Next: About this document ...
Up: Component Groups of Purely
Previous: Appendix: Some Facts Concerning
-
- 1
-
A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate
groups of abelian varieties: Evidence for the Birch and
Swinnerton-Dyer conjecture, (2001).
- 2
-
S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models,
Springer-Verlag, Berlin, 1990.
- 3
-
C. Chevalley, Une démonstration d'un théorème sur les groupes
algébriques, J. Math. Pures Appl. (9) 39 (1960), 307-317.
- 4
-
B. Conrad, A modern proof of Chevalley's theorem on algebraic groups,
http://www-math.mit.edu/~dejong/papers/chev.dvi
- 5
-
B. Edixhoven, L'action de l'algèbre de Hecke sur les groupes
de composantes des jacobiennes des courbes modulaires est
``Eisenstein'', Astérisque (1991), no. 196-197, 7-8, 159-170
(1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).
- 6
-
M. Emerton, Optimal quotients of modular Jacobians, (2001),
preprint.
- 7
-
E.V. Flynn, F. Leprévost, E.F. Schaefer,
W.A. Stein, M. Stoll, and J.L. Wetherell,
Empirical evidence for the Birch and Swinnerton-Dyer conjectures
for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001),
no. 236, 1675-1697 (electronic).
- 8
-
A. Grothendieck, Éléments de géométrie algébrique,
Publications Mathématiques IHES, 4,8,11,17,20,24,28,32, 1960-7.
- 9
-
A. Grothendieck, Groupes de monodromie en
géométrie algébrique, Lecture Notes in Math 288,
Springer-Verlag, Heidelberg (1972).
- 10
-
N. Katz, B. Mazur, Arithmetic moduli of elliptic curves,
Princetion University Press, Princeton, New Jersey, 1985.
- 11
-
D.R. Kohel, Hecke module structure of quaternions, In K.
Miyake, ed., Class Field Theory - Its Centenary and Prospect, The
Advanced Studies in Pure Mathematics Series, Math Soc. Japan.
- 12
-
D.R. Kohel and W.A. Stein, Component Groups of
Quotients of
, Proceedings of the 4th International
Symposium (ANTS-IV), Leiden, Netherlands, July 2-7, 2000 (Berlin), Springer,
2000.
- 13
-
B. Mazur, Modular curves and the Eisenstein ideal, Inst.
Hautes Études Sci. Publ. Math. (1977), no. 47, 33-186 (1978).
- 14
-
J.-F. Mestre, La méthode des graphes. Exemples et
applications, Proceedings of the international conference on class numbers
and fundamental units of algebraic number fields (Katata) (1986), 217-242.
- 15
-
J.-F. Mestre and J. Oesterlé, Courbes de Weil semi-stables de
discriminant une puissance
-ième, J. Reine Angew. Math.
400 (1989), 173-184.
- 16
-
D. Mumford, Abelian varieties, Published for the Tata Institute of
Fundamental Research, Bombay, 1970, Tata Institute of Fundamental Research
Studies in Mathematics, No. 5.
- 17
-
K.A. Ribet, Letter about component groups of elliptic curves,
arXiv:math.AG/0105124v1 (2001).
- 18
-
J. Tate, Algorithm for determining the type of a singular fiber in an
elliptic pencil, Modular functions of one variable, IV (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975,
pp. 33-52. Lecture Notes in Math., Vol. 476.
William A Stein
2001-12-09