positive definite. Qs integral since by definition
N(I) | N(=) for all x € 1. Let A be the matrix associated to O(x). We first show
that the level is N. As the level 1s 2 positive integer, We need only determine
the level locally at all primes of g < . First consider the case ¢ = p. Then
I, = 0,8 for some £ € A= = GL2, Oy). By Definition 1.2,

Z Zo\ -
f'q = {:\/: z‘.) a~l

ot e GLZL 0 Let & = (2 eg =6 & = (&) and & = (1)
Then a8 i = Loy 4 gives a 7 -basis for I . Note that by Remark 2.12,
read locally, we can choose any basis of I, we wishl Further N(I) = N(B)
(mod U,). Then the matrix 4 is of the form A — U'BU where U € GL(2, Z,)
and

B — - T((aeB)oepE)

NE)

BN L A 5
= m T'r(Bfa e o e i)
= Tr(e)

O D D1

00 —N O

0—-N 0 0

TR0 e

which has level N in Z, . Hence by Remark 2.7, 4 has level N (mod [J,)in Z;.
For the case g — p, we have I, = 0, forsome g & 0,7 Here @, is conjugate o
(-2 %7) | 72 8 € R} (see Definition 1.2). Thus using the fact that R =
Z, 6 Z W * where ue Z, u a quadratic nonresidue mod p if p # 2 and R =
Zy+ Zo{() + 51%)[2) if p = 2, 2 caleulation exactly analogous to the one above
chows that A has level N' (mod U,) in Z, also, Thus the level must be N. Now
for the discriminant. Proposition 1.6 shows that if [ = &, then disc(Q) = N*
as required. We can assume (by multiplying I by some integer if necessary)

that .f C ), Lt ey oy £ be a Z-basis of @, f, ..., fy a Z-basis of I, and M the
matrix such that M(e; .oy ) = (fi oo S} Then N(IF = det(M) (see [8
pp. 10 and 14] and recall that the determinant of the regular representation uf‘].i
is the square of the reduced norm N). Thus dise(Q) = dise(N(=)/N(I) on 1) =
|N(Y dise(N(z) on ) = 1IN(IY(dex(M))? disc(N(x) on 0) = N2 Alter-
natively, if one does not like and/or believe this proof, the discriminant can be
caleulated by a series of local computations analogous to those performed in
Proposition 1.1 and in the level computation above. This completes the proof
of Proposition 2.11.

We are now able to define the Brandt matrices which are the central objects
of the theory. Let @ be an order of level N = prIM, p £ M, in a quaternion
algebra 91 over (O ramified precisely at pand oo, Let 1y .o, By | H = H(pr1M),
be representatives of all the distinct left O-idesl classes. Let @) be the right order
of I, and let ¢; denote the number of units of &y (e 7 is a unit if and only if
Nu) = 1. Thus ¢ is just the number of times the positive definite quadratic
form N(x), x € @ represents | and hence g 18 finite. In fact ¢, = 24 and is
uysually’” 2.), Let s 2> 0 and let X, be the matrix representation of 2U* given in
Proposition 2.10. For any positive integernand | < i, j < H, H = H(p**1M),
let

B = 3, X/ (@), (22)

where the sum is over all a € I711; with N(z) = nN{(1,)]N(I,) and the superscript £

denotes “transpose.’” The bj(n) are s + | by s+ | matrices. Further let
19,(0) = 1fe; and b}(0) = 0 for's > 0.

DeFmvimion 2,13, Let the notation be as above and let 5 be a nonnegative
integer. The Brandt matrices Bn; p**', M) forn = 0 are given by

B,(n; p2 M) = (bis(m))-
Thus the B,(n; p*t, M) are H(s + 1) % H{s + 1) matrices where H =
H(p*r*'M). They are divided into H? blocks each block being an s = 1bys—+1

matrix, The ith, jth block is the matrix bfy(n).

Tuponem 2.14.  The entries of the Brandt matrix series.
O,(r; prt, M) = ¥, Buni piril, M) exp(nr) (2.3)

are modular forms of weight s -1 2 on Ty(N). If 5 = 0, they are cusp farms. Here
N= P!rvl M.
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Proof. Fix an entry, say in the fth, jth block and let p(xy ..., %) = plx; +
wd 4 %, ] + %K) be the corresponding polynomial entry of X, in the notation
of Propasition 2.10. Then the entry of the Brandt matrix series which we are
considering is given by

() = e ¥ pla) exp(rN(=) N(L)N(L). (2.4)
aeliiy
Let f; oy fo be @ Z-basis for I, and let Q(x) = N(xfy o+ o ) X

NU)N(L) for xe 24 Let A = (a;;) be the matrix associated to O(x), le,
ay — Tr(fifi) N(L)IN(T). Let g, = 1, 42 = I, gy = [, g, = K be the canonical
basis of 9[ @ R as in Proposition 2.10 and let 7" = (t;;) be the matrix which
takes {g;} to {fi}, i.e., f; = T tisg; - Then an easy calculation shows that 4'=
INUI)INU) T'T or A = S'S with S = aT, a = @NUI)INI)'*. Now if
xfy + o xfi =ng o+ Y then Tx —y. Thus (2.4) can be
rewritten as

b(r) = &t 3 p(Tx) exp(rO())
Tzt

—¢'a™" ) p(Sx) exp(zO(x))
zezt

as p(x) is a homogencous polynomial of degree s, Theorem 20 of Ogg [29, p.
VI-22] then shows that §(7) is a modular form of weight 2 -+ 5 on [},(N). Note
that P(S¥) for x € R* is a spherical function with respect to O(x) in the notation
of Ogg [29, p. VI-5]. The level of 6(r) is N since by Proposition 2.11, the level
of Ofx) is N. The character associated to 6(r) by Theorem 20 of [29] is trivial
since by Proposition 2.11, disc{Q(x)) = N? and Theorem 20* of [29] shows that
the character «(d) = (sgn(d)(N?/d) = 1. Thus 6(7) is a modular form on
T(N) in the sense of Definition 2.1. Finally, Theorem 20 of [29] shows that
f(~) is a cusp form if 5 = 0.

We now consider the case s = 0, i.e., we consider modular forms of weight 2.
We want o show how to obtain cusp forms in this case also. For convenience
we drop the “zero” from our notation and write bis(n) = b3y(n). Then

Bu{“; P2r~1’ "W) = (b'_.{ﬂ]]

and by(n) is just 1/e; times the number of elements we I7M; with N(a) =
aN(1)|N(I;). Thus in the notation of (2.3) we have

By(m; p* M) = (By(7)) (23)

where
b(7) = L bis(n) exp(n7)

n={

= ¢t Y, exp(eN(x) N(L)IN(L))

zel7Y,
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and the 8,,(7) are modular forms of weight 2 on Ty(V) by Theorem 2.14. None

of the @(r) are cusp forms as the zeroth Fourier i : :
4 coefficie ¥
1/e; . However we have nt at 100 of 8,(7) is

Propostrion 2,15, The difference of an i g i

1y two theta series a 1
same columin of the Brandt matrix series O(z; pr+1, M) is a nuip;::gi::alhi:
flz) = 84(z) — 0,)(7) is a cusp form for all | < i, i, k= H — rp1)
the notation of (2.5). ~haRRdT e

Proof.

) = 7* 3, expleNG) NN
welyy,

is (except for the constant multiple e7') the theta series attached to the quadratic
form N(x) N(L)IN(L,), xeI;*], . But for 1 < h < H, these quadratic forms
all lie in the same genus, ie., they are locally equivalent for all primes. This
follows from Definition 1.7 since for all p there exists a, € .7 such that [, —
I,,a, and the map x — xa,, is a local isometry from N(x) H(L)IN(I), x = (I7'1,), |
to N(x) N(L)IN(I.), x € (I7XI}), . But it is a classical result that theta series of
quadratic forms in the same genus have the same behavior at all cusps, that is,
their differences are cusp forms (see Siegel [47, p. 376]).

Remark 2.16. In the case of cusp forms of weight 2 on Iy(p), p a prime
we have dim(8,(p)) = H — 1, where H = H(pl) is the class number. This
follows from Theorem 1.12 and [29, Chap. IV, Proposition 14]. Thus it is
nautral to ask if the cusp forms f,() — f,(7), 1 = 2,.., Handjfixed (1 <; <
H) are a basis of the space Sy(p) of cusp forms of weight 2 on I(p). In fact,
Hecke [18, Staz 53, p. 884] conjectured this to be true for any fixed j. However,
the conjecture is true only for p < 31 and p = 41, 47, 59, and 71 (see [12, 35,
40] and Example 1 in Section 9). The reason for this is as follows, Recall that
I oy Iy are a complete set of representatives of the left 0-ideal classes (@ an
order of level p, hence a maximal order) and @, is the right order of Ij, ] =
1,..., H. As @ is a maximal order, there is a unique left 0;-ideal P; (in fact Py
is a two-sided ideal) such that N(P,) = p. If P, is a pnncipal ideal, at most
T = T(pl), the type number, of the 8;(7), 1 < i < H are distinct (see Eichler
[12, p. 169] and also Proposition 2.17 below). If P; is not principal, there is no
(known) theoretical reason that the (z), 1 < i < H, should not be linearly
independent. Since 7'(pl) < H(pl), except when p < 31 and p = 41, 47, 59,

and 71 (see, e.g., [27]) and there always exists an order @; such that Pyis principal,
we see that Hecke's original conjecture cannot hold, Eichler proved however
(sce Corollary 2.29 below) that the H(H — 1) cusp forms 8(r) — 0u(), 2 <
i< H, | <j< H, do span the space S,(p). In all our computations we have
observed that when P, is a principal ideal, the 7' = T{(p1) distinct theta series
among the H thetaseries 0,,() 1 < i < H havealways been linearly independent

481[64/2+5
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and when P, is not principal, the ff theta serics Ou(7), | =1 = JI’!. have always
been linearly independent. It is casy to see that there always cxists an ) such
that the corresponding P, [s nonprincipal when 7" < I, i.e., when p =37,
p = 41,47, 59, or 71. One can abvious ask if the above observed phenomenan
always occurs. We do not know the answer. However, the possibility that it does

has influenced some of our algorithms.
We shall need

Prorosrrion 2.17. Let @ be an order of level N in 9. Let 1 be a left
O-ideal and let | = alb for some a, b= ([ is a left ala \-ideal) Let 8(7) =
Fores exp(=N(x)[N(I)) and Br) =¥ s exp(zN(x)[N(])). Then the theta series
8/(7) and 8,(7) are identical

Proof.
fiir) = ¥ exp(rN(x)/N(alb))

sralb

¥ exp(zN(ayb)/N(alb))

— }: exp(=N(3)[N(I) = 0,{=).

wel

Lespaa 218, Consider the Brandt matrices B(n; pire), M) = (by(n)). Recall
& &5 the number of umits in O, b;(0) = 1/e,. T.":z;n (a) &b,(n) = eby(n)
for all i, j, 1 <i,j < H and all n >0 and (b) S, by(n) = bin) (say) is
mndependent of 1.

Proof. Both (a) and (b) are clear for b;,(0). Thus we assume s 2= 1. f(n) is
1/e; times the number of elements ae 7Y, with N{a) = aN{L)N(I}). By
Propasition 1.17, I7'I, = N{I,)-* L1, and « & N{I,)-* LI, with N{«) = nN(I)|
N(I) if and only if N(I)x = =], and N(B) = nN(1}) N(I,). Thus egb(n)
is just the number of Bell, with N(B) = nN(L) N(I,). Likewise b, (n) is
just the number of £ & LI, with N(&) = aN(I) N(1,). But g e LI, if and only if
Be Ll and N(B) = N(f) so (a) is proved. Now consider (b). If € I7'I; with
N(ex) = nN([)|N(T), then IT ] x is an integral left @-ideal (0, is the right order
of 1) of norm n. Integral means that [72x C @, . Conyersely, all integral left
O -ideals in the same class as /'], having norm n must be of the form ;Y a
with aeli'l, and N(a) = aN(I)[(N(1)). Further, two such ideals Jf7'a
and IPULE are equal if and only if O = @8 if and only if « = uff withu
2 unit of @;. Thus b,(n) is precisely the number of integral left @-ideals in
the same class as 1717, having norm n. In fact, this is how Eichler defines b, (n)
—see (14, p. 105). By Proposition 1.2] we see that J7U, .., I, gives o
complets set of representatives of all the distinct left @-ideal classes, Hence any
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|=j1r::1_a_r.|] ]ult. Ordeal is of the from It i for some j and some aeI7H,  Thus
ey biy(n) is just the number of integral left @ -idéals of norm n and we need
only prove that this number depends only on the level 7'M and not on the
particular order @, we choose Unfortunately while this is VEry easy to prove
adelically (I have been trying very hard to avoid adelic argu:ﬁcmaj 1 JL not
know an easy nonadelic proof. T will give in and sketch the adelic .'-r-.:ulmcm. Let
€ and 0 be two orders of level pr400M. It follows from Definition 1.2 that
there exists an idéle &g Ju . the idéle group of 2, such that & = 505,
Further, Definition 1.7 implies that any left t-ideal is of the form 08 far some
idéle f& fm. Then the map OF — 0583 induces a 1-1 onto map from
integral left @-ideals of norm o onto integral left @ ideals of norm a. For the
real meaning of @F, ete., see [34, pp: 2 and 5].

Lemma 2,19, Let the notation be as in Defimition 2,13, Let Byfn) =
Byfm; g+, M) = (byy(n)). Consider the matrix

I e ey
=1 0
A= . .
R Ch —1

e, A =(a,) where an =1 for i = lyi H ay =7t for j = L, H,
gy = —1 far i =2,., H and all other ay =0 (i £ 1, = 1, £ #j). Then
Ago(n) A = Cln) for all n =0 where Cn) = (e,(n)) and c,\(n) = bin) =
Ljer bi(n) (independent of i by Lemma 2.18); ¢, {n) = ey(n) = Ofori =2, H:
and ¢(m) = by(n) — by(n) for 2 < i, j = H.

Proof. lLet m E,"_‘ ei?, the mass for orders of level p*roth, 4=t —
(I/m)D where D = (d;;) is given by djy = 7% if § 5 fi dyy = 7' and d, =
gt —m for i =2,., H. Then AByn) A" = (1/m)Y where ¥ = {¥) is
given by 3y, = 3, 7'hyy(n) = Ty 7 (T byln)) = s o7 b{n) — mb(n); ¥y =
6" %y (bu(n) — by(n)) = 0 for ¢ = 2,.., H by Lemma 2.18(b); ¥, =
06 Tix baln) — em 34 ) = 6t B 6 (S baln)) — e x
Yo 7'bin) = e165 mb(n) — eymez’b{n) = Ofor j — 2,..., H by Lemmas 2.18()
and 218(b); and finally yi, = & 3 (baln) — bu(m) — i) — b)) =
miby{n) — byy(n)) for i, j = 2,..., H. This completes the proof of Lemma 219,

Remark 2.20.  Lemma 2.19 should be compared with Eichler [14, Corallary
1, p. 108 and also the introduction to Chap. IV, p. 138]. Note that B(0) is the
only Brandt matrix He(n) that we know explicitly (other than the identity
By(1)—see Corollary 1.20). Lemma 2.19 says that if we reduce 8,(0) to block

 form by conjugating by the matrix A, then all other Brandt matrices By(n) are

also simultaneously reduced to block form by conjugating by .
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We are now finally able to treat the case of cusp forms of weight 2, Let

b(n) 0 == 0O

1]

AB(m A~ = (2.6)

By(n)
\. 0
where By(n) is the H — 1 x H — | matrix given by Bo(n) = (dy(n)), diy(n) =
Ciopam(mfor 1 < i j < H— linthe notation of Lemma 2.19. T'hen we have

TuEorem 2.21. Let Bifn; p*r*4, M) = Bi(n) be as in (2.6). Then the entries
of the modified Brandt matrix series

B4 £, M) = 3 Bifms pE0+3, M) exp(one) @)

n=0
areé cusp forms of weight 2 on Ty(N), N = i o

Proof. After Theorem 2.14, all we need show is that the entries are cusp
forms, But this follows immediately from Lemma 2.19 and Proposition 2.15.

The most important fact about the Brandt matrices is that they give a re-
presentation of the Hecke operators on a space of theta series. Specifically we
have

ProposiTion 2.22. Fix s and N = p*"*'M, p + M. Then the Brandt matrices
By(n; p), M) with (n, N) =1 generate a commutative semisimple ring and
satisfy the same identities as do the Hecke aperators T, 4(n), (my N) = 1.

Proof. This is Theorem 2 of [14, p. 106]. Note that as we consider only n
with (n, N) = 1, the proof of Theorem 2 of [14] is valid in our (more general)
case,

PropostTion 2.23. Let N = p*\M, p M. In the potation of (2.3) It
8 (z; 5, M) = (B,(7)). Then the action of the Hecke operators T,.4(n),
(n, N) = | on the 8,() is given (formally) by B,(n), i.e., Tya(m)(0i(7)) is the
(ith, jth) entry of S o (B,(n) B(m)) exp(m7).

Proof. This follows from Proposition 2.22 and the definition of the Hecke
operators. See the Proposition of [14, p. 138].

Remark 2.24. The action of the Brandt matrices given above might scem
rather strange, Maybe it is best to think of it in the following manncr. Suppose
that the theta series byy(7),..., fl7) (d = H(s + 1)) in the first column of the
Brandt matrix series 8,(r, p*7*}, M) are linearly independent (this is not

necessarily so—see Remark 2.16). Then B,(n) is simply the matrix representation
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of ', o) on the complex vector space (0y,(7),..., (7)) with respect to.the basis
ial)sees Oinf7):
Let N = p*r0, p £ M. Denote by try Ty(n) the trace of the Hecke operator

Ty(n) acting on the space of cusp forms Sy(N). Then we have the following
fundamental

Turones 2.25. For all positive integers n with (n, N) = | and all even
k== 2 we have
et i deg Tyfn if k=
tr,,l-'u T = 2 t il T eg E ) 1 = 2
aln) 2; resietyLyln) + lo if k=0
y (2.8)
= tr Bi_o(m; p¥+1, M)+ 2 Y traiy Laln).

Proof. Equation (2.8) is proved by having explieit formulas for the traces
of the Hecke operators and the trace of the Brandt matrix. See Theorem 4 of
Pizer [36].

Remark 2.26. If r = 0, the first summation Z::; does not occur in (2.8). If
r =0 and M is square free, (2.8) is essentially Eq. (5) of Eichler [14, p. 140].
If r =0, (2.8) is given by Lemma 1 of Hijikata and Saita [21]. The general
case is given by Theorem 4 of Pizer [36].

Our main tool now will be the fact that two repr 10ns of a pl
ring are equivalent if and only if their traces are equal (see [25, Theorem 3,
p. 438]). In order to employ this tool, we need a space of theta series on which
the Hecke operators act. We obtain this as follows, By Proposition 2.22 the
B, _(n) with (n, N) = | generate a commutative semisimple ring, Thus there
exists a matrix € which simultaneously diagonalizes the B, _J(n) with (m, N} = 1,
ic, such that CB, ,(m)C-! are diagonal matrices for all (n, N) = L.
Further combining this with Lemma 2.19, there exists @ matrix € such that in
the notation of (2.6), CyB{(n) C5" is a diagonal matrix for all # with (1, N} = 1.
Let @,(p*r+!, M) denote the set of (cusp) forms appearing on the diagonal of
the diagonalized Brandt matrix series Tuoo CByyfm; p*=', M) C* exp(nr)
fork = 2. For ke = 2, let @, p**1, M) denote the sct of (cusp) forms appearing
on the diagonal of the diagonalized modified Brandt matrix series

i C, By (s 57, MO exp(nr).

Remark 2.27. Note that all elements of @y(p*1, M) are eigenforms for
all Ty(n) with (1, N) = 1. This follows from Propesition 2.23 since the action
of the Hecke operators Ty(n) on the elements of @4(p* 1, M) is given by the



diagonal matrix CB, (r) C if & > 2 and by CoBty(n) 3t if & = 2. Note also
that we have not obtained any information about CB,_,(n) C= (or C,B(n) C5?)
if (n. N) > 1.

Tueorem 2.28. Let @y(p*!, M) = (,(7),..., 87)} (d = H(k— 1), H
H(p M) if k > 2 and d = H— 1, H = H{p*"\M) if k= 2). Also let
CB(=)) denote the one-dimensional complex vector space generated by 0(z). Writing

+ for () (sometimes) twe have

r-1
SUpM) @2 Y Sp M)

=0

~ (O ® - BNy B2 Y, Su(pM), (29)

=)

ehere the ~ is as modules for the Hecke algebra H penerated by Ty(n) with (n, N) =
|. Here 28, (p**='M) = Sy(p** M) @ Sy(p** ' M), etc. The 0,() are sigenforms
Jor all the T\(n) with (m, N) = 1.

Proof. As H is a semisimple ring, we need only check (by Theorem 3 of
[25, p. 458]) that the traces of the transformations induced by the Ty{n), (n, N) =
1'on both sides of (2.9) are equal. Note that the action of Ty(n) with (1, N) = |
on {(r)...., l7)> is given by the diagonal matrix CB,_,(n) C-*if k = 2 and
by CyBi(n) 5" if k = 2 in the notation of Remark 2.27. Now for & = 2, (2.8)
provides precisely the equality of the traces that we require. For & = 2, we need
to find the trace of Bi(n; p*1, M). But by (2.6), tr Bi(n; p*r+!, M) = tr By(n;
P M) — bn) = tr By(m; p**', M) — deg Tu(n) for (n, pM) — 1 since
b{n) = deg T(n) for (n, pM) = | (see Shimura [46, p. 63] and Eichler [14,
p. 94]). Thus again (2.8) provides precisely the equality of the traces that we
require. Finally Remark 2.27 shows thart the 6,(7) are eigenfarms.

CoroLLary 2.29. Let the notation be as in Thearems 2.28 and 2.5, Then

B (Oalr) ) = "_, z E_ L S prrtigy

a0 2| M fu as

() (5 ==
as H-maodules.
Froof. This follows from Theorems 2,28 and 2.5 by noting that
SP(pta)t == S0 prrHa)”

for d and d" dividing M/a as H-modules (sce [2, Theorem 5]). For an explicit
proof of Corollary 2.29 sce Theorem 6 of Pizer [36].

Remark 2,30, Note in particular that Corollary 2.29 implics that all the
nt‘\-\'f(:ll'lllls on Iy(N), N = p*1IM aceur among the 0,(7) since the newforms
are precisely the eigenforms that oceur in S preamy,

Remark 2,31, The isomorphism of Corollary 2.29 can essentially be replaced
by equality. See Hijikata [20, Theorem 4] and Pizer [36, Theorem 10].

Remark 2,32, 1t is natural to ask if there is an analogous theory for the case
IyN), N a perfect square, Let N = p**M, p+ M. Let 9 be the quaternion
algebra over ) ramified precisely at p and 0. We would like to define orders
of "level N in 9L Of course, we need only obtain a correct local definition in
U, . Using ramified quadratic extensions of ), instead of the unramified
extension L of Definition 1.2, we can define orders that should be the orders of
level N These orders have ideals [ whose associated quadratic forms Nix)IN(I),
xe [ have level N, ie,, we obtain modular forms of level N (where N may be
4 square). Unfortunately, it does seem that any relation like Theoremn 2.25
can hold for this case. This is probably due to the fact (which comes from
Jacquet-Langlands theory) that in the case of square level N, not all newforms
in I'y(N) can be obtained as linear combinations of the theta series and thus
Remark 2,30 would be false in general if N is a perfect square. In the particular
case of forms of weight 2 on [7(13%), Parry in his dissertation [31] has shown
that not all newforms on I(13%) can be obtained from theta series. If one is
able to discover what the “missing"" newforms are, one could hope to obtain
a result analogous to Corollary 2.29 and thus to completely solve the so-called
basis problem (see Eichler [14, p. 77]) for modular forms on F(N).

Since the first version of this paper was written in 1976-1577 there have been
several advances. [ think it is worthwhile to mention them here withour altering
the main text. Let Si(p, ¥) denote the space of cusp forms of weight & an [ p)
with character x. Atkin using Parry's results was able to determine that the
“missing"’ newforms in 8,%(13%) are those obtained by twisting forms in Si(13,
)t 5= 1, by rﬂ where it is a character of (£/13Z)%. This and other calculations
led him to the obvious conjecture as to what the “missing' newforms were in
general for the case .‘)‘gn(p:}. His quustiﬁns to the present author about this led
to the “solution’” of the basis problem for Sy(p*M), (p, M) = | along the lines
sugprested in the preceding paragraph (see [39] and also Example 4 in Sec'(ir)n. 9).
Finally using ideas from [39], ideas of Eichler and Hijikata on Brandt matrices
with character (see [14, p. 110]), and other new concepts, Hijikata, Pizer, an_d
Shemanske in very recent joint work (see [22]) have been able to “‘solve™ the basis
problem for forms of weight & on Ty(N) with character y for all'k = 2, all N,
and all characters x mad N, The algorithm in this paper can be applied to these
new cases with no or (in the cases of Brandt matrices nontrivial character)
only minor changes. Example § in Section 9 pives an example of computing
Brandt matrices with character.

This completes our rather long sketch of the theory behind the “basis pro-
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blem"" for modular forms on JG(N) (see [14, p. 77]). Now we give a sketeh of
our computational algorithm.

3. SKETCH OF THE ALGORITHM

Let N be a positive integer, not a perfect square. Then N = pt+M, p1 M
for some prime p. We will sketch an algorithm for obtaining the subspace of
the space Si(V) of cusp forms of weight & on I'(V) given by Corollary 2.29.
We will be primarily concerned with the case of forms of weight 2. The modifica-
tions necessary to obtain forms of higher weight will be noted at the appropriate
places.

First let us introduce some convenient notation, For any ideal L of an order
of level N, we let

6.) = ¥ exp-NINI) = 3, c(n) explar) (3.1)

zEL n=0

where o(n) (the so-called representation numbers of the quadratic form N(x)/
N(L), x&L) is the number of x&L with N(x) = nN(L). Given two ideals L
and I’ we will often want to compare 0;(=) and 8;(7). To do this (on a computer)
we first select some predetermined number, say LIMIT2 (e.g., LIMIT2 may
be 5 or 10). Then when we write §,(7) 5 6,(7) in the algorithm, it really means
that the Ist, 2nd,..., LIMIT2th Fourier coefficients of 0;(7) and fp(7) are not
identical.

We will present the algorithm as a series of steps (from step 1 to step 4).
The various steps are more fully explained in Sections 5-8 below.

Step 1. Finding the algebra. We first obtain a basis for the quaternion
algebra 9 over O ramified precisely at p and oo, Theorem 5.1 gives OA and OB
such that 9 = (04, OB), in the notation of the first paragraph of Scction 1,
is the desired algebra. Thus ¥ has a basis 1, £, [, K with relations I* = 04,
J:= QB and I] = K = — JI. All our computations will be done in terms of
this basis.

Step 2. Finding an order of level N. Let N = p*rtiqt - gy with gy ey 4y
the distinct primes dividing M.

Step 2a. By Proposition 5.2, we obtain a maximal order 0, of U, i.c., an
arder of level p.

Step 2b. 0, contains an order of level pg, by Definition 1.2 and Remark
1.4. Such an order has index g, in @, , To obtain one we find all orders of index
gy in 0, and use Proposition 1.6 to select one, say 0, , of level pg, . O, contains
an order of level pg,®. To obtain one we find all orders of index 4, in @, and again
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use Proposition 1.6 to select one of level pg,® We continue in this manner until
we obtain an order @, of level pM. Then 0, contains an order of level pPM.
To obtain one we find all orders of index p* in @, and use Proposition 1.6 to
select one of level pPM. We continue until we obtain our desired order, say
0y, of level N. See Section 5 for details,

Step 3. Finding representatives of the lefi-ideal classes. This is the critical
step. The method we present here is based on the assumption that all lefc
f-ideals are induced from ideals in imaginary quadratic subfields of 1. This
sssumption can be stated explicitly in the adelic language. However, as we are
not able to prove the assumption is valid, stating it precisely will not £ain us
much. It has been valid in all examples we have tried to compute.

Step 3a.  Use Theorem 2.12 to compute the class number H = H(p*r1M)
and put & = 0, .

Step 3b.  Let Ly — O be the first left O-ideal. Note that N(L;) = 1.

Step 3c. Suppose at this point that we have obtained ideals Ly ..., Ly
representing distinet left O-ideal classes (the first time around ¢ = 1 of course).

Step 3d. Choose some clement a0 with «¢ Z. Consider the order § =
Z -+ Za of O(a) generated by a.

Step 3e.  Use Gaussian reduction (sce, €8, Borevich and Shafarevich [6,
p. 149]) to obtain a set of representatives 7y ..., Ty of the S-ideal classes,
Also compute N(T7).., N(T3).

Sfi?P 3f. Setp=-1,

Step 3g. Push theideal 7} up to aleft O-ideal T, = OT, . Note that N(T,) =
N(T,).

Step 3h, Compare the theta series fi (7) with By (Fieees 8, (7)- If 8, (7) +#
8, (+) for i = 1,..., 1, then 7, is in a distinct left @-ideal class form Ly ..., L
b}" Proposition 2,17. Thus we put Ly = T, replace t by -+ 1, replace »
by v+ 1, and go to Step 3g. If 07 () = 6..(7) for 4 = iy ey I, and only for
9=y ooy B then we test whether or not T, is in the same ideal class gs any
of the Ly ¥ = fygeen bpy BY Proposition 1.18, if any T.L, for ¥ =ty e
contains an element « of norm N(7,) N(L,), then (as 7, does not determine
2 new ideal class by Proposition 1.18) replace » by » -+ | and go to Step 3g.
Otherwise (since by Propositions 1.18 and 2.17, T, determines a new ideal

class) put L,y = T, replace ¢ byt - 1, replace v by v+ 1, and go to Step 3g.

Step 3i.  Continue iterating Step 3h until either:
a) 1= H (ic, we have obtained H ideals Ly ,..., Ly which represent
distinct left ideal classes and hence represent all the distinct left ideal classes)
in which case go to Step 4, or



(b) v = k (ie., we have tested all the ideals 7, ..., 7}) in which case go
to Step 3d, selecting a different a, or

(c) we have tested a total of LIMIT ideals (LIMIT is some preselected
number, e.g., 2H or 3H) in which case go to Option 1.

Option 1. This option is based on Proposition 1.21.

Option 1a. Select someideal L, , 2 < p < t. ThuslL, # 0 = 0.

Option 1b. If 8 1 (7) # 6(7) (thus L7'L,, , which is an order of level ¥
by Propesition 1.17(c) and Remark [.15, is not isomorphic to & = L,) then
go to Option le. Otherwise go to Option la, selecting a different p. IF we use
up all g, 2 < p < ¢, without finding a LJ'L, with il',,l-li,_u(T} :’J,“(r), then
Option | fails.

Option lc. Replace. @ by L', Ly by L7'L, L, by L'L, , and L, by L7'L,
for 2 <w=<t v+=p Then L,,.., L, represent distinet @ = L7'L, ideal
classes by Proposition 1.21.

Option 1d.  Go to Step 3d.

Remark. We of course have to seléct some maximum number (say TRY)
of times we will allow Option 1 to be executed. If we have executed Option |
more than TRY times and still have not obtained representatives of all the
distinct left ideal classes, we should admit defeat and stop the program.

Remark 3.1. If Step 3 fails and we do not obtain representations of all the
distinct left ideal classes, the alternatives are not attractive. Picking ideals
“out of a hat” is no easy trick,

Step 4. Calculating the Brandt matrices, First we consider the case of weight
k = 2. Caleulate p ¢ (7) for i = j (see Section 6). By the proof of Lemma 2.18

By p2r ), M) = z B(n) exp(nr) = (:—’ fr, ,_l(T)J

n=0 -

and O, (r) = fr, (7). Note that ¢ is just the number of elements of 3L,
of norm 1, 1.e., ¢, 18 the number of elements of L,L; of norm N(L,)? i.e., ¢ is
the Ist (not the Oth) Fourier coefficient of 6 ; ().

If we are interested in the case of weight £ = 2, Step 4 becornes more involved.
First we have to explicitly determine X, (1), X,_a(l), Xioa([)), and X_o(K),
The first is of course trivial. Then we find all we I7M, = (1/N(I))) LI, with
Niz) = aN(1)IN(1,), = will be given in terms of the basis 1, [, [, K (sce Remark
6.3). Then we calculate (2.2), b *(n) = &1 3 XL_u(x) and thus obtain the Brandt
matrix By n; p*t, M).

In the case of weight & = 2, the entries of the Brandt matrix series (2.3)
O s(ri pr*Y, M) = ¥y Bugln; 21, M) exp(nr) are the theta series we
want and the Brandt matrices themselves B, (n; pi*+t, M) give a representation
of the Hecke operators Ty _u(n), (n, N) = 1 on the space of theta series given by
Corollary 2,29,

In the case of weight 2, we are usually interested in the modified Brandt
matrices By(m; p*r+1, M). But by Lemma 2.19, these are very easily obtained
from the By(n; p*r+!, M). Then the entries of the modified Brandt matrix series
27)

Bi(r; pr1, M) = ¥ By(n; p*riY, M) explnz)

nel

are cusp forms of weight 2 and the action of the Hecke operator To(n), (n, N) = 1
on them is given by Bg(n).

4, Some NEEDED PROCEDURES

We collect in this section some procedures (as in ALGOL PROCEDURE)

that are necessary for our algorithm.

Procedure GCD(N, 4, IGCD). Let 4 = (A[1]55-+ A[N]) be a set of N
integers. ‘Then this procedure calculates the (positive) greatest common divisor
1IGCD of A[l],..., A[N]. Several explicit algorithms for doing this can (if
needed) be found in the Communications of the Association for Computing
Machinery.

Procedure HERMITE(C, N, M). Let C = (g;,) be a N % M (i.e., N rows
and M columns) integer matrix with N < M and rank(C) = N. (in our case
N — 4 always). Then by employing column operations (i.c., by multiplying C
on the right by unimodular, t.e., det = £1, M % M integer matrices) C' can
be reduced to Hermite normal form (d,,), i.e., (d;,) is lower triangular (d;; =0
ifi<j)d;=>0frl<i<N, and d, is reduced mod 4, for all j <4,
i—2,.., N. In particular we can and do assume that 0 < dj; < dy; for all
j < i, i = 2,.., N. The Hermite normal form of a matrix is unique (see [28,
Theorem 11.3]), To obtain the Hermite normal form of a matrix C we proceed
as follows, First reduce € to lower triangular form with positive diagonal
entries by any method that pleases you, e.g., one could use [5]. Now we only
have to reduce the off-diagonal entries. Unfortunately, doing this in the obvious
manner seems to sometimes involve numbers too large for a computer to (easily)
handle (whereas, serangely, this problem does not seem to oecur very often in
reducing to lower triangular form). However, we can make use of the uniqueness
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of the Hermite normal form for matrices in £ and also in Z (mod m). Consider
the matrix F which we assume is in lower triangular form with positive diagonal
entries, i.e., F = (fi), ]| <i,j < Nwith fyeZ, f; =0if{ < j, and f;; >0
for i = l...., N. Let m be the least common multiple of foa, fay oo fun - Then
we can reduce F to Hermite normal form as a matrix with entries in Zf(m),
i.e., we perform all operations modulo s, in the obvious (or any other) manner,
The resulting matrix, say (d,)), satisfying d;; = f;; for { = 1,...; N (we do not
change or reduce fy, modm) and 0 < dyy < d;; = f; for j <4, will be the
Hermite normal form of the original matrix F considered as a matrix in
Mat(N, Z) by the uniqueness of Hermite normal form for matrices in Z and
also in Z/(m) (sec Newmann [28, p. 18]). Thus as long as m is not too large,
we will not get overflow errors on the computer.

Remark 4.1. It will become apparent that the procedure HERMITE will

be used very often in our algorithm. A really efficient procedure for obtaining
the Hermite normal form of a matrix would be nice.

Procedure REDUCE(C, D, F). Let C = (¢;;) be a lower triangular 4 4
integer matrix. D (for denominator) and F (for factor) are integers. The procedure
replaces C by C', D by D' and F by F' so that (F'[D') €' = (F[D)C and (e,
Coy 1oy ag) = | and (D, F) = 1 with D’ and F’ positive. Here, of course
C’ = (cj;). Thus REDUCE simply removes all common factors from C and
puts F/D in reduced form.

Procedure GAUSS(DISC, 4, B, CLASS. NO). DISC is the discriminant
of an order S in an imaginary quadratic number field (thus DISC < 0). The
procedure GAUSS calculates the class number CLASS. NO of & and also
representatives of the distinet ideal classes of S. The representative ideals are
given in the form Z(24[n]) + Z(—B[n] + (DISC)'?) for n = 1, 2,..., CLASS.
NO. Here we assume that A[n] and B[n] arc integers for n = 1,..., CLASS. NO
and A and B denote the one-dimensional arrays whose nth elements are Afn]
and B[n]. An explicit procedure for doing this, due to Gauss, can be found
in the work of Borevich-Shafarevich [6, pp. 149 and 150]. It is probably best
to choose some number, say STOP, such that representatives of only STOP
ideal classes will be generated if CLASS. NO = STOP.

Remark 4.2. Note that the norm of the ideal Z(2A[x]) + Z(—B[n] +
(DISC)Y2) is 44[n] (see the Corollary of [6, p. 137].

Procedure QMULT(E, F, QA, OB, A, B, C). This procedure performs
multiplication in the quaternion algebra U = (04, OB). A = (A[l}..
A[4]) e 74 represents the element A’ — A[1] 4 A[2)] + A[3]] -+ A[4]K in the

canonical basis 1, I, [, K of U = (QA, OB). Similarly for B and C. The |

procedure calculates C corresponding to the element € = A'B', multiplication
being in A = (04, OB), We assume (for efficiency) that the first £ — 1 entries
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of A and the first # — 1 entries of B are zero (1 < F, F < 4) since we will
often have to multiply such elements,

Procedure (YTRACE(A). QTRACE(A) is the trace of A where the notation

is a5 in Procedure QMULT above. Thus QTRACE(A) — 2A[1]. We assume
as always, that 4 & 73, i

Procedure QNORM(QA, OB, A). ONORM(QA, OB, A)is the norm of A’
in the quaternion algebra (04, OB). The notation and assumptions are the same
as in QTRACE above.

At this peint we need to select a convenient way to represent lattices (thus
in particular orders and ideals) on the computer. We do this by

Notation 4.3, Let L' be a lattice on a quaternion algebra 9 = (04, OB)
over 0. L' has a Z-basis f; ..., f; . Each f; can be written as f; — (LFAC/LDEN)
(L{1,5] +L[2,j1 + L[3,j1] + L[4, j]1K) where LFAC, LDEN and L, ],
| <1, j < 4 are all integers. Of course here {1, I, [, K} is the canonical basis
of A = (QA, OB). We thus represent L’ by the triple LFAC, LDEN, L —
L[i, j] consisting of the integer LFAC (the “common factor™), the integer
LDEN (the “common denominator''), and the 4 % 4 integer matrix L. Thus
the columns of (LFAC/LDEN)L give a basis of L” in terms of the canonical
basis 1, 1, J, K. We can and do write (f; ..., fy) = (1, I, J, K)((LFAC/LDEN)
(L)). Note that multiplying L on the right by a unimodular matrix does not change
the lattice L' which LFAC, LDEN, L represents. Thus we can and usually do
assume that L is in lower triangular (or even Hermite) form. Finally at times we
need to consider ideals in imaginary quadratic number fields contained in 9[.
These ideals, which are free Z-modules of rank 2, will be represented the same
way as are lattices on 9, except that the matrix corresponding to the matrix L
above will have only 2 columns, i.e., will be a 4 < 2 matrix.

LetL, = Zf, + +- 4 Zfyand L, = Zg, + =+ + Zg, be two lattices on U =
(04, 0B). We need a procedure for obtaining the lattice LiL, =¥, ; Zfig; .
For example L, and L, might be ideals and then L,L, is their produet in the
Brandt groupoid (see the paragraph following Definition 1.16). This need is
fulfilled by

Procedure LATTICE(QA, OB, LiF, LD, Ly , LoF, LoD, L, , K, L;F, LD, Ly).
Fori — 1 or 2 let L, he the lattice in the quaternion algebra 9 = (Q4, OB)
represented by LF, LD, L, in Notation 4.3. K is either 4 or 2, If K = 4, we
assume Ly is a lattice on A, 1e., Lyis a4 X 4 matrix, while if K = 2, we assume
L is a lattice on some imaginary quadratic number field contained in Viaten
we assume Ly is 8 4 % 2 matrix. We always assume that L is a lattice on 2l and
further that L, is in lower triangular form. Also we assume that L; is in lower
wiangular form if K = 4. The procedure computes the lattice Ly = I4L; and
represents L by LF, LD, Ly in Notation 4.3, Ly is given in lower triangular
form and Ly, LD, Ly is “reduced" (see Procedure REDUCE). The procedure

& el



goes as follows. First if L is a matrix, denote by L(j) the jth column of L. I
K = 4, perform the operations:

QMULT(, j, 04, OB, Ly(i), Ly(7) Ly(4(1 — Y41k for 1 <1, j=4,
while if K = 2 performs the operations

for | <i<4,
| =ik

QMULT(, 1, O4, OB, Li(i), La(j), Ly(4@ — 1) -+ j);

Thus Ly(k), & = 1,..., 4K are all clements of Z* and viewing them as column
vectors we form the 4 x 4K integral matrix Ly = (Ly(j)). Now perform the
operations:
LyF = (LF)(LF);
LD = (L D)(L:D);
HERMITE(L, , 4, 4K);
REDUCE(L, , L,D, L;F).

This completes the procedure LATTICE. Note that after performing
HERMITE(L, , 4, 4K), only the first four columns of L, are nonzero, so we
view I, as a 4 % 4 matrix by discarding the Sth, 6th,..., 4Kth columns.

5. FinpING AN Orper oF Lever N

In this section we explain Steps 1 and 2 of Section 3. First we find the algebra.

ProposiTioN S5.1. Let p be a prime. Then the (unique) quaternion algebra
( p) over O ramified precisely at p and o 1s piven by:

Ap) = (—1,—1) if p=2;
Ap)=(—1,—p) 1 p=304);
Ap) = (=2, —p) if p=5(8)
and
Alp) =(—p, —q) i p=18)

where q 15 a prime with ¢ = 3(4) and (plg) = —1.

Proof. This follows from an easy exercise in caleulating Hilbert symbols,
See [24, p. 157, #10 on p. 186, and Theorem 2.27 on p. 163]. Note that one
does not really have to caleulate the Hilbert symbol (04, OB), as the number
of ramified primes must be even,

PROPOSITION 5.2. Lat p be @ prime and let 91( '
N : P) = (0A, OB)be th it
dfgeitra (ramified precisely at p and o) given by meog;"n‘g% 5)‘] ab;::m;m
maximal order of WU( p) is given by the Z-basis: 3

(1 + 1+ J+ KL K i =

(1 -+ DA+ K), ] K if p=3(4),

Wl JHK) 2]+ K) LK if p=58),
and

WU+ ) W0+ K), 1g(J + aK), K if p= 1(8),

where a is some integer such that q | (a*p + 1), Here 1, I, |, K is the canonical
basis of WU(p) = (QA, OB) with relations I* = 04, * = OB, and I] =
K=—]JL

Proof. ‘The case p = 2 is classical. By Proposition 1.1 we need only check
that the discriminant of the lattice given by the above basis is p* and that the
lattice is in fact a subring 5 1. The explicit calculations y to d rate
this are straightforward and easy (but rather tedious), We leave them to the
reader.

According to Step 2 of Section 3 we need a method of finding all suborders
of index g or p* (g and p primes) in a given order. Assume we are given an order
¢ represented by QORFAC, QORDEN, and QOR = (QOR[, j]) in Notation
4.3. Further suppose a Z-basis of @ is given by fi ..., fi, i€, (fy o foi) =
(L L T, K)({QORFAC}QORDEN)QOR)A Let ¢ be 2 suborder of index g

‘in @'. Assume 0" = Zg; + -~ + Zg,. Then g, =3, b, f; for some byeZ

with det((5;;)) = ¢. Put B = (b;). Then (g ,..-, g) = (1, I, J, K)((QORFAC/
QORDEN)(QOR)(B)). Multiplying B on the right by a unimodular matrix

} does not change @". Thus we can assume B is in Hermite normal form, e,

g 000 1 000
] [ ES(e 0] - i@ gm0
B AR i or B = 0010 or
0001 00 0L
IRROIRG 1 000
01 00 S HOSIOTRC) 5
S| sy o or v sl K NG (1)
0001 a b ¢ g

where 0 < a, b, ¢ < g. Thus any suborder (or sublattice for that matter) of
index ¢ in @ must be of the form
(5:2)

Zg+ o+ 2
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where (g0 £) = (L4 15 K}(((JORl"r\(‘;‘(!()RD]::N)(QOR)(H)) where B
is allowed to run over the matrices in (3.1).

Now we must give a method for deciding if a lattice given by (5.2) is in fact
an order. Thus let L' be a lattice represented by LFAC, LDEN, L = L[i, j]in
Notation 4.3, First perform the operations:

HERMITE(L, 4, 4);
REDUCE(L, LDEN, LFAC);

Now first check to see if LFAC = 1. If LFAC = |, then L' is not an order
since 1 ¢L" if LFAC = 1, If LFAC = 1, then next check to see if 1 L7 This
is easy to do since L is in lower triangular form. If 1 L', we finally check to see
i is a ring, i.e., we see if L’ is closed under multiplication. All we need really
do is check that g.g; L’ for 1 < i,j < 4if L' is given by (5.2). A convenient
method for doing this is to perform the operations:

LATTICE(QA, OB, LFAC, LDEN, L, LFAC, LDEN,
L, 4, MFAC, MDEN, M);

then L’ is an order if and only if MFAC = LLFAC, MDEN = LDEN and the
4 % 4 matrices L and M are identical. Clearly L' defines an order if and only if
1 £L’ (which we have already checked above) and L'L' = L. Using the uni-
queness of the Hermite normal form one easily checks that L'L' = L if and only
if MFAC = LFAC, MDEN = LDEN, and M = L.
The only difference in finding suborders of index p? in @ is that we must let B
range over all integer 4 X 4 matrices in Hermite normal form with det(B) = p*
Finally we employ Proposition 1.6 to select an order of level N (where
N* = g (level(Q')) or N* = p(level(Q')) depending on the case) from among
the possibilities given above. Specifically, let 0" be 2 suborder of index g in @
and assume ¢ is not the ramified prime of 9. Then by Proposition 1.6, 0" is an
order of level N* if and only if ¢ contains 2 subring isomorphic (over Z) to
Zo D Z, . This is true if and only if @ contains an clement w (such s (5 )
with Tr{e) = 1 and N(&) = 0 or, if g % 2, an clement B (such as (52,) with
Tr(8) = 0 and N(a) = —1. On the other hand if p is the finite ramified prime
of 9L and @ is an order of index p* in &, then " is an order of leyel N if and

only if 07} contains an order isomorphic (over Z,) to R, the ring of integers of L,

the unramified quadratic field extension of 0, . This is true if and only if @
contains an element & (such as #'%) with Tr(x) = 0 and N(x) = — where
we Z is a quadratic nonresidue mod p for p = 2 or an clement f (such 28
(1 + 5*7)[2) with Tr(g) = 1 and N(B) = —1 for p = 2. These local caleulas
tions are probably best done by hand, or at least I have done them by hand in
my computations.
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Of course we do not have to find all suborders of index q or p* in a gi
?rdcr in Step 2. One should just find a few (there are not too ms.npﬁ m‘}bg]"’"_‘"
inany Fasc) and test them for an order of level N* (at this point, it E'rfuld‘hl e
convenient to rename orders of “level N'' so that the t:xp“l::it HNT do:swng;
occur in the name and thus we could do away with the annoying N°)

6. CALCULATING THE REPRESENTATION NUMBERS

Let O(x) be a positive definite integral quadratic form in r variables. We want
a procedure for calculating the number of times O(x) represents 0, 1, 2,..., T
{for some given T')as x varies over Z7, i.e., for calculating the so-called rel;re;er:ta-
tion numbers of Ofx).

First let us consider the easiest nontrivial example O(x) — x* + %% The
ohviuus.‘ way to find the number of times Q(x) represents the integers 0, 1,..., T
25 ¥ varies over Z2is as follows: let , vary over the integers — T2 < x; < T2
and let %, vary over the integers —(T — x)* < %, < (T — x7)'F and
evaluate O(x, , %,) and count the number of times each integer from 0 to (0
oceurs. We could shorten this a little by making use of the fact that O(—=x) =
0(x). Also in the present example we could use the fact that O(—x, %) =
O, , %), etc., but in general the isometry x — —% is the only isometry we will
have available, Tt is difficult to imagine a more cfficient elementary method for
calculating the representation numbers of O(x) = x® + x,° since each (%, %)
considered by the above method actually contributes 2 O(x; , x,) in the desired
range. Let us now reinterpret the above method.

Again consider Q(x) = ¥* + x% We present an iterative method, essentially
identical to that above, for calculating the representation numbers of O(x).
The graph of Q(x) with x € R* is a two-dimensional paraboloid with its minimum
point (0, 0) having @(0, 0) = 0. This is of course true for all positive definite
quadratic forms except that in general the dimension of their paraboloid graph
equals the number of variables of the form. Let C[i] denote the number of times
() represents i. Our method is:

Rep0. Let C[0] = C[l] = = = C[T] =0.
Rep 1. Letx = 0.
Rep 2. Caleulate the minimum point m, of the one-dimensional paraboloid

D0, %) = P+ x,* with x, fixed and X, & R.
Rep 3. 1f Ox, 1) = 1) then go to Rep 11
Rep 4. Let x, be the least integer = Mz -

Rep 5. While O, xg) < T iterate the steps:
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(a) replace C[Q(x, , x5)] by C[O(x1, )] + 1;
(b) replace x; by x; + I3
(¢) goto Rep5.
Rep 6. Let x, be the greatest integer < ;.
Rep 7. While O(x; , x;) < T iterate the steps:
(3) replace C[O( , %)) by CTOGxa)] + 1;
{b) replace x, by x; — 1}
(¢) GotoRepT.
Rep 8. 1f %, = 0, then replace C[i] by CTr]/2 tors =1y T
Rep 9. Replace x, by %, + L.
Rep 10. Goto Rep 2.
Rep 11. Replace C[i] by 2C[] for i = 1,..., T.
Rep 12.  End.

Remark 6.1. We use the fact that O(x) = O(—x) so that we consider only
x, = 0. As Rep 8 shows, we do not attempt to make use of the fact that O(—x,
%) = O, , =), etc., as such phenomena do not oceur in general.

Remark 6.2.  The major point on which this method is based is that a para-
boloid has 2 unique minimum point and as we move away from it in any direc-
tion, the surface always rises. In the case O(x) = x,* + ., the minima of the
associated prabolas (see Rep 2) are always trivial to calculate (m, = 0 always)
and this is what makes the computation of the representation numbers of
O(x) = % + x* very easy. But in general calculating the minimum point of
a paraboloid is quite easy. One just has to solve (since we know calculus) some
simultaneous linear equations. In our case we set things up so that the coefficient
matrix of these simultaneous linear equations will be lower triangular and thus
solving them is very easy.

The generalization of our method to an arbitrary integral positive definite
quadratic form is (or should be) obvious. As this is the critical step in our
algorithm, we give below an explicit procedure written in ALGOLGO that
covers the cases we require. According to (3.1), we need to caleulate the repre-
sentation numbers C[n] of quadratic forms of the type N(x)/N(L') for xel’
where L is some lattice in a quaternion algebra over (). Let L' be represented
by LFAC, LDEN, L = (L{{,7]) in Notation 4.3. We can and do assume L is
in lower triangular form. Then xel’ = x = (LFAC/LDEN)y with y e Zf; ,
=+ o= = Zfg where (fy o fg) = (1, 4, J, K)L. Then N(x)IN(L) =n =
((LFACY/(LDEN)* N(L")) N() = n. Thus we are led to consider quadratic
forms of the type (F/K) N(x) where x varies over some lattice Zf, + = + Zf,

with (fy o, i) = (1, I, [, K)A where A is 8 4 % 4 lower triangular integer

matrix. ‘The explicit procedure is (note that for typographical reasons we use
a double asterisk to denote exponentiation):

PROCEDURE REPRESENTATION. NO(4, P, O, C, K, F, R);
VALUEYF, K, R, P, (;
INTEGER ARRAY A4,
INTEGER K, F, R, P, O;
COMMENT: THIS PROCEDURE REPRESENTATION. NO
CALCULATES THE REPRESENTATION
NUMBERS
C[N] FOR N /= R FOR THE QUADRATIC
FORM F/K(NORM(X1 + X2I + X3] + X4K)) —
FIK[(X1)#22 + P(X2)#=2 + O(X3)=+2 +
+ PQ(X4)#=2] EVALUATED ON (L. £.
WHERE X1 -+ X2I + X3] - X4K VARIES OVER
THE POINTS OF) THE LATTICE WITH Z EASIS
Al + AN + A3] [ 4 AS1K, A22] + A2 ] +
+ A42K, A33] + A43K, AND A44K IN THE
QUATERNION ALGEBRA (—P, —0) WHERE
1,1, J, K DENOTES THE CANONICAL BASIS
OF (—P, —0) (NOTE THAT WE ARE
ASSUMING THAT THE MATRIX 4 1S LOWER
TRIANGULAR). THE RESULTS ARE STORED

IN C[0);---» C[R]::
BEGIN

INTEGER X1, X2, X3, X4, I1,12, I3, 14, ], 53, 84, T3, T4, Us, v, W, L,
L1, 12,13, K1, K2, K3, ], J2, J3, 01, 02, 03, O4,
P2, P3, P4, R3, R4;
LONG REAL M2, M3, M4;
Vi PsQ; W i— (ReK) DIV F; K3 := A[4, 4]+ A[4, 41V,
FOR J:— 0 UNTIL R DO C[J] := 0;
2 A= bk
=1
BEGIN
B200: BEGIN
01 = X1=A[1, 1];
02 1= X1+A4[2, 1];
Q3 = X1+4[3, 1];
04 1= X1xA[4, 1];
M2 1= —Q2JAR, 2%
M3 i— —(03 + M2+A[3, 2)JA[3. 3);
Ma i —(Q4 + M2+A[4, 2] + M3xA4, 3))/A[A, 41;

COMMENT : BEGIN X1 BLOCK;

COMMENT : BEGIN X2 BLOCK;
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BEGIN
COMMENT : THE ABOVE CALCULATES THE MIN. OF THE
3 DIM. PARABALOID WITH X1 FIXED;
IF Q1x01 + P+(02 + M24A[2, 2])%2 -
O#(03 -+ M2+A[3, 2] + M3+A[3, 3])*+2 +
Va(04 + M2+A[4, 2] - M3=A4[4, 3] - M4+A[4, 4])#+2 > W 4 |
THEN GOTO R300;
X2 := ENTIER(M2) + I;
FORI2:=1S5TEP —2 UNTIL —1 DO
BEGIN
BEGIN
BR300 : BEGIN COMMENT : BEGIN X3 BLOCK;
Pli= X2xA[2, 2;
P3:= X2+A[3, 2];
P4 = X2«A4[4, 2];
M3 ;= —(0Q3 + P3)[4[3, 3);
M4 := —(04 + P4 + M3=A4[4, 3))/A[4, 4];
COMMENT : THE ABOVE CALCULATES THE MIN. OF
THE 2 DIM. PARABALOID WITH X1, X2
FIXED;
83 := Q1%01 + P+(02  P2)#%2;
T3:= Q3 + P3;
U3 := 04+ P4;
IF 83 + O#(T3 + M3#A[3, 3])#+2 + V(U3 + M3%A[4, 3] +
+ M4+A[4, 4])%+2 > W -+ | THEN GOTO R200;
X3 := ENTIER(M3) + I;
FOR I3 := 1 STEP —2 UNTIL —1 DO
BEGIN
BEGIN
£400 : BEGIN COMMENT : BEGIN X4 BLOCK;

R3 := X3+4[3, 3];

R4 .= X3+A[4, 3];

M4 := —(U3 - R4)/A[4, 4];

COMMENT : THE ABOVE CALCULATES THE
MIN. OF THE | DIM. PARABALOID
WITH X1, X2, X3 FIXED;

54 1= 83 4+ O#(T3 -+ R3)x+2;

T4 := U3 + R4;

IF S4 + V(T4 + A[4, 4]=M4aJ#x2 = W + |

THEN GOTO R100;

Il ENTIER(M4) + 1;

FOR I4 := | STEP —2 UNTIL —1 DO

R
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BEGIN
L:=0;
K1 := T4 + X4+4(4, 4],
K2 := V=2+A4[4, 4]+ K1;
J2:= J:= 54 4 V=K|sKl;
WHILE J (= W DO
BEGIN
J1 := ([«F) DIV K;
C[J1] := CJI) + 1;
Li=1 + I4;
Jr e jl +L+K2 + L+L:K3;
END;
X4 :— ENTIER(M4);
END;
END;
X3:= X3 +13;
END;
X3 := ENTIER(M3);
END;
END;
X2 = X2 412;
END;
X2 :— ENTIER(M2);
END;
END;
IF X1 = 0 THEN
BEGIN
FOR J3 := 0 UNTIL R DO C[J3] := C[J3] DIV 2;
END;
Xl :=X1+11;
R300 : END;
FOR J:= 1 UNTIL R DO C[]] := C[J1#2;
END;
COMMENT : END OF X1 BLOCK AND END OF PROCEDURE;
Remark 6.3. In the procedure REPRESENTATION. NO we ha?fc at-
nd not do the same computation again and
again, Thus, for example, knowing &%, we compute (x+ .] i b‘y using the fact
that (x - 1) = &% + 2x + 1. Also note that an easy mc‘:d:ﬁcmo:; of the__ a_b_oa_-re_
procedure allows us to explicitly find all o € L', instead of just the number ufsnch
w, with N(a) = nN(L’). In the case of weight 2, we _]ust.hn}'e to count the number
of such e, but for modular forms of weight & = 2, we woul
determined explicitly (see Step 4 in Section 3 und :

COMMENT ; END X4 BLOCK;
GOTO BAGD;
R100 :

COMMENT ; END X3 BLOCK;
GOTO B300;

R200 :

COMMENT : END X2 BLOCK;

GOTO B200;

tempted to be reasonably efficient a




7. FINDING REPRESENTATIVES OF THE IDEAL CLASSES

In this section we explain Step 3 in Section 3. Step 2 of the algorithm provides
us with an order @ of level N. Assume @ is represented by QORFAC, QORDEN,
QOR = (QOR[, j]) in Notation 4.3.

We can further assume that QORFAC = | and that QOR is in Hermite
normal form (see Section 5). Let (fy .oy fi) = (1, L, J, K) QOR. Thus {fi
QORDEN | { = 1,..., 4} is a basis for @,

Step 3a.  Compute (using Theorem 1.12) the class number of (left) ideals for
orders of level N = p*+1M, p + M and denote this number by H (=H(p*r+'M)).
Consider the arrays IDFAC[A], IDDEN[%], ID[i, j, k], and IDNORMI#],
where | < k < H and | <14, j < 4. Fixing k, IDFAC[A], IDDEN[#], 1D[;,
7, k) will represent in Notation 4.3 the Ath ideal L, in the set of H-ideals re-
presenting all the left @-ideal classes. IDNORM[£] is of course the norm of
the kth ideal L, (it will always be an integer).

Step 3b. Let IDFAC[I] — QORFAC, IDDEN[I] = QORDEN, ID[i, j,
1] = QOR, j] for 1 <i,j < 4, and IDNORM(1] = 1.

Step 3c. Suppose at this point we have obtained IDFAC[Z], IDDEN[K);
ID[f, j, &), and IDNORM[A] for | <k < tand 1 <1, < 4.

Step 3d. Choose some element S = (S[l],..., S[4])eZ' and let a =
(1/QORDEN)(E, S[j] f), i€, a = (1/QORDEN)(1, I, J, K)YQOR)(S") =
(1/QORDEN)(1, 1, ], K)(D*) where D — (D[j]) = ((QOR)(SY)!e 2% If e Q,
choose another S. Let DISC = (Tr(x)* — 4N(a)) = {(QTRACE(D))* —
4(QNORM(0A4, OB, D))}/(QORDEN)?, the discriminent of the order Z + Za.

Step 3e. Preform the operations:
GAUSS(DISC, 4, B, CLASS. NO),

Note that [2(D[2] + D[3]] + D[4]K)]* = (DISC)(QORDEN)® and thus
Q((DISC)'?) has a natural imbedding in 2 = (QA4, OB). Consider the array
T,k with 1 <i<4, 1 <j<2 and | < k < CLASS. NO, where
T'(1, 1, K] — 24(K[(QORDEN) for 1 <k < CLASS. NO; 7'[i, 1,4 =0
for 2<i<4, | <k=CLASS. NO; T'[l,2, k] — —B[k] QORDEN for
I < k< CLASS. NO; and T'[1,2, k] =2D[i] for 2 <i <4, | <k<
CLASS. NO. Also let TNORM[k] = 44[kJ(QORDEN): Then according to
Procedure GAUSS, L, = Z(T[l, 1, k) + Z(T'[1,2, k) + T'[2, 2, k)T +
T'(3, 2, F]] + T[4, 2, KK) for 1| < k = CLASS. NO are representatives of
all the distinct ideal classes in the order of discriminant DISC generated by a.
By Remark 4.2, TNORM([£] 18 the norm of the kth ideal.

Step 3. Lety = 1.

|

Step 3g,

| We “push up" the ideal represented by T'[,j, #], | < i < 4,

< 2, to a left @-ideal. We do this by performing the following operations:

Let Fi, j] = T[i, j, v} for | <i<4,1 <j<2;

'LATTICE(QA, OB, QORFAC, QORDEN, QOR, 1, 1, £, 2, TF, TD, T);
Now TF, T'D, T represents, in Notation 4.3, the left @-ideal I, = 0L generated
by the ideal L .

Step 3h.  Using REPRESENTATION. NO (T, —04, —0B, C, (TDy* %
('1\ ORM[¥)), (TF)*, LIMIT2) we compute the first LIMIT2 Fourier coeffi-
cients of the theta series 6, (f). We then proceed to compare theta series as in
Step 3h in Section 3.

The remainder of Step 3h is self-explanatory with the possible exception of

testing whether or not T,L, contains an element of norm N(T,) N(L,). Before
we explain this we set

Notation 7.1, 1f L = (L[4, ]) is any 4 x 4 integer matrix, we denate by L
the matrix (L[7,j]) given by L[l,j] =L[l,j] for | <j <4 and L[, j] =
—L[i,j]for2 <i < 4,1 <j <4 Thusif L' = Zg, + - + Zg, is the lattice
represented by LFAC, LDEN, L in Notation 4.3, L = Zg, + -+ + Zg, is the
lattice represented by LFAC, LDEN, L in Notation 4.3.

We can test whether or not 7,L, contains an element of norm N(7,) N(L,)
as follows:

suppose T, is represented by TF, TD, T and L, is represented by LE, LD, L in
Notation 4.1. Let N(T) and N(L) denote the norms of 7, and L, respectively.
Perform the procedures:

LATTICE(QA, OB, TF, TD, T, LF, LD, L, 4, XF, XD, X);

REPRESENTATION. NO(X, — 04, — 0B, C,(XDP(N(T)N(L)),(XF), 1)
If C[1] = 0, then 7,L, does not contain any clements of norm N(T,) N(L,),
while if C[1] +# 0, then 7L, does contain an element of norm N(T, W) V(L)
We now explain Option 1.

Option la. Select an integer p, 2 < p < L
Option 1b.

Let 8T, j] = ID[, jy el for | <4, ) < 4

Perform the operations:

LATTICE(QA, OB, IDFAC[4], (IDDEN[])(NORM()), S, IDFAC[x},
IDDEN[4], S, 4, FAC, DEN, TEST2);

REPRESENTATION. NO(TEST2, —0A, — 0B, REP, (DEN), (FAC),
LIMIT2),
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If the Fourier coefficients REP[1],..., REP[LIMIT2] are not identical to the
corresponding Fourier coefficient in 0,() (Ls =0 remember), then the order
L7'L, (which is represented by FAC, DEN, TEST2—see Proposition 1.17) is
not isomorphic to @ and we go to Option lc. Otherwise go to Option la, selecting
a different . If weuseup all p, 2 < p < 1, Option | fails.

Option lc. Perform the operations:

Replace QORFAC, QORDEN, QOR by FAC, DEN, TEST2.
Replace IDfi, j, 1] by D[, f, p] = STy ) for | <4, j < 4.
(Note that IDFAC[u], IDDEN[u], S represents the ideal
I, = N(IL)I7* = N(I)I;'1, as I, is the left order of 1, .)
Replace IDFAC[1], IDDEN(1], (ID[i, jy1]), | < #,j < 4 by FAC, DEN,
TEST?2;
For & — 2, 3,..., 1, k = p preform the operations (i) through (v):
() Let Y[i,j] = ID[i, j, K] for | <i,j <4.
(ii) LATTICE(QA, OB, IDFAC[], IDDEN(y], S, IDFACKIK),
IDDEN[A), Y, 4, XF, XD, X);
(Note that XF, XD, X represents the ideal [.I = N(Z,) I ).

(iii) Replace NORMIA] by (NORM([])(NORM(%)).

(i) If (XF)* | NORM[A], then replace NORM[X] by NORM(K)/(XF):
and replace XF by 1; (Note that NORM[E] = ((XF)*/(XD)?)W for some
integer W and so (XF)* | NORMI.]. We use the “if*’ statement because we are
very cautions.)

(v) Replace IDFAC[E], IDDENIE], ID[i, j, k] for 1 <i,j <4 by
XF, XD, X;

Option 1d. Go to Step 3d (in Section 3).

This completes our discussion of Option 1 and also our explanation of how
to find representations of the left-ideal classes for some order of level N in 91,

8. CALCULATING THE THETA SERIES AND THE BRANDT MATRICES

This section explains Step 4 of the algorithm. First we consider the case of
cusp forms of weight 2 on I',(N). The modified Brandt matrices By(n), (m, N) =1
give a representation of the Hecke operators To(n), (n, N) = 1 on the vector
space of cusp forms (0,(t)) @ ++ @ <4,(1), in the notation of Theorem 2.28.
Further if Bj(n) = (bi,(n)), then the theta series Sy by exp(n) (for 1 <1,
j < H — 1) are the theta series we are interested in computing. Thus we need
only compute the Bj(n) to obtain all the relevant information. By Lemma 2.19,

y
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once we have computed the Brandt matrices By(n), obtaining the modified Brandt
matrices Bi(n) is trivial. Hence we compute By(n) for n =0, 1,..., LIMITI.
As is noted in Step 4 in Section 3, ¥, By(n) exp(nr) = (1/efr ; () and
O (7) = Op,p (r) where ¢; is the first (not the zeroth) Fourier coefficient of
O, ;._,(")- Thus we need only calculate the Oth, lst,..., LIMIT1th Fourier coeffi-
cients of fp 1 (7) for 1 < I < k < H. But the Fourier coefiicients of 0p (7)
are given by the operations:

Let F(i, j] = ID[i, j, {] for 1 < i,j < &
Let Gfi,j] = ID[i, j, K] for | <i.j < 4
LATTICE(QA, OB, IDFAC[), IDDEN(], F, IDFAC[A], IDDENA],
G, 4, XF, XD, X),
REPRESENTATION. NO(X, —0A, —QB, REP, (XD)* - IDNORM{] -
IDNORMIE], (XF), LIMIT).

9. ExampLES

[n this section we give numerical examples computed using the algorithm.
They have been chosen to illustrate various aspects of the theory of Brandt
Matrices, theta series, and the basis problem.

ExanpLe 1. Our first example Sy(37) is of historical interest. 37 is the first
prime for which Hecke's original conjecture—which began the basis problem —
fails (see Remark 2.16 above, [12, p. 169: 38, 40]). By Propositions 5.1 and 5.2
the quaternion algebra U(37) equals (—2, —37) and a (maximal) order € of
level 37 has Z-basis 3(1 + J + K). }(I +2] + K) ], and K. The class number
(Theorem 1.12) is 3. Using Step 3 of Section 3 (see also Section 7) we find
L =01, = Z2+ 6] +10K) + Z(I + 2] + 9K) + Z2(12] +_Z(|2K]. and
I, = Z(2 + 26] + 26K) + Z(I + 2] + 13K) + Z(28]) + Z(28K) are repre-
sentatives of the left @-ideal classes. Their norms are N(I,) = 1, N(I;) = 48,
N(I,) = 112, The corresponding Brandt matrices B(n) = By(n; 37, 1) for
n <19 are

B(0) B(1) B(2) B(3) B(d)
TR 1 00 il ALl DR 133
M1 0\0} (102) (103) 331
2]11 i JArniil) 1 3 0 Rl

21 ) 4 4 4 2050 5 5 5 355
2 W 4 7 1) 3 2 3 Syl ) 517 }?
2R 4 1 7 33 2 SRS i)



B(10) B(11) B(12) B(13) B(14)
6 6 6 /5 3 3 /8 10 10) 2 6 6 SRR
6 8 4) (3 2 ?) (10 6 :2) 6 3 5) B )
6 4 § SR 10 12 6 6 5 13 8 7 9
B(15) B(16) B(17) B(18) B(19)

‘8 8 8 (13 19 9) 10 4 4 I3 310 8 6 6
(8 11 5) (9 913) (4??) (13 ?I‘)) G

8 501 9E713: Q)0 N 17T 13 ESTOR T RN G TI

Note that in the notation of (2.5), fy(7) = (), so that the cusp forms
Bay(7) — Oy(7) and 6y(r) — fyy(7) are equal and hence do not span the two-
dimensional space S,(37). This gives a counterexample to Hecke's conjecture.
Note that Hecke himself checked his conjecture for all primes <37 (see [18,
p. 884]) so he probably realized 37 was an inportant example but not having
computers he must have erred. As the type number is 2 in this case, one can
check that the case p = 37 satisfies the modified version of Hecke's conjecture
given in [38]. We note that dimensions of S,(N) and S%(N) for N < 300 can
be found in [3].

From B(0) we sce & = é; — £, = 2. One can check that the B(n) above
satisfy the conclusions of Propositions 2.18 and 2.22, i.e., they are (in this case
since all g; are equal) symmetric, the row sums are independent of the row
(and are equal to deg Ty(n) if (n, 37) = 1,in particular equal ton + 1 for primes
n = 37), B(n) B(m) = B(nm) if (m,m) =1, B(F) B(lf) = 3,0 PB(IFH5%),
swhere ¢ — min(r, s) for primes I = 37, and the B(n), (n, 37) = 1 are simulta-
neously diagonalizable. Note that thesc are 2 rather stingent set of conditions
for a set of matrices to satisfy and the fact that the B(n) do satisfy them gives
one confidence in the algorithm.

The matrix 4 of Lemma 2.19 1s

TR
(I =2 I)
J b=

| 1 I}
A= |1 =1 0) 80 A =
B |

| —-

and the first few AB(n) A-' for 0 << n < 4 are

1 300 AT 3 0 0 4 0 0 7l ek )
3 000 (0 1 (J) 0 —1 l) (=l 2 0 0L==25
0 0 0 a 0 1 0 1 -1 0 2 —1 0 —=2 0

We see that conjugating by 4 behaves according to Lemma 2.19. In particular

the entries in the lower right-hand block of the AB(n) A~ give Fourier Coeffi-
cients of cusp forms.

The B(n) can be simultaneously diagonalized by conjugation by

202 (fp 20
C=[2-1-1], Cr=gl1-1 1].
0 3-3 RS (|

Letting x — £#ir we have

o f@ o0 0

¥, CR(m) C e = (L0 03} = ORI

) 0 0 6(7)
where f(7) = § + x + 322 + 4a® 4 Tt + 62° + 124% - 827 + 152% + 13 +
18210 b 12518 & oo By(7) = x 4 2 — 20t — 57 — 20 - 3all Dl — 420®
415 - Gxl7 - 200 — x2  ee gt(‘_) = —2a — 32 4+ 2t — 2x5 L6t —

X7 4 6x% + 4x10 — SxM 612 — D18 L Dpld L eee,
Here f(7) is an Eisenstein serics on I'y(37) (the transform of the zeta function
of ) and 0,(z) and 0,(7) are by Corollary 2.29 the newforms in 5.°(37) = Su(37):
We now explain how to determine the action of the canonical inyolution E
on the B,(r). First we explain how to determine the action of £ on Sa(p) for
any prime. The canonical involution E for modular forms M(p) on Ty(p) is
given by the matrix (3 =) and as we are considering the case of prime level
E = W, , the W-operator of Atkin and Lehner (see [21). For g(7) € My(p),

we have

q | E(z) = p7'=*q(—1]p7).

Turonem 9.1. Let p be a prime and consider modular forms of weight 2 on
T p): Lett;,(7) be theentries of the Brandt matrixseries,(B(r)) = Do Bo(n: p, 12"
Then the action of E on the 0,(7) is given by the matrix —B(p) = —Bylps pr 1)
ie., 0, | Eis equal to the i, jth entry of o (—B(p))(B(n)) x" where the product
(—B(p))(B(n)) is @ matrix product.

CowoLLary 9.2. If we diagonalize the Brandt Matrix series so as to obtatn I.he
newforms By(7),.., 04(7) of Sa(p)in the notation of Corollary 2.29, the corresponding
diagonalization of —B(p) will give the action of E on the 0(7).

Proof of Theorem 9.1. Let @ be a (maximal) order of le\'c! p- Then ¢
contains a unique ideal, say P, of norm p and Pisa rwu-sidefl ideal (see [14.
Chap. 11]. By Theorem 3.2 of [37], the action of E on a theta series 0(7) ana(.:l?ed
100 left O-ideal 1 is as follows: 0; | £(7) = —bp(7) in the notation of Proposition
2,17 above, By Theorem 9.20 and Remarks 9.2 and 9.25 of [39], this translates
to: f;, | E is equal to the 7, jth entry of 32 ((—Wa(P)) Bln)) <7, where w_:,(P)
is given by Definition 9.1 of [39]. Hence we need only show that B( p:} cqugls
W,(P). Let Iy .-y Iy be the representatives of the left @-ideal classes in terms
of which the B(n) are defined and let €y be the right order of /; . There exists
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idéles f',Efg such that I; = 0y and @, = 77 0 for i = 1, H. For an
explanation of the idélic language used in this proof see [37]. Let B(p) = (b P))-
As we saw in the proof of Lemma 2.18 above, b,(p) is equal to the number of
integral left O-idelas in the same class as [;*1; having norm p. But (@, has a
unique ideal of norm p, namely, P; = ¢ Py . Henee, precisely one entry of
the row bu( )y Bial )i bin(P) is one and the rest are zero. Further by(p) = 1
if and only if there exists x € 2= such that I = Pyifand onlyif fo = LB =
@I.-;.‘—lp;; — Py, = PI;. This is precisely how the matrix Wy(P) is defined
(sce Definition 9.1 of [39]).

Remark 9.3. If the
J¥-operators is true, the above argument wou
N = pM, (p, M) = 1 the W-operator W,

—By(p; p. M)
Now let us return to our example S,(37).

1 0 0 [RROJE0
Ben—=[0 o 1) end cBENCI=(0 1 O).
0 1 0 01

Conjecture 9.24 of [39] concerning the action of the
1d show that for the case of level

would correspond to the matrix

0

Note that this is in agreement with [3]

Thus 6, | £ = —0, and G| E=106;-1
which indicates that the two newforms in S.9(37) have distinct eigenvalues under
E

9(15) shows that newforms for composite
he by-product of producing
ed to quaternary quadratic
among theta series, see the

Exampie 2. Our next example, S,
levels can be computed in several ways, This has t
nontrivial linear relations among theta series attach

forms. For other ways of obtaining linear relations
paper of Kneser ([23]).

First let p = 3 and M = 5. An order of level 15 in A3) = (—1, —3)is
given by @ = Z(3(1 + ]+ 2K)) + Z(3(I - 5K)) + Z(] + 2K) + Z(5K). The
class number is 2 and ideal class representatives are I, = 0and I, = Z(3 +
J+ 2K)+ 231 + 5K) + Z(2] +4K) + Z(10K). Further N(I) =1 and
N(L,) = 12. The first few Brandt matrices are
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By Corollary 2.29 {6(r)y == 25,(3) @ S,(15) = 52(15) so ‘

O(r) = % — 8% — 55 — b+ xb L 4B 4 Bab a0 0 4l e pen
(9.1)
is the newform in S,(15). Note that N(x + x/

! . 1l ] 4 2 K) = xf
Xt + 3x,2 + 3xf Let qr) = 0, (7) = Eaas, exp(N ()7 N(T)) fo: i=1,2be
the theta series attached to the quadratic form N(x)/N(I;) on the lattice ¢Theﬁ
qi(7) = 40,(7) in the notation of (2.5): :
qy(7) = |+ dx + 4x® + 122 + 2425 + Ba® + 167 + 362% + ==,
@l7) = 1 -+ 822 4 4x3 + 165 + 2055 -+ 4x® £ 1637 + 2dad - ==,

S S L SR

We see that gy(r) — qu(r) = 40(7).

On the other hand we can let p = 5 and M = 3. An order of level 15 in

UG) = (—2, —5)is 0 = Z((1 + ]+ 3K) + ZGd + 2] + K) + Z() +

Z(3K). The class number is again 2 and ideal class representatives are |, = @'
and Jy — Z(1 + 3] 4 3K) + 201 + 2] + K) + Z(4]) + Z(6K). N(J) =1
and N(J;) = 8. The first few Brandt matrices are

B(O) B(l) B@) BB B@ BB BE
13 1 0 1y (5 :
Le Y (9 ¢ NG D R IRGRNE R
Conjugating by 4 — }(3 _3) we have
Y AB() A = (fgﬂ ﬂ'lzf)) 3

=

By Corollary 2.29, {0'(r)) = 250(5) @ SL(13) = 8X(15) so 6(7) 15 the new-
form in S(15), i.e., 0'(x) = 8(z) and the Fourier coefficients of 8'(7) are given
by (9.1). Now N(¥, + %l + %] + %K) = #* & 2x2 4+ 5?4+ 1022 Let
) — 017 = Taes, expN(r/NU)) for i = 1, 2. Then i) = L+ 280
4 1 10a + 1028 - 2x° 4 3248 + 1247 + 24x8 - 382 + o and i) =
] 4 Ga® 4 125 4+ 1220 + 3028 - 1247 1828 4 36x% 4 6x10 4 - We see

g|(r) — ¢ir) = 20/(7). Hence we obtain the nontrivial relation

B(O) B(U) B(Q) BB B@) B BO
1 Iy 4 O A 2y 01y 3 4 635 (2
3(1 1) (0 i, (2 1) (1 0) (4 3) (5) 6) G 12)
Conjugating by A = (} _}) we have

i AB(r) A'xn = (f g‘ og-)) ;

) — 2qur) = dx — 4 — 4 — st 4 . (9)

a(7) — 0(7) = 24
h any composite IV as the level and shows

4 This same procedure can be applied wit
I relations among theta series attached

that there are infinitely many nontrivia
to quaternary quadratic forms

~ Exampre 3. Let N = 54 and set p =3, 7
(=1, —3) and an order @ of level 54 in (3




K)) + 20+ K) + ZB]) + Z(3K). The class number is 3 and the first few
-+ t =

Brandt matrices By(n) are

B(0) B(1) B(2)
2 D IR0 O 080 O T
Aiend SisTa 01000 [ S
Ils 2021 2 00100 TR S U
s 20 1 2 00010 200 1 2
ool . 1 DINO. 080k ] Aot ol G
B(4) B(5) B(7)
)l DINCT AN]SR, [ 2 22
e lg0neaiet 1 A Rl o
Baea T om [ SR ORI ol sl ion [
OEAY il 4 W A A, DN DR 08,
7 N IR0, B Al
B(3) and B(6) are identically zero. Letting
o MCad e ok Y =1l 20
_9 0 0 0 9 (A o= T
C— Lo ok o ] r-'=i-'3 ==l o)
el e ) TSRO A= A
=09 00 T A% Sl 20
we find
f(r)
> t,(7) 0
Y CBy(n) C'x" = 0,(7) :
B 0 0,()
84(")
where

e =i T T 4 6.A3 0 2508 L Aa6 _ Tyld
By(r) = x — 22 — 228 — x7 + 4% + 5x% - 20 - 4 TN s
— = = kA 4 B 5 13:___ 2:‘1-1 + 4x1l1 — ?_\'l“ -—
flRas e s 5225 - 10x%0 A
SR, 1 . T s L}
2319 - 3480 o,

— - Y — AT, s lll_,sxl'l_q,xlﬂ,_xl'l_l_
Or) = x 4o + o — 328 — o + 20 — 340+ P g

93(,}=x—x"-+xﬂ+3x’*—x’—ﬂ—3x‘“—3x“

By Corallary 2.29
20,(=)y @) o0 ) L0(7))y = 28,°(3) @© 25,°(2T) ® S6) B SPH(54). (9.3)

As S(3) = S,9(6) = 0 (see [3]) we have

hm)> @ = @ W)y = 28027) G SA(54).
I T 1

:(‘: r<. ;r: ;r&zn:fimtely that ?1(7) ~ (), that is, they have the same eigenvalues
e :L o.p_t,jralturs fr"‘(”)‘ (n, 54) = 1 (the eigenvalue for Ty(n) is given
v the uth It:l:.l.l‘l(.l coefficient), Thus ¢f,(r)) = {B,(r)» == 8,%(27). Since 0,(7)
and 0,(r) are eigenforms in S,(54), they must be oldforms (see [2]). If g(7) is the
newform in §,9(27), then by the main Theorem 5 of Atkin-Lehner ([2]) 6,(=)
and 0,(r) must be a linear combination of g(7) and ¢(27). In fact l

9:4)

g(r) = x — 2ud — 57 L 5513 T U JOT I S S

(which we found using our algorithm) and 6,(7) = ¢(7) — 2¢(2+) and Gy(z) =
4() + 29(21')'- Since f(r) and 0,(z) are not equivalent to any other 0,(7) (i.e.,
they occur \’:'ITI) multiplicity one) by (9.4) they must be the newforms in S.4(54).
Note that dim S,9(54) = 2 by [3). This illustrates the algorithm for finding all
n_cwforms on I'(N) if N is not a perfect square given by Corollary 7 of [36].
Note that if in (9.3) S,%(6) were nonzero, we would first have had to consider
the case N' = 6 to be able to distinguish S,9(6) from 8,%(54)—checking the
fi(7) for multiplicity one would not have been sufficient. Note also that if
$(n) = (n/3) and By(7) = 37| a(n) »", then O,(7) — Y1 &(n) a(n) ™. This is
explained by Theorem 3.1 of Atkin and Li ([4], also see [22]). Finally note
that if we were just interested in S.0(54), it would have been easier but less
interesting to let p = 2 and M = 27.

ExampLe 4. In this example we consider the case of square level (specifically
N = 49) briefly alluded to in Remark 2.32. The algorithm works without
change. 2(7) = (—1, —7). By Theorem 1.5 of [39] any order of index 7 in
a maximal order of 9(7) is an order of “level” 49. One such is @ = Z((1 +
)+ Z(3(7L - K)) + Z(]) + Z(K). The class number (see Theorem 4.18 of
[39]) is 4 and the first few Brandt matrices are

B(0) B(1) B(2) B(3)
TR AT ] 1 000 2100
11 ] (il ) e 2 40
2N TR U] e () 00082
1 ol 000 1 0 0 |
B(4) B(5) B(6)
3400 00 3 3 0066
4 3 0 0 0 0,3 3 00 6 6
ORIORE Y 3 30000 6 6 0 0
00 4 3 30300 6 6 0 0,
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Letting
0 s S ) B [ o)
- 0
1 —=1-—1 SRy MO b
GRS oot S a1 Yo
0 0 2-2 1 -1 0 —1
we have
f](T) @ 0
Y. CB(n) Cla" = ; E 0,(7)
L] \ GQ(T)

3 A S el 57
— 3=, a(n) =™ and y is a Direchlet character, we let ¢= = 3., x(n)
z:)(;)" B% T?'l&il‘lm 5.34 of [39], fi(z) should be the transform of the zeta
functio;l of @ and f, — f* = Snuo a(n) x" with a(n) = 0if pon w}:ere d(n) =
(nf7). In fact we find fi(r) =2 + x + 3a® + 4® + Tt 628+ 1258+

87 - 1525 4+ 132% + 1810 + - and fo(7) = f1%(z). By Proposition 10.1 of

[39],
25,9(49) © S(7) == (B(7)) ® b)) @ S¥(7)* © 2 I};} So(7, 5,
{wdwl}

J /%) denotes the space of cusp forms of weight 2 on I'y(p) with
Zﬁlif@f:iﬁ ."sf(’p, $9F = (£ | /& 5, ¥ — (o7, and the som T
is over a set of representatives of the pairs {if, J} of the char:;clcrsnof (J{;? f)
with 2 = 1. In our case dim 8,%(49) = 1, S%(7) = 0 so0 S, (T, ) = . or
all ¢ and 25,%(49) = (6,(z)) @ <(By(r)3. Thus () = Gy(7) 1s the newform
in S,°(49). In fact we have

O)(7) = By() = x + 2 — 2 — 3% — 3x% + 4!t — 10— 3x1®
4% L Baf3 5405 4 .

By Theorem 5.34 of [39], since f,(7) arc newforms, §,% = 6, = 6, so for all
n-: 0,3, 5 or 6 (mod 7), the nth Fourier coefficient of 6,(7) must be zero.
Note also that 13 is the first prime p for which S,(p, ¢*) # 0 for some L'}mrac.ler
U2 £ 1 of (Z/pZ)=. This is the reason 13* is the first Icv'd N =1 for which

20(N) is not generated by theta series attached to quaternion algebras (see [31,

39])-

Exampie 5. Our last example, S,%(16, 4), was computed by Shr;mansl::e
using a slightly modified version of the algorithm to construct the newform 1m
S5.%(16, 4) where ¢ is the nontrivial Dirichlet character mod 4 (¢(n) = (—1)"17
if n is odd and ¢(n) = 0 if n is even). By S5,%(16, $) we mean the subspace of
S(16, ¢) generated by newforms (see [26] or [27]). The basis problem for cusp
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forms with character will be considered in

[22]. Let 94(2) = (—1, —1) and
let @ be an order of A(2) having index 8§ in

the maximal order and such that
0y = 0 ®) Z, contains a subring isomorphic to Z, + Z,V—1, i.e., let 0 be a
“V_J-order of level 16" —see Shemanske [45]. Such an order is 0 — Z LE
A1) + Z(2]) 4 Z(2K). In a manner similar to Eichler [14, pp. 109-110] one
can define a character (which we still call &) on O such that ¢ | Z = 4 and then
again in analogy with Eichler ([14, p. 110]) one defines Brandt matrices Bi(n; &)
with character ¢, In order to explicitly compute the By(n; ¢), one needs to madify
the Procedure REPRESENTATION. NO of Section 6 50 that instead of
computing the number of representatives o« such that FIKN(x) = n, one
computes the representatives themselves. (So that one can evaluate (o) Xy(=),
see Step 4 of Section 3 and also [14, p. 110].) This is easy since at the 25th line
from the end of the procedure (C[J1] := C[J1] - 1), the 4-tuple (X1, X2,
X3, X4 4 L) gives the coefficients in terms of the basis of the lattice of an
clement o with F/KN(«) = J1. Note that only (X1, X2, X3, X4 + L) with
X1 = 0 are computed, so if X1 = 0, one also has to add the representative
(—X1, —X2, — X3, —(X4 +L)).

The class number of @ is 2 so the By(n; &) are H(s + 1) % H(s + 1) =
4 x 4 matrices. We find By(n;¢) =0 if 2| n or n = 3 (mod 4). The first

four nonzero B(n; ¢) are

B(1) B(5)
00 0 0 DI ONRO 0
Lo a B ) 0—6 0 0
3 Ol R = 0 0 —4 —24¢
OO0 -1 0 0—2—i —2
B(9) B(13)
00 0 0 0 0 0 0
09 0 0 1{0 30 o0 0
00 6 3—3i 310 0 20 10— 10i
0:10184j<37 ™ 3 0 010+10i 10

Letting

h 481[64/2-7




we have
b(r) 0

E CB(n; $)C — 0(z)

0
0 0

where (z) = x — 625 - 9x% 1 1013 — 30217 - 11a%8 + 422%0 — 70297 o oo
6(z) is the newform in S;%(16, ¢) and this is in agreement with the theory
presented in [22]. Atkin has informed us that 6(r) = {%(4+), where {(7) is the
Dedekind eta function {(r) = =1/ [T, (1 — =%).
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