
3

MODULAR ABELIAN VARIETIES by
William Stein

0.1 Introduction

This chapter is the reference for the modular abelian varieties package in Magma. A
modular abelian variety is an abelian variety that is a quotient of the modular Jacobian
J1(N), for some integer N . This package provides extensive functionality for comput-
ing with such abelian varities. This includes functions for enumerating and decomposing
modular abelian varieties, isomorphism testing, computing exact endomorphism and ho-
momorphism rings, doing arithmetic with finite subgroups, and computing information
about torsion subgroups, special values of L-functions, and Tamagawa numbers.

Essentially none of the algorithms in this package use explicit defining equations for
varieties, and as such that work in a great degree of generality. For example, many even
make sense for Grothendieck motives attached to modular forms, and we have included
the corresponding functionality here, when it makes sense.

This is the first release of the modular abelian varieties package, so it could probably
be optimized more. The major drawback of the current version is that complete decom-
position into simples is only currently implemented over the rational numbers. Thus the
interesting behavior over number fields, involving extra inner twists, which leads to Q-
curves and associated questions, is not available (much of it is implemented, but there are
some fundamental theoretical obstructions I am working on overcoming).

Our philosophy for representing modular abelian varieties is perhaps different than
what you might expect, so we describe how we view abelian subvariety A over Q con-
tained in the modular Jacobian J0(N). By the Abel-Jacobi theory we may view J0(N)
over the complex numbers as a complex vector space V modulo the lattice H1(J0(N),Z) =
H1(X0(N),Z). An abelian subvariety A ⊂ J0(N) and the map i : A → J0(N) is com-
pletely determined by giving the image of H1(A,Q) in the vector space H1(X0(N),Q).
At this point, it might appear that we have to compute lots of floating point numbers and
approximate lattices in the complex numbers, but this is not the case. Instead, we use mod-
ular symbols to compute H1(X0(N),Z) as an abstract abelian group, and use everything
we can from the extensive theory of modular forms to compute things about the abelian
varieties determined by subgroups of H1(X0(N),Z), and other related abelian varieties.
Note that even though we work with homology, which is associated to complex tori, the
abelian variety A over Q is still determined by our defining data (a certain subgroup of
H1(X0(N),Z)), and our algorithms can often take advantage of this.

2 Geometry Vol.

0.1.1 Categories

Modular abelian varieties belong to the category ModAbVar, and the elements of modular
abelian varieties belong to ModAbVarElt. The category MapModAbVar consists of homo-
morphisms between modular abelian varieties (sometimes only up to isogeny, i.e., with a
denominator). Finitely generated subgroups of modular abelian varieties form the cate-
gory ModAbVarSubGrp. Spaces of homomorphisms between modular abelian varieties form
the category HomModAbVar. Homology of a modular abelian variety is in the category
ModAbVarHomol. The L-series of modular abelian varieties are in ModAbVarLSer.

Example H0E1

We create an object of each category.

> A := Jzero(11);

> Type(A);

ModAbVar

> Type(A!0);

ModAbVarElt

> Type(nIsogeny(A,2));

MapModAbVar

> Type(nTorsionSubgroup(A,2));

ModAbVarSubGrp

> Type(End(A));

HomModAbVar

> Type(Homology(A));

ModAbVarHomol

> Type(LSeries(A));

ModAbVarLSer

0.1.2 Verbose Output

To set the verbosity level use the command SetVerbose("ModAbVar",n), where n

is 0 (silent), 1 (verbose), or 2 (very verbose). The default verbose level is 0.

Two new additional verbose levels are included in this package. Level 3 is exactly like
level 1, except instead of displaying to the screen, verbose output is appended to the file
ModAbVar-verbose.log in the directory that MAGMA was run from. Verbose level 4 is
exactly like level 2, except verbose output is appended to ModAbVar-verbose.log. On a
UNIX-like system, use the shell command tail -f ModAbVar-verbose.log to watch the
verbose log in another terminal.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 3

Example H0E2

Using SetVerbose, we get some information about what is happening during computations.

> SetVerbose("ModAbVar",1); // some verbose output

> SetVerbose("ModAbVar",2); // tons of verbose output

> SetVerbose("ModAbVar",3); // some verbose output to ModAbVar-verbose.log

> SetVerbose("ModAbVar",4); // tons of verbose output to ModAbVar-verbose.log

0.2 Creation and Basic Functions

The functions described below are for creating modular abelian abelian varieties,
combining them together in various ways, and obtaining simple information about them.

Modular abelian varieties are much less restricted than spaces of modular symbols,
in that one can take arbitrary finite direct sum.

0.2.1 Creating the Modular Jacobian J0(N)

Use the Jzero command to create the Jacobian J0(N) of the modular curve X0(N)
(which parameterizes pairs consisting of an elliptic curve and a cyclic subgroup of order
N). You can also create higher weight motivic analogues of this Jacobian, and you can
compute in the +1 or −1 quotient of homology for efficiency, though certain results will
be off by factors of 2.

Jzero(N : parameters)

sign RngIntElt Default : 0

Create the modular abelian variety J0(N), i.e., the Jacobian of the modular curve
X0(N).

Jzero(N, k : parameters)

sign RngIntElt Default : 0

Create the modular abelian variety J0(N) of weight k ≥ 2.

Jzero(N, k, sign)

Create the modular abelian variety J0(N) of weight k ≥ 2.

Example H0E3

> Jzero(23);

Modular abelian variety Jzero(23) of dimension 2 and level 23 over Q

> Jzero(23 : sign := +1);

Modular abelian variety Jzero(23) of dimension 2 and level 23 over Q

with sign 1

> Jzero(23,4);

4 Geometry Vol.

Modular motive Jzero(23,4) of dimension 5 and level 23 over Q

> Jzero(23,4 : sign := -1);

Modular motive Jzero(23,4) of dimension 5 and level 23 over Q with

sign -1

> Jzero(389,2,+1);

Modular abelian variety Jzero(389) of dimension 32 and level 389

over Q with sign 1

0.2.2 Creating the Modular Jacobians J1(N) and JH(N)

The Jone command create the Jacobian of the modular curve X1(N) (which param-
eterizes pairs consisting of an elliptic curve and a point of order N). The command Js

creates an abelian variety isogenous to J1(N); more precisely it is the product of abelian
variteis Jε(N), where Jε(N) is the abelian variety attached to all modular forms that have
character a Galois conjugate of ε. Creating Js(N) much faster than creating J1(N), since
less time is spent finding the integral structure on homomology.

The JH command create the Jacobian JH(N) of the curve XH(N), which is the
quotient of X1(N) by the subgroup H of the integers modulo N .

JH(N, d : parameters)

k RngIntElt Default : 2

sign RngIntElt Default : 0

Let H be some subgroup of G = (Z/NZ)∗ such that G/H has order d. Create the
modular abelian variety JH(N), where ǫ is a Dirichlet character mod N with kernel
H and JH(N) is isogenous to the Jacobian of the modular curve XH(N) associated
to the subgroup of SL2(Z) of matrices [a, b; c, d] with c divisible by N and a in
H modulo N . It is the product of modular symbols variety J(ǫ) for all Dirichlet
characters ǫ that are trivial on H.

JH(N, gens : parameters)

k RngIntElt Default : 2

sign RngIntElt Default : 0

Let H be the subgroup of (Z/NZ)∗ generated by gens. Create the modular abelian
variety JH(N), where ǫ is a Dirichlet character mod N with kernel H and JH(N) is
isogenous to the Jacobian of the modular curve XH(N) associated to the subgroup
of SL2(Z) of matrices [a, b; c, d] with c divisible by N and a in H modulo N . It is
the product of modular symbols variety J(ǫ) for all Dirichlet characters ǫ that are
trivial on H.

Jone(N : parameters)

sign RngIntElt Default : 0

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 5

Jone(N, k : parameters)

sign RngIntElt Default : 0

Create the modular abelian variety J1(N), i.e., the Jacobian of the modular curve
X1(N). Note that creating and finding the integral structure on Js(N), which is
isogenous to J1(N), is much faster. Take great care in computing with J1(N), since
it could be very slow.

Jone(N, k, sign)

Js(N : parameters)

sign RngIntElt Default : 0

Js(N, k : parameters)

sign RngIntElt Default : 0

A modular abelian variety that is Q-isogenous to the weight k version of J1(N).
More precisely, Js is the direct sum of the modular abelian varieties attached to
modular symbols spaces with Nebentypus.

Example H0E4

> Jone(13);

Modular abelian variety Jone(13) of dimension 2 and level 13 over Q

> Jone(13,4);

Modular motive Jone(13,4) of dimension 15 and level 13 over Q

> Jone(13,4 : sign := 1);

Modular motive Jone(13,4) of dimension 15 and level 13 over Q

> JH(13,6);

Modular abelian variety J H(13) of dimension 2 and level 13 over Q

> JH(13,3);

Modular abelian variety J H(13) of dimension 0 and level 13 over Q

> JH(13,[-1]);

Modular abelian variety J H(13) of dimension 2 and level 13 over Q

> Jone(17);

Modular abelian variety Jone(17) of dimension 5 and level 17 over Q

> Js(17);

Modular abelian variety Js(17) of dimension 5 and level 17 over Q

> IsIsogenous(Jone(17),Js(17));

true

> Degree(NaturalMap(Jone(17),Js(17)));

16

> JH(17,2);

Modular abelian variety J H(17) of dimension 1 and level 17 over Q

> JH(17,4);

Modular abelian variety J H(17) of dimension 1 and level 17 over Q

> JH(17,8);

6 Geometry Vol.

Modular abelian variety J H(17) of dimension 5 and level 17 over Q

0.2.3 Abelian Varieties Attached to Modular Forms

The following commands create abelian varieties attached to spaces of modular forms,
sequences of spaces of forms, newforms, and characters. If an input space of modular forms
is not cuspidal, Magma automatically replaces it with its cuspidal subspace.

ModularAbelianVariety(M : parameters)

sign RngIntElt Default : 0

The abelian variety attached to the modular forms space M .

ModularAbelianVariety(X : parameters)

sign RngIntElt Default : 0

The abelian variety attached to the sequence X of modular forms spaces. This is
the direct sum of the spaces attached to each element of the sequence.

ModularAbelianVariety(eps : parameters)

sign RngIntElt Default : 0

ModularAbelianVariety(eps, k : parameters)

sign RngIntElt Default : 0

The abelian variety associated to ǫ. This corresponds to the space of modular forms
of weight k and character any Galois conjugate of ǫ. We include all Galois conjugates
in order to obtain an abelian variety that is defined over Q.

ModularAbelianVariety(f)

The abelian variety attached to the newform f .

Newform(A)

A newform f so that A is isogenous to the newform abelian variety Af . It is an
error if A is not attached to a newform.

Example H0E5

We first create the modular abelian variety attached to the spaces S2(Γ0(11)) and S2(Γ1(13)).
This is the direct sum of J0(11) with J1(13).

> X := [ModularForms(11,2), ModularForms(Gamma1(13),2)];

> A := ModularAbelianVariety(X); A;

Modular abelian variety of dimension 3 and level 11*13 over Q

> IsIsomorphic(A, Jzero(11)*Jone(13));

true Homomorphism N(1) from modular abelian variety of dimension

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 7

3 to Jzero(11) x Jone(13) (not printing 6x6 matrix)

Next we create the modular abelian variety A attached to S2(Γ1(17)) along with J1(17) and
Js(17). We then note that A is isomorphic to J1(17), but there is no reason that A should be
isomorphic to Js(17) (they are probably only isogenous). This example illustrates the fact that
the abelian variety computed by Magma attached to S2(Γ1(17)) is J1(17) rather than Js(17).
(Recall that Js(N) is a product of copies of abelian varieties corresponding to conjugacy classes
of characters.)

> A := ModularAbelianVariety(ModularForms(Gamma1(17),2)); A;

Modular abelian variety of dimension 5 and level 17 over Q

> B := Jone(17); B;

Modular abelian variety Jone(17) of dimension 5 and level 17 over Q

> C := Js(17); C;

Modular abelian variety Js(17) of dimension 5 and level 17 over Q

> IsIsomorphic(A,B);

true Homomorphism from modular abelian variety of dimension 5 to

Jone(17) (not printing 10x10 matrix)

> Degree(NaturalMap(A,C));

16

If ε is a Dirichlet character and k ≥ 2 is an integer, let S be the space of modular forms with
weight k and character a Galois conjugate of ε. The command ModularAbelianVariety(eps,k)

computes the modular abelian variety attached to S.

> G<eps> := DirichletGroup(13,CyclotomicField(12));

> Order(eps^2);

6

> ModularAbelianVariety(eps^2);

Modular abelian variety of dimension 2 and level 13 over Q

> ModularAbelianVariety(eps,3);

Modular motive of dimension 4 and level 13 over Q

Next we compute the modular abelian variety attached to a newform in S2(Γ1(25)).

> S := CuspForms(Gamma1(25),2);

> N := Newforms(S);

> #N;

2

> f := N[1][1];

> PowerSeries(f,4);

q + a*q^2 + 1/1355*(941*a^7 + 4820*a^6 + 11150*a^5 + 11522*a^4 +

3582*a^3 + 10041*a^2 + 24432*a - 5718)*q^3 + O(q^4)

> A f := ModularAbelianVariety(f);

> A f;

Modular abelian variety Af of dimension 8 and level 5^2 over Q

The abelian variety Af also determines the newform:

> PowerSeries(Newform(A f),4);

q + a*q^2 + 1/1355*(941*a^7 + 4820*a^6 + 11150*a^5 + 11522*a^4 +

8 Geometry Vol.

3582*a^3 + 10041*a^2 + 24432*a - 5718)*q^3 + O(q^4)

The Newform command works even if A wasn’t explicitly created using a newform.

> A := Decomposition(Jzero(37))[1];

> Newform(A);

q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + O(q^8)

0.2.4 Abelian Varieties Attached to Modular Symbols

The commands below associated modular abelian varieties to spaces of modular sym-
bols and to sequences of spaces of modular symbols. Conversely, the associate spaces of
modular symbols to modular abelian varieties. If an input space of modular symbols is
not cuspidal, it is replaced by its cuspidal subspace.

ModularAbelianVariety(M)

The abelian variety attached to the modular symbols space M .

ModularAbelianVariety(X)

The abelian variety attached to the sequence X of modular symbols spaces.

ModularSymbols(A)

A sequence of spaces of modular symbols associated to A.

Example H0E6

We create modular abelian varieties attached to several spaces of modular symbols.

> M := ModularSymbols(37,2);

> ModularAbelianVariety(M);

Modular abelian variety of dimension 2 and level 37 over Q

> M := ModularSymbols(Gamma1(17));

> ModularAbelianVariety(M);

Modular abelian variety of dimension 5 and level 17 over Q

Note that the sign of the space of modular symbols determines the sign of the corresponding
abelian variety.

> M := ModularSymbols(Gamma1(17),2,+1);

> A := ModularAbelianVariety(M); A;

Modular abelian variety of dimension 5 and level 17 over Q with sign 1

We can also create an abelian variety attached to any sequence of modular symbols spaces.

> ModularAbelianVariety([ModularSymbols(11), ModularSymbols(Gamma1(13))]);

Modular abelian variety of dimension 3 and level 11*13 over Q

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 9

Conversely, there is a sequence of modular symbols spaces associated to any abelian variety defined
over Q. These need not be the same as the spaces used to define the modular abelian variety;
instead they are what is used internally in computatations on that abelian variety.

> ModularSymbols(Jone(13));

[

Modular symbols space of level 13, weight 2, character $.1,

and dimension 2 over Cyclotomic Field of order 6 and degree 2

]

> ModularSymbols(Jzero(37));

[

Modular symbols space for Gamma 0(37) of weight 2 and

dimension 4 over Rational Field

]

> A := Jone(17);

> ModularSymbols(A);

[

Modular symbols space for Gamma 0(17) of weight 2 and

dimension 2 over Rational Field,

Modular symbols space of level 17, weight 2, character $.1,

and dimension 2 over Cyclotomic Field of order 8 and degree 4

]

0.2.5 Creation of Abelian Subvarieties

Suppose A is an abelian variety and V is a vector subspace of the rational homology
H1(A,Q). Then the DefinesAbelianSubvariety command determines whether or not V
is the rational homology of an abelian subvariety of A, and if so computes that abelian
subvariety. The DefinesAbelianSubvariety command relies on knowning a complete
decomposition of A as a product of simple abelian varieties (so it is currently restricted
to abelian varieties for which such a decomposition can be computed in Magma, e.g., all
modular abelian varieties over Q).

The other commands below are used to create the zero-dimensional abelian variety.

DefinesAbelianSubvariety(A, V)

True if and only if the subspace V of rational homology defines an abelian subvariety
of A. If true, also returns the abelian subvariety.

ZeroModularAbelianVariety()

The zero-dimensional abelian variety.

ZeroModularAbelianVariety(k)

The zero-dimensional abelian variety of weight k.

ZeroSubvariety(A)

10 Geometry Vol.

Example H0E7

We define two subspaces of the rational homology of J0(33); one defines an abelian subvariety and
the other does not.

> A := Jzero(33);

> w3 := AtkinLehnerOperator(A,3);

> W := Kernel(Matrix(w3)+1);

> DefinesAbelianSubvariety(A,W);

true Modular abelian variety of dimension 1 and level 3*11 over Q

> V := RationalHomology(A);

> DefinesAbelianSubvariety(A,W + sub<V|[V.1]>);

false

We create several zero-dimensional abelian varieties.

> ZeroModularAbelianVariety();

Modular abelian variety ZERO of dimension 0 and level 1 over Q

> ZeroModularAbelianVariety(2);

Modular abelian variety ZERO of dimension 0 and level 1 over Q

> ZeroSubvariety(Jzero(11));

Modular abelian variety ZERO of dimension 0 and level 11 over Q

0.2.6 Creation Using a Label

As a useful shorthand, it is sometimes possible to create modular abelian varieties
by giving a short string. If the string contains a single integer N , e.g., 37, then the
corresponding abelian variety is J0(N). If it is of the form "<level>k<weight>", then it is
the possibly motivic J0(N) of weight k. If it is of the form "<level>k<weight><isogeny

code>", where <isogeny code> is one of "A", "B", ..., "Z", "AA", "BB", ..., "ZZ", "AAA",
"BBB", ..., then the corresponding abelian variety is Jzero(N,k)(iso), where iso is a
positive integer, and "A" corresponds to iso=1, "Z" to iso=26, "AA" to iso=27, "ZZ" to
iso=52, "AAA" to iso=53, etc.

This labeling convention is the same as the one used for modular symbols, and extends
the one used for Cremona’s database of elliptic curves, except that Cremona’s database
contains some random scrambling for levels between 56 and 450. If the weight part of the
label is omitted, the weight is assumed to be 2. To get the optimal quotient of J0(N) with
Cremona label s, set the optional parameter Cremona equal to true.

ModularAbelianVariety(s : parameters)

Cremona BoolElt Default : false

Abelian variety defined by string s.

ModularAbelianVariety(s, sign : parameters)

Cremona BoolElt Default : false

Abelian variety defined by string s. See the documentation for more details.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 11

Example H0E8

> ModularAbelianVariety("37");

Modular abelian variety 37 of dimension 2 and level 37 over Q

> ModularAbelianVariety("37A");

Modular abelian variety 37A of dimension 1 and level 37 over Q

> ModularAbelianVariety("11k4A");

Modular motive 11k4A of dimension 2 and level 11 over Q

> ModularAbelianVariety("65C");

Modular abelian variety 65C of dimension 2 and level 5*13 over Q

> ModularDegree(ModularAbelianVariety("56A"));

4

> ModularDegree(ModularAbelianVariety("56A" : Cremona := true));

2

0.2.7 Invariants

The invariants commands can be used to obtain the base ring, dimension, character
of defining modular form, a field of definition, the level, the sign, the weights, and a short
name of a modular abelian variety.

BaseRing(A)

The ring that A is defined over.

Dimension(A)

The dimension of A.

DirichletCharacter(A)

If A = Af is attached to a newform, then this returns the Nebentypus character of
f . Note that since f is only well-defined up to Gal(Q/Q) conjugacy, the character
is also only well-defined up to Gal(Q/Q) conjugacy.

DirichletCharacters(A)

List of all Dirichlet characters of spaces of modular symbols associated with the
modular symbols abelian variety that parameterizes A.

FieldOfDefinition(A)

The best known field of definition of A.

Level(A)

An integer N so that A is a quotient of a power of J1(N). Note that N need not
be minimal. It is determined by how A is explicitly represented as a quotient of
modular Jacobians.

12 Geometry Vol.

Sign(A)

The sign of A, which is either 0, −1, or +1. If +1 or −1, this means we only compute
the corresponding complex-conjugation eigenspace of the homology of A, so various
computations will be off by a factor of 2.

Weights(A)

The set of weights of A. (The weight need not be unique since direct sums of
modular symbols spaces of different weights are allowed.)

Example H0E9

We illustrate all the commands for J0(23).

> A := Jzero(23);

> BaseRing(A);

Rational Field

> Dimension(A);

2

> DirichletCharacter(A);

1

> FieldOfDefinition(A);

Rational Field

> Level(A);

23

> Sign(A);

0

> Weights(A);

{ 2 }

This is an example of a nontrivial Dirichlet character.

> eps := DirichletCharacter(Jone(23)(2)); eps;

$.1^2

> Order(eps);

11

We illustrate the Weights command in several cases.

> Weights(Jzero(11));

{ 2 }

> Weights(Jzero(11,4));

{ 4 }

> Weights(Jone(13,3));

{ 3 }

> Weights(DirectSum(Jzero(11),Jone(13,3)));

{ 2, 3 }

> Weights(DirectSum(Jzero(11),Jzero(13,3)));

{ 2 }

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 13

We display a few fields of definition.

> FieldOfDefinition(Jone(13));

Rational Field

> FieldOfDefinition(BaseExtend(Jzero(11),QuadraticField(7)));

Rational Field

> FieldOfDefinition(ChangeRing(Jzero(11),GF(7)));

Finite field of size 7

In the following example we quotient J0(11) out by a 5-torsion point. The resulting abelian variety
might not be defined over Q, and the FieldOfDefinition command currently plays it safe and
returns Q.

> A := Jzero(11);

> G := nTorsionSubgroup(A,5);

> H := Subgroup([G.1]);

> H;

Finitely generated subgroup of abelian variety with invariants [5]

> FieldOfDefinition(A/H);

Algebraically closed field with no variables

0.2.8 Conductor

Let A be a modular abelian variety over Q. The conductor command computes the
conductor of A by factoring A into newform abelian varieties and using that the conductor
of Af is Nd, where N is the level of f and d is the dimension of Af .

Conductor(A)

The conductor of the abelian variety A. We require that A is defined over Q. When
A = Af is attached to a newform of level N , then the conductor of A is Nd, where
d is the dimension of A.

Example H0E10

> Factorization(Conductor(Jzero(33)));

[<3, 1>, <11, 3>]

> Factorization(Conductor(Jzero(11)^5));

[<11, 5>]

> Factorization(Conductor(OldSubvariety(Jzero(46))));

[<23, 4>]

> Factorization(Conductor(Jone(25)));

[<5, 24>]

14 Geometry Vol.

0.2.9 Number of Points

Given an abelian varietyA over a fieldK the NumberOfRationalPoints or # command
compute a divisor and multiple of #A(K). When finite, the multiple of the number of
rational points is computed using reduction mod primes up to 100. Currently the lower
bound is nontrivial only when A is a quotient of J0(N).

NumberOfRationalPoints(A)

Divisor and multiple of the cardinality of A(K), where A is a modular abelian variety
defined over a field K. If K is an abelian number field, then we assume the Birch
and Swinnerton-Dyer conjecture.

#A

Same as NumberOfRationalPoints.

Example H0E11

> #Jzero(11);

5 5

> #Jzero(23);

11 11

> #Jzero(37);

Infinity Infinity

> #Jone(13);

1 19

> #Jone(23);

1 408991

> Factorization(408991);

[<11, 1>, <37181, 1>]

> NumberOfRationalPoints(ModularAbelianVariety("43B"));

7 7

0.2.10 Inner Twists and Complex Multiplication

If f is a newform then an inner twist of f is a Dirichlet character χ such that the twist
of f by χ equals a Galois conjugate of f , at least at Fourier coefficients whose subscript is
coprime to some fixed integer. A CM twist is a nontrivial character χ such that f twisted
by χ equals f , at least at Fourier coefficients whose subscript is coprime to some fixed
integer. The commands below find the CM and inner twists of the newform corresponding
to a newform abelian variety.

The optional parameter Proof to each command is by default false. If true, it uses
a huge number of terms of q-expansions to ensure that that inner twist is really an inner
twist. If false, it uses far less (and is hence very quick), and in practice this should be
OK.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 15

CMTwists(A : parameters)

Proof BoolElt Default : false

The CM inner twists characters of the newform abelian variety A = Af that
are defined over the base ring of A. For all CM twists, base extend to
AlgebraicClosure(RationalField()) first.

InnerTwists(A : parameters)

Proof BoolElt Default : false

The inner twists characters of the newform abelian variety A = Af that are defined
over the base ring of A. For all CM twists, base extend to AlgebraicClosure(RationalField())
first.

Example H0E12

We compute the inner twists for J1(13).

> A := Jone(13); A;

Modular abelian variety Jone(13) of dimension 2 and level 13 over Q

> CMTwists(A);

[]

> A2 := BaseExtend(A,AlgebraicClosure(RationalField()));

> CMTwists(A2);

[]

> InnerTwists(A2);

[

1,

$.1^5

]

> Parent($1[2]);

Group of Dirichlet characters of modulus 13 over Cyclotomic Field

of order 6 and degree 2

We compute the inner twists for the second newform factor of J1(23).

> A := Decomposition(Jone(23))[2]; A;

Modular abelian variety image(23A[2]) of dimension 10, level 23

and conductor 23^10 over Q

> InnerTwists(BaseExtend(A,AlgebraicClosure(RationalField())));

[

1,

$.1^20

]

The CM elliptic curve J0(32) has a nontrivial CM inner twist.

> A := Jzero(32);

> InnerTwists(BaseExtend(A,AlgebraicClosure(RationalField())));

[

1,

16 Geometry Vol.

$.1

]

> CMTwists(BaseExtend(A,AlgebraicClosure(RationalField())));

[

$.1

]

Quotients of J0(N) can also have nontrivial inner twists, which are not CM twists.

> J := Jzero(81);

> A := Decomposition(J)[1];

> InnerTwists(BaseExtend(A,AlgebraicClosure(RationalField())));

[

1,

$.1

]

> CMTwists(BaseExtend(A,AlgebraicClosure(RationalField())));

[]

> Newform(A);

q + a*q^2 + q^4 - a*q^5 + 2*q^7 + O(q^8)

The following is an example of a 4-dimensional abelian variety A = Af in J0(512) that has four
inner twists, none of which are CM twists. One can use this fact to prove that if ap is a prime-
indexed Fourier coefficient of f , then a2

p ∈ Z. Thus no single ap generates the degree 4 field
generated by all an.

> J := Jzero(512, 2, +1);

> A := Decomposition(J)[7]; A;

Modular abelian variety 512G of dimension 4, level 2^9 and

conductor 2^36 over Q with sign 1

> f := Newform(A); f;

q + 1/12*(a^3 - 30*a)*q^3 + 1/12*(-a^3 + 42*a)*q^5 +

1/6*(-a^2 + 18)*q^7 + O(q^8)

> Coefficient(f,3)^2;

6

> Coefficient(f,5)^2;

12

> Coefficient(f,7)^2;

8

> Abar := BaseExtend(Jzero(512,2,+1)(7),AlgebraicClosure(RationalField()));

> InnerTwists(Abar);

[

1,

$.1,

$.2,

$.1*$.2

]

> CMTwists(Abar);

[]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 17

0.2.11 Predicates

Most of the predicates below work in full generality. The ones whose domain of
applicability is somewhat limited are IsIsomorphic, IsQuaternionic, and IsSelfDual.
The IsIsomorphic command will at least definitely determine whether any two simple
modular abelian varieties over Q are isomorphic. In theory, it is possible to determine
isomorphism for more general classes of modular abelian varieties, but this has not been
implemented.

CanDetermineIsomorphism(A, B)

True if we can determine whether or not A and B are isomorphic. If we can de-
termine isomorphism, also returns true if A and B are isomorphic and an explicit
isomorphism, or false if they are not isomorphic. If we can not determine isomor-
phism, also returns the reason why we can not as a string. If A and B are simple
and defined over Q, then it is always possible to determine whether A and B are
isomorphic. If one of A or B has simple factors of multiplicity one, then in principal
it is possible, but the algorithm has not been programmed.

HasMultiplicityOne(A)

True if the simple factors of A appear with multiplicity one.

IsAbelianVariety(A)

True if A is an abelian variety, i.e., defined over a ring of characteristic 0 in which
the conductor is invertible, or a finite field that does not divide the conductor of
A. For example, if A has positive dimension and is defined over Z, then Raynaud’s
theorem implies that A is not an abelian variety.

IsAttachedToModularSymbols(A)

True if the underlying homology of A is being computed using a space of modular
symbols. For example, this will be true for J0(N) and for newform abelian varieties.

IsAttachedToNewform(A)

True if A is isogenous to a newform abelian variety Af . This intrinsic also returns
the abelian variety Af . Third return argument is explicit isogeny from Af to A.

IsIsogenous(A, B)

True if A and B are isogenous. If this can not be determined, then an error message
is displayed and the program terminates. It is always possible to determine whether
or not A and B are isogenous when both are defined over Q.

IsIsomorphic(A, B)

18 Geometry Vol.

True if A and B are isomorphic. If true, also returns an explicit isomorphism. This
command will work if A and B are defined over Q and the simple factors occur with
multiplicity one, and may work otherwise, but it may terminate with an error in
the general case. Use the command CanDetermineIsomorphism to avoid getting an
error.

IsOnlyMotivic(A)

True if any of the modular forms attached to A have weight bigger than 2.

IsQuaternionic(A)

True if and only if some simple factor of A over the base ring has quaternionic
multiplication.

IsSelfDual(A)

True if A is known to be isomorphic to its dual. There is an error message if Magma
is unable to decide.

IsSimple(A)

True if and only if A has no proper abelian subvarieties over BaseRing(A).

Example H0E13

We test whether a few objects are actually abelian varieties.

> A := Jzero(11);

> A11 := ChangeRing(A,GF(11));

> IsAbelianVariety(A11);

false

> AZ := ChangeRing(A,Integers());

> IsAbelianVariety(AZ);

false

> A3 := ChangeRing(A,pAdicRing(3));

> IsAbelianVariety(A3);

true

A modular motive is sometimes also an abelian variety, but only over the complex numbers.

> A := Jzero(11,4); A;

Modular motive Jzero(11,4) of dimension 2 and level 11 over Q

> IsAbelianVariety(A);

false

> IsOnlyMotivic(A);

true

> IsAbelianVariety(BaseExtend(A,ComplexField()));

true

Abelian varieties J0(N) and Js(N) are attached to modular symbols, as are newform abelian
varieties.

> J := Jzero(37);

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 19

> IsAttachedToModularSymbols(J);

true

> A := Decomposition(J)[1];

> IsAttachedToModularSymbols(A);

false

> t, Af := IsAttachedToNewform(A);

> IsAttachedToModularSymbols(Af);

true

> IsIsomorphic(A,Af);

true Homomorphism from 37A to 37A given on integral homology by:

[1 0]

[0 1]

> IsAttachedToModularSymbols(Js(17));

true

> IsAttachedToModularSymbols(Jone(17));

false

We test isogeny between a few abelian varieties.

> IsIsogenous(Jzero(11),Jone(11));

true

> IsIsogenous(Jzero(11)*Jzero(11),Jzero(22));

true

> IsIsogenous(Jzero(11)*Jzero(11),Jzero(33));

false

> IsIsogenous(Jzero(11),Jzero(14));

false

> IsIsogenous(Jzero(11)^2,Jzero(22));

true

> A := Jzero(37)(2); B := Jone(13);

> IsIsogenous(A*B*A, A*A*B);

true

> A := Jzero(43);

> G := RationalCuspidalSubgroup(A);

> IsIsogenous(A,A/G);

true

Next we test isomorphism between some abelian varieties.

> A := Jzero(43);

> G := RationalCuspidalSubgroup(A);

> B := A/G;

> CanDetermineIsomorphism(A,B);

true false

> IsIsomorphic(A,B);

false

> IsIsomorphic(Jzero(11),Jone(11));

false

> IsIsomorphic(Jzero(13),Jone(13));

false

20 Geometry Vol.

> IsIsomorphic(Js(13),Jone(13));

true Homomorphism from Js(13) to Jone(13) given on integral

homology by:

[0 0 -1 0]

[0 0 0 -1]

[1 0 -1 0]

[0 1 0 -1]

> CanDetermineIsomorphism(Js(17),Jone(17));

false All tests failed to decide whether A and B are isomorphic.

We test whether certain Jacobians have simple factors with multiplicity one.

> HasMultiplicityOne(Jzero(43));

true

> HasMultiplicityOne(Jzero(33));

false

> Decomposition(Jzero(33));

[

Modular abelian variety 33A of dimension 1, level 3*11 and

conductor 3*11 over Q,

Modular abelian variety N(11,33,1)(11A) of dimension 1, level

3*11 and conductor 11 over Q,

Modular abelian variety N(11,33,3)(11A) of dimension 1, level

3*11 and conductor 11 over Q

]

>

In the next example we give an example of a non-quaternionic surface.

> IsQuaternionic(Jone(13));

false

Jacobians are self dual, and there is a surface of level 43 that is self dual and a surface of level 69
that is not.

> IsSelfDual(Jone(13));

true

> IsSelfDual(Jzero(69)(2));

false

The surface A below is isomorphic to its dual. The natural polarization has kernel that is the
kernel of multiplication by 2.

> A := Jzero(43)(2);

> A;

Modular abelian variety 43B of dimension 2, level 43 and

conductor 43^2 over Q

> IsSelfDual(A);

true

> phi := ModularPolarization(A);

> Invariants(Kernel(phi));

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 21

[2, 2, 2, 2]

We test a few abelian varieties for simplicity.

> IsSimple(Jone(25));

false

> IsSimple(Jone(13));

true

> IsSimple(Jzero(11)^10);

false

> IsSimple(NewSubvariety(Jzero(100)));

true

0.2.12 Equality and Inclusion Testing

These functions test whether two abelian varieties are exactly equal or if one is a
subset of another.

A eq B

True if A and B are equal.

A subset B

True if A is a subset of B.

Example H0E14

This example illustrates that taking the direct product of abelian varieties is not commutative, in
the sense of equality (though it is in the sense of isomorphism).

> A := Jzero(11);

> B := Jzero(14);

> A*B eq A*B;

true

> A*B eq B*A;

false

> IsIsomorphic(A*B, B*A);

true Homomorphism N(1) from Jzero(11) x Jzero(14) to Jzero(14) x Jzero(11)

given on integral homology by:

[0 0 1 0]

[0 0 0 1]

[1 0 0 0]

[0 1 0 0]

The first inclusion below is as expected, but the second non-inclusion might be surprising. We do
not consider J0(11) as a subset of J0(22), even though there is an injective map from one to the
other, since to be a subset is much stronger than just the existence of an inclusion map.

> Jzero(37) subset Jzero(37);

22 Geometry Vol.

true

> Jzero(11) subset Jzero(22);

false

> IsInjective(NaturalMap(Jzero(11),Jzero(22)));

true

0.2.13 Modular Embedding and Parameterization

Every modular abelian variety A is equipped with a modular parameterization and a
modular embedding. The modular parameterization is a surjective homomorphism from a
modular symbols abelian variety, such as J0(N). The modular embedding is a homomor-
phism to a modular symbols abelian variety, which is only guaranteed to be injective in

the category of abelian varieties up to isogeny. The structure of these two homomorphisms
is extremely important as it is completely defines A.

CommonModularStructure(X)

This intrinsic finds modular abelian varieties Je and Jp associated to modular sym-
bols and returns a list of finite-kernel maps from the abelian varieties in X to Je

and a list of modular paramaterizations from Jp to the abelian varieties in X .

ModularEmbedding(A)

A morphism with finite kernel from A to a modular abelian variety attached to
modular symbols. This is only guaranteed to be an embedding in the category of
abelian varieties up to isogeny.

ModularParameterization(A)

A surjective morphism to A from an abelian variety attached to modular symbols.

Example H0E15

> X := [Jzero(11),ModularAbelianVariety("37B")];

> CommonModularStructure(X);

[*

Homomorphism from Jzero(11) to Jzero(11) x Jzero(37) given on integral

homology by:

[1 0 0 0 0 0]

[0 1 0 0 0 0],

Homomorphism from 37B to Jzero(11) x Jzero(37) given on integral

homology by:

[0 0 1 1 1 0]

[0 0 0 0 0 1]

] [

Homomorphism from Jzero(11) x Jzero(37) to Jzero(11) (not printing 6x2

matrix),

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 23

Homomorphism from Jzero(11) x Jzero(37) to 37B (not printing 6x2

matrix)

*]

The next example illustrates that the modular “embedding” need only be an embedding in the
category of abelian varieties up to isogeny.

> A := Jzero(37)(1);

> x := A![1/2,1];

> B := A/Subgroup([x]);

> e := ModularEmbedding(B);

> e;

Homomorphism from modular abelian variety of dimension 1 to

Jzero(37) Qbar given on integral homology by:

[1 -1 1 0]

[2 -2 -2 2]

> IsInjective(e);

false

Moreover, the modular parameterization is surjective, but it need be optimal (have connected
kernel).

> pi := ModularParameterization(B);

> IsSurjective(pi);

true

> ComponentGroupOfKernel(pi);

Finitely generated subgroup of abelian variety with invariants [2]

> IsOptimal(pi);

false

0.2.14 Coercion

Coercion can be used to create points on modular abelian varieties from vectors on
a basis of integral homology, from other elements of modular abelian varieties, or from
modular symbols. See the examples below, especially the last one, to understand some of
the subtleties of coercision that arise because we view an abelian variety as a vector space
modulo a lattice, and the lattice can be embedded in any way in Qn.

A ! x

Coerce x into A. The argument x can be an element of a modular abelian variety,
the integer 0, a sequence obtained by Eltseq’ing an element of A (i.e., a linear
combination of integral homology), a vector on the basis for rational homology, or a
tuple of the form < P (X, Y), [u, v] > that defines a modular symbol.

24 Geometry Vol.

Example H0E16

If you coerce a sequence of rationals or reals into an abelian variety A, then Magma computes the
corresponding linear combination of a basis of integral homology and returns the point it defines.
The sequence must have length the rank of the integral homology.

> Jzero(11)![1/2,1/5];

Element of abelian variety defined by [1/2 1/5] modulo homology

If you coerce exactly two cusps (or extended reals) into A, then Magma computes the point
corresponding to that modular symbol.

> Jzero(11)![Cusps()|1/2,1/5];

0

> Jzero(11)![Sqrt(2),0];

Element of abelian variety defined by

[1.414213562373095048801688724198 0] modulo homology

> Jzero(11)![Cusps()|0,Infinity()]; // cusps

Element of abelian variety defined by [0 1/5] modulo homology

> Jzero(11)![0,Infinity()]; // extended reals

Element of abelian variety defined by [0 1/5] modulo homology

Coercion of modular symbols also works for higher weight.

> Jzero(11,4)![0,Infinity()];

Element of abelian variety defined by [-4/61 5/61 1/61 -1/61]

modulo homology

> R<x,y> := PolynomialRing(RationalField(),2);

> Jzero(11,4)!<x^2,[0,Infinity()]>;

Element of abelian variety defined by [-4/61 5/61 1/61 -1/61]

modulo homology

> Jzero(11,4)!<y^2,[0,Infinity()]>;

Element of abelian variety defined by [44/61 -55/61 -11/61 11/61]

modulo homology

You can also coerce elements from abelian subvarieties into an ambient abelian variety.

> J := Jzero(37); A := Decomposition(J)[1];

> x := A![1/5,0];

> Parent(x);

Modular abelian variety 37A of dimension 1, level 37 and

conductor 37 over Q

> x in J;

false

> y := J!x; y;

Element of abelian variety defined by [1/5 -1/5 1/5 0] modulo

homology

> y in J;

true

> Parent(y);

Modular abelian variety Jzero(37) of dimension 2 and level 37 over Q

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 25

Coercion also provides an easy way to create the 0 element.

> Jzero(37)!0;

0

The following example illustrates the subtlety of coercion when the element being coerced in is a
vector instead of a sequence. We create the quotient of J0(11) by a cyclic subgroup of order 10.
The lattice that defines J0(11) is Z×Z, but the lattice that defines this quotient is (1/10)Z×Z.
Thus the natural quotient map on vector spaces is defined by the identity matrix. On the other
hand, the matrix of the quotient with respect to a basis for integral homology has determinant
10.

> A := Jzero(11);

> x := A![1/10,0]; x;

Element of abelian variety defined by [1/10 0] modulo homology

> Order(x);

10

> B,pi := A/Subgroup([x]);

> B;

Modular abelian variety of dimension 1 and level 11 over Qbar

> pi;

Homomorphism from Jzero(11) Qbar to modular abelian variety of

dimension 1 given on integral homology by:

[10 0]

[0 1]

> Matrix(pi);

[1 0]

[0 1]

> IntegralMatrix(pi);

[10 0]

[0 1]

> base := Basis(IntegralHomology(B)); base;

[

(1/10 0),

(0 1)

]

If we coerce in the sequence [1/10,0] we get the point in B that is represented by 1/10th of the
first generator for homology. If we coerce in the vector (1/10, 0), we instead get the element of B
represented by that element of the rational homology, which is 0, since the lattice that defines B
is embedded in such a way that it contains (1/10, 0).

> y := B![1/10,0]; y;

Element of abelian variety defined by [1/10 0] modulo homology

> Order(y);

10

> z := B!base[1]; z;

0

26 Geometry Vol.

0.2.15 Modular Symbols to Homology

Modular symbols determine elements of the rational homology of J0(N), J1(N), etc.,
and hence of arbitrary modular abelian varieties, by using the modular parameterization.
The commands below convert from modular symbols, which are represented in various
ways, to vectors on the basis for rational or integral homology.

ModularSymbolToIntegralHomology(A, x)

ModularSymbolToIntegralHomology(A, x)

The element of integral homology naturally associated to the (formal) modular
symbol s = P (X, Y){α, β}, where α, β are in P 1(Q) and P is a homogeneous
polynomial of degree 2. The returned vector is written with respect to the basis
of integral homology. This intrinsic takes its input a sequence [a, b] or a pair <
P (X, Y), [a, b] >, where a, b are in Cusps().

ModularSymbolToRationalHomology(A, x)

ModularSymbolToRationalHomology(A, x)

ModularSymbolToRationalHomology(A, x)

The element of rational homology naturally associated to the (formal) modular
symbol s = P (X, Y){α, β}, where α, β are in P 1(Q) and P is a homogeneous
polynomial of degree 2. The returned vector is written with respect to the basis of
rational homology. This intrinsic takes its input as a pair < P (X, Y), [c, d] >, where
c, d are in Cusps().

Example H0E17

> A := Jzero(11);

> x := ModularSymbolToIntegralHomology(A,[0,Infinity()]); x;

(0 1/5)

> z := A!x; z;

Element of abelian variety defined by [0 1/5] modulo homology

> Order(z);

5

> A := Jzero(47);

> x := ModularSymbolToIntegralHomology(A,[0,Infinity()]); x;

(-1/23 3/23 -4/23 4/23 -3/23 1/23 2/23 8/23)

> z := A!x;

> Order(z);

23

> J := Jzero(11,4);

> IntegralHomology(J);

Lattice of rank 4 and degree 4

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 27

Basis:

(3 1 -1 -1)

(1 -1 -3 1)

(2 -2 2 2)

(2 -2 2 -2)

Basis Denominator: 8

> ModularSymbolToIntegralHomology(J,[0,Infinity()]);

(-4/61 5/61 1/61 -1/61)

Notice that for weight greater than 2 the homomogenous polynomial part of the modular symbol
may be omitted. If so, it defaults to xk−2.

> R<x,y> := PolynomialRing(RationalField(),2);

> ModularSymbolToIntegralHomology(J,<x^2,[0,Infinity()]>);

(-4/61 5/61 1/61 -1/61)

> ModularSymbolToIntegralHomology(J,<y^2,[0,Infinity()]>);

(44/61 -55/61 -11/61 11/61)

The result of coercion to rational homology is different because it is written in terms of the basis
for rational homology instead of the basis for integral homology, and in this example the two basis
differ.

> ModularSymbolToRationalHomology(J,[0,Infinity()]);

(-7/488 -9/488 -11/488 13/488)

Coercion is also a way to define torsion points on abelian varieties.

> Jzero(37)![1/5,0,0,0];

Element of abelian variety defined by [1/5 0 0 0] modulo homology

0.2.16 Embeddings

The Embeddings command contains a list of embeddings (up to isogeny) from A to
other abelian varieties. The AssertEmbedding command allows you to add an embedding
to the beginning of the list. The embeddings are used for computing intersections, sums,
etc., with the embedding at the front of the list having highest priority.

AssertEmbedding(A, phi)

Place φ at the beginning of Embeddings(A). The morphism φmust have finite kernel.

Embeddings(A)

A list of morphisms from A into abelian varieties, which are used in making sense of
intersections, sums, etc. The embeddings at the beginning of the list take precedence
over those that occur later. Note that these maps might not really be injective; e.g.,
the modular embedding, which need only be injective on homology, is always at the
end of this list.

28 Geometry Vol.

Example H0E18

Every modular abelian variety comes equipped with at least one embedding, the “modular em-
bedding”.

> Embeddings(Jzero(11));

[*

Homomorphism from Jzero(11) to Jzero(11) given on integral homology by:

[1 0]

[0 1]

*]

> A := Jzero(37)(1);

> Embeddings(A);

[*

Homomorphism from 37A to Jzero(37) given on integral homology by:

[1 -1 1 0]

[1 -1 -1 1]

*]

We add another embedding to the list of embeddings for A.

> phi := NaturalMap(A,Jzero(37*2));

> AssertEmbedding(~A,phi);

> Embeddings(A);

[*

Homomorphism N(1) from 37A to Jzero(74) given on integral homology

by:

[-1 1 -1 0 2 -1 1 0 -2 1 -2 2 -1 2 -1 1]

[-1 0 0 0 2 -1 1 -2 0 0 -1 1 -1 2 1 -1],

Homomorphism from 37A to Jzero(37) given on integral homology by:

[1 -1 1 0]

[1 -1 -1 1]

*]

The following intersection would not make sense if we hadn’t chosen an embedding of A into
J0(74).

> B := Codomain(phi)(1); B;

Modular abelian variety 74A of dimension 2, level 2*37 and

conductor 2^2*37^2 over Q

> #(A meet B);

1

0.2.17 Base Change

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 29

The BaseExtend and ChangeRing commands allow you to change the base ring of a
modular abelian variety. The BaseExtend command is the same ChangeRing, but is more
restrictive. For example, if A is over Q then BaseExtend(A,GF(2)) is not allowed, but
ChangeRing(A,GF(2)) is.

Abelian varieties can have their base ring set to a finite field, but there is very little
that is implemented for abelian varieties over finite fields. Computing the number of points
is implemented, but creation of actual points or homomorphisms is not.

BaseExtend(A, R)

Extend the base ring of A to R, if possible. This is merely a more restrictive version
of ChangeRing.

CanChangeRing(A, R)

True if it is possible to change the base ring of A to R, and A over R when possible.

ChangeRing(A, R)

Change the base ring of A to R, if possible.

Example H0E19

We consider J(13) over many fields and rings.

> A := Jone(13);

> BaseExtend(A,CyclotomicField(7));

Modular abelian variety Jone(13) of dimension 2 and level 13 over

Q(zeta 7)

> BaseExtend(A,AlgebraicClosure(RationalField()));

Modular abelian variety Jone(13) Qbar of dimension 2 and level 13

over Qbar

> BaseExtend(A,RealField());

Modular abelian variety Jone(13) R of dimension 2 and level 13 over R

> BaseExtend(A,ComplexField());

Modular abelian variety Jone(13) C of dimension 2 and level 13 over C

> ChangeRing(A,GF(3));

Modular abelian variety Jone(13) GF(3) of dimension 2 and level 13

over GF(3)

> #ChangeRing(A,GF(3));

19 19

> B := ChangeRing(A,GF(13)); B;

Modular abelian variety Jone(13) GF(13) of dimension 2 and level 13

over GF(13)

> IsAbelianVariety(B);

false

> ChangeRing(A,Integers());

Modular abelian variety Jone(13) Z of dimension 2 and level 13 over

Z

> ChangeRing(A,PolynomialRing(RationalField(),10));

30 Geometry Vol.

Modular abelian variety Jone(13) of dimension 2 and level 13 over

Polynomial ring of rank 10 over Rational Field

Lexicographical Order

Variables: $.1, $.2, $.3, $.4, $.5, $.6, $.7, $.8, $.9, $.10

0.2.18 Additional Examples

Example H0E20

The simplest abelian variety is an abelian variety of dimension 0, i.e., a point.

> A := ZeroModularAbelianVariety(); A;

Modular abelian variety ZERO of dimension 0 and level 1 over Q

We create the Jacobian J0(22) of the modular curve X0(22) as follows:

> J := Jzero(22); J;

Modular abelian variety Jzero(22) of dimension 2 and level 2*11 over Q

Notice that A is a subset of J0(22).

> A subset J;

true

We can also create the higher weight analogues J0(N,k) of J0(N), which are motives defined
over Q. Many computations that make sense for J0(N) also make sense for these higher weight
analogues.

> J4 := Jzero(22,4); J4;

Modular motive Jzero(22,4) of dimension 7 and level 2*11 over Q

> IsOnlyMotivic(J4);

true

One can also create J1(N):

> Jone(22);

Modular abelian variety Jone(22) of dimension 6 and level 2*11 over Q

For efficiency purposes, it is often much quicker to do computations working only with the +1
quotient of H1(J0(N),Z) by ∗ = 1, or using only the −1 quotient. These computations will be
off by powers of 2, or subgroups will be halved and off by a power of 2. Nonetheless, if you know
what you are doing, such computations can be very useful. Create J0(N), but working only with
the +1 quotient of homology as follows:

> Jplus := Jzero(22,2,+1); Jplus;

Modular abelian variety Jzero(22) of dimension 2 and level 2*11 over Q

with sign 1

> Sign(Jplus);

1

> Sign(Jzero(22));

0

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 31

Notice that the sign is printed out when it is 1 or −1. Also, sign 0 is shorthand for “no sign”, i.e.,
working with the full homology. It is not possible to take the direct sum of abelian varieties with
different signs.
Let ε : (Z/NZ)∗ → Q(ζn)∗ be Dirichlet character. The command ModularAbelianVariety(eps)

creates the modular abelian variety over Q corresponding to the cusp forms with Dirichlet char-
acter any Galois conjugate of ε.

> G<eps> := DirichletGroup(22,CyclotomicField(EulerPhi(22)));

> Order(eps);

10

> Conductor(eps);

11

> A := ModularAbelianVariety(eps); A;

Modular abelian variety of dimension 0 and level 2*11 over Q

> A := ModularAbelianVariety(eps^2); A;

Modular abelian variety of dimension 4 and level 2*11 over Q

Let H be a sugroup of G = (Z/NZ)∗. The group (Z/NZ)∗ acts by diamond bracket operators
as a group of automorphisms on X1(N), and the modular curve XH(N) is the quotient of X1(N)
by the action of H. Thus if H = 1, then XH(N) = X1(N), and if H = G, then XH(N) = X0(N).
The command JH(N,d) creates an abelian variety isogenous to the Jacobian of XH(N), where d
is the index of H in G (thus d = 1 corresponds to J0(N)). A weight k and sign (either 0 or ±1)
can be provided as optional parameters. More precisely, JH(N,d) is the product of J(ε), where ε
varies over Dirichlet characters such that ε(H) = {1}.

> JH(22,1);

Modular abelian variety Jzero(22) of dimension 2 and level 2*11 over Q

> JH(22,10);

Modular abelian variety Js(22) of dimension 6 and level 2*11 over Q

> JH(22,2);

Modular abelian variety J H(22) of dimension 2 and level 2*11 over Q

As a shortcut, the command Js(N) creates a modular abelian variety that is isogenous to J1(N).
Thus Js(N) is the same as JH(N,d), where d is the order of (Z/NZ)∗.

> Js(22);

Modular abelian variety Js(22) of dimension 6 and level 2*11 over Q

> JH(22,10) eq Js(22);

true

We can also create modular abelian varieties attached to spaces of modular forms and spaces of
modular symbols:

> ModularAbelianVariety(ModularForms(22));

Modular abelian variety of dimension 2 and level 2*11 over Q

> ModularAbelianVariety(ModularSymbols(22));

Modular abelian variety of dimension 2 and level 2*11 over Q

Here is another example, in which the space of modular forms is for Γ1(N).

> M := ModularForms(Gamma1(25)); M;

Space of modular forms on Gamma 1(25) of weight 2 and dimension

32 Geometry Vol.

39 over Integer Ring.

> S := CuspidalSubspace(M); S;

Space of modular forms on Gamma 1(25) of weight 2 and dimension

12 over Integer Ring.

> A := ModularAbelianVariety(S); A;

Modular abelian variety of dimension 12 and level 5^2 over Q

We can also construct abelian varieties attached to newforms.

> S := CuspForms(43);

> N := Newforms(S); N;

[* [*

q - 2*q^2 - 2*q^3 + 2*q^4 - 4*q^5 + 4*q^6 + O(q^8)

], [

q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8),

q + b*q^2 - b*q^3 + (-b + 2)*q^5 - 2*q^6 + (b - 2)*q^7 + O(q^8)

*] *]

> f := N[2][1]; f;

q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8)

> A := ModularAbelianVariety(f); A;

Modular abelian variety Af of dimension 2 and level 43 over Q

> Newform(A);

q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8)

When possible, we can also obtain a newform that gives rise to an abelian variety.

> J := Jzero(43);

> D := Decomposition(J); D;

[

Modular abelian variety 43A of dimension 1, level 43 and

conductor 43 over Q,

Modular abelian variety 43B of dimension 2, level 43 and

conductor 43^2 over Q

]

> Newform(D[2]);

q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 + O(q^8)

Modular abelian varieties may be described by a label, which is a string like ”43B”. Continuing
the previous code, we have:

> A := ModularAbelianVariety("43B");

> A eq D[2];

true

Notice that we created A above using the command ModularAbelianVariety with a string as an
argument. This is only guaranteed to work on labels of the form a level followed by an isogeny
code.
The integral, rational and real homology of a modular abelian variety A is H1(A,R), where
R = Z,R,Q, respectively. Thus this homology is just a free module over R of dimension twice
dim(A) (unless the sign of A is ±1, in which case the homology is of dimension dim(A)).

> J := Jzero(22); J;

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 33

Modular abelian variety Jzero(22) of dimension 2 and level 2*11 over Q

> IntegralHomology(J);

Standard Lattice of rank 4 and degree 4

> RationalHomology(J);

Full Vector space of degree 4 over Rational Field

> RealHomology(J);

Full Vector space of degree 4 over Real Field

> J := Jzero(22, 2, +1); J;

Modular abelian variety Jzero(22) of dimension 2 and level 2*11 over Q

with sign 1

> RationalHomology(J);

Full Vector space of degree 2 over Rational Field

Using the product operator we can take the direct product of any two modular abelian varieties,
even ones of different weights or levels. We first illustrate taking the product of two abelian
subvarieties of J0(65), then taking the product of one of the subvarieties of J0(65) with the
weight 4 motive J1(11, 4).

> J := Jzero(65);

> D := Decomposition(J); D;

[

Modular abelian variety 65A of dimension 1, level 5*13 and

conductor 5*13 over Q,

Modular abelian variety 65B of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q,

Modular abelian variety 65C of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q

]

> A := D[1];

> B := D[2];

> A*B;

Modular abelian variety 65A x 65B of dimension 3 and level 5*13

over Q

Homomorphism from 65A to 65A x 65B given on integral homology by:

[1 0 0 0 0 0]

[0 1 0 0 0 0]

Homomorphism from 65B to 65A x 65B given on integral homology by:

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

Homomorphism from 65A x 65B to 65A (not printing 6x2 matrix)

Homomorphism from 65A x 65B to 65B (not printing 6x4 matrix)

> M := Jzero(11,4);M;

Modular motive Jzero(11,4) of dimension 2 and level 11 over Q

> P := A*M; P;

Modular motive 65A x Jzero(11,4) of dimension 3 and level 5*11*13 over Q

34 Geometry Vol.

The product also returns inclusions of each factor into the product and projection from the product
onto each factor.

> C,f,g,h,k := A*B;

> f;

Homomorphism from 65A to 65A x 65B given on integral homology by:

[1 0 0 0 0 0]

[0 1 0 0 0 0]

The command DirectSum, which takes either two arguments, or a sequence of modular abelian
varieties, can be used to compute arbitrary finite direct sums. Note that the + operator applied
to two modular abelian varieties is not the direct sum. It is the sum of the two abelian varieties
in a common ambient abelian variety. Thus if A is as above, then

> Dimension(A);

1

> Dimension(A*A);

2

> Dimension(A+A);

1

If you take a direct sum of abelian varieties that are defined over different base rings, then the
program will first attempt to coerce them to a common over-ring.

> A := Jzero(11);

> B := BaseExtend(Jzero(14),CyclotomicField(3));

> C := A*B; C;

Modular abelian variety Jzero(11) x Jzero(14) of dimension 2 and level

2*7*11 over Q(zeta 3)

The above would not work if CyclotomicField(3) were replaced by GF(3), since the base ring Q

of A is not contained in GF(3).

0.3 Homology

The homology H1(A,R) with coefficients in R of an abelian variety A is a free R-
module of rank equal to twice the dimension of A. For many purposes, we view abelian
varieties as complex tori V/Λ, and then there is a canonical isomorphism Λ ∼= H1(A,Z). (If
the sign of A is ±1, then the homology command below gives a Z-module of rank dimA.)

0.3.1 Creation

The Homology command creates the first homology of a modular abelian variety,
which is of type ModAbVarHomol. This is the only command for creating homology.

Homology(A)

The first integral homology of A. (If the sign of A is 1 or −1, then this is Z-module
of rank equal to the dimension of A.)

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 35

Example H0E21

The homology of the elliptic curve J0(14) if of dimension 2.

> A := Jzero(14); A;

Modular abelian variety Jzero(14) of dimension 1 and level 2*7 over Q

> Homology(A);

Modular abelian variety homology space of dimension 2

If for efficiency purposes we work in the +1 quotient, then we are only working with half the
homology, so the dimension of the homology is 1.

> Homology(Jzero(14,2,+1));

Modular abelian variety homology space of dimension 1

0.3.2 Invariants

The only invariant of homology is its dimension. If A is an abelian variety, and H is
its first homology, then H has dimension equal to twice the dimension of A. (Except if,
for efficiency purposes, we are working with sign +1 or −1, in which case the dimension
of H is equal to the dimension of A.)

Dimension(H)

The dimension of the space H of homology.

Example H0E22

> Homology(Jzero(100));

Modular abelian variety homology space of dimension 14

> Homology(Jzero(100,2,+1));

Modular abelian variety homology space of dimension 7

> Homology(Jzero(100,2,-1));

Modular abelian variety homology space of dimension 7

0.3.3 Functors to categories of lattices and vector spaces

The following commands provide convenient functors from the categories of homology
and modular abelian varieties to lattices and vector spaces. Mathematically, these functors
are defined using the first homology of the complex manifold underlying the complex points
of the abelian variety.

36 Geometry Vol.

IntegralHomology(A)

The lattice underlying the homology of A.

Lattice(H)

The underlying lattice of the homology space H. This is a free Z-module of rank
equal to the dimension of H.

RationalHomology(A)

A Q-vector space obtained by tensoring the homology of A with Q.

RealHomology(A)

A vector space over R obtained by tensoring the homology of A with R, where R is
the field of real numbers.

RealVectorSpace(H)

The R-vector space of dimension equal to the dimension of H.

VectorSpace(H)

The Q-vector space of dimension equal to the dimension of H.

Example H0E23

The following code demonstrates the above commands applied to the abelian surface attached to
the space of cusp forms of level 37 with quadratic character.

> G<eps> := DirichletGroup(37);

> Order(eps);

2

> A := ModularAbelianVariety(eps); A;

Modular abelian variety of dimension 2 and level 37 over Q

> Decomposition(A);

[

Modular abelian variety image(37A[18]) of dimension 2, level

37 and conductor 37^2 over Q

]

> IntegralHomology(A);

Standard Lattice of rank 4 and degree 4

> H := Homology(A); H;

Modular abelian variety homology space of dimension 4

> Lattice(H);

Standard Lattice of rank 4 and degree 4

> RationalHomology(A);

Full Vector space of degree 4 over Rational Field

> RealHomology(A);

Full Vector space of degree 4 over Real Field

> RealVectorSpace(H);

Full Vector space of degree 4 over Real Field

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 37

> VectorSpace(H);

Full Vector space of degree 4 over Rational Field

The code below illustrates that the lattice need not just be the free lattice on dim(H) generators.
The reason is because for efficiency reasons many internal computations only require knowing
H1(A,Q), which is sometimes all that gets computed, and the lattice returned by this command
is H1(A,Z) written with respect to a basis for H1(A,Q). Thus Lattice should be viewed as
giving an integral structure to H1(A,Q).

> J := Jzero(37);

> A := J(1);

> Lattice(Homology(A));

Lattice of rank 2 and degree 2

Basis:

(1 1)

(1 -1)

> IntegralHomology(Jone(17));

Lattice of rank 10 and degree 10

Basis:

(0 0 1 0 0 0 1 0 0 0)

(0 0 1 0 0 0 0 0 -1 0)

(0 0 0 1 0 0 0 1 0 0)

(0 0 0 1 0 0 0 -1 0 0)

(0 0 0 0 1 0 0 0 -1 0)

(0 0 0 0 0 1 0 0 0 1)

(0 0 0 0 0 1 0 0 0 -1)

(0 0 0 0 0 0 1 0 -1 0)

(0 2 1 0 0 0 0 0 0 0)

(2 -1 0 0 0 0 1 -1 0 1)

0.3.4 Modular structure

Is H is the homology of an abelian variety that is attached to a space of modular
symbols, then H remembers that space of modular symbols. The following two functions
allow you to decide if H is attached to modular symbols, and if so obtain the corresponding
spaces of modular symbols. The reason that ModularSymbols returns a sequence instead
of a single modular symbols space is that arbitrary finite products of abelian varieties are
allowed, so corresponding direct sums of modular symbols spaces must be allowed, which
are represented as sequences because Magma currently doesn’t have a facility for taking
direct sums of modular symbols spaces.

IsAttachedToModularSymbols(H)

True if H is presented as being attached to a sequence of spaces of modular symbols.

ModularSymbols(H)

If H is attached to a sequence of spaces of modular symbols, then this is that
sequence. Otherwise calling this results in an error.

38 Geometry Vol.

Example H0E24

In this example, we create the product J0(23) × J0(11), and find that its homology is attached
modular symbols, since both J0(23) and J0(11) are attached to modular symbols. We then display
the corresponding spaces of modular symbols.

> A := Jzero(23) * Jzero(11);

> H := Homology(A); H;

Modular abelian variety homology space of dimension 6

> IsAttachedToModularSymbols(H);

true

> ModularSymbols(H);

[

Modular symbols space for Gamma 0(23) of weight 2 and

dimension 4 over Rational Field,

Modular symbols space for Gamma 0(11) of weight 2 and

dimension 2 over Rational Field

]

0.3.5 Additional Examples

Example H0E25

The following example illustrates each of the above intrinsics for the homology of J0(23).

> A := Jzero(23); A;

Modular abelian variety Jzero(23) of dimension 2 and level 23 over Q

> H := Homology(A); H;

Modular abelian variety homology space of dimension 4

Notice that homology has its own type:

> Type(H);

ModAbVarHomol

In this case, the homology is attached to a space of modular symbols, since J0(23).

> IsAttachedToModularSymbols(H);

true

> ModularSymbols(H);

[

Modular symbols space for Gamma 0(23) of weight 2 and

dimension 4 over Rational Field

]

> Dimension(H);

4

> Lattice(H);

Standard Lattice of rank 4 and degree 4

> RealVectorSpace(H);

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 39

Full Vector space of degree 4 over Real Field

> VectorSpace(H);

Full Vector space of degree 4 over Rational Field

We can also obtain various homologies of A more directly.

> IntegralHomology(A);

Standard Lattice of rank 4 and degree 4

> RationalHomology(A);

Full Vector space of degree 4 over Rational Field

> RealHomology(A);

Full Vector space of degree 4 over Real Field

The following example illustrates that a factor of J0(37) is not presented as something associated
to a space of modular symbols. Also notice that the two lattices are different.

> J := Jzero(37);

> D := Decomposition(J);

> H1 := Homology(D[1]); H2 := Homology(D[2]);

> IsAttachedToModularSymbols(H1);

false

> Lattice(H1);

Lattice of rank 2 and degree 2

Basis:

(1 1)

(1 -1)

> Lattice(H2);

Standard Lattice of rank 2 and degree 2

0.4 Homomorphisms

0.4.1 Creation

The commands below create the multiplication by n map on abelian variety, for any
n. Other ways to create homomorphisms are described in other sections of this chapter.
These include computing Hecke operators, Atkin-Lehner operators, and computing the full
endomorphism or homomorphism rings, and choosing elements in it.

IdentityMap(A)

The identity homomorphism from A to A.

ZeroMap(A)

The zero homomorphism from A to A.

nIsogeny(A, n)

The multiplication by n isogeny on A.

nIsogeny(A, n)

The multiplication by n isogeny on A.

40 Geometry Vol.

Example H0E26

> A := Jzero(23);

> IdentityMap(A);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

> ZeroMap(A);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

> nIsogeny(A,3);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[3 0 0 0]

[0 3 0 0]

[0 0 3 0]

[0 0 0 3]

> nIsogeny(A,1/3);

Homomorphism from Jzero(23) to Jzero(23) (up to isogeny) on integral

homology by:

[1/3 0 0 0]

[0 1/3 0 0]

[0 0 1/3 0]

[0 0 0 1/3]

0.4.2 Restriction, evaluation, and other manipulations

Suppose A is an abelian variety, B is an abelian subvariety, and φ is a homomorphism
from A. Then the Restriction commands computes the restriction of φ to B. If moreover
φ is an endomorphism of A (i.e., has codomain A), and φ(B) is contained in B, then
RestrictEndomorphism computes the endomorphism of B induced by φ.

If f is a polynomial over the integers or rational numbers and φ is an endomorphism
of an abelian variety, then the Evaluate command computes the endomorphism f(φ) (if f
has denominators, then f(φ) might only be a morphism on abelian varieties up to isogeny).
Together with the Kernel command, Evaluate is useful for cutting out subvarieties of an
abelian variety.

The SurjectivePart, DivideOutIntegers, and UniversalPropertyOfCokernel

commands can also all be useful in various contexts for constructing homomorphisms.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 41

DivideOutIntegers(phi)

If φ : A → B is a homomorphism of abelian varieties, find the largest integer n such
that ψ = (1/n) ∗ φ is also a homomorphism from A to B and return ψ and n.

Evaluate(f, phi)

The endomorphism f(φ) of A, where f is a univariant polynomial and φ is an
endomorphism of a modular abelian variety A.

RestrictEndomorphism(phi, A)

The restriction of φ to an endomorphism of A, if this obviously makes sense. If A
is not left invariant by φ, an error message may result.

RestrictEndomorphism(phi, i)

Suppose φ is an endomorphism of an abelian variety A and and i : B → A is an
injective morphism of abelian varieties such that i(B) is invariant under φ. This
intrinsic computes the endomorphism ψ of B induced by φ. If i(B) is not left
invariant by φ, an error message may result.

Restriction(phi, A)

The restriction of φ to a morphism from A to the codomain of φ, if this obviously
makes sense.

RestrictionToImage(phi, i)

Suppose i : A → D and φ : D → B are morphisms of abelian varieties. This
intrinsic computes the restriction of φ to the image of i. The resulting map is an
endomorphism of the image of i.

SurjectivePart(phi)

Let φ : A→ B be a homomorphism. This intrinsic returns the surjective homomor-
phism π : A→ φ(A) induced by φ.

UniversalPropertyOfCokernel(pi, f)

Uses the universal property of the cokernel to find the unique morphism with a
certain property. More precisely, suppose π : B → C is the cokernel of a morphism,
so π is surjective with kernel K. Suppose f : B → D is a morphism whose kernel
contains K. By definition of cokernel, there exists a unique morphism ψ : C → D
such that π ∗ ψ = f . This intrinsic returns ψ. If we only have that the identity
component of ker(π) is contained in ker(f), then ψ will only be a homomorphism
in the category of abelian varieties up to isogeny, i.e., it will have a nontrivial
denominator.

42 Geometry Vol.

Example H0E27

We use the Evaluate and Kernel commands to cut out a 2-dimensional abelian subvariety of
J0(65).

> J := Jzero(65);

> R<x> := PolynomialRing(RationalField());

> T2 := HeckeOperator(J,2);

> Factorization(CharacteristicPolynomial(T2));

[

<x + 1, 2>,

<x^2 - 3, 2>,

<x^2 + 2*x - 1, 2>

]

> phi := Evaluate(x^2-3,T2);

> ,A := Kernel(phi);

> A;

Modular abelian variety of dimension 2 and level 5*13 over Q

The next example illustrates the universal property of the cokernel. We decompose J = J0(65)
as a product of simples A, B, and C, of dimensions 1, 2, and 2, respectively. Then we let pi be
a homomorphism from J onto B + C, and f a homomorphism from J onto B. The universal
property supplies a morphism ψ from B + C to B such that π ∗ ψ = f (i.e., f(x) = ψ(π(x)) for
all x).

> J := Jzero(65);

> A,B,C := Explode(Decomposition(J));

> pi := NaturalMap(J,B+C);

> IsSurjective(pi);

true

> f := NaturalMap(J,B);

> psi := UniversalPropertyOfCokernel(pi,f); psi;

Homomorphism from modular abelian variety of dimension 4 to 65B

(up to isogeny) on integral homology by:

(not printing 8x4 matrix)

> Matrix(psi);

[1/2 0 0 -1/2]

[1/2 0 -1/2 1/2]

[0 -1/2 1/2 0]

[0 0 -1/2 1]

[1/2 -1/2 -1/2 1/2]

[1/2 0 -1/2 1/2]

[0 1/2 0 0]

[0 0 1/2 0]

> pi*psi eq f; // apply pi then psi is the same as applying f.

true

> Denominator(psi);

2

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 43

Since ψ has a denominator of 2, it is only a morphism in the category of abelian varieties up
to isogeny. This is because only the connected component of the kernel of π is contained in the
kernel of f .

> G := Kernel(pi); G;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2, 2, 2]

> H, K := Kernel(f);

> H;

{ 0 }: finitely generated subgroup of abelian variety with

invariants []

> G subset K;

false

Next we illustrate dividing out by integers, by dividing the 10 out of 10T3 acting on J0(23). Note
that this division occurs in the full endomorphism ring, not just the Hecke algebra.

> phi := 10*HeckeOperator(Jzero(23),3); phi;

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[-10 -20 20 0]

[0 -30 20 -20]

[20 -40 30 -20]

[20 -20 0 10]

> DivideOutIntegers(phi);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[-1 -2 2 0]

[0 -3 2 -2]

[2 -4 3 -2]

[2 -2 0 1]

10

Next we illustrate the restriction commands using factors of J0(65).

> J := Jzero(65);

> A := Decomposition(J)[2]; A;

Modular abelian variety 65B of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q

> T := HeckeOperator(J,3);

> Factorization(CharacteristicPolynomial(T));

[

<x + 2, 2>,

<x^2 - 2*x - 2, 2>,

<x^2 - 2, 2>

]

> Restriction(T,A);

Homomorphism from modular abelian variety of dimension 2 to

Jzero(65) given on integral homology by:

[-1 0 0 1 0 -1 0 0 0 0]

[-1 3 -1 1 -3 -1 1 2 -1 -2]

[-1 1 -1 3 -1 -1 -1 0 1 -2]

44 Geometry Vol.

[-1 0 0 3 0 -1 -2 0 2 -2]

> TonA := RestrictEndomorphism(T,A); TonA;

Homomorphism from 65B to 65B given on integral homology by:

[-1 0 0 1]

[-1 3 -1 1]

[-1 1 -1 3]

[-1 0 0 3]

> Factorization(CharacteristicPolynomial(TonA));

[

<x^2 - 2*x - 2, 2>

]

Finally, we illustrate the SurjectivePart command on the non-surjective morphism T3 + 2 of
J0(65).

> phi := T+2;

> IsSurjective(phi);

false

> pi := SurjectivePart(phi);

> IsSurjective(pi);

true

> Codomain(pi);

Modular abelian variety of dimension 4 and level 5*13 over Q

0.4.3 Kernels

The category of abelian varieties is not an abelian category because kernels need not
exist in this category. More precisely, if φ is a homomorphism A→ B of abelian varieties,
then the kernel of φ is usually not an abelian variety because it is rarely connected. Instead,
the kernel fits into an exact sequence

0 → C → ker(φ) → G→ 0,

where C is an abelian variety and G is a finite group, both defined over the same field as
φ.

The ConnectedKernel command returns C.
The ComponentGroupOfKernel command returns G as a subgroup of A/C.
The Kernel command returns a finite subgroup of A that maps to G, the abelian

variety C, and a map from C into A.
Note that if C 6= 0 then the finite group that the kernel command returns is not

canonical, since it is just some finite group that maps onto C via quotienting out by C.
For the canonical component group, use the ComponentGroupOfKernel command, which
gives a group defined over the same base field as φ, and whose main drawback is that the
component group is not contained in A.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 45

ComponentGroupOfKernel(phi)

Component group of ker(φ).

ConnectedKernel(phi)

The connected component C of ker(φ) and a morphism from C to the domain of φ.

Kernel(phi)

A finite subgroup G of A = Domain(φ), an abelian variety C such that ker(φ) equals
f(C) + G, and an injective map f from C to A. If C = 0, then G has the same
field of definition as φ; otherwise, G is only known to be defined over the algebraic
closure.

Example H0E28

The kernel of T2 − 3 on J0(65) is an extension of an abelian surface by a finite group isomorphis
to (Z/2Z)4.

> J := Jzero(65);

> T := HeckeOperator(J,2);

> phi := T^2-3;

> ConnectedKernel(phi);

Modular abelian variety of dimension 2 and level 5*13 over Q

Homomorphism from modular abelian variety of dimension 2 to

Jzero(65) given on integral homology by:

[1 0 0 0 0 1 -1 0 1 -1]

[0 1 0 0 -1 0 0 1 0 -1]

[0 0 1 0 0 0 -1 1 1 -1]

[0 0 0 1 0 0 -1 0 1 -1]

> Kernel(phi);

Finitely generated subgroup of abelian variety with

invariants [2, 2, 2, 2]

Modular abelian variety of dimension 2 and level 5*13 over Q

Homomorphism from modular abelian variety of dimension 2 to

Jzero(65) given on integral homology by:

[1 0 0 0 0 1 -1 0 1 -1]

[0 1 0 0 -1 0 0 1 0 -1]

[0 0 1 0 0 0 -1 1 1 -1]

[0 0 0 1 0 0 -1 0 1 -1]

> G := ComponentGroupOfKernel(phi); G;

Finitely generated subgroup of abelian variety with

invariants [2, 2, 2, 2]

> FieldOfDefinition(G);

Rational Field

Though G is defined over Q, the ambient variety of G is the quotient of J0(65) by the two
dimensional connected component of the kernel of T2 − 3.

> AmbientVariety(G);

46 Geometry Vol.

Modular abelian variety of dimension 3 and level 5*13 over Q

On the other hand, the group returned by the Kernel command is a subgroup of J0(65).

> H, C := Kernel(phi);

> H;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2]

> FieldOfDefinition(H);

Algebraically closed field with no variables

> AmbientVariety(H);

Modular abelian variety Jzero(65) of dimension 5 and level 5*13

over Q

0.4.4 Images

These commands compute the image of a modular abelian variety or a finite group
under a homomorphism φ of modular abelian varieties. Using @@, one can also compute a
group lifting a given group. Note that this lift is not canonical unless φ has finite kernel,
in which case the G@@phi is the full inverse image of G.

phi(A)

The image of A under φ, if this makes sense, i.e., if A is the domain of φ, or A has
dimension 0, or one of the embeddings of A has codomain equal to the domain of φ.

phi(G)

The image of G under φ, if this makes sense. If A is the ambient variety of G,
then this makes sense if A is the domain of φ, or A has dimension 0, or one of the
embeddings of A has codomain equal to the domain of φ.

Image(phi)

The image C of φ, which is a modular abelian subvariety contained in the codomain
of φ, a morphism from C to the codomain of φ, and a surjective morphism from the
domain of φ to C.

G @@ phi

A finite group who image under φ is equal to G, if possible. If φ has finite kernel,
then this is the exact inverse image of G under φ. If not, then this is a group
generated by a choice of torsion inverse image for each generator of G, which may
not be canonical.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 47

Example H0E29

The image of J0(37) under T2 is an elliptic curve.

> J := Jzero(37);

> phi := HeckeOperator(J,2);

> phi(J);

Modular abelian variety of dimension 1 and level 37 over Q

> Image(phi);

Modular abelian variety of dimension 1 and level 37 over Q

Homomorphism from modular abelian variety of dimension 1 to

Jzero(37) given on integral homology by:

[1 -1 1 0]

[1 -1 -1 1]

Homomorphism from Jzero(37) to modular abelian variety of dimension

1 given on integral homology by:

[0 -1]

[1 0]

[-1 1]

[0 0]

The Hecke operator T2 maps the 2-torsion subgroup of J0(37) maps onto the 2-torsion subgroup
of the image of T2.

> G := nTorsionSubgroup(J,2); G;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2]

> phi(G);

Finitely generated subgroup of abelian variety with invariants

[2, 2]

The homomorphism T2 − 1 is surjective, and the inverse image of the 2-torsion is a subgroup
isomorphic to (Z/2Z)2 × (Z/6Z)2.

> IsSurjective(phi-1);

true

> psi := phi-1;

> H := G@@(psi); H;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 6, 6]

> psi(H);

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2]

> H := G@@psi; H;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 6, 6]

> psi(H);

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2]

48 Geometry Vol.

0.4.5 Cokernels

Cokernel(phi)

The cokernel of φ and a morphism from the codomain of φ to the cokernel.

Example H0E30

We compute a 2-dimensional quotient of the 3-dimensional abelian variety J0(33) using the Hecke
operator T2 and the Cokernel command.

> J := Jzero(33);

> T := HeckeOperator(J,2);

> Factorization(CharacteristicPolynomial(T));

[

<x - 1, 2>,

<x + 2, 4>

]

> phi := T + 2;

> A, pi := Cokernel(phi);

> A;

Modular abelian variety of dimension 2 and level 3*11 over Q

> pi;

Homomorphism from Jzero(33) to modular abelian variety of dimension

2 (not printing 6x4 matrix)

0.4.6 Matrix structure

Homomorphisms are stored and worked with internally using the linear maps they
induce on homology. The commands below provide access to those matrices.

Eltseq(phi)

The Eltseq of the underlying matrix that defines φ. This is a sequence of integers
or rational numbers.

IntegralMatrix(phi)

The matrix which defines φ, written with respect to integral homology.

IntegralMatrixOverQ(phi)

The matrix which defines φ, written with respect to integral homology.

Matrix(phi)

The matrix on chosen basis of rational homology that defines φ.

Ncols(phi)

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 49

The number of columns of the matrix that defines φ. This is also the dimension of
the homology of the codomain of φ.

Nrows(phi)

The number of rows of the matrix that defines φ. This is also the dimension of the
homology of the domain of φ.

RealMatrix(phi)

The matrix which defines φ, written with respect to real homology.

Rows(phi)

The sequence rows of the matrix that defines φ.

Example H0E31

The following example demonstrates each of the commands for the Hecke operator T2 on J0(23).

> phi := HeckeOperator(Jzero(23),2); phi;

Homomorphism T2 from Jzero(23) to Jzero(23) given on integral homology by:

[0 1 -1 0]

[0 1 -1 1]

[-1 2 -2 1]

[-1 1 0 -1]

> Eltseq(phi);

[0, 1, -1, 0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, 0, -1]

> IntegralMatrix(phi);

[0 1 -1 0]

[0 1 -1 1]

[-1 2 -2 1]

[-1 1 0 -1]

> Parent($1);

Full RMatrixSpace of 4 by 4 matrices over Integer Ring

> IntegralMatrixOverQ(phi);

[0 1 -1 0]

[0 1 -1 1]

[-1 2 -2 1]

[-1 1 0 -1]

> Parent($1);

Full Matrix Algebra of degree 4 over Rational Field

> Matrix(phi);

[0 1 -1 0]

[0 1 -1 1]

[-1 2 -2 1]

[-1 1 0 -1]

> Ncols(phi);

4

> Nrows(phi);

4

50 Geometry Vol.

> RealMatrix(phi);

[0 1 -1 0]

[0 1 -1 1]

[-1 2/1 -2/1 1]

[-1 1 0 -1]

> Parent($1);

Full KMatrixSpace of 4 by 4 matrices over Real Field

> Rows(phi);

[

(0 1 -1 0),

(0 1 -1 1),

(-1 2 -2 1),

(-1 1 0 -1)

]

0.4.7 Arithmetic

Magma supports many standard arithmetic operations with homomorphisms of abelian
varieties, including composition, addition, subtraction, and exponentiation.

psi(phi)

The composition φ(ψ).

Inverse(phi)

The inverse of φ and an integer d such that d ∗ φ(− 1) is a morphism of abelian
varieties. More precisely, if φ is an isogeny, then the inverse of φ is a morphism in the
category of abelian varieties up to isogeny. This intrinsic returns such a morphism
or the actual inverse of φ if φ has degree 1.

a * phi

The product of the rational number a times the homomorphism φ. The result might
only be a homomorphism, up to isogeny.

a * phi

The product of the integer a times the homomorphism φ.

n + phi

The sum of multiplication by the rational number n and the endomorphism φ.

n + phi

The sum of the endomorphism multiplication-by-n and the endomorphism φ.

n - phi

The difference of multiplication-by-n and the endomorphism φ.

n - phi

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 51

The difference of the endomorphism multiplication-by-n and the endomorphism φ.

phi * psi

The product of the matrix that defines φ and the matrix ψ.

phi * psi

The composition of the homomorphism φ and ψ.

phi * psi

The product of the matrix that defines φ and the matrix ψ.

phi + n

The sum of the endomorphism φ and the endomorphism multiplication-by-n.

phi + psi

The sum of the matrix that defines φ and the matrix ψ.

phi + psi

The sum of the homomorphism φ and ψ

phi + psi

The sum of the matrix that defines φ and the matrix ψ.

phi - n

The difference of the endomorphism φ and the endomorphism multiplication-by-n.

phi - n

The difference of the endomorphism φ and the endomorphism multiplication-by-n.

phi - psi

The difference of the matrix that defines φ and the matrix ψ.

phi - psi

The difference of the homomorphism φ and ψ

phi - psi

The difference of the matrix that defines φ and the matrix ψ.

phi ^ n

The n-fold composition φn of the endomorphism φ with itself. If n = −1, then this
is the inverse of φ, in which case φ must be an isogeny or there is an error.

psi * phi

The product of the matrix ψ and the matrix that defines φ.

psi * phi

The product of the matrix ψ and the matrix that defines φ.

psi + phi

The sum of the matrix ψ and the matrix that defines φ.

52 Geometry Vol.

psi + phi

The sum of the matrix ψ and the matrix that defines φ.

psi - phi

The difference of the matrix ψ and the matrix that defines φ.

psi - phi

The difference of the matrix ψ and the matrix that defines φ.

Example H0E32

We illustrate several arithmetic operations use the Hecke operators T2 and T3 on J0(23).

> J := Jzero(23);

> phi := HeckeOperator(J,2);

> psi := HeckeOperator(J,3);

> Matrix(phi)*Matrix(psi);

[-2 1 -1 0]

[0 -1 -1 1]

[-1 2 -4 1]

[-1 1 0 -3]

> phi*psi;

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[-2 1 -1 0]

[0 -1 -1 1]

[-1 2 -4 1]

[-1 1 0 -3]

> Inverse(phi);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[1 1 -1 0]

[0 2 -1 1]

[-1 2 -1 1]

[-1 1 0 0]

1

> 1/3*phi;

Homomorphism from Jzero(23) to Jzero(23) (up to isogeny) on integral

homology by:

[0 1/3 -1/3 0]

[0 1/3 -1/3 1/3]

[-1/3 2/3 -2/3 1/3]

[-1/3 1/3 0 -1/3]

> 2+phi;

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[2 1 -1 0]

[0 3 -1 1]

[-1 2 0 1]

[-1 1 0 1]

> phi+psi;

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 53

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[-1 -1 1 0]

[0 -2 1 -1]

[1 -2 1 -1]

[1 -1 0 0]

> phi^4;

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[2 -3 3 0]

[0 -1 3 -3]

[3 -6 8 -3]

[3 -3 0 5]

1

> phi^(-4);

Homomorphism from Jzero(23) to Jzero(23) given on integral homology by:

[5 3 -3 0]

[0 8 -3 3]

[-3 6 -1 3]

[-3 3 0 2]

1

0.4.8 Polynomials

The polynomial commands compute the characteristic and minimal polynomials of
endomorphisms of modular abelian varieties. Each command requires that the input ho-
momorphism be a genuine homomorphism (not just a morphism up to isogeny). The same
computation could be done by first extracting the matrix of the endomorphism and us-
ing the analogous command on the matrix. However, in some special cases there may be
special techniques which can be used to do the computation more quickly, so there can be
some advantage to using the commands below.

CharacteristicPolynomial(phi)

The characteristic polynomial of the endomorphism φ. Internally we can sometimes
use extra information about φ (how it was constructed, Deligne bounds, e.g.), so
calling this intrinsic may be faster than just asking for the characteristic polynomial
of the matrix of φ.

FactoredCharacteristicPolynomial(phi)

The factorization of the characteristic polynomial of the endomorphism φ. Inter-
nally we can sometimes use extra information about φ (how it was constructed,
Deligne bounds, e.g.), so calling this intrinsic may be faster than just asking for
the factorization of the characteristic polynomial of the matrix of φ. Also, these
factored polynomials are cached.

MinimalPolynomial(phi)

54 Geometry Vol.

The minimal polynomial of the endomorphism φ. Internally we can sometimes use
extra information about φ (how it was constructed, Deligne bounds, e.g.), so calling
this intrinsic may be faster than just asking for the characteristic polynomial of the
matrix of φ.

Example H0E33

This example illustrates each of the polynomial commands for the Hecke operator T2 on J0(66).

> J := Jzero(66);

> phi := HeckeOperator(J,2);

> R<x> := PolynomialRing(RationalField());

> CharacteristicPolynomial(phi);

x^18 + 4*x^17 + 8*x^16 + 8*x^15 + 6*x^14 - 20*x^12 - 56*x^11 -

55*x^10 - 4*x^9 + 36*x^8 + 48*x^7 + 104*x^6 + 128*x^5 -

32*x^4 - 192*x^3 - 112*x^2 + 64*x + 64

> CharacteristicPolynomial(Matrix(phi));

x^18 + 4*x^17 + 8*x^16 + 8*x^15 + 6*x^14 - 20*x^12 - 56*x^11 -

55*x^10 - 4*x^9 + 36*x^8 + 48*x^7 + 104*x^6 + 128*x^5 -

32*x^4 - 192*x^3 - 112*x^2 + 64*x + 64

> FactoredCharacteristicPolynomial(phi);

[

<x - 1, 4>,

<x + 1, 2>,

<x^2 - x + 2, 2>,

<x^2 + 2*x + 2, 4>

]

> MinimalPolynomial(phi);

x^6 + x^5 + x^4 + x^3 + 2*x^2 - 2*x - 4

> Factorization(MinimalPolynomial(phi));

[

<x - 1, 1>,

<x + 1, 1>,

<x^2 - x + 2, 1>,

<x^2 + 2*x + 2, 1>

]

0.4.9 Invariants

The Domain and Codomain commands give the domain and codomain of a homomor-
phism. The Degree command computes the cardinality of the kernel of the homomorphism,
or 0 if the cardinality is infinite. The denominator of a homomorphism φ up to isogeny is
the smallest integer n, so that n∗φ is a genuine homomorphism. The FieldOfDefinition
of a homomorphism is some field over which the homomorphism is defined, but it is not
guaranteed to be minimal. The Rank and Nullity of a homorphism are the dimension

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 55

of the image and kernel, respectively. The Trace of a homomorphism is the trace of any
matrix that represents its action on integral homology, so e.g. the trace of multiplication
by n on A is 2n dim(A).

ClearDenominator(phi)

Morφsm n ∗ φ with n positive and minimal.

Codomain(phi)

The codomain of φ.

Degree(phi)

The degree of the morphism φ. If the kernel of φ is not finite, then the degree is by
definition 0.

Denominator(phi)

The smallest positive integer n such that n ∗φ is a homomorphism. This is also the
denominator of the matrix that defines φ.

Domain(phi)

The domain of φ.

FieldOfDefinition(phi)

A field of definition of φ.

Nullity(phi)

The dimension of the kernel of φ.

Rank(phi)

The dimension of the kernel of φ.

Trace(phi)

The trace of a matrix that defines φ.

Example H0E34

> phi := NaturalMap(Jzero(11),Jzero(33));

> Codomain(phi);

Modular abelian variety Jzero(33) of dimension 3 and level 3*11 over Q

> Domain(phi);

Modular abelian variety Jzero(11) of dimension 1 and level 11 over Q

> Degree(phi);

1

> Denominator(1/5*phi);

5

> FieldOfDefinition(phi);

56 Geometry Vol.

Rational Field

> Nullity(phi);

0

> Rank(phi);

1

> Trace(HeckeOperator(Jzero(33),2));

-6

> Trace(nIsogeny(Jzero(33),5));

30

0.4.10 Predicates

Suppose φ : A→ B is a homomorphism in the category of abelian varieties, possibly
up to isogeny. The IsMorphism command returns true if φ is an actual morphism (i.e., no
denominator), and the OnlyUpToIsogeny command returns true exactly when φ is not an
actual morphism.

The HasFiniteKernel command return true exactly when φ has a finite kernel, and
the IsInjective command returns true when the kernel of φ is 0. The IsSurjective

command returns true if the image of φ is its codomain. The IsIsogeny command returns
true if φ is surjective and has finite kernel. Note that just having finite kernel is not enough,
so isogeny is an equivalence relation.

There are also commands for testing equality of homomorphisms and inclusion in a
list.

HasFiniteKernel(phi)

True if the kernel of the homomorphism φ is finite.

IsEndomorphism(phi)

True if φ is an endomorphism, i.e., the domain and codomain of φ are equal.

IsHeckeOperator(phi)

If φ was computed using the HeckeOperator command, then true and the parameter
n passed to the HeckeOperator command when creating φ. Otherwise false and 0.

IsInjective(phi)

True if φ is an injective homomorphism.

IsInteger(phi)

True if φ is multiplication by n for some integer n. If true, returns that n as well.
If false, returns false and the second return value is not defined.

IsIsogeny(phi)

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 57

True if φ is a surjective homomorphism with finite kernel. Note that this definition
differs from the one in Silverman’s books on elliptic curves, agrees with the one in
Milne’s articles, and is an equivalence relation.

IsIsomorphism(phi)

True if φ is an isomorphism of abelian varieties.

IsMorphism(phi)

True if and only if φ is a morphism in the category of abelian varieties (not just in
the category of abelian varieties up to isogeny).

IsOptimal(phi)

True if φ is an optimal quotient map, i.e., φ is surjective and has connected kernel.

IsSurjective(phi)

True if the homomorphism φ is surjective.

IsZero(phi)

True if φ is the zero morphism.

OnlyUpToIsogeny(phi)

True if φ is not a homomorphism, but n ∗ φ is a homomorphism for some positive
integer n, i.e., φ is only a homomorphism in the category of abelian varieties up to
isogeny.

n eq phi

True if φ is equal to multiplication by the integer n.

phi eq n

True if φ is equal to multiplication by the integer n.

phi eq psi

True if the two homomorphisms φ and ψ are equal.

phi in X

True if φ is one of the homomorphisms in the list X of homomorphisms.

Example H0E35

> phi := HeckeOperator(Jzero(65),2)-1;

> HasFiniteKernel(phi);

true

> IsEndomorphism(phi);

true

> IsHeckeOperator(phi);

false 0

58 Geometry Vol.

> IsInjective(phi);

false

> IsInteger(phi);

false

> IsIsogeny(phi);

true

> IsIsomorphism(phi);

false

> IsMorphism(phi);

true

> IsMorphism(1/2*phi);

false

> IsSurjective(phi);

true

> IsZero(phi);

false

> OnlyUpToIsogeny(phi);

false

> 2 eq phi;

false

> phi eq 2;

false

> 2 eq nIsogeny(Jzero(65),2);

true

> phi eq nIsogeny(Jzero(65),2);

false

> phi in [* phi, nIsogeny(Jzero(65),2) *];

true

> IsIsomorphism(NaturalMap(Jzero(11),Jone(11)));

false

> IsIsomorphism(NaturalMap(Jzero(11)^2,Jzero(22)));

false

> IsIsomorphism(NaturalMap(Jzero(11),Jzero(11)));

true

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 59

0.5 Endomorphism Algebras and Hom Spaces

0.5.1 Creation

Let A and B be modular abelian varieties. The Hom command creates the finite-rank
free abelian group of homomorphisms from A to B, or with a third optional argument,
the vector space of homomorphisms in the category of abelian varieties up to isogeny. The
End command creates the endomorphism algebra of an abelian varieties. For the Hom and
End commands no nontrivial computations are done by Magma until you ask for further
information, such as the rank or a basis. In particular, creation of Hom(A,B) does not
compute Hom(A,B).

The BaseExtend command can alternatively be used to construct the the tensor
product of Hom(A,B) with Q. The only second arguments to the BaseExtend command
are Z and Q.

The HeckeAlgebra command defines a commutative subring of End(A) generated by
the Hecke operators. This is defined for any modular abelian variety A, possibly using
pullbacks and projections from an abelian variety attached to modular symbols (which in
some cases can produce a Hecke algebra that differs from what you might expect by some
finite index).

BaseExtend(H, R)

The space H ⊗ R, where R is the rational numbers or integers. When R = Q, this
is the space of homomorphisms in the category of abelian varieties up to isogeny.

End(A)

The endomorphism ring of A.

End(A, overQ)

If overQ is false, the endomorphism ring, and if it is true, the endomorphism algebra.

HeckeAlgebra(A)

The Hecke algebra associated to A. For an abelian variety attached to modular
symbols, this is the algebra induced by Hecke operators acting on modular symbols
(homology). For a general abelian variety, let π : J → A and e : A → J be the
modular parameterization and embedding of A. Then this is the ring of endomor-
phisms obtained by pulling back the Hecke algebra on J to A using π and e, i.e., it
is e ∗T ∗π, where T is the Hecke ring of J . For example, since J1(N) is represented
as a quotient of J0(N), the Hecke algebra is not what you might expect.

Hom(A, B)

Group of homomorphisms from A to B.

Hom(A, B, overQ)

Group of homomorphisms from A to B, or vector space generated by homomor-
phisms from A to B if overQ is true.

60 Geometry Vol.

Example H0E36

> A := Jzero(11); B := Jzero(33);

> Hom(A,B);

Group of homomorphisms from Jzero(11) to Jzero(33)

> Hom(A,B,true);

Group of homomorphisms from Jzero(11) to Jzero(33) in the category of

abelian varieties up to isogeny

> End(A);

Group of homomorphisms from Jzero(11) to Jzero(11)

> End(A,true);

Group of homomorphisms from Jzero(11) to Jzero(11) in the category of

abelian varieties up to isogeny

> BaseExtend(Hom(A,B),RationalField());

Q: Group of homomorphisms from Jzero(11) to Jzero(33) in the category

of abelian varieties up to isogeny

> HeckeAlgebra(A);

HeckeAlg(Jzero(11)): Group of homomorphisms from Jzero(11) to Jzero(11)

0.5.2 Subgroups and subrings

The Saturation command computes the saturation of a subgroup H of Hom(A,B)
in the full Hom(A,B). This is a subgroup S of Hom(A,B) such that S contains H with
finite index and the quotient Hom(A,B)/S is torsion free.

Use the Subgroup command to construct the subgroup of Hom(A,B) generated by
certain elements.

The Subring command constructs the subring generated by an element of End(A).
Note that a ring does not have to contain unity.

RingGeneratedBy(H)

The ring of endomorphisms generated by the endomorphisms in H.

Saturation(H)

The saturation of H in all homomorphisms. Suppose A and B are abelian varieties
and H is a subgroup of Hom(A,B). Then Hom(A,B) is a free Z-module, and the
saturation of H in Hom(A,B) is a group H’ that contains H with finite index such
that the quotient of Hom(A,B) by H’ is torsion free.

Subgroup(X)

Group of homomorphisms from A to B generated by elements of X .

Subgroup(X, overQ : parameters)

IsBasis BoolElt Default : false

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 61

Group of homomorphisms generated by elements of X . If the parameter IsBasis is
true, then we assume the elements of X are a basis for their span.

Subring(X)

Group of homomorphisms from A to B generated by elements of X .

Subring(X, overQ)

The ring of endomorphisms generated by elements in X .

Subring(phi)

The ring of endomorphisms generated by elements in φ.

Example H0E37

In this example we use the Saturation command to find the integers N up to 60 such that the
Hecke algebra of J0(N) is not saturated in the full ring of endomorphisms.

> function ind(N)

> H := HeckeAlgebra(Jzero(N));

> return Index(Saturation(H),H);

> end function;

> for N in [2..60] do

> i := ind(N);

> if i gt 1 then print N, i; end if;

> end for;

44 2

46 2

54 3

56 2

60 2

Note that multiplicity one fails at 3 for J0(54). It might be interesting to find a precise relationship
between failure of multiplicity one and the index of the Hecke algebra T in its saturation.
The next example illustrates constructing a subgroup.

> J := Jzero(33);

> E := End(J); E;

Group of homomorphisms from Jzero(33) to Jzero(33)

> H := Subgroup([E.1, E.3]); H;

Group of homomorphisms from Jzero(33) to Jzero(33)

> Rank(H);

2

We compute the subring generated by T2 on J0(100).

> T2 := HeckeOperator(Jzero(100),2);

> R := Subring(T2); R;

Group of homomorphisms from Jzero(100) to Jzero(100)

> Rank(R);

3

62 Geometry Vol.

The Hecke operator T2 and the main Atkin-Lehner involution together generate a commutative
ring of rank 10 over Z.

> J := Jzero(100);

> T2 := HeckeOperator(J,2);W := AtkinLehnerOperator(J,100);

> R := Subring([End(J) | T2,W]);

> Dimension(R);

10

> Dimension(End(J));

13

> IsRing(R);

true

> IsCommutative(R);

false

0.5.3 Pullback and pushforward of Hom spaces

A homomorphism of abelian varieties induces a map from one space of homomor-
phisms into another, and the three commands below compute the image of such maps.

Pullback(H, phi)

Given a space of homomorphism H in Hom(A,B) and a morphism φ : B → C,
compute the image of H in Hom(A,C) via the map that sends f to f ∗ φ.

Pullback(phi, H)

Given a space of homomorphism H in Hom(A,B) and a morphism φ : C → A,
compute the image of H in Hom(C,B) via the map that sends f to φ ∗ f .

Pullback(phi, H, psi)

Suppose H is a space of homomorphism A → B and φ : C → A and ψ : B → D.
Then this intrinsic computes and returns the ring of homomorphisms of A of the
form φ ∗ f ∗ ψ, where f is in H.

Example H0E38

> H := Hom(Jzero(11),Jzero(22));

> phi := NaturalMap(Jzero(22),Jzero(33));

> psi := NaturalMap(Jzero(33),Jzero(11));

> Pullback(H,phi);

Group of homomorphisms from Jzero(11) to Jzero(33)

> Pullback(psi,H);

Group of homomorphisms from Jzero(33) to Jzero(22)

> Pullback(psi,H,phi);

Group of homomorphisms from Jzero(33) to Jzero(33)

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 63

0.5.4 Arithmetic

The + and meet command compute the sum and intersection of two subgroups of
Hom(A,B).

H1 + H2

The subgroup generated by H1 and H2, where H1 and H2 are assumed to both be
subgroups of Hom(A,B), for abelian varieties A and B.

H1 meet H2

The intersection of H1 and H2, where H1 and H2 are assumed to both be subgroups
of Hom(A,B), for abelian varieties A and B.

Example H0E39

> J := Jzero(33);

> E := End(J);

> H1 := HeckeAlgebra(J); H1;

HeckeAlg(Jzero(33)): Group of homomorphisms from Jzero(33) to Jzero(33)

> H2 := Subgroup([E.1,E.2]); H2;

Group of homomorphisms from Jzero(33) to Jzero(33)

> Dimension(E);

5

> Dimension(H1);

3

> Dimension(H2);

2

> Dimension(H1 meet H2);

1

> Dimension(H1 + H2);

4

0.5.5 Quotients

If H1 and H2 are subspace of Hom(A,B) with H1 contained in H2, then the Index

command compute the index ofH1 in H2. IfH1 is not contained in H2 then the generalized
lattice index is computed instead. The Quotient command computes the quotient H2/H1

and various natural maps.

Index(H2, H1)

The index of H1 in H2, where H1 and H2 are both subgroups of Hom(A,B), for
abelian varieties A and B. If H1 is contained in H2, this is just the cardinality of
H2/H1, or 0 if this cardinality is infinite. If H1 is not contained in H2, then the
index is by definition [H1 +H2 : H1]/[H1 +H2 : H2], assuming the denominator is

64 Geometry Vol.

nonzero, i.e., that H2 has finite index in H1 +H2 (it is an error if H2 does not have
finite index in H1 + H2).

Quotient(H2, H1)

The abelian group quotient H2/H1, a map from H2 to this quotient, and a lifting
map from this quotient to H2.

H2 / H1

The abelian group quotient H2/H1, a map from H2 to this quotient, and a lifting
map from this quotient to H2.

Example H0E40

We define the subgroup of End(J0(54)) generated by T1, T2, T3, and T4, find that it has infinite
index in the full Hecke algebra, and compute the quotient, which is Z.

> J := Jzero(54);

> T := HeckeAlgebra(J);

> Dimension(T);

4

> S := Subgroup([HeckeOperator(J,n) : n in [1..4]]);

> Dimension(S);

3

> Index(T,S);

0

> Quotient(T,S);

Abelian Group isomorphic to Z

Defined on 1 generator (free)

Mapping from: HomModAbVar: T to Abelian Group isomorphic to Z

Defined on 1 generator (free) given by a rule [no inverse]

Mapping from: Abelian Group isomorphic to Z

Defined on 1 generator (free) to HomModAbVar: T given by a rule

[no inverse]

> G := T/S; G;

Abelian Group isomorphic to Z

Defined on 1 generator (free)

We compute the subgroup generated by T3, T4, T5, and T10, and find that it has index 6 in its
saturation.

> S := Subgroup([HeckeOperator(J,n) : n in [3,4,5,10]]);

> Sat := Saturation(S);

> Index(Sat,S);

6

> Index(S,Sat);

1/6

> Invariants(Sat/S);

[6]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 65

0.5.6 Invariants

The Domain and Codomain command give the domain and codomain of the elements
of a space of homomorphisms. The FieldOfDefinition is some field that all the homo-
morphisms in the Hom space are defined over, but it is not guaranteed to be minimal.

The Discriminant command computes the discriminant of the trace pairing on a
Hom space. Note that the trace is the trace of the action on homology. Computation of
the discriminant can be time consuming. Discriminants of Hecke algebras are particularly
interesting to compute because they are closely related to congruences between eigenforms.

Codomain(H)

The codomain of the homomorphisms in H.

Discriminant(H)

The discriminant of H with respect to the trace pairing matrix. This is the trace of
endomorphisms acting on homology, not left multiplication on themselves, so, e.g.,
the discriminant of the Hecke algebra will be 2d times as big as it would be otherwise
(if the sign is 0), where d is the dimension of A. If H is over Q, this function returns
the discriminant of the lattice of elements in H that are homomorphisms.

Domain(H)

The domain of the homomorphisms in H.

FieldOfDefinition(H)

A field over which all homomorphisms in H are defined.

Example H0E41

> H := Hom(Jzero(11),Jzero(33));

> Domain(H);

Modular abelian variety Jzero(11) of dimension 1 and level 11 over Q

> Codomain(H);

Modular abelian variety Jzero(33) of dimension 3 and level 3*11 over

Q

> FieldOfDefinition(H);

Rational Field

> A := BaseExtend(Jzero(11),ComplexField());

> H := End(A);

> FieldOfDefinition(H);

Complex Field

Though H = Z, so the discriminant of the abstract ring H is 1, the discriminant of the trace
pairing of H acting on homology is 2:

> Discriminant(H);

2

[2]

66 Geometry Vol.

The prime p = 389 is the only known examples where p divides the discriminant of the Hecke
algebra of J0(p).

> T := HeckeAlgebra(Jzero(389,2,+1));

> d := Discriminant(T);

> J := Jzero(389,2,+1);

> T := HeckeAlgebra(J);

> d := Discriminant(T);

> d mod 389;

0

> Factorization(d);

[<2, 53>, <3, 4>, <5, 6>, <31, 2>, <37, 1>, <389, 1>, <3881, 1>,

<215517113148241, 1>, <477439237737571441, 1>]

All the “action” at 389 comes from the 20-dimensional simple factor.

> A := J(5); A;

Modular abelian variety 389E of dimension 20, level 389 and

conductor 389^20 over Q with sign 1

> Factorization(Discriminant(HeckeAlgebra(A)));

[<2, 98>, <5, 41>, <389, 1>, <215517113148241, 1>,

<477439237737571441, 1>]

0.5.7 Structural invariants

The following commands provide access to a basis and generators for spaces of homo-
morphisms.

Basis(H)

A basis for H.

Dimension(H)

The rank of H as a Z-module or Q-vector space.

Generators(H)

A basis for H.

Ngens(H)

The number of generators of H.

Rank(H)

The rank of H as a Z-module or Q-vector space.

H . i

The ith generator of H.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 67

Example H0E42

The following example illustrates each of the commands for Hom(J0(11), J0(33)).

> H := Hom(Jzero(11),Jzero(33));

> Basis(H);

[

Homomorphism from Jzero(11) to Jzero(33) given on integral homology

by:

[0 2 -1 -2 0 1]

[1 0 -1 -1 1 1],

Homomorphism from Jzero(11) to Jzero(33) given on integral homology

by:

[1 0 -2 2 -3 0]

[1 -1 0 1 -2 1]

]

> Dimension(H);

2

> Ngens(H);

2

> Rank(H);

2

> H.1;

Homomorphism from Jzero(11) to Jzero(33) given on integral homology by:

[0 2 -1 -2 0 1]

[1 0 -1 -1 1 1]

0.5.8 Matrix and module structure

The following commands associate lattices, vector spaces, matrix algebras, and
matrix spaces to subspaces H of Hom(A,B). The Lattice command takes a basis
for H, Eltseq’s each element, and construct a free Z-module out of the result. The
MatrixAlgebra command creates the algebra generated by the matrices of generators for
H. The RModuleWithAction command creates a module over the ring R generated by H,
and this module is equipped with an action of R.

Lattice(H)

A lattice with basis obtained from the components of the matrices of a basis for H.

MatrixAlgebra(H)

The matrix algebra generated by the underlying matrices of all elements in H, acting
on homology.

RMatrixSpace(H)

Matrix space whose basis are the generators for H.

68 Geometry Vol.

RModuleWithAction(H)

A module over H equipped with the action of H, where H must be a ring of
endomorphism.

RModuleWithAction(H, p)

A module over H tensor Fp equipped with the action of H tensor Fp, where H must
be a ring of endomorphism that has not been tensored with Q.

VectorSpace(H)

A vector space with basis obtained from the components of the matrices of a basis
for H.

Example H0E43

We first demonstrate some of the commands with Hom(J0(11), J0(33)).

> H := Hom(Jzero(11),Jzero(33));

> Lattice(H);

Lattice of rank 2 and degree 12

Basis:

(0 2 -1 -2 0 1 1 0 -1 -1 1 1)

(1 0 -2 2 -3 0 1 -1 0 1 -2 1)

> RMatrixSpace(H);

RMatrixSpace of 2 by 6 matrices and dimension 2 over Integer Ring

> RMatrixSpace(BaseExtend(H,RationalField()));

KMatrixSpace of 2 by 6 matrices and dimension 2 over Rational

Field

> VectorSpace(H);

Vector space of degree 12, dimension 2 over Rational Field

User basis:

(1 0 -2 2 -3 0 1 -1 0 1 -2 1)

(0 -2 1 2 0 -1 -1 0 1 1 -1 -1)

Next we consider the endomorphism algebra of J0(22).

> H := End(Jzero(22));

> MatrixAlgebra(H);

Matrix Algebra of degree 4 with 4 generators over Integer Ring

> RModuleWithAction(H);

RModule(IntegerRing(), 4)

Action:

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[0 1 0 1]

[0 0 0 0]

[1 0 1 -1]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 69

[0 1 0 1]

[0 1 0 -1]

[0 1 0 0]

[-1 2 -1 1]

[-1 1 0 0]

[0 1 -2 1]

[-1 2 -1 0]

[-1 0 1 -1]

[0 -1 1 -1]

The following example illustrates that MatrixAlgebra computes the algebra generated by H, even
if H is not itself an algebra.

> H := Subgroup([HeckeOperator(Jzero(33),2)]); H;

Group of homomorphisms from Jzero(33) to Jzero(33)

> A := MatrixAlgebra(H); A;

Matrix Algebra of degree 6 with 1 generator over Integer Ring

> Dimension(A);

2

> Dimension(H);

1

0.5.9 Predicates

These commands allow you to determine whether a space of homomorphisms is a ring,
if it’s commutative, if it’s a field (and what field), if it was created using the HeckeAlgebra
command, whether it has been tensored with Q, or whether it is satured in the full ring
of endomorphisms. You can also test equality and inclusion.

IsCommutative(H)

True if and only if H is a commutative ring.

IsField(H)

True if H is a field, and if so returns that field, a map from the field to H, and a
map from H to the field.

IsHeckeAlgebra(H)

True if H was constructed using the HeckeAlgebra command. If H was constructed
in another way, you should use the HeckeAlgebra command to compute the Hecke
algebra and compare it with H.

IsOverQ(H)

True if H is a Q-vector space instead of just a Z-module, i.e., a space of homomor-
phisms up to isogeny.

70 Geometry Vol.

IsRing(H)

True if H is a ring. (Note that a ring does not have to contain unity.)

IsSaturated(H)

True if H is equal to its saturation, i.e., the quotient of the ambient Hom(A,B) by
H is torsion free.

H1 eq H2

True if H1 and H2 are equal.

H1 subset H2

True if H1 and H2 are both subgroups of a common Hom(A,B), and in addition H1

is a subset of H2.

Example H0E44

We illustrate several of the commands for the endomorphism ring of J0(33).

> H := End(Jzero(33));

> IsCommutative(H);

false

> IsField(H);

false 0 0 0

> IsHeckeAlgebra(H);

false

> IsOverQ(H);

false

> IsOverQ(BaseExtend(H,RationalField()));

true

> IsRing(H);

true

> IsSaturated(H);

true

Next we compare the endomorphism ring with the Hecke algebra of J0(33).

> T := HeckeAlgebra(Jzero(33));

> T eq H;

false

> T subset H;

true

> IsSaturated(T);

true

> IsRing(T);

true

> IsHeckeAlgebra(T);

true

> IsCommutative(T);

true

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 71

> IsField(BaseExtend(T,RationalField()));

false 0 0 0

The Hecke algebra of J0(33) is actually a product of 3 fields, so it is not a field. In contract, the
Hecke algebra of J0(23) is a field.

> T := HeckeAlgebra(Jzero(23));

> IsField(T);

false 0 0 0

In the following code, the answer you get might be different, since computation of the defining
polynomial for the number field involves a randomized algorithm.

> IsField(BaseExtend(T,RationalField()));

true Number Field with defining polynomial x^2 + 11*x + 29 over

the Rational Field

Mapping from: Number Field with defining polynomial x^2 + 11*x +

29 over the Rational Field to HeckeAlg(Jzero(23)) Q: Group of

homomorphisms from Jzero(23) to Jzero(23) in the category of abelian

varieties up to isogeny given by a rule [no inverse]

Mapping from: HeckeAlg(Jzero(23)) Q: Group of homomorphisms from

Jzero(23) to Jzero(23) in the category of abelian varieties up to

isogeny to Number Field with defining polynomial x^2 + 11*x + 29

over the Rational Field given by a rule [no inverse]

0.5.10 Random element

This command provides a random element of a homspace of rank r. It uses the Magma

Random command to compute a random element of RSpace(ZZ,r).

Random(H)

A random element of H.

H ! x

Coerce x into H.

Example H0E45

> H := End(Jzero(22));

> Random(H);

Homomorphism from Jzero(22) to Jzero(22) given on integral homology by:

[9 -4 0 2]

[0 6 0 0]

[2 -6 11 -2]

[3 -4 0 8]

72 Geometry Vol.

0.6 Artihmetic of Abelian Varieties

0.6.1 Direct sum

One can take arbitrary finite direct sums of modular abelian varieties using the
DirectSum command. The notation A*B is a shorthand for the direct sum of A and B. We
do not write A+B for the direct sum, since it is already used for the sum of A and B inside
a common ambient abelian variety, and this sum need not be direct, unless A ∩B = 0.

DirectProduct(A, B)

Same as DirectSum.

DirectProduct(X)

Same as DirectSum.

DirectSum(A, B)

The direct sum D of A and B, together with the embedding maps from A into D and
B into D, respectively, and the projection maps from D onto A and B, respectively.

DirectSum(X)

The direct sum D of the sequence X of modular abelian varieties, together with a
list containing the embedding maps from each modular abelian variety of X into D
and a list containing the projection maps from D onto each modular abelian variety
in X .

A * B

The direct sum of A and B.

A ^ n

The direct sum of n copies of A. If n = 0, the zero subvariety of A. If n is negative,
the (-n)-th power of the dual of A.

0.6.2 Sum in an ambient variety

The sum A+B is the sum of A and B inside a common ambient abelian variety, and
this sum need not be direct, unless the intersection of A and B is 0.

FindCommonEmbeddings(X)

True and a list of embeddings into a common abelian variety, if one can be found
using Embeddings(A) for A in X . If true, the second return value is the list of
embeddings.

SumOf(X)

The sum of the modular abelan varieties in X .

SumOfImages(phi, psi)

The sum D of the images of the morphisms φ and ψ in their common codomain, a
morphism from D into their common codomain, and a list containing a morphism

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 73

from the domain of each of φ and ψ to D. If the codomains are not the same, then
the homomorphisms are replaced by homomorphisms into an appropriate direct sum
of codomains.

SumOfMorphismImages(X)

The sum D of the images of the morphisms in the list X of homomorphisms of
modular abelian varieties in their common codomain, a morphism from D into
their common codomain, and a list containing a morphism from the domain of each
morphism in X to D. If not all codomains of the elements of X are the same, then
the homomorphisms are replaced by homomorphisms into an appropriate direct sum
of codomains.

A + B

The sum of the images of A and B in a common ambient abelian variety.

0.6.3 Intersections

Two abelian varieties cannot, by themselves, by intersected without choosing an em-
bedding of both varieties in a common ambient abelian variety. The algorithm for com-
puting an intersection is to compute the kernel of a certain homomorphism.

Intersections are computed in Magma by finding a homomorphism whose kernel is
isomorphic to the intersection. For example, if f : A → C and g : B → C are injective
homomorphisms, then the intersection of their images is isomorphic to the kernel of f − g.

As mentioned above, kernels of morphisms of abelian varieties are frequently not
themselves abelian varieties. Instead a kernel is an extensions of an abelian variety by
a finite group of components. Likewise, intersections of abelian varieties are often not
abelian varieties.

The ComponentGroupOfIntersection command computes the group of components
of the intersection of two abelian varieties (for more details, see the discussion of kernels
in this section). The Intersection command computes a finite lift G of the group of
components and an abelian variety C such that the relevant intersection is C +G.

The intersection commands also take a sequence of abelian varieties or list of mor-
phisms in order to facilitate computation of n-fold intersections, for any positive integer
n.

ComponentGroupOfIntersection(A, B)

Finite component group of intersection.

ComponentGroupOfIntersection(X)

Finite component group of intersection.

Intersection(X)

A finite lift of the component group of the intersection, the connected component
of the intersection, and a map from the abelian variety that contains the connected
component to the abelian variety that contains the component group. The elements
of X are abelian varieties; they are replaced by their images via their modular

74 Geometry Vol.

embedding map. All the elements of X must be embedded in the same abelian
variety.

IntersectionOfImages(X)

A finite lift of the component group of the intersection, the connected component
of the intersection, and a map from the abelian variety that contains the connected
component to the abelian variety that contains the component group. The elements
of X are morphisms from various abelian varieties into a common abelian variety.
They do not have to be injective.

A meet B

The intersection of the abelian varieties A and B, in some natural ambient abelian
variety. For more details, see the documentation for the Intersection command.

Example H0E46

The intersection of the three simple newform abelian subvarieties of J0(65) is a group isomorphic
to Z/2Z.

> D := Decomposition(Jzero(65));

> G := ComponentGroupOfIntersection(D); G;

Finitely generated subgroup of abelian variety with

invariants [2]

> FieldOfDefinition(G);

Rational Field

The quotient of D[1] by this subgroup of order 2 is an elliptic curve over Q isogenous to D[1], but
not isomorphic to D[1].

> B := D[1]/G; B;

Modular abelian variety of dimension 1 and level 5*13 over Q

> IsIsomorphic(D[1],B);

false

Next we compute some non-finite intersections.

> A := D[1] + D[2];

> B := D[1] + D[3];

> A meet B;

Finitely generated subgroup of abelian variety with invariants [2, 2, 2]

Modular abelian variety of dimension 1 and level 5*13 over Q

Homomorphism from modular abelian variety of dimension 1 to

modular abelian variety of dimension 6 given on integral homology

by:

[1 -1 0 0 0 0 1 -1 0 0 0 -1]

[0 0 1 -1 1 -1 0 0 1 -1 1 0]

Homomorphism from modular abelian variety of dimension 6 to

Jzero(65) (not printing 12x10 matrix)

We can also intersect images of morphisms.

> f := ModularEmbedding(A);

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 75

> g := ModularEmbedding(B);

> , C := IntersectionOfImages([* f, g *]);

> C eq D[1];

true

The following example illustrates failure of multiplicity one for J0(p) for a prime number p. This
is the first such example known, and it was discovered by Lloyd Kilford using Magma (TODO:
add reference to JNT paper). There are two elliptic curve factors A and B inside J0(431). The
eigenforms associated to A and B are congruent modulo 2, but the intersection of A and B is
trivial.

> J := Jzero(431);

> IsPrime(431);

true

> A := Decomposition(J)[1];

> B := Decomposition(J)[2];

> G, C := A meet B;

> G;

{ 0 }: finitely generated subgroup of abelian variety with

invariants []

> C;

Modular abelian variety ZERO of dimension 0 and level 431 over Q

> Newform(A) - Newform(B);

-2*q^3 + 4*q^5 + 2*q^6 - 4*q^7 + O(q^8)

0.6.4 Quotients

If B is an abelian subvariety of A (or some natural image of B lies in A), then the
quotient A/B is an abelian variety. Also, the cokernel of a homomorphism of abelian
varieties is an abelian variety.

Cokernel(phi)

The cokernel of φ and a morphism from the codomain of φ to the cokernel.

A / B

The quotient of A by a natural image B’ of B, if possible. Here B’ is the image of
B under the modular embedding composed with the modular parameterization to
A.

Example H0E47

We compute a 2-dimensional quotient of the 3-dimensional abelian variety J0(33) using the Hecke
operator T2.

> J := Jzero(33);

> T := HeckeOperator(J,2);

> Factorization(CharacteristicPolynomial(T));

76 Geometry Vol.

[

<x - 1, 2>,

<x + 2, 4>

]

> C := ConnectedKernel(T-1);

> B,psi := J/C;

> B;

Modular abelian variety of dimension 2 and level 3*11 over Q

0.7 Decomposing and Factoring Abelian Varieties

By the Poincare reducibility theorem, every abelian variety is isogenous to a product
of simple abelian subvarieties. If A is a modular abelian variety over Q, then A is isogenous
to a product of simple abelian varieties Af attached to newforms. The Decomposition

and Factorization commands compute such decompositions.

0.7.1 Decomposition

Given an abelian variety A, the Decomposition command returns a sequence Bi of
modular abelian varieties, such that their product is isogenous to A. Each Bi is equipped
with an embedding into A such that the sum of the images of the Bi is equal to A. This
embedding is the first element of the output of the Embeddings command.

A(n)

The nth factor in Decomposition(A), denoted A(n).

Decomposition(A)

Isogeny simple decomposition of A, i.e., a sequence of isogeny simple abelian subva-
rieties of A whose product is isogenous to A. Each is equipped with an embedding
into A.

Example H0E48

We decomposition A = J0(37)× J0(22), then find the embedding into A of one of the factors that
is isogenous to J0(11).

> A := Jzero(37) * Jzero(22);

> D := Decomposition(A); D;

[

Modular abelian variety 37A of dimension 1, level 2*11*37 and

conductor 37 over Q,

Modular abelian variety 37B of dimension 1, level 2*11*37 and

conductor 37 over Q,

Modular abelian variety N(11,814,1)(11A) of dimension 1,

level 2*11*37 and conductor 11 over Q,

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 77

Modular abelian variety N(11,814,2)(11A) of dimension 1,

level 2*11*37 and conductor 11 over Q

]

> B := D[3];

> Embeddings(B);

[*

Homomorphism from N(11,814,1)(11A) to Jzero(37) x Jzero(22) given on

integral homology by:

[0 0 0 0 1 0 -1 3]

[0 0 0 0 0 1 -2 3]

*]

0.7.2 Factorization

Given an abelian variety A, the Factorization command finds pairwise non-
isogenous simple newform abelian varieties whose product, with multiplicities, is isomor-
phic to A.

Factorisation(A)

Synonym for Factorization.

Factorization(A)

Factorization of A as a product with multiplicities of abelian varieties B = Af

attached to newforms. This is a list of pairs < B, [φ, ...] >, where B is an isogeny
simple abelian variety and [φ, ...] is a sequence of maps from B into A, such that the
product of all images of all B is isogenous to A, and the sum of the dimensions of
the images of B is the dimension of A. Moreover, the B are pairwise non-isogenous
and are attached to newforms. To obtain a list of the images of the B canonically
embeded into A, use Decomposition(A).

Example H0E49

> A := Jzero(37) * Jzero(22);

> Factorization(A);

[*

<Modular abelian variety 37A of dimension 1, level 37 and

conductor 37 over Q, [

Homomorphism N(37,814,1) from 37A to Jzero(37) x Jzero(22) given on

integral homology by:

[1 -1 1 0 0 0 0 0]

[1 -1 -1 1 0 0 0 0]

]>,

<Modular abelian variety 37B of dimension 1, level 37 and

conductor 37 over Q, [

78 Geometry Vol.

Homomorphism N(37,814,1) from 37B to Jzero(37) x Jzero(22) given on

integral homology by:

[1 1 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

]>,

<Modular abelian variety 11A of dimension 1, level 11 and

conductor 11 over Q, [

Homomorphism N(11,814,1) from 11A to Jzero(37) x Jzero(22) given on

integral homology by:

[0 0 0 0 0 1 -2 3]

[0 0 0 0 1 -1 1 0],

Homomorphism N(11,814,2) from 11A to Jzero(37) x Jzero(22) given on

integral homology by:

[0 0 0 0 -1 0 2 -2]

[0 0 0 0 -1 2 -1 0]

]>

*]

0.7.3 Decomposition with respect to an endomorphism or a commu-
tative ring

The following commands use the elements of a commutative subring of endomorphisms
to decompose a modular abelian variety A into a direct sum of abelian subvarieties by
taking kernels (which are analogous to generalized eigenspaces).

DecomposeUsing(R)

Decompose A using the commutative ring of endomorphisms generated by A.

DecomposeUsing(phi)

Decompose A using the endomorphism φ.

Example H0E50

> T2 := HeckeOperator(Jzero(100),2);

> DecomposeUsing(T2);

[

Modular abelian variety of dimension 1 and level 2^2*5^2 over Q,

Modular abelian variety of dimension 5 and level 2^2*5^2 over Q,

Modular abelian variety of dimension 1 and level 2^2*5^2 over Q

]

> W := AtkinLehnerOperator(Jzero(100),100);

> DecomposeUsing(W);

[

Modular abelian variety of dimension 3 and level 2^2*5^2 over Q,

Modular abelian variety of dimension 4 and level 2^2*5^2 over Q

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 79

]

0.7.4 Additional Examples

Example H0E51

We compute a decomposition of J0(46) as a product of simple abelian subvarieties.

> J := Jzero(46); J;

Modular abelian variety Jzero(46) of dimension 5 and level 2*23 over Q

> Decomposition(J);

[

Modular abelian variety 46A of dimension 1, level 2*23 and

conductor 2*23 over Q,

Modular abelian variety N(23,46,1)(23A) of dimension 2, level

2*23 and conductor 23^2 over Q,

Modular abelian variety N(23,46,2)(23A) of dimension 2, level

2*23 and conductor 23^2 over Q

]

Thus J decomposes as a product E ×A×B, where E is an elliptic curve of conductor 46, and A
and B are two isogenous images of J0(23).

> J(1);

Modular abelian variety 46A of dimension 1, level 2*23 and

conductor 2*23 over Q

> Conductor(J(1));

46

> Factorization(Conductor(J(2)));

[<23, 2>]

The Factorization command gives an explicit decomposition with embeddings of each factor
into J0(46).

> Factorization(Conductor(J(2)));

[<23, 2>]

> Factorization(J);

[*

<Modular abelian variety 46A of dimension 1, level 2*23 and

conductor 2*23 over Q, [

Homomorphism from 46A to Jzero(46) given on integral homology

by:

[1 0 -2 -1 -1 1 1 1 -2 1]

[0 1 -1 -1 0 0 0 1 -1 0]

]>,

<Modular abelian variety 23A of dimension 2, level 23 and

conductor 23^2 over Q, [

Homomorphism N(23,46,1) from 23A to Jzero(46) given on integral

80 Geometry Vol.

homology by:

[-1 1 -1 1 0 -1 -1 1 -1 2]

[0 0 -1 2 -2 -1 0 0 1 0]

[0 0 0 1 -2 0 0 1 0 0]

[0 1 0 -1 0 0 1 0 0 0],

Homomorphism N(23,46,2) from 23A to Jzero(46) given on integral

homology by:

[0 -1 0 0 1 -1 0 1 0 0]

[-1 0 0 0 0 -1 2 -1 1 -1]

[-1 1 -1 0 0 0 2 -2 2 -2]

[0 0 -1 2 -1 0 0 0 0 -1]

]>

*]

0.8 Orthogonal Complements

0.8.1 Complements

The following two commands find a complement of an abelian subvariety of an abelian
variety. Existence of a complement is guaranteed by the Poincare reducibility theorem (if
we were just working with n-dimensional complex tori, then there need not be complements
of subtori). Magma computes a complement using the module-theoretic structure of the
ambient variety and, in some cases, the intersection pairing on homology.

Complement(A : parameters)

IntPairing BoolElt Default : false

The complement of the image of A under the first embedding of A (the first map in
the sequence Embeddings(A)).

ComplementOfImage(phi : parameters)

IntPairing BoolElt Default : false

Suppose φ : A→ B is a morphism of abelian varieties. By the Poincare reducibility
theorem, there is an abelian variety C such that φ(A) + C = B and the intersection
of φ(A) with C is finite. This intrinsic returns a choice of C and an embedding of
C into B.

Example H0E52

We compute a decomposition of J0(33) as a product of simples, then find a decomposition of the
complement of one of the factors.

> J := Jzero(33);

> D := Decomposition(J); D;

[

Modular abelian variety 33A of dimension 1, level 3*11 and

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 81

conductor 3*11 over Q,

Modular abelian variety N(11,33,1)(11A) of dimension 1, level

3*11 and conductor 11 over Q,

Modular abelian variety N(11,33,3)(11A) of dimension 1, level

3*11 and conductor 11 over Q

]

> A := D[3];

> B := Complement(A);

> B;

Modular abelian variety of dimension 2 and level 3*11 over Q

> Decomposition(B);

[

Modular abelian variety image(33A) of dimension 1, level 3*11

and conductor 3*11 over Q,

Modular abelian variety image(11A) of dimension 1, level 3*11

and conductor 11 over Q

]

Here we compute a somewhat random map from J0(11) to J0(33), and compute the complement
of the image.

> phi := 2*NaturalMap(Jzero(11),Jzero(33),1) - 3*NaturalMap(Jzero(11),Jzero(33),3);

> phi;

Homomorphism from Jzero(11) to Jzero(33) given on integral homology by:

[2 6 -7 -2 -6 3]

[5 -2 -3 -1 -1 5]

> C,pi := ComplementOfImage(phi);

> C;

Modular abelian variety of dimension 2 and level 3*11 over Q

> Decomposition(C);

[

Modular abelian variety image(33A) of dimension 1, level 3*11

and conductor 3*11 over Q,

Modular abelian variety image(11A) of dimension 1, level 3*11

and conductor 11 over Q

]

0.8.2 Dual abelian variety

This command computes the abelian variety dual to A. It doesn’t currently work in
full generality, but should work in many cases of interest. Suppose the modular map A→ J
is injective, where J is attached to a space of modular symbols and J is isomorphic to its
dual (e.g., J = J0(N)). To compute the dual of A, we find a complement B of A in J whose
homology is orthogonal to the homology of A with respect to the intersection pairing. This
can frequently be accomplished (e.g., when A is attached to a newform) without using the
intersection pairing by find a complement B such that the rational homology of B as a

82 Geometry Vol.

module over the Hecke algebra has no simple factors in common with that of A. Then
J/B is isomorphic to the dual of A.

CanComputeDual(A)

True if know how to compute the dual of A, and the dual. Otherwise, false and an
error message.

Dual(A)

The dual abelian variety of A. Currently we require that the modular map to a
modular symbols abelian variety is injective.

ModularPolarization(A)

The polarization on A induced by pullback of the theta divisor.

Example H0E53

We compute the dual of a 2-dimensional newform abelian variety of level 43, and note that it is
isomorphic to itself.

> J := Jzero(43);

> A := Decomposition(J)[2]; A;

Modular abelian variety 43B of dimension 2, level 43 and

conductor 43^2 over Q

> Adual := Dual(A); Adual;

Modular abelian variety of dimension 2 and level 43 over Q

> IsIsomorphic(A,Adual);

true Homomorphism from 43B to modular abelian variety of

dimension 2 given on integral homology by:

[-1 1 -1 1]

[-1 0 1 0]

[-1 0 0 0]

[0 0 -1 1]

Next we compute the dual of a 2-dimensional newform abelian variety of level 69, and find that
it is not isomorphic to itself.

> A := Decomposition(Jzero(69))[2]; A;

Modular abelian variety 69B of dimension 2, level 3*23 and

conductor 3^2*23^2 over Q

> Adual := Dual(A); Adual;

Modular abelian variety of dimension 2 and level 3*23 over Q

> IsIsomorphic(A,Adual);

false

One can show that the natural map from A to its dual is a polarization of degree 484.

> phi := NaturalMap(A,Adual);

> phi;

Homomorphism N(1) from 69B to modular abelian variety of

dimension 2 given on integral homology by:

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 83

[3 1 5 -7]

[-1 5 -1 1]

[-6 4 -1 7]

[11 -7 6 -12]

> Degree(phi);

484

> factor(484);

[<2, 2>, <11, 2>]

1

0.8.3 Intersection pairing

These commands compute the matrix of the intersection pairing on homology with
respect to the fixed basis for rational or integral homology. If A is not a modular symbols
abelian variety (such as J0(N), then the intersection pairing on homology computed below
is the one got by pulling back from the one on the codomain of the modular embedding of
A. This may not be what you expect, but is easy to compute in great generality.

Computation of intersection pairings is currently only implemented for weight 2.

IntersectionPairing(A)

The intersection pairing matrix on the basis for the rational homology of H, pulled
back using the modular embedding.

IntersectionPairing(H)

The intersection pairing matrix on the basis for the rational homology of H.

IntersectionPairingIntegral(A)

The intersection pairing matrix on the basis for the integral homology of H, pulled
back using the modular embedding.

Example H0E54

The intersection pairing on J0(11) is very simple.

> J := Jzero(11);

> IntersectionPairing(J);

[0 -1]

[1 0]

> IntersectionPairingIntegral(J);

[0 -1]

[1 0]

The intersection pairing associated to J0(33) is more interested. Note that the representing matrix
is skew symmetric and has determinant 1.

> I := IntersectionPairingIntegral(Jzero(33)); I;

84 Geometry Vol.

[0 1 0 1 0 1]

[-1 0 0 1 0 1]

[0 0 0 1 0 1]

[-1 -1 -1 0 0 1]

[0 0 0 0 0 1]

[-1 -1 -1 -1 -1 0]

> Determinant(I);

1

The intersection pairing on 33A is surprising, because it is pulled back from the intersection
pairing on J0(33). Thus instead of having determinant 1, it has determinant 9. [[TODO: I could
probably figure out how to change this so the true intersection pairing is computed, but I’m not
immediately sure how!? This would be desirable, since there is an intersection pairing on the A
below that has determinant 1.]]

> A := ModularAbelianVariety("33A"); A;

Modular abelian variety 33A of dimension 1 and level 3*11 over Q

> I := IntersectionPairingIntegral(A); I;

[0 3]

[-3 0]

> Determinant(I);

9

0.8.4 Projections

Suppose φ is a homomorphism from A to B. Then the image φ(A) is an abelian
subvariety of B. The commands below compute a map π in the endomorphism algebra of
B whose image is φ(A) and such that π2 = π, i.e., π is projection onto φ(A). A projection
map is not canonical, but if the optional parameter int pairing is set to true, then
projection is also required to respect the intersection pairing, which uniquely determines
π.

ProjectionOnto(A : parameters)

IntPairing BoolElt Default : false

ProjectionOntoImage(phi : parameters)

IntPairing BoolElt Default : false

Let φ : A→ B be a morphism. This intrinsic computes a projection onto φ(A) as an
element of the endomorphism ring tensor Q. If the optional parameter IntPairing
is set, then this is the canonical orthogonal projection.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 85

Example H0E55

> pi := ProjectionOnto(ModularAbelianVariety("33A")); pi;

Homomorphism pi from Jzero(33) to Jzero(33) (up to isogeny) on

integral homology by:

(not printing 6x6 matrix)

> Matrix(pi);

[2/3 1/3 -1/3 1/3 0 -2/3]

[1/3 2/3 -2/3 2/3 0 -1/3]

[1/3 1/3 -1/3 1/3 0 -1/3]

[0 2/3 -2/3 2/3 0 0]

[0 1/3 -1/3 1/3 0 0]

[-1/3 1/3 -1/3 1/3 0 1/3]

> pi^2 eq pi;

true

> Rank(pi);

1

> phi := NaturalMap(Jzero(11),Jzero(44));

> pi := ProjectionOntoImage(phi); pi;

Homomorphism pi from Jzero(44) to Jzero(44) (up to isogeny) on

integral homology by:

(not printing 8x8 matrix)

> A := Image(5*pi); A;

Modular abelian variety of dimension 1 and level 2^2*11 over Q

> IsIsomorphic(Jzero(11),A);

true Homomorphism from Jzero(11) to modular abelian variety of

dimension 1 given on integral homology by:

[0 -1]

[-1 1]

0.8.5 Left and right inverses

The LeftInverse and RightInverse commands compute left and right inverses in the
category of abelian varieties up to isogeny. The corresponding commands with Morphism

appended compute a left or right inverse times a minimal integer, so that the result is a
homomorphism.

Magma computes a right inverse of a finite-degree homomorphism φ by finding the
projection map onto the complement of the image of φ, and composing with a inverse from
the image. To find a left inverse of a surjective homomorphism φ : A→ B, Magma computes
the complement C of the kernel of φ; this complement C is an abelian subvariety of A that
maps isomorphically onto B, and Magma finds the left inverse by inverting φ restricted to
C.

86 Geometry Vol.

LeftInverse(phi : parameters)

IntPairing BoolElt Default : false

A homomorphism ψ : B → A of minimal degree in the category of abelian varieties
up to isogeny such that ψ ∗ φ is the identity map on B. Here φ : A → B is a
surjective homomorphism.

LeftInverseMorphism(phi : parameters)

IntPairing BoolElt Default : false

A homomorphism ψ : B → A of minimal degree such that ψ ∗φ is multiplication by
an integer, where φ : A → B is a surjective homomorphism.

RightInverse(phi : parameters)

IntPairing BoolElt Default : false

A map ψ : B → A in the category of abelian varieties up to isogeny such that
φ ∗ ψ : A → A is the identity map. Here φ : A → B is a homomorphism of abelian
varieties with finite kernel.

RightInverseMorphism(phi : parameters)

IntPairing BoolElt Default : false

A minimal-degree homomorphism ψ : B → A such that φ ∗ ψ : A → A is multipli-
cation by an integer, where φ : A → B is a homomorphism of abelian varieties with
finite kernel.

Example H0E56

First we compute the difference φ of the two natural degeneracy maps J0(11) → J0(33), which
has as kernel a group of order 5 (called the Shimura subgroup in this case).

> Jone1 := Jzero(11); J33 := Jzero(33);

> d1 := NaturalMap(Jone1,J33,1);

> d3 := NaturalMap(Jone1,J33,3);

> phi := d1-d3;

> Degree(phi);

5

A right inverse of φ is a homomorphism up to isogeny from J0(33) to J0(11).

> RightInverse(phi);

Homomorphism from Jzero(33) to Jzero(11) (up to isogeny) on integral

homology by:

(not printing 6x2 matrix)

15

> RightInverseMorphism(phi);

Homomorphism from Jzero(33) to Jzero(11) (not printing 6x2 matrix)

> phi*RightInverseMorphism(phi);

Homomorphism from Jzero(11) to Jzero(11) given on integral homology by:

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 87

[15 0]

[0 15]

Finally we find a left inverse of a map from J0(33) to J0(11).

> psi := NaturalMap(J33,Jone1,1) - NaturalMap(J33,Jone1,3);

> IsSurjective(psi);

true

> LeftInverse(psi);

Homomorphism from Jzero(11) to Jzero(33) (up to isogeny) on integral

homology by:

[1/5 0 -2/5 2/5 -3/5 0]

[1/5 -1/5 0 1/5 -2/5 1/5]

5

> LeftInverseMorphism(psi);

Homomorphism from Jzero(11) to Jzero(33) given on integral homology by:

[1 0 -2 2 -3 0]

[1 -1 0 1 -2 1]

> LeftInverseMorphism(psi)*psi;

Homomorphism from Jzero(11) to Jzero(11) given on integral homology by:

[5 0]

[0 5]

0.8.6 Congruence computations

The two commands below each give an integer that measures “congruences” between
an abelian variety and other abelian varieties. These two quantities are related because if
a prime divides the modular degree, then it divides the congruence modulus, though the
converse need not be true (see the example below).

If A = Af is an abelian variety attached to a newform f , then the CongruenceModulus
command computes the congruence modulus of the newform f , which is an integer that
measures congruences between f and nonconjugate forms in the Peterson complement of
f . More precisely, if f ∈ Sk(N, ε), which is the direct sum of the spaces of modulus forms
with character a Galois conjugate of ε, then we define the congruence modulus of f to be
the order of the group Sk(N, ε;Z)/(W +W⊥), where W is the intersection of Sk(N, ε;Z)
with the span of the Galois conjugates of f .

Suppose A ⊂ J0(N). Then the modular degree of A is the square root of the degree
of the induced polarization A→ J0(N) → A′. Similar remarks apply with J0(N) replaced
by other abelian varieties. Also, when the weight is bigger than 2, we do not take a square
root.

CongruenceModulus(A)

If A is attached to a newform, this returns the congruence modulus of the newform,
taken in the space S2(N, ǫ), where ǫ is the character of the newform..

88 Geometry Vol.

ModularDegree(A)

The modular degree of A. This is the square root of the degree of the degree of the
map from the dual A’ to A. In some cases where no algorithm is implemented for
computing A’, a message is printed and the square of the degree of the composition
of the modular embedding with the modular parameterization is computed. When
a weight is bigger than 2 the square root is not taken.

Example H0E57

The modular degree and congruence modulus of one of the two elliptic curves of conductor 54 are
interesting because they are not equal. This is the smallest level of an elliptic curve where these
two invariants differ. (For more details, see [Agashe-Stein] – TODO.)

> J := Jzero(54);

> A,B := Explode(Decomposition(NewSubvariety(J)));

> ModularDegree(A);

6

> CongruenceModulus(A);

6

> ModularDegree(B);

2

> CongruenceModulus(B);

6

The modular degree and congruence modulus are 4 for a certain abelian surface A of level 65. We
also compute the kernel of the modular map and see that it is A[2].

> J := Jzero(65);

> A := J(2); A;

Modular abelian variety 65B of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q

> CongruenceModulus(A);

4

> ModularDegree(A);

4

> phi := NaturalMap(A,Dual(A));

> Invariants(Kernel(phi));

[2, 2, 2, 2]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 89

0.9 New and Old Subvarieties and Natural Maps

0.9.1 Natural maps

Suppose M and N are positive integers and M divides N . There are natural maps
in both directions between J0(N) and J0(M) (and likewise for J1, etc.), for each divisor
of N/M , which correspond to maps of the form f(q) maps to f(qt) and their duals. Since
any modular abelian variety A in Magma is equipped with a map A → Je and Jp → A,
where Je and Jp are attached to modular symbols, the problem of defining natural maps
between A and B is reduced to defining natural maps between modular abelian varieties
attached to modular symbols. The command NaturalMaps computes a sequence of natural
maps from A to B, corresponding to appropriate divisors of relevant levels. The command
NaturalMap just returns the natural map corresponding to the divisor 1. The command
NaturalMap can also be given a third argument, which specifies the divisor.

NaturalMap(A, B)

The natural map induced by the identity on modular forms, or 0 if there is none.

NaturalMap(A, B, d)

The natural map from A to B induced, in a potentially complicated way, from
the map f(q) 7→ f(qd) on modular forms. In situations where the modular forms
associated to A and B have nothing to do with each other, then we define this map
to be the zero map.

NaturalMaps(A, B)

Sorted list of maps NaturalMap(A,B,d), where d runs through all divisors of the
level of A over the level B, or the level of B over the level A.

Example H0E58

> A := Jzero(11)*Jzero(22);

> B := Jzero(11)*Jzero(33);

> phi := NaturalMap(A,B);

> phi;

Homomorphism N(1) from Jzero(11) x Jzero(22) to Jzero(11) x Jzero(33) (not

printing 6x8 matrix)

> Nullity(phi);

1

> f := NaturalMap(A,B,3); f;

Homomorphism N(3) from Jzero(11) x Jzero(22) to Jzero(11) x Jzero(33) (not

printing 6x8 matrix)

> Nullity(f);

2

> NaturalMaps(Jzero(11),Jzero(33));

[

Homomorphism N(1) from Jzero(11) to Jzero(33) given on integral

90 Geometry Vol.

homology by:

[1 0 -2 2 -3 0]

[1 -1 0 1 -2 1],

Homomorphism N(3) from Jzero(11) to Jzero(33) given on integral

homology by:

[0 -2 1 2 0 -1]

[-1 0 1 1 -1 -1]

]

If we take a product of several copies of J0(11) and of several copies of J0(22), the NaturalMaps

command still only returns 2 natural maps, one for each divisor of the quotient of the levels.

> A := Jzero(11)^2;

> B := Jzero(22)^3;

> NaturalMaps(A,B);

[

Homomorphism N(1) from Jzero(11) x Jzero(11) to Jzero(22) x Jzero(22) x

Jzero(22) given on integral homology by:

[0 1 -2 3 0 1 -2 3 0 1 -2 3]

[1 -1 1 0 1 -1 1 0 1 -1 1 0]

[0 1 -2 3 0 1 -2 3 0 1 -2 3]

[1 -1 1 0 1 -1 1 0 1 -1 1 0],

Homomorphism N(2) from Jzero(11) x Jzero(11) to Jzero(22) x Jzero(22) x

Jzero(22) given on integral homology by:

[-1 0 2 -2 -1 0 2 -2 -1 0 2 -2]

[-1 2 -1 0 -1 2 -1 0 -1 2 -1 0]

[-1 0 2 -2 -1 0 2 -2 -1 0 2 -2]

[-1 2 -1 0 -1 2 -1 0 -1 2 -1 0]

]

0.9.2 New subvarieties and quotients

These commands compute the new and r-new subvarieties and quotients of an abelian
variety A of level N . The r-new subvariety of A is the intersection of the kernels of all
natural maps from A to modular abelian varieties of level the levelN/r. The new subvariety

is the intersection of the r-new subvarieties over all prime divisors r of N . The r-new

quotient of A is the quotient of A by the sum of all images in A under all natural maps of
abelian varieties of level N/r.

NewQuotient(A)

The new quotient of A.

NewQuotient(A, r)

The r-new quotient of A.

NewSubvariety(A)

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 91

The new subvariety of A.

NewSubvariety(A, r)

The r-new subvariety of A.

Example H0E59

> J := Jzero(33);

> Dimension(J);

3

> Dimension(NewSubvariety(J,3));

1

> Dimension(NewSubvariety(J));

1

> Dimension(NewSubvariety(J,11));

3

> Dimension(NewQuotient(J));

1

> Dimension(OldSubvariety(J));

2

> Dimension(OldSubvariety(J,3));

2

0.9.3 Old subvarieties and quotients

These commands compute the old and r-old subvarieties and quotients of an abelian
variety A of level N . The r-old subvariety of A is the sum of the images of all natural
maps from modular abelian varieties of level N/r to A. The old subvariety is the sum of
the r-old subvarieties as r varies over the divisors of N . The r-old quotient of A is the
quotient of A by its r-new subvariety.

OldQuotient(A)

The old quotient of A.

OldQuotient(A, r)

The r-old quotient of A.

OldSubvariety(A)

The old subvariety of A.

OldSubvariety(A, r)

The r-old subvariety of A.

92 Geometry Vol.

Example H0E60

We compute the old subvariety and old quotient of J0(100), both of which have dimension 6.

> J := Jzero(100); J;

Modular abelian variety Jzero(100) of dimension 7 and level 2^2*5^2

over Q

> J old := OldSubvariety(J); J old;

Modular abelian variety Jzero(100) old of dimension 6 and level

2^2*5^2 over Q

> phi := Embeddings(J old)[1];

> Codomain(phi);

Modular abelian variety Jzero(100) of dimension 7 and level 2^2*5^2

over Q

> Jold := OldQuotient(J); Jold;

Modular abelian variety Jzero(100)^old of dimension 6 and level

2^2*5^2 over Q

The new subvariety and new quotient of J0(100) intersect in a finite subgroup isomorphic to
Z/12Z × Z/12Z.

> J new := NewSubvariety(J); J new;

Modular abelian variety Jzero(100) new of dimension 1 and level

2^2*5^2 over Q

> G, A := J new meet J old; G;

Finitely generated subgroup of abelian variety with invariants

[12, 12]

> Dimension(A);

0

0.10 Elements of Modular Abelian Varieties

We represent torsion points on modular abelian varieties as follows. Suppose A
is an abelian variety defined over the complex numbers C. Then A(C) is canonically
isomorphic to H1(A,R)/H1(A,Z), and the torsion subgroup of A(C) is isomorphic to
H1(A,Q)/H1(A,Z). We represent a torsion element of A(C) by giving a representative
element of H1(A,Q). The functions below provide basic arithmetic operations with such
elements, application of homomorphisms, and conversion functions.

Sometimes it is useful to consider elements ofH1(A,R), given by floating point vectors
(i.e., over RealField()). These represent certain points of infinite order, but without
further information we do not know exactly what point they represent, or even whether
such a point is 0.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 93

0.10.1 Arithmetic

The following commands support basic arithmetic operations on elements of modu-
lar abelian varieties. Operations include addition, subtraction, and multiplication by an
integer, rational number, or real number.

a * x

Product of the real number a by the element x.

a * x

Product of the rational number a by the element x.

a * x

Product of the integer a by the element x.

x * a

Product of the real number a by the element x.

x * a

Product of the rational number a by the element x.

x * a

Product of the integer a by the element x.

x + y

The sum of x and y.

x - y

The difference x minus y.

Example H0E61

In this example, we construct J0(23), and consider the finite subgroup ker(T3 − 5), which has
order 400. We then do various arithmetic operations with some of its elements.

> A := Jzero(23);

> t3 := HeckeOperator(A,3);

> Factorization(CharacteristicPolynomial(t3));

[

<x^2 - 5, 2>

]

> G := Kernel(t3-5);

> #G;

400

> Generators(G);

[

Element of abelian variety defined by [1/10 0 1/10 1/5] modulo homology,

Element of abelian variety defined by [0 0 0 -5/2] modulo homology,

Element of abelian variety defined by [1/10 -1/10 0 -1/5] modulo homology,

Element of abelian variety defined by [1 -3/2 2 1] modulo homology

]

94 Geometry Vol.

> x := G.1;

> 1.5*x;

Element of abelian variety defined by [0.149999999999999999999999999998 0.E-28

0.149999999999999999999999999998

0.299999999999999999999999999996] modulo homology

> (3/2)*x;

Element of abelian variety defined by [3/20 0 3/20 3/10] modulo homology

> 10*x;

0

> x*1.5;

Element of abelian variety defined by [0.149999999999999999999999999998 0.E-28

0.149999999999999999999999999998

0.299999999999999999999999999996] modulo homology

> 1.5*x eq x*1.5;

true

> x*(3/2);

Element of abelian variety defined by [3/20 0 3/20 3/10] modulo homology

> x*5;

Element of abelian variety defined by [1/2 0 1/2 1] modulo homology

> G.1 + G.2;

Element of abelian variety defined by [1/10 0 1/10 -23/10] modulo homology

> G.1 - G.2;

Element of abelian variety defined by [1/10 0 1/10 27/10] modulo homology

0.10.2 Invariants

These commands compute information about the order of an element, the degree of
the homology of the parent variety, and a field that the point is defined over.

ApproximateOrder(x)

The exact order of x, if x is known exactly as a torsion point, and if not the order
of an approximation of x by a torsion point, obtained using continued fractions.

Degree(x)

The dimension of the homology of the parent of x.

FieldOfDefinition(x)

A field that x is defined over, which need not be minimal.

Order(x)

The order of x, if x is known exactly. Otherwise an error occurs.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 95

Example H0E62

We compute a 2-torsion point on the elliptic curve J0(11), compute some approximate orders, and
compute the degree.

> A := Jzero(11);

> G := Kernel(nIsogeny(A,2));

> G;

Finitely generated subgroup of abelian variety with invariants

[2, 2]

> x := G.1;

> ApproximateOrder(Sqrt(2)*x);

175568277047523

> ApproximateOrder(1.000000000000001*x);

2

> Degree(x);

2

Notice that FieldOfDefinition(x) is valid, but far from optimal. It would be better to return
the number field generated by the 2-torsion point.

> FieldOfDefinition(x);

Algebraically closed field with no variables

> FieldOfDefinition(0*x);

Rational Field

> Order(x);

2

0.10.3 Predicates

These are commands for testing equality, inclusion, whether an element is 0, and
whether an element is known exactly, (i.e., as an element of H1(A,Q), or just as an
element of H1(A,R)).

IsExact(x)

True if x is known exactly, i.e., x is defined by an element of the rational homology.

IsZero(x)

True if x is known exactly and is equal to 0. If x is not known exactly, true if
a real homology vector that represents x is ”very close” to an element of the in-
tegral homology, where very close means that the distance is within 1/10n, where
n=M‘point precision and M is the parent of x.

x eq y

True if x equals y.

x in X

True if x in an element of the list X .

96 Geometry Vol.

Example H0E63

We demonstrate each of these commands using elements of the 2-torsion subgroups of the two
elliptic curves of conductor 37.

> J := Jzero(37);

> A, B := Explode(Decomposition(J));

> A;

Modular abelian variety 37A of dimension 1, level 37 and

conductor 37 over Q

> B;

Modular abelian variety 37B of dimension 1, level 37 and

conductor 37 over Q

> A2 := Kernel(nIsogeny(A,2));

> B2 := Kernel(nIsogeny(B,2));

> x := A2.1;

> y := B2.2;

> x eq y;

false

> x in [* x, y *];

true

> IsZero(x);

false

> IsZero(0*x);

true

> IsExact(1.0000000000000000000001*x);

false

> IsExact((2/3)*x);

true

For non-exact elemenets, IsZero means “is quite close to 0”.

> IsZero(0.0001*x);

false

> IsZero(0.00001*x);

true

> IsZero(0.000000000001*x);

true

0.10.4 Homomorphisms

There are two notations for applying a homomorphism to an element. Also, one can
find an inverse image of an element using the @@ command.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 97

phi(x)

The image of x under the homomorphism φ.

x * phi

The image of x under the homomorphism φ.

x @@ phi

An inverse image of x under the homomorphism φ.

Example H0E64

Let φ = T3 − 5 acting on the abelian surface J0(23). We apply φ to an element of the kernel G of
φ, and get 0. We also find an element y such that φ(y) is a certain element of G.

> A := Jzero(23);

> phi := HeckeOperator(A,3) - 5;

> G := Kernel(phi);

> x := G.1;

> Order(x);

10

> phi(x);

0

> zero := A!0;

> z := zero@@phi; z;

0

> y := x@@phi; y;

Element of abelian variety defined by [-1/20 1/20 -1/20 -1/20] modulo homology

> phi(y) in G;

true

> y*phi eq phi(y);

true

0.10.5 Representation of Torsion Points

ApproximateByTorsionPoint finds an exact torsion point representation for an ele-
ment of a modular abelian variety; it uses continued fractions to find good rational ap-
proximations for each coordinate of a representative real homology class. The Element

command gives a representive element of the homology, and the LatticeCoordinates

command returns a representative of homology written with respect to a basis for integral
homology. The Eltseq command gives the sequence of entries of the vector returned by
Element.

98 Geometry Vol.

ApproximateByTorsionPoint(x : parameters)

Cutoff RngIntElt Default : 103

If x is defined by an element z in the real homologyH1(A,R), use continued fractions
to find an element ofH1(A,Q) that approximates z, and return corresponding point.

Element(x)

The vector in homology that represents x.

Eltseq(x)

A sequence of rational or real numbers that defines x.

LatticeCoordinates(x)

A vector over the rational or real field that represents x with respect to the homology
of the parent abelian variety of x.

Example H0E65

This code illustrates each of the commands for a 3-torsion point in J0(33).

> A := Jzero(33);

> x := A![1/3,0,0,0,0,0];

> x;

Element of abelian variety defined by [1/3 0 0 0 0 0] modulo homology

> Order(x);

3

> ApproximateByTorsionPoint(1.001*x);

Element of abelian variety defined by [1001/3000 0 0 0 0 0] modulo homology

> Element(x);

(1/3 0 0 0 0 0)

> Eltseq(x);

[1/3, 0, 0, 0, 0, 0]

> LatticeCoordinates(x);

(1/3 0 0 0 0 0)

The Element and LatticeCoordinates can differ when the integral structure on the homology is
complicated. This is common when the weight is bigger than 2.

> A := Jzero(11,4); A;

Modular motive Jzero(11,4) of dimension 2 and level 11 over Q

> x := A![1/3,0,0,0];

> Element(x);

(1/8 1/24 -1/24 -1/24)

> Eltseq(x);

[1/3, 0, 0, 0]

> LatticeCoordinates(x);

(1/3 0 0 0)

> x;

Element of abelian variety defined by [1/3 0 0 0] modulo homology

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 99

0.11 Subgroups of Modular Abelian Varieties

0.11.1 Creation

The Subgroup command constructs the subgroup generated by an arbitrary sequence
of elements of an abelian variety A. The nTorsionSubgroup command create the n-torsion
subgroup A[n] of an abelian variety or of a subgroup. Other common ways to create
subgroups are as kernels of homomorphisms, and by taking an image of the difference of
two cusps (see the CuspidalSubgroup and RationalCuspidalSubgroup commands).

If a subgroup G contains elements that are not known exactly (i.e., they are defined by
floating point approximations to real homology elements), then ApproximateByTorsionGroup

can be used to find a group of torsion points that approximates G.

ApproximateByTorsionGroup(G : parameters)

Cutoff RngIntElt Default : 103

The subgroup generated by torsion approximations of a set of generators of G.

Subgroup(X)

The subgroup of A generated by the nonempty sequence X of elements of a modular
abelian variety.

ZeroSubgroup(A)

The zero subgroup of the abelian variety A.

nTorsionSubgroup(A, n)

The kernel A[n] of the multiplication by n isogeny on A.

nTorsionSubgroup(G, n)

The kernel G[n] of the multiplication by n homomorphism on G.

Example H0E66

First we list the elements of the 2-torsion subgroup of the elliptic curve 100A, then we compute
the 0 subgroup.

> A := ModularAbelianVariety("100A"); A;

Modular abelian variety 100A of dimension 1 and level 2^2*5^2

over Q

> G := nTorsionSubgroup(A,2); G;

Finitely generated subgroup of abelian variety with invariants [2, 2]

> Elements(G);

[

0,

100 Geometry Vol.

Element of abelian variety defined by [1/2 0] modulo homology,

Element of abelian variety defined by [0 1/2] modulo homology,

Element of abelian variety defined by [1/2 1/2] modulo homology

]

> ZeroSubgroup(A);

{ 0 }: finitely generated subgroup of abelian variety with

invariants []

We can also use the nTorsionSubgroup command on subgroups.

> nTorsionSubgroup(G,2);

Finitely generated subgroup of abelian variety with

invariants [2, 2]

> nTorsionSubgroup(G,3);

{ 0 }: finitely generated subgroup of abelian variety with

invariants []

One of the 2-torsion elements generates a subgroup H of order 2.

> G.1;

Element of abelian variety defined by [0 1/2] modulo homology

> H := Subgroup([G.1]); H;

Finitely generated subgroup of abelian variety

> #H;

2

To illustrate the approximation command, we consider the subgroup generated by an approxima-
tion to one of the 2-torsion elements.

> K := Subgroup([1.00001*G.1]);

> L := ApproximateByTorsionGroup(K);

Finitely generated subgroup of abelian variety with

invariants [2]

> L eq H;

true

0.11.2 Elements

These commands enumerate elements of a finite subgroup of a modular abelian variety,
and also allow standard access to the elements.

Elements(G)

Sequence of all elements of the finite subgroup G of a modular abelian variety.

Generators(G)

Sequence of generators of G. These correspond to generators for the underlying
abelian group.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 101

Ngens(G)

The number generators of G.

G . i

The i-th generator of G.

Example H0E67

We illustrate each of the commands using the kernel of the Hecke operator T3 acting on J0(67).

> J := Jzero(67);

> T := HeckeOperator(J,3);

> G := Kernel(T);

> #G;

4

> Elements(G);

[

0,

Element of abelian variety defined by [0 0 1/2 0 0 -1/2 -1/2 0 1/2 0] modulo homology,

Element of abelian variety defined by [1/2 -1/2 0 0 -1/2 0 0 -1/2 1/2 0] modulo

homology,

Element of abelian variety defined by [1/2 -1/2 1/2 0 -1/2 -1/2 -1/2 -1/2 1 0] modulo

homology

]

> Generators(G);

[

Element of abelian variety defined by [1/2 -1/2 0 0 -1/2 0 0 -1/2 1/2 0] modulo

homology,

Element of abelian variety defined by [0 0 1/2 0 0 -1/2 -1/2 0 1/2 0] modulo homology

]

> Ngens(G);

2

> G.1;

Element of abelian variety defined by [1/2 -1/2 0 0 -1/2 0 0 -1/2 1/2 0] modulo homology

> G.2;

Element of abelian variety defined by [0 0 1/2 0 0 -1/2 -1/2 0 1/2 0] modulo homology

0.11.3 Arithmetic

These commands support taking quotients of abelian varieties by finite subgroups,
intersecting finite subgroups with other finite subgroups or abelian varieties, and computing
the group generated by two subgroups.

For several of the arithmetic operations below, finite groups or abelian varieties are
replaced by their image in a common abelian variety, so the operation makes sense. This
common abelian variety is the one returned by the FindCommonEmbeddings command.
Note that the “embedding” is only guaranteed to be an embedding up to isogeny.

102 Geometry Vol.

Quotient(A, G)

Quotient of the abelian varietyA by the finite subgroupG, the isogeny A→A/G and
an isogeny A/G → A, such that composition of the two isogenies is multiplication
by the exponent of G.

Quotient(G)

The quotient A/G, where A is the ambient variety of G, an isogeny from A to A/G
with kernel G, and an isogeny from A/G to A such that the composition of the two
isogenies is multiplication by the exponent of G.

A / G

The quotient A/G, the isogeny A→ A/G with kernel G, and an isogeny A/G→ A.

A meet G

The intersection of the finite subgroup G of an abelian variety B with the abelian
variety A. If A is not equal to B, then G and A are replaced by their image in a
common abelian variety.

G meet A

The intersection of the finite subgroup G of an abelian variety B with the abelian
variety A. If A is not equal to B, then G and A are replaced by their image in a
common abelian variety.

G1 + G2

The sum of the subgroups groups G1 and G2 of abelian varieties A1 and A2. If A1

is not equal to A2, then G1 and G2 are replaced by their image in a common abelian
variety.

G1 meet G2

The intersection of the finite subgroups G1 and G2 of an abelian variety. If their
ambient varieties are not equal, G1 and G2 are replaced by their image in a common
abelian variety.

Example H0E68

We illustrate these commands using the 2-torsion of J0(67). First we compute the kernel of T3,
which is a 2-torsion group of order 4.

> J := Jzero(67); J;

Modular abelian variety Jzero(67) of dimension 5 and level 67 over Q

> T := HeckeOperator(J,3);

> Factorization(CharacteristicPolynomial(T));

[

<x + 2, 2>,

<x^2 - x - 1, 2>,

<x^2 + 3*x + 1, 2>

]

> G := Kernel(T); #G;

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 103

4

Next we quotient J0(67) out by this subgroup of order 4.

> A := Quotient(J,G); A;

Modular abelian variety of dimension 5 and level 67 over Q

The result is, of course, isogenous to J0(67). (TODO: Unfortunately, testing of isomorphism in
this generality is not yet implemented.)

> IsIsogenous(A,J);

true

> Degree(ModularParameterization(A));

4

If the Quotient command is given only one argument then the variety being quotiented out by is
the ambient variety.

> B := Quotient(G); B;

Modular abelian variety of dimension 5 and level 67 over Q

> Degree(ModularParameterization(B));

4

We can also use the divides notation for quotients.

> C := J/G; C;

Modular abelian variety of dimension 5 and level 67 over Q

Next we list the 2-torsion subgroups of the simple factors of J0(67). Interestingly, the sum of
the 2-torsion subgroups of these simple factors is much smaller than the full 2-torsion subgroup
J0(67)[2].

> D := Decomposition(J); D;

[

Modular abelian variety 67A of dimension 1, level 67 and

conductor 67 over Q,

Modular abelian variety 67B of dimension 2, level 67 and

conductor 67^2 over Q,

Modular abelian variety 67C of dimension 2, level 67 and

conductor 67^2 over Q

]

> for A in D do print #(A meet G); end for;

4

1

1

> G2 := nTorsionSubgroup(D[2],2);

> G3 := nTorsionSubgroup(D[3],2);

> H := G + G2 + G3;

> #H;

64

> H eq nTorsionSubgroup(J,2);

false

104 Geometry Vol.

> #nTorsionSubgroup(J,2);

1024

> G2 eq G3;

true

> G meet G2;

{ 0 }: finitely generated subgroup of abelian variety with invariants []

0.11.4 Underyling abelian group and lattice

Let G be a finitely generated subgroup of an abelian variety A. The AbelianGroup

command returns an abstract abelian group that is isomorphic to G along with isomor-
phisms in both directions.

Assume that G is a torsion group, with all elements known exactly. The Lattice

command returns a lattice L in the rational homology of A such that L/H equal G, where
we identify the torsion in A as the rational homology modulo homology.

AbelianGroup(G)

An abstract abelian group H isomorphic to G, a map from H to G, and a map from
G to H.

Lattice(G)

Assume G is a finite torsion subgroup of its ambient abelian variety A and G is
generated by elements of H1(A,Q)/H1(A,Z). Viewing G as a set of equivalence
classes of the form x + H1(A,Z), this command returns the lattice generated by
H1(A,Z) and all such x.

Example H0E69

This examples illustrate these commands for the 3-torsion subgroup of J0(11).

> A := Jzero(11);

> G := nTorsionSubgroup(A,3);

> H,f,g := AbelianGroup(G);

> H;

Abelian Group isomorphic to Z/3 + Z/3

Defined on 2 generators

Relations:

3*H.1 = 0

3*H.2 = 0

The lattice of G is 1/3 times the integral homology.

> Lattice(G);

Lattice of rank 2 and degree 2

Basis:

[Identity matrix]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 105

Basis Denominator: 3

> L := IntegralHomology(A); L;

Standard Lattice of rank 2 and degree 2

> Lattice(G)/L;

Abelian Group isomorphic to Z/3 + Z/3

Defined on 2 generators

Relations:

3*$.1 = 0

3*$.2 = 0

0.11.5 Invariants

Let G be a finitely generated subgroup of an abelian variety. The AmbientVariety

command gives the abelian variety whose elements were used to create G.

The Exponent command returns the smallest positive integer e such that eG = 0.
The Invariants command returns the invariants of an abstract abelian group isomorphic
to G. The Order command (or #G) returns the number of elements in G, when G is
known to be finite (or an error otherwise).

The FieldOfDefinition command gives a field over which the group G is defined.
This is a field K so that if σ is an automorphism that fixes K, then σ(G) = G. Note that
K is not guaranteed to be minimal.

AmbientVariety(G)

Abelian variety that contains G.

Exponent(G)

An integer that kills G. We assume G is finite.

FieldOfDefinition(G)

A field over which the group G is defined (this is not guaranteed to be minimal!).

Invariants(G)

Invariants of G as a finite abelian group.

Order(G)

The number of elements in G.

#G

The number of elements in G.

106 Geometry Vol.

Example H0E70

We illustrate each command using the kernel of T3 on J0(67).

> A := Jzero(67);

> T3 := HeckeOperator(A,3);

> G := Kernel(T3); G;

Finitely generated subgroup of abelian variety with

[2, 2]

> AmbientVariety(G);

Modular abelian variety Jzero(67) of dimension 5 and level 67 over Q

> Exponent(G);

2

> Invariants(G);

[2, 2]

> Order(G);

4

> #G;

4

The field of definition of G is Q, since G is the kernel of a homomorphism defined over Q (a Hecke
operator).

> FieldOfDefinition(G);

Rational Field

However, the field of definition of the subgroup of G generated by one of the elements of G could
take significant extra work to determine. Currently Magma simply chooses the easiest answer,
which is Q.

> H := Subgroup([G.1]);

> FieldOfDefinition(H);

Algebraically closed field with no variables

0.11.6 Predicates and comparisons

The IsFinite command is true exactly when every element of G is known exactly,
since then all elements are torsion and G is finitely generated.

The subset commands check inclusion and eq checks equality. Equality and subset
testing is liberal, in that if the ambient varieties containing the two groups are not equal,
then Magma attempts to find a natural embedding of both subgroups into a common
ambient variety, and checks equality or inclusion there.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 107

IsFinite(G)

True if G is known to be finite, e.g., generated by torsion elements. If G is not known
exactly, i.e., has elements defined by floating point approximations to homology, then
this is false.

A subset G

True if the abelian variety A is a subset of the finitely generated group G. Thus this
is true only if A is a point, i.e., the 0 dimensional abelian variety.

G subset A

True if G is a subset of the abelian variety A. If A is not the ambient variety of G,
then G and A are first mapped to a common ambient variety and compared.

G1 eq G2

True if G1 equals G2.

G1 subset G2

True if G1 is a subset of G2.

Example H0E71

We work with J0(389), but work in the +1 quotient of homology for efficiency. First we let A and
B be the first and fifth factors in the decomposition of J , and let G and H be the corresponding
5-torsion subgroups.

> J := Jzero(389,2,+1);

> D := Decomposition(J);

> A := D[1];

> B := D[5];

> G := nTorsionSubgroup(A,5);

> H := nTorsionSubgroup(B,5);

Note that the torsion subgroups aren’t as big because we are working in the +1 quotient.

> #G;

5

> #H;

95367431640625

We now demonstrate each of the above commands for A, B, G, and H.

> IsFinite(G);

true

> A subset G;

false

> ZeroModularAbelianVariety() subset G;

true

> G subset A;

true

> G subset B;

true

108 Geometry Vol.

> H subset A;

false

Since the ambient varieties of G and H are A and B, respectively, the following commands
implicitly embed G and H into J0(389) and make comparisons there.

> G subset H;

true

> G eq H;

false

> G eq G;

true

> J := Jzero(37);

> A, B := Explode(Decomposition(J));

> A2 := Kernel(nIsogeny(A,2));

> B2 := Kernel(nIsogeny(B,2));

> A2 eq B2;

true

> x := A2.1;

> x in B2; // uses embedding of both into $J 0(37)$.

true

0.12 Rational Torsion Subgroups

The following functions are used for computing information about certain torsion
points on modular abelian varieties.

0.12.1 Cuspidal subgroup

For simplicity, assume A is a modular abelian variety and π : J0(N) → A is the
modular parameterization (the case when J0(N) is replaced by a more general modular
abelian variety is similar). The cuspidal subgroup of J0(N) is the finite torsion group
generated by all classes of differences of cusps on X0(N). The cuspidal subgroup of A(Q)
is the image under π of the cuspidal subgroup of J0(N). The rational cuspidal subgroup is
the subgroup generated by differences of cusps that are defined over Q. (Computation of
the rational points in the cuspidal subgroup has not yet been implemented.) One important
use of the rational cuspidal subgroup is that it gives a lower bound on the cardinality (and
structure) of the torsion subgroup of A(Q), which is important in computations involving
the Birch and Swinnerton-Dyer conjecture.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 109

CuspidalSubgroup(A)

The subgroup of A generated by all differences of cusps, where we view A as a
quotient of a modular symbols abelian variety. Note that this subgroup need not be
defined over Q.

RationalCuspidalSubgroup(A)

Finite subgroup of A generated by all differences of Q-rational cusps, where we view
A in some way as a quotient of a modular symbols abelian variety.

Example H0E72

We compute the cuspidal and rational cuspidal subgroups of J0(100).

> J := Jzero(100);

> G := CuspidalSubgroup(J); G;

Finitely generated subgroup of abelian variety with invariants

[6, 30, 30, 30, 30]

> [Eltseq(x) : x in Generators(G)];

[

[29/30, -2/5, 16/15, 121/30, -2, -61/30, 3/5, 31/15, 1,

-89/30, -7/2, -3/2, -3, -1],

[1, -5/6, 0, -1, -1, 2/3, -3/2, 0, -2, 0, 2, 5/3, 5/6, 0],

[-2, 17/15, 1/10, -29/15, 89/30, 26/15, 7/10, -2, 2/5, 2,

-3/10, -7/30, 59/30, -1/2],

[29/30, -1, 1/2, 67/15, -2, -3/2, 14/15, 91/30, 1, -3,

-38/15, -29/30, -91/30, 1/2],

[31/30, -31/30, 2/5, 67/15, -29/15, -43/30, 5/6, 3, 1, -3,

-13/5, -31/30, -91/30, 0]

]

> H := RationalCuspidalSubgroup(J); H;

Finitely generated subgroup of abelian variety with invariants

[3, 15, 30]

Next we compute the cuspidal and rational subgroups for the optimal new elliptic curve of con-
ductor 100.

> D := Decomposition(J); A := D[1];

> CuspidalSubgroup(A);

Finitely generated subgroup of abelian variety with invariants

[2, 2]

> Generators(CuspidalSubgroup(A));

[

Element of abelian variety defined by [0 1/2] modulo homology,

Element of abelian variety defined by [1/2 0] modulo homology

]

> RationalCuspidalSubgroup(A);

Finitely generated subgroup of abelian variety with invariants []

> TorsionMultiple(A);

110 Geometry Vol.

2

Because the torsion multiple is 2, some of the cuspidal subgroup can not be defined over Q.

0.12.2 Upper and lower bounds

LetA be an abelian variety over a number fieldK. The TorsionLowerBound command
computes a divisor of the cardinality of the torsion subgroup of A(K). Currently, to
compute a bound we require that A be the base extension of an abelian variety B over Q,
and the lower bound is simply the cardinality of the rational cuspidal subgroup of B(Q).

The TorsionMultiple command computes a multiple of the cardinality of the torsion
subgroup of A(K). This multiple is usually fairly sharp, and is computed as follows. For
each good prime p with [K : Q] + 1 < p, Magma computes #A(k), where k varies over
residue class fields of K of characteristic p. Since reduction on torsion is injective for
such primes, the greatest common divisor of the #A(k) is a multiple of the order of the
torsion subgrop of A(K). Magma computes #A(k) by using Hecke operators to find the
characteristic polynomial of Frobenius on a Tate module of A, and uses this characteristic
polynomial to deduce #A(k). (TODO: details, see ”that paper with Amod”.)

TorsionLowerBound(A)

A divisor of the cardinality of the K-rational torsion subgroup of A over K.

TorsionMultiple(A)

Same as TorsionMultiple(A, 50).

TorsionMultiple(A, n)

Amultiple of the cardinality of theK-rational torsion subgroup ofA overK obtained
by counting points on A mod p, where p varies over the odd primes p ≤ n such that
p does not divide the level of A.

Example H0E73

> J := Jzero(100);

> TorsionLowerBound(J);

1350

> #RationalCuspidalSubgroup(J);

1350

> TorsionMultiple(J);

16200

> 16200/1350;

12

> J2 := BaseExtend(J,QuadraticField(2));

> TorsionMultiple(J2);

129600

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 111

> 129600/16200;

8

0.12.3 Torsion Subgroup

Let A be an abelian variety over a field K. The TorsionSubgroup command attempts
to compute the subgroup of torsion elements in A(K).

TorsionSubgroup(A)

Either false and a subgroup of the torsion subgroup, or true and the exact torsion
subgroup of A over the base field.

Example H0E74

> TorsionSubgroup(Jzero(11));

true Finitely generated subgroup of abelian variety with invariants [5]

> TorsionSubgroup(Jzero(33));

false Finitely generated subgroup of abelian variety with

invariants [10, 10]

> TorsionSubgroup(BaseExtend(Jzero(11),QuadraticField(5)));

true Finitely generated subgroup of abelian variety with

invariants [5]

> TorsionSubgroup(ChangeRing(Jzero(11),GF(5)));

false { 0 }: finitely generated subgroup of abelian variety with

invariants []

> TorsionSubgroup(Jzero(100));

false Finitely generated subgroup of abelian variety with

invariants [3, 15, 30]

> TorsionSubgroup(Jzero(125));

true Finitely generated subgroup of abelian variety with

invariants [25]

112 Geometry Vol.

0.13 Hecke and Atkin-Lehner Operators

0.13.1 Creation

These commands compute endomorphisms induced by the Atkin-Lehner and Hecke
operators on modular abelian varieties. The Atkin-Lehner involution Wq is defined for
each positive integer q that exactly divides the level (and is divisible by the conductor of
any relevant character).

AtkinLehnerOperator(A)

The morphism (or morphism tensor Q) on (or from) A induced by the Atkin-Lehner
operator.

AtkinLehnerOperator(A, q)

The Atkin-Lehner operator Wq of index n induced on A by virtue of A being mod-
ular. In general Wq need not be a morphism except in the category of abelian
varieties up to isogeny so this intrinsic also returns an integer d such that d ∗Wq is
an endomorphism, and when Wq doesn’t leave A invariant, also returns d = 0. If the
ambient modular symbols space of A contains a space with character of conductor
r, then currently an error occurs unless r divides q.

HeckeOperator(A, n)

The Hecke operator Tn of index n induced on A by virtue of its morphism to a
modular symbols abelian variety. In general Tn need not be a morphism. Also,
if A is contained in e.g., Jzero(N),then the Tn on J0(N) need not even leave A
invariant. In that case this command composes Tn with a map back to A to obtain
an endomorphism of A. For the exact Hecke operators induced by their action on
Jzero(N), say, use the RestrictEndomorphism command.

Example H0E75

We compute the main Atkin-Lehner operator and the Hecke operator T2 on J0(23).

> A := Jzero(23);

> AtkinLehnerOperator(A,23);

Homomorphism W23 from Jzero(23) to Jzero(23) given on integral homology by:

[-1 0 0 0]

[0 -1 0 0]

[0 0 -1 0]

[0 0 0 -1]

> HeckeOperator(A,2);

Homomorphism T2 from Jzero(23) to Jzero(23) given on integral homology by:

[0 1 -1 0]

[0 1 -1 1]

[-1 2 -2 1]

[-1 1 0 -1]

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 113

Next we compute w4 and w25 on J100, and note that their product equals w100.

> A := Jzero(100); A;

Modular abelian variety Jzero(100) of dimension 7 and

level 2^2*5^2 over Q

> w4 := AtkinLehnerOperator(A,4);

> Factorization(CharacteristicPolynomial(w4));

[

<x - 1, 4>,

<x + 1, 10>

]

> w25 := AtkinLehnerOperator(A,25);

> Factorization(CharacteristicPolynomial(w25));

[

<x - 1, 8>,

<x + 1, 6>

]

> w4*w25 eq AtkinLehnerOperator(A);

true

Next we compute W25 acting on J1(25).

> A := Js(17);

> B := BaseExtend(A,CyclotomicField(17));

> w := AtkinLehnerOperator(B);

> Factorization(CharacteristicPolynomial(w));

[

<x - 1, 4>,

<x + 1, 6>

]

Finally we compute Hecke operators on the quotient of a simple factor of J0(65) by a finite
subgroup.

> A := Decomposition(Jzero(65))[2]; A;

Modular abelian variety 65B of dimension 2, level 5*13 and conductor

5^2*13^2 over Q

> G := nTorsionSubgroup(A,2); G;

Finitely generated subgroup of abelian variety with invariants

[2, 2, 2, 2]

> H := Subgroup([G.1]); H;

Finitely generated subgroup of abelian variety with invariants [2]

> B := A/H; B;

Modular abelian variety of dimension 2 and level 5*13 over Qbar

> T2 := HeckeOperator(B,2); T2;

Homomorphism from modular abelian variety of dimension 2 to

modular abelian variety of dimension 2 (up to isogeny) on

integral homology by:

[-2 1/2 0 0]

[-2 2 0 0]

114 Geometry Vol.

[-2 1 -2 1]

[-6 1 -1 2]

> FactoredCharacteristicPolynomial(T2);

[

<x^2 - 3, 2>

]

0.13.2 Invariants

The HeckePolynomial and FactoredHeckePolynomial commands compute char-
acteristic polynomials and factored characteristic polynomials of Hecke operators. The
MinimalHeckePolynomial command computes minimal polynomials of Hecke operators.

FactoredHeckePolynomial(A, n)

The factored characteristic polynomial of the Hecke operator Tn acting on A. This
can be faster than first computing Tn, then computing the characteristic polynomial,
and factoring, because we can take into account information about the decomposi-
tion of A, in order to avoid factoring.

HeckePolynomial(A, n)

The characteristic polynomial of the Hecke operator Tn acting on A.

MinimalHeckePolynomial(A, n)

The minimal polynomial of the Hecke operator Tn acting on A.

Example H0E76

> FactoredHeckePolynomial(Jzero(65),2);

[

<x + 1, 2>,

<x^2 - 3, 2>,

<x^2 + 2*x - 1, 2>

]

> HeckePolynomial(Jzero(65),2);

x^10 + 6*x^9 + 5*x^8 - 32*x^7 - 62*x^6 + 28*x^5 + 130*x^4 +

48*x^3 - 51*x^2 - 18*x + 9

> MinimalHeckePolynomial(Jzero(65),2);

x^5 + 3*x^4 - 2*x^3 - 10*x^2 - 3*x + 3

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 115

0.14 L-series

0.14.1 Creation

The LSeries command creates the L-series L(A, s) associated to a modular abelian
variety A over Q or a cyclotomic field. No actual computation is performed.

LSeries(A)

The L-series associated to A.

Example H0E77

> A := Jzero(23);

> L := LSeries(A);

> L;

L(Jzero(23),s): L-series of Modular abelian variety Jzero(23) of

dimension 2 and level 23 over Q

> LSeries(ModularAbelianVariety("65B"));

L(65B,s): L-series of Modular abelian variety 65B of dimension 2

and level 5*13 over Q

You can create L-series of abelian varieties over cyclotomic fields, but currently no interesting
functionality is implemented for them. [TODO: something for abelian extensions using twists and
characters.]

> LSeries(BaseExtend(Jzero(11),CyclotomicField(5)));

L(Jzero(11),s): L-series of Modular abelian variety Jzero(11) of

dimension 1 and level 11 over Q(zeta 5)

0.14.2 Invariants

CriticalStrip(L)

Integers x and y so that the critical strip for L is the set of complex numbers with
real part strictly between x and y. If W is the set of weights of newforms that
give rise to factors of A, where L = LSeries(A), then this command returns 0 and
Max(W).

ModularAbelianVariety(L)

The abelian variety to which L was attached.

116 Geometry Vol.

Example H0E78

We define several L-functions of modular abelian varieties and modular motives, and compute
their critical strip (which is from 0 to k, where k is the weight).

> L := LSeries(Jzero(37));

> CriticalStrip(L);

0 2

> L := LSeries(Jzero(37,6));

> CriticalStrip(L);

0 6

> J := Jone(11,3); J;

Modular motive Jone(11,3) of dimension 5 and level 11 over Q

> CriticalStrip(LSeries(J));

0 3

> A delta := Jzero(1,12);

> L := LSeries(A delta);

> CriticalStrip(L);

0 12

> ModularAbelianVariety(L);

Modular motive Jzero(1,12) of dimension 1 and level 1 over Q

0.14.3 Characteristic polynomials of Frobenius elements

Let A be a modular abelian variety. The characteristic polynomials of Frobenius
elements acting on the ℓ-adic Tate modules of A define the local L-factors of L(A, s).

FrobeniusPolynomial(A : parameters)

factored BoolElt Default : false

The characteristic polynomial of Frobenius on A.

FrobeniusPolynomial(A, P)

The characteristic polynomial of Frobenius at the nonzero prime ideal P on the
modular abelian variety A, where p is assumed to be a prime of good reduction for
A, and A is defined over a field that contains the prime P .

FrobeniusPolynomial(A, p : parameters)

factored BoolElt Default : false

The characteristic polynomial of Frobp acting on any ell-adic Tate module of A,
where p and ell do not divide the level of A. Here A is an abelian variety over a
number field. If the base ring has degree bigger than 1, then return a sequence of
charpolys, one for each prime lying over p, sorted by degree.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 117

Example H0E79

> A := Jzero(23);

> FrobeniusPolynomial(A,2);

x^4 + x^3 + 3*x^2 + 2*x + 4

> A := Jzero(23) * Jzero(11,4) * Jone(13);

> FrobeniusPolynomial(A,2);

x^12 + 2*x^11 + 17*x^10 + 40*x^9 + 145*x^8 + 362*x^7 + 798*x^6 +

1408*x^5 + 2104*x^4 + 2528*x^3 + 2528*x^2 + 1792*x + 1024

> Factorization($1);

[

<x^4 - 2*x^3 + 14*x^2 - 16*x + 64, 1>,

<x^4 + x^3 + 3*x^2 + 2*x + 4, 1>,

<x^4 + 3*x^3 + 5*x^2 + 6*x + 4, 1>

]

> A := BaseExtend(Jzero(23),CyclotomicField(22));

> FrobeniusPolynomial(A,2);

[

x^4 + 25*x^3 - 327*x^2 + 25600*x + 1048576

]

These characteristic polynomials are used in the algorithm to compute the number of points on
modular abelian varieties over finite fields.

> A := ChangeRing(Jzero(23),GF(2^10));

> NumberOfRationalPoints(A);

1073875 1073875

> factor($1);

[<5, 3>, <11, 2>, <71, 1>]

0.14.4 Values at integers in the critical strip

The following commands compute the special value L(A, s), where s is an integer
that lies strictly within the critical strip. Also, LRatio computes a well-defined quotient
L(A, s)/α that lies in the rational numbers. The LRatio command requires that A be an
abelian variety over Q attached to a newform.

There exist algorithms for computing L(A, s) for any complex number s, but these
are not currently implemented in Magma. [TODO? – at least give references.] [[TODO: say
something or add code for computing L-functions of elliptic curves and higher derivatives.]]

L(s)

The value of L at s, where s is an integer that lies in the critical strip.

Evaluate(L, s)

The value of L at s, where s must be an integer that lies in the critical strip for L.

118 Geometry Vol.

Evaluate(L, s, prec)

The value of L at s, where s must be an integer that lies in the critical strip for L,
computed using prec terms of power series.

IsZeroAt(L, s)

LRatio(A, s)

LRatio(L, s)

The ratio L(A, j) ∗ (j−1)!/((2π)j−1 ∗Ωj), where j is a ”critical integer”, so 1 ≤ j ≤
k− 1, and Ωj is the volume of the group of real points on A when j is odd, and the
volume of the −1 eigenspace for conjugation when j is even.

Example H0E80

First we demonstrate each evaluation command for the L-series of J0(23).

> L := LSeries(Jzero(23));

> L(1);

0.248431866590599284683305769290 + 0.E-29*i

> Evaluate(L,1);

0.248431866590599284683305769290 + 0.E-29*i

> Evaluate(L,1,200);

0.248431866590599681207250339074 + 0.E-29*i

> LRatio(L,1);

1/11

> L := LSeries(Jzero(23));

> L(1);

0.248431866590599284683305770476 + 0.E-29*i

> Evaluate(L,1,200);

0.248431866590599681207250340144 + 0.E-29*i

Next we compute the L-series of the motive attached to the weight 12 level 1 modular form ∆.

> A := Jzero(1,12);

> L := LSeries(A);

> Evaluate(L,1);

0.0374412812685155417387703158443

> L(5);

0.66670918843400364382613022164

> Evaluate(L,1,200);

0.0374412812685155417387703158443

> LRatio(L,1);

11340/691

> LRatio(L,2);

24

> LRatio(L,3);

7

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 119

We compute some ratios for J1(N) and factors of J1(N).

> LRatio(Jone(13),1);

1/361

> J := Jone(23);

> Evaluate(LSeries(J),1);

0.000000080777697074785775420090700066 +

0.000000053679621277482217773207669332*i

It looks kind of like L(J1(23), 1) is zero. However, this is not the case! We can not compute
LRatio for J1(23), since it not attached to a newform. We can, however, compute LRatio for each
simple factor.

> LRatio(J(1),1);

1/11

> LRatio(J(2),1);

1/1382426761

Each simple factor has nonzero LRatio, so L(J, 1) 6= 0.

0.14.5 Leading coefficient

The L-function L(A, s) has a Taylor expansion about any critical integer. The
LeadingCoefficient command computes the leading coefficient and order of vanishing of
L(A, s) about this critical integer. [TODO: say more about how, when it works, how it’s
restricted to low rank.]

LeadingCoefficient(L, s, prec)

The leading coefficient of the Taylor expansion about the critical integer s and the
order of vanishing of L at s. At present, the abelian variety that defines L must
have weight 2 and trivial character (so s = 1). It does not have to be attached to a
newform.

Example H0E81

> LeadingCoefficient(LSeries(Jzero(37)),1,100);

0.244264064925838981349867782965 1

> LeadingCoefficient(LSeries(Jzero(37)(1)) ,1,100);

0.305999773800085290044094075725 1

> J := Jzero(3^5);

> LeadingCoefficient(LSeries(J),1,100);

15.140660788463628991688955015326 + 0.E-27*i 4

The order of vanishing of 4 for J0(3
5) comes from an elliptic curve and a 3-dimensional abelian

variety that have order of vanishing 1 and 3, respectively.

> LeadingCoefficient(LSeries(J(1)),1,100);

1.419209649338215616003188084281 1

120 Geometry Vol.

> LeadingCoefficient(LSeries(J(5)),1,100);

1.228051952859142052034769858445 3

We give a few more examples.

> L := LSeries(ModularAbelianVariety("389A",+1));

> LeadingCoefficient(L,1,100);

0.75931650029224679065762600319 2

>

> A := Jzero(65)(2); A;

Modular abelian variety 65B of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q

> L := LSeries(A);

> LeadingCoefficient(L,1,100);

0.91225158869818984109351402175 + 0.E-29*i 0

> A := Jzero(65)(3); A;

Modular abelian variety 65C of dimension 2, level 5*13 and

conductor 5^2*13^2 over Q

> L := LSeries(A);

> LeadingCoefficient(L,1,100);

0.452067921768031069917486135000 + 0.E-29*i 0

0.15 Complex Period Lattice

0.15.1 Period Map

Let A be a modular abelian variety. The period mapping of A is a map from the
rational homology of A to a complex vector space.

PeriodMapping(A, prec)

The complex period mapping from rational homology to Cd, where d = dim A,
computed using prec terms of q-expansions.

0.15.2 Period Lattice

Periods(A, n)

Generators for the complex period lattice of A, computed using n terms of q-
expansions. We use the map from A to a modular symbols abelian variety to define
the period mapping (so this map must be injective).

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 121

0.16 Tamagawa Numbers and Component Groups of Neron Mod-
els

0.16.1 Component groups

Suppose A is a newform modular abelian variety over Q over level N . For any
prime p that exactly divides N , the command below computes the order of the component
group of B over the algebraic closure of GF(p). The nontrivial algorithm is described in
[REFERENCE: Conrad-Stein and Kohel-Stein]. It is an open problem to compute the
structure of the component group or the order under more general hypothesis.

ComponentGroupOrder(A, p)

The order of the component group of the special fiber of the Neron model of A
over the algebraic closure of GF(p). The abelian variety A must be attached to a
newform.

Example H0E82

> J := Jzero(65); J;

Modular abelian variety Jzero(65) of dimension 5 and level 5*13 over Q

> A := Decomposition(J)[3];

> ComponentGroupOrder(A,13);

1

> ComponentGroupOrder(A,5);

7

0.16.2 Tamagawa numbers

Suppose A is an abelian variety over Q that is attached to a newform. [TODO: Extend
to not over Q using Lenstra-Oort bound.] The TamagawaNumber command computes a
divisor and an integer some power of which is a multiple of the Tamagawa number of A at
a prime p. If the optional second argument is omitted then the product of the Tamagawa
numbers is computed. [TODO: use lenstra oort, etc.].

TamagawaNumber(A)

Let c be the product of the Tamagawa numbers of A at primes of bad reduction,
where A is an abelian variety over Q attached to a newform. This command returns
a divisor of c, an integer some power of which is a multiple of c, and true if the divisor
is provably equal to c.

TamagawaNumber(A, p)

A divisor of the Tamagawa number of A at p, an integer some power of which is a
multiple of the Tamagawa number of A at p, and true if the divisor of the Tamagawa
number is provably equal to the Tamagawa number of A. The abelian variety A
must be attached to a newform.

122 Geometry Vol.

Example H0E83

> J := Jzero(65);

> TamagawaNumber(J(2),5);

2 2 false

> TamagawaNumber(J(2),13);

3 3 true

> TamagawaNumber(J(3),5);

7 7 true

> TamagawaNumber(J(3),13);

2 2 false

> J := Jzero(5^2*7);

> TamagawaNumber(J(1));

2 30 false

> TamagawaNumber(J(1),5);

1 30 false

> TamagawaNumber(J(1),7);

2 2 false

0.17 Elliptic curves

0.17.1 Creation

Modular abelian varieties of dimension 1 are elliptic curves. Given a modular abelian
variety A over Q of dimension 1, the first command below computes an elliptic curve that
is isogenous over Q to A. Given an elliptic curve E over Q, the second command returns
a modular abelian variety over Q that is isogenous to E.

It would be very desirable to make these commands more precise, and to extend them
to work over other fields. For example, modular abelian varieties should (conjecturally)
be associated to Q-curves and their restriction of scalars.

EllipticCurve(A)

An elliptic curve isogenous to the modular abelian variety A over the rational field,
if there is an elliptic curve associated to A. For A of higher weight use the Ellip-
ticInvariants command.

ModularAbelianVariety(E)

ModularAbelianVariety(E, sign)

A modular abelian variety isogenous to E. Note that elliptic curves with small
coefficients can have quite large conductor, hence computing the massive modular
abelian variety that has E as quotient, which is one thing this function does, could
take some time.

Ch. 0 MODULAR ABELIAN VARIETIES by William Stein 123

Example H0E84

We apply the above two commands to the elliptic curve J0(49).

> A := Jzero(49);

> E := EllipticCurve(A); E;

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 2*x - 1 over

Rational Field

> B := ModularAbelianVariety(E); B;

Modular abelian variety ’Cremona 49A’ of dimension 1 and level

7^2 over Q

To see how A and B compare, we first test equality and see they are not equal (since they were
constructed differently). However, they are isomorphic.

> B eq A;

false

> IsIsomorphic(A,B);

true Homomorphism from Jzero(49) to ’Cremona 49A’ given on integral

homology by:

[1 0]

[0 1]

> phi := NaturalMap(A,B);

> Degree(phi);

1

> phi;

Homomorphism N(1) from Jzero(49) to ’Cremona 49A’ given on integral

homology by:

[1 0]

[0 1]

Thus B is embedded in A via the identity map.

0.17.2 Invariants

Let A be an abelian variety over Q of dimension 1. The following two functions use
standard iterative algorithms (see Cremona’s book) to compute the invariants c4, c6, j,
and generators of the period lattice of the optimal quotient of J0(N) associated to A.

EllipticInvariants(A, n)

Invariants c4, c6, j, and an elliptic curve, of the one dimensional modular abelian
variety A, computed using n terms of q-expansion.

EllipticPeriods(A, n)

Elliptic periods w1 and w2 of the J0(N) − optimal elliptic curve associated to A,
computed using n terms of the q-expansion. The periods have the property that
w1/w2 has positive imaginary part.

124 Geometry Vol.

Example H0E85

> A := ModularAbelianVariety("100A");

> c4,c6,j,E := EllipticInvariants(A,100);

> c4;

1600.0523183040458033068678491117208 + 0.E-25*i

> c6;

-44002.166592330033618811790218678607 + 0.E-24*i

> j;

3276.80112729920227590594817065393 + 0.E-25*i

> E;

Elliptic Curve defined by y^2 = x^3 +

(-43201.412594209236689285431925551172 + 0.E-24*i)*x +

(2376116.99598582181541583667180037300 + 0.E-22*i) over Complex

Field

> jInvariant(E);

3276.80112729920227590594817070563 + 0.E-25*i

> w1,w2 := EllipticPeriods(A,100);

> w1;

1.263088700712760693712816573302450091088 + 0.E-38*i

> w2;

0.E-38 - 1.01702927066995984919787906165005620863321*i

> w1/w2;

0.E-38 + 1.2419393788742296224466874060948650840497*i

