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Abstract

We study Heegner points and Kolyvagin classes for elliptic curves over Q, with
special focus on curves that have analytic rank at least 2. We reinterpret Kolyva-
gin’s “derived classes” construction in the context of divisors on modular curves
directly in characteristic `, and prove compatibility and multiplicity one results.
We use these results to give the first complete algorithm for explicitly computing
(certain) Kolyvagin classes, and thus verify a conjecture of Kolyvagin for some
specific elliptic curves.

1 Introduction

A higher rank elliptic curve is an elliptic curve E over Q of analytic rank at least 2.
Let K be a quadratic imaginary field such that each prime dividing the conductor of
E splits in K. This paper is about the Galois cohomology classes τc,pn ∈ H1(K,E[pn])
defined by Kolyvagin (see, e.g., [Kol88a, Gro91, McC91]). Our main motivation is the
explicit study of these classes on higher rank elliptic curves, inspired by the results of
[Ste10, BS11] and open conjectures of Kolyvagin (see [Kol91, ÇW08]). In particular,
consider Conjecture A of [Kol91, pg. 255]:

Conjecture 1.1 (Kolyvagin). For each prime p, there is some n and squarefree product
c =

∏
pi of primes that are inert in K with pn | gcd(api , pi + 1) such that τc,pn 6= 0.

For elliptic curves with analytic rank ≤ 1 over K, this conjecture with c = 1 follows
from [GZ86], but for higher rank curves the conjecture is wide open, and we have only
computational data.

The goal of this paper is to shed some light on Conjecture 1.1 by making it more
explicit and computing many examples, as follows. Let pn and c be as in Conjecture 1.1
We adapt Kolyvagin’s construction to define elements in E(F`2) ⊗ (Z/pnZ), then give
an algorithm to compute these elements in many cases. When one of these elements is
nonzero, the corresponding Kolyvagin cohomology class τc,pn is also nonzero, which al-
lows us to verify, in several specific examples, Conjecture 1.1. This is significant because
until now this conjecture had not been verified in even a single case. In particular, we
present a powerful and fairly general approach to explicitly computing information about
particular classes τc,pn ∈ H1(K,Af [pn]) for a modular abelian varieties Af , squarefree
integer c and prime power pn. Thus, our results provide further motivation and much
needed tools for studying Heegner points in the context of higher rank elliptic curves
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and modular abelian varieties. Moreover, we provide new algorithms for computing with
Selmer groups of elliptic curves, which exploit different methods than explicit n-descent
for small n (see [Cre97, §3.5] and [CFO+08]) or explicit Iwasawa theory as in [SW11].

Our approach is inspired by groundbreaking work of Cornut, Vatsal, Gross, Jetchev-
Kane, and Mazur (see [JK10, Cor02, Vat02]), in which they establish nontriviality results
about Heegner points. Our new idea is simple: use rational quaternion algebras to give
an explicit description of the Kolyvagin derived classes construction modulo an auxiliary
prime ` that is inert in the quadratic imaginary field K (see Section 6). Many of the
objects we use play a central role in the work of Cornut mentioned above. We hope
that some of our techniques may also be useful for exploring and refining other ideas
related to extra structure on higher rank elliptic curves arising from Heegner points.

The Birch and Swinnerton-Dyer conjectural rank formula (see Conjecture 3.1 below)
asserts that ords=1 L(E, s) = rank(E(Q)). This conjecture is a theorem when E is an
elliptic curve over Q of analytic rank ≤ 1 (see [BCDT01, GZ86, Kol88b] and Theorem 3.2
below). In sharp contrast, when E is a higher rank curve, the BSD conjecture remains
shrouded in mystery, as do potential generalizations of the Gross-Zagier formula (see,
e.g., [Ste10]). Unfortunately, the many exciting generalizations of the Gross-Zagier
formula to other settings (see [BY09, Zha01, Zha04, YZZ11]) so far seem to yield little
new insight in the higher rank case. As explained in [Ste10], Kolyvagin classes are
potentially relevant to a search for a generalization of the Gross-Zagier formula that
treats higher derivatives. Such a generalization is an incredibly difficult open problem
and anything that might shed light on it is worth investigating. So far, finding a
plausibly-provable conjecture has remained elusive.

The explicit examples in Section 8 involve rank 2 curves (instead of curves of rank
≥ 3), since the notation and computations are substantially simpler when the rank is
2. The theory and algorithms we develop apply to elliptic curves of any rank, and also
to modular abelian varieties. It is thus possible to study many more general situations
using our approach (see Section 9).

This paper is structured as follows. In Section 2 we give an outline of our main
algorithm. Next in Section 3 we recall the BSD conjecture and give some examples,
which motivate our paper. In Section 4 we recall the definition of Heegner points. In
Section 5 we introduce Kolyvagin classes, make some observations, and discuss reduction
of Heegner points modulo a prime over `. In Section 6 we make the action of Galois
on certain objects in characteristic ` more explicit and prove a compatibility result.
In Section 7 we explain in more detail how our algorithm for computing reductions
of Kolyvagin classes works. We combine our above results to obtain an algorithm
to compute Kolyvagin classes, which we apply in Section 8, in which we discuss the
implementation of our algorithm, tables we obtained by running it, and state some
results inspired by this data. Finally, Section 9 discusses a range of related future
projects.

Acknowledgement: The author would like to thank Jennifer Balakrishnan, Ralph
Greenberg, Benedict Gross, Ben Howard, David Kohel, Dimitar Jetchev, Barry Mazur,
Ken Ribet, Karl Rubin, Justin Walker, and Jared Weinstein for helpful discussions.

1.1 Notation and terminology

We use ∼= to denote a canonical isomorphism and ≈ to denote a noncanonical one.
Unless otherwise stated, all tensor products are over Z. We always let p, q, ` denote odd
prime numbers, E an elliptic curve over Q, and K a quadratic imaginary field such that
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each prime dividing the conductor N of E splits in K. Let an denote the nth Dirichlet
series coefficient of the L-series L(E/Q, s) associated to E.

2 Reducing Kolyvagin Classes

As above, let E be an elliptic curve over Q, let K be a quadratic imaginary field such
that each prime dividing the conductor N of E splits in K, let pn be an odd prime
power. Let c be a squarefree product of primes that are inert in K such that for each
prime q | c we have pn | gcd(aq, q + 1), where aq = q + 1−#E(Fq). Let Kc be the ring
(not ray!) class extension of K associated to c, and let σi be a choice of generator of
Gal(Kc/Kc/pi) for each prime divisor pi | c, and let σ = (. . . , σi, . . .). As explained in
Section 5 below, Kolyvagin uses Heegner points to construct a point Pc,σ ∈ E(Kc) such
that [Pc,σ] ∈ (E(Kc) ⊗ Z/pnZ)Gal(Kc/K). Under suitable hypothesis on p (e.g., the p-
adic representation ρE,p is surjective), Kolyvagin then uses Pc,σ to define a cohomology
class τc,pn ∈ H1(K,E[pn]) characterized by

δ([Pc,σ]) = resK,Kc(τc,pn) ∈ H1(Kc, E[pn])Gal(Kc/K),

where δ is the connecting homomorphism of Galois cohomology. (The class τc,pn also
depends on the choice of σ, but we surpress this in our notation.)

We introduce yet another prime ` that is also inert in K and fix a prime λ of Kc over
`. Reduction modulo λ induces a homomorphism E(Kc)⊗ Z/pnZ → E(F`2)⊗ Z/pnZ.
Using Algorithm 2.1 below when n = 1, we compute the image z of [Pc,σ] under the
reduction map. When z 6= 0, we conclude that τc,p is also nonzero.

Algorithm 2.1.

• INPUT: E, K, p, `, c, σ, as above.

• OUTPUT: The (well-defined) image of [Pc,σ] in E(F`2) ⊗ (Z/pZ), via reduction
modulo any prime over ` (it does not matter which), up to some fixed nonzero
scalar that is independent of c. We can compute the image of many different Pc,σ
with respect to a consistent choice of map.

1. Use rational quaternion algebras and theta series of quadratic forms to directly
compute a supersingular point x1 ∈ X0(N)(F`2)ss that is the reduction modulo λ
of a choice of Heegner point x1 ∈ X0(N)(K1). (See Section 7.1.)

2. Apply a mod ` analogue of Kolyvagin’s construction to directly obtain the re-
duction Qc,σ of the “Kolyvagin derived divisor” attached to xc as an element

of Div(X0(N)(F`2)ss). (See Sections 6 and 7.2.) Computing Qc,σ closely re-
sembles computing the image Tc(x1) of x1 under the Hecke operator Tc using
Equation (6.1), but with an appropriate choice of weighting of each summand.

3. Use linear algebra combined with refinements of results of Cornut, Ihara and
Ribet (see Section 7.4) and a multiplicity one theorem (see Theorem 7.14 below)
to compute a fixed nonzero scalar multiple of the image of Qc,σ, hence of Pc,σ,
under the homomorphism of Hecke modules

Div(X0(N)(F`2)ss)⊗ (Z/pZ)→ E(F`2)⊗ (Z/pZ). (2.1)
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Remark 2.2. We emphasize that the steps of Algorithm 2.1 can all be done purely
algebraically, without recourse to any numerical approximations. This contrasts with
the approach of [JLS09], which provides numerical evidence for Kolyvagin’s conjecture in
one case, without proof. In theory the approach of [JLS09] can likely be made rigorous,
but this has not been done in practice in any case, though see [Bra10] which is a step
in that direction. The approach of [JLS09] can be faster for an elliptic curve with large
conductor (with c very small); it is much worse for large c than Algorithm 2.1 (e.g.,
c > 100 would be incredibly hard).

Remark 2.3. Suppose we are only interested in verifying that the image under (2.1)
of Qc,σ is nonzero. Instead of the linear algebra of Step 3, we might be able to use

that (2.1) is a T-module homomorphism, where T is the Hecke algebra; if TQc,σ has
sufficiently large dimension, so that it cannot be contained in the nontrivial kernel, then
we are done. If we take this approach and it works, we do not need to compute (2.1) at
all. However, in some cases this approach cannot work, e.g., we could run into trouble
if there are other elliptic curves of larger rank also of level N .

Remark 2.4. Algorithm 2.1 only computes the reduction of Pc,σ up to a fixed nonzero
scalar, which is enough to show that δ(Pc,σ) 6= 0. The point Pc,σ could in principle be
normalized by finding Pc,σ exactly via a numerical computation, using [JLS09] for one
choice of c for which the image of Pc,σ in E(F`)⊗ (Z/pZ) is nonzero.

To make the steps of Algorithm 2.1 explicit and machine computable, we view
Div(X0(N)(F`2)ss) noncanonically as the set of right ideal classes in an Eichler order R
of level N in the (unique up to isomorphism) rational quaternion algebra ramified at `
and∞, which we compute as explained in [Piz80, Koh01, Koh97, Ste09]. By computing
representation numbers of ternary quadratic forms associated to left orders, we find the
right R-ideals I whose left order admits an optimal embedding of the ring of integers OK
of K; this is the trick we use to compute the reduction x1 ∈ X0(N)(F`2) of x1 modulo
a prime over ` without ever computing x1 itself. Then we use x1 and a parametrization
of the right ideals J ⊂ I such that I/J ∼= (Z/cZ)2 to directly compute the reduction
Qc,σ (see Theorem 7.8 below). An implementation of the algorithm is included in Sage
[S+11].

3 The Birch and Swinnerton-Dyer Conjecture

The BSD conjecture is the main motivation for this paper, so we spend a page recalling
it and emphasizing our ignorance. First we state the conjecture, then state the main
theorem about it, and finish with some remarks about a curve of rank 4 and another of
rank 2.

Let E be an elliptic curve over Q. By [BCDT01, Wil95] the L-series

L(E, s) =

∞∑
n=1

an
ns

attached to E extends to a holomorphic function on all of C, hence the nonnegative
integer

ran(E/Q) = ords=1 L(E, s) ≥ 0

is defined. The BSD conjecture was first introduced by Birch and Swinnerton-Dyer in
the 1960s motivated by computer computations, and was later formulated for abelian
varieties over number fields (see [Bir65, Bir71, Mil72, Tat66, Wil00]).
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Conjecture 3.1 (Birch and Swinnerton-Dyer). For any elliptic curve E defined over
Q we have

rankE(Q) = ran(E/Q).

There is also a conjectural formula of Birch and Swinnerton-Dyer for the leading
coefficient of the series expansion of L(E, s) about s = 1 (see [Lan91, III, §5] for a
general formulation). This formula has now been computationally verified in many
cases; see [GJP+09, Mil10] where the formula is fully proved for all curves with rank
≤ 1 and conductor ≤ 5000.

Results of Kolyvagin, Gross-Zagier, and Bump-Friedberg-Hoffstein (see, e.g., [BFH90,
GZ86, Kol88b]) imply the following theorem.

Theorem 3.2. Conjecture 3.1 is true for elliptic curves E with ords=1 L(E, s) ≤ 1.

As mentioned in the introduction, Conjecture 3.1 remains completely open when
ords=1 L(E, s) ≥ 2. As evidence for Conjecture 3.1, we have tables of specific rank 2
and 3 curves for which the conjecture is known (see, e.g., [Crea, SW02]), and assurances
that many curves have analytic rank ≤ 1 (see [BS10]). There is not a single example of
a curve of rank ≥ 4 for which the conjecture has been verified. Rank 4 is difficult not
because of the complexity of doing computations, but because there is, as of now, no
known algorithm (no matter how slow) that can be used to show that ran(E/Q) ≥ 4.

Example 3.3. Let E be the elliptic curve y2 + xy = x3 − x2 − 79x+ 289. A 2-descent
(using [Creb, S+11]) and point search proves that E has algebraic rank 4, with generators
(−9, 19) , (−8, 23) , (−7, 25) , (4,−7). Applying the methods of [Cre97, Dok04] and the
Gross-Zagier formula, we see that L(E, 1) = L′(E, 1) = 0, L′′(E, 1) is very close to 0,
and L(4)(E, 1) = 214.65233 . . .. But showing that L′′(E, 1) = 0 (which would imply
Conjecture 3.1 for E) is an unsolved problem.

Assume that E is an elliptic curve with ords=1 L(E, s) = 2. Then Conjecture 3.1 as-
serts that rankE(Q) = 2. In the explicit examples Section 8, the Birch and Swinnerton-
Dyer formula predicts that #X(E/Q) = 1, though in fact X(E/Q) is not known to
be finite for any of these curves (or indeed, for any curve of rank ≥ 2). The best that
has been done at present for a general rank 2 curve is to verify that X(E/Q)[p] = 0
for (finitely) many specific p, e.g., using the algorithm of [SW11]. See the recent work
of [CLS09, CLS10] on CM elliptic curves of rank 2. Also, for the rank 2 elliptic curve
of conductor 389, the author used modular symbols, p-adic L-series, p-adic heights,
Iwasawa theory, and results of Kato and Schneider to show that X(E/Q)[p] = 0 for all
primes p < 2466, except possibly the supersingular primes p = 107, 599, and 1049, for
which the approach of [SW11] should work, but take much longer.

4 Quadratic Imaginary Fields and Heegner Points

In this section we recall the definition of Heegner points over ring class fields, and explain
how they behave under taking traces. We will use these points in the next section to
construct derived Galois equivariant classes.

Let E be an elliptic curve over Q of conductor N , and let πE : X0(N) → E be a
fixed choice of minimal modular parametrization. The main theorem of [BFH90] implies
that there exists infinitely many quadratic imaginary fields K = Q(

√
D) of discriminant

D ≤ −5 such that each prime dividing N splits in K. Fix any such K.
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Fix an odd prime power pn with n ≥ 1. Let c =
∏
pi be any product of prime

numbers pi that are each inert in K, coprime to ND, and such that

pn | gcd(api , pi + 1),

for each i. Let Kc be the ring class field associated to the conductor c. As explained in
[Gro91, pg. 238], the field Kc is an abelian extension of the Hilbert class field K1 of K,
is unramified outside c, and is contained in the ray class field associated to c. Moreover,
the reciprocity map of class field theory induces a canonical isomorphism

Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)×, (4.1)

where OK is the ring of integer of K (see Proposition 6.2 below). Let Oc = Z + cOK
be the order in OK of conductor c. Each prime dividing N splits in K, so we can fix a
choice n of ideal in OK with OK/n ∼= Z/NZ.

The Heegner point associated to c is

xc =
[(

C/Oc, (n ∩ Oc)−1/Oc
)]
∈ X0(N)(Kc),

which has image
yc = πE(xc) ∈ E(Kc).

Remark 4.1. There are many possible choices of n in the definition above, which are
parametrized by the different choices of prime ideals of OK over the prime divisors of N .
These different choices are permuted by the action of the Atkin-Lehner operators. The
Atkin-Lehner operators act as ±1 on E, so yc is well-defined up to sign, independent
of the choice of n. See [Wat06] or [Coh07, Thm. 8.7.7] for an explicit description of the
Atkin-Lehner action on Heegner points.

Motivated by the problem of constructing elements of E(Q), it is natural to apply a
trace map to yc.

Proposition 4.2 (The Distribution Relation). We have TrKc/K1
(yc) = ac ·y1 ∈ E(K1).

More generally for each prime q | c, we have TrKc/Kc/q
(yc) = aq · yc/q ∈ E(Kc/q).

Proof. See [Gro84, §6] or [JK10, Lem. 5.2]. The key idea is that if Tc is the cth Hecke
operator, then we have the following equality of divisors on X0(N):

Tc(x1) =
∑

σ∈Gal(Kc/K1)

σ(xc).

To complete the proof, take the image of both sides in E and use that the Hecke operator
Tc acts as ac on E.

Suppose E is a higher rank curve. The Gross-Zagier theorem [GZ86, §5.2] implies
that the height of TrK1/K(y1) ∈ E(K) is a nonzero multiple of L′(E/K, 1). However,
L(E/K, s) = L(E/Q, s) · L(ED/Q, s), and we assumed that ords=1 L(E/Q, s) ≥ 2, so
L′(E/K, 1) = 0. Thus for all c,

TrKc/K(yc) = TrK1/K(acy1) ∈ E(K)tor. (4.2)

Thus the traces of yc are never non-torsion elements of the higher rank Mordell-group
E(Q).
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5 Derived Points and Cohomology Classes, and their
Reduction Modulo `

In this section, we assume that p is an odd prime such that the p-adic representation
ρE,p is surjective.

In Section 5.1 we construct Kolyvagin’s derived classes associated to Heegner points,
then use these in Section 5.2 to construct Galois invariant classes. In Section 5.3 we
explain how to reduce these classes modulo `, and note that if the reduction is ever
nonzero, then so is the class. Section 5.4 contains some consequences of nontriviality in
the special case when E has analytic rank 2.

5.1 Derived points

Let pn be a power of p, and let c = p1 · · · pt be a squarefree product of inert primes
pi such that pn | gcd(api , pi + 1). We recall the construction of Kolyvagin classes here,
since it is important to emphasize the precise dependence on choice of generator of the
Galois group, which impacts our algorithm. Also, we will make some remarks about
this construction that appear to not be in the literature.

Let [yc] denote the image of yc in E(Kc) ⊗ (Z/pnZ). Let q be a prime divisor of
c. The Galois group Gal(Kc/Kc/q) is cyclic of order q + 1. Fix a choice of generator
σ = σq ∈ Gal(Kc/Kc/q), let

P =

q∑
i=1

iσi(yc) ∈ E(Kc),

and let [P ] denote the image of P in E(Kc)⊗ (Z/pnZ), so

[P ] =
∑

i ∈ Z/(q+1)Z

iσi([yc]). (5.1)

Proposition 5.1. As above, assume that pn | gcd(aq, q + 1). Then

[P ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/Kc/q).

Proof. Applying our choice of generator σ of Gal(Kc/Kc/q) to P , we have

σ([P ]) =
∑

i ∈ Z/(c+1)Z

σiσi([yc]) =
∑

i ∈ Z/(c+1)Z

iσi+1([yc]) (5.2)

=
∑

i ∈ Z/(c+1)Z

(i− 1)σi([yc]) = [P ]− TrKc/Kc/q
([yc]) = [P ]. (5.3)

The first equality in (5.3) is because pn | q + 1, so we can enumerate the elements
of Z/(q + 1)Z in any way we want (in fact, the notation we are using above only
makes sense because pn | q + 1). The final equality in (5.3) holds since pn | aq and
TrKc/Kc/q

(yc) = aqyc/q, by Proposition 4.2.

For each prime pi | c, make a choice σi of generator for Gal(Kc/Kc/pi), and let
σ = (σ1, . . . , σt) be the tuple of those choices. Let

Dc,σ =

t∏
j=1

pj∑
i=1

iσij ∈ Z[Gal(Kc/K1)],
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and let
[Pc,σ] = TrK1/K(Dc,σ([yc])) ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K). (5.4)

Remark 5.2. If we replace the hypothesis that pn | gcd(aq, q + 1) with the hypothesis
that pn | q + 1 and E has analytic rank ≥ 2, then we still have that [Pc,σ] ∈ (E(Kc)⊗
(Z/pnZ))Gal(Kc/K). This is because TrK1/K(y1) is torsion and p is coprime to torsion,
so the proof of Proposition 5.1 still goes through, but with an “obstruction” of acy1,
which vanishes upon taking a trace because of Equation (4.2).

Remark 5.3. The construction also generalizes if we replace the prime power pn by
the ideal I in Z generated by all aq and q + 1 for primes q | c, and we obtain

[Pc,σ] ∈ (E(Kc)⊗ (Z/I))Gal(Kc/K).

More generally, consider the modular Jacobian J = J0(N), and let I be the ideal of
the Hecke algebra T generated by all Tq and q + 1, for prime q | c. Then the above
construction with xc (instead of yc) defines a class

[Rc,σ] = TrK1/K(Dc,σ([xc])) ∈ (J(Kc)⊗T (T/I))Gal(Kc/K)

that maps to [Pc,σ] under the natural map.

The next lemma explains how replacing σi by a different generator of Gal(Kc/Kc/pi)
changes [Pc,σ] by multiplication by an element of (Z/pnZ)×.

Lemma 5.4. For every j ∈ (Z/(pi + 1)Z)×, we have [Pc,(...,σj
i ,...)

] = 1
j [Pc,σ].

Proof. Writing q = pi and s = σi, we have in (Z/(q + 1)Z)[Gal(Kc/K)] that∑
i ∈ Z/(q+1)Z

isji =
∑

i ∈ Z/(q+1)Z

i

j
si =

1

j
·

∑
i ∈ Z/(q+1)Z

isi.

Lemma 5.5. If E has analytic rank r over Q and c is a product of t primes, then
τ([Pc,σ]) = (−1)r+t+1[Pc,σ]. In particular, if r + t is odd, then

[Pc,σ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/Q).

Proof. This is just [Gro91, Prop. 5.4(1)], which is proved by noting ([Gro91, Prop. 5.3])
that if τ ∈ Gal(Kc/Q) is complex conjugation on Kc, then τσiτ = σ−i for all i and we
have that τ(yc) = (−1)r+1σ′(yc) + (torsion) for some σ′ ∈ Gal(Kc/K). Thus τ([yc]) =
(−1)r+1σ′([yc]), since p is coprime to any torsion. When c = p1 · · · pt is a product of t
distinct primes, we have (using Lemma 5.4) that τ([Pc,σ]) = (−1)r+1(−1)t[Pc,σ].

Remark 5.6. Following [How04, §1.2], we could alternatively encode the dependence
on the choice of σ in a tensor product. Suppose for simplicity that c is prime. Consider
the element

σ ⊗ [Pc,σ] ∈ Gal(Kc/K1)⊗ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K).

This element does not depend on the choice of generator σ because for any j ∈ (Z/(c+
1)Z)×, if we define the element instead using the generator σj , by Lemma 5.4, we obtain

σj ⊗ [Pc,σj ] = σj ⊗ 1

j
[Pc,σ] = (σj)1/j ⊗ [Pc,σ] = σ ⊗ [Pc,σ],

where by 1/j we mean that element j′ ∈ Z/pnZ such that j′j = 1. This generalizes to
composite c by replacing Gal(Kc/K1) by the tensor product

⊗
pi|c Gal(Kc/Kc/pi).
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Remark 5.7. We can define [Pc,σ] without the hypothesis that each σi is a generator
of Gal(Kc/Kc/pi). If we try to use exactly the definition given above, then the resulting
[Pc,σ] need not be Gal(Kc/K)-equivariant, so we must modify the definition slightly.
Let K ′ be the biggest subfield of Kc that is fixed by all σi, and let ki (which divides

pi + 1) be the order of σi. Let [P ] =
∏t
i=1

∑ki
j=1 jσ

j
i (yc). Then the same argument as

in Proposition 5.1 shows that [P ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K
′), and we let

[Pc,σ] = TrK′/K([P ]) ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K).

For example, if c 6= 1 and all σi = 1, then [Pc,σ] = [ac · yK ] = 0, since pn | ac.
For any multiple k of pn, we have the following identity of polynomials:

k−1∑
j=1

jXj =

k
pn−1∑
i=0

Xpn·i ·

pn−1∑
j=1

jXj

 ∈ (Z/pnZ)[X]. (5.5)

Thus in the above construction, if we choose each σi to be of order exactly pn, then
we get (up to scaling by a unit) the same element [Pc,σ] as if each σi is a generator
of Gal(Kc/Kc/pi). The factorization (5.5) thus means we can alternatively view the
Kolyvagin derived point construction as follows. Let K ′c be the compositum of the
degree pn subfields of each Kpi for the primes pi | c. If

D =
∏
pi|c

pn−1∑
j=1

jσji ∈ Z[Gal(K ′c/K1)],

then
[Pc,σ] = TrK1/K([D(TrKc/K′c

(yc))]).

5.2 Derived cohomology classes

As explained in [Gro91, §4], under our hypothesis that ρE,p is surjective, the map

H1(K,E[pn])→ H1(Kc, E[pn])Gal(Kc/K)

is an isomorphism, so [Pc,σ] uniquely determines a cohomology class

τc,pn ∈ H1(K,E[pn]).

In the rest of this short section, we make an additional observation in the special case
when ran(E/Q) = 2 and c is prime, since this is the situation for our data in Section 8.

Let res : H1(Q, E[pn])→ H1(Kc, E[pn]) be the restriction map and δ the connecting
homomorphism. Restricting res to Selmer groups, we obtain a commutative diagram:

(E(Kc)⊗ (Z/pnZ))Gal(Kc/Q) Sel(p
n)(E/Kc)

Gal(Kc/Q) X(E/Kc)[p
n]Gal(Kc/Q)

E(Q)⊗ (Z/pnZ) Sel(p
n)(E/Q) X(E/Q)[pn]

δ

δ

res

The following proposition defines an element τc,pn in the Selmer group Sel(p
n)(E/Q),

not just in H1(K,E[pn]) as above.
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Proposition 5.8. If c is prime and ran(E/Q) = 2, then τc,pn ∈ Sel(p
n)(E/Q).

Proof. Since ran(E/Q) is even and c is prime, Lemma 5.5 implies that δ([Pc,σ]) ∈
H1(Kc, E[pn])Gal(Kc/Q). That the image of τc,pn in H1(Q, E)[pn] is locally trivially

(hence in Sel(p
n)(E/Q)) follows from [Gro91, Prop. 6.2] with n = c and m = 1, since

L′(E/K, 1) = 0 hence yK is torsion.

5.3 Reduction modulo `

The following lemma will be helpful when reducing the computation of τc,pn to linear
algebra (see Section 7.4). Below we will consider M = E(F`2) ⊗ (Z/pnZ) as a module
for the action of the nontrivial element Frob` ∈ Gal(F`2/F`); we write M− for the
eigenspace of M on which Frob` acts by −1.

Lemma 5.9. Let pn > 1 be an odd prime power and let ` be a prime such that pn |
gcd(a`, ` + 1). Then the groups E(F`) ⊗ (Z/pnZ) and (E(F`2) ⊗ (Z/pnZ))− are each
cyclic of order pn.

Proof. (See [Ste10, Lem. 5.1].) We have

pn | gcd(a`, `+ 1) | `+ 1− a` = #E(F`).

If E(F`)[p] is noncyclic, then nondegeneracy of the Weil pairing implies that µp ⊂ F×` ,
so p | ` − 1, hence p | gcd(` − 1, ` + 1) = 2, which contradicts that p is odd. Thus
E(F`)[p] is cyclic, so the p-primary part of E(F`) is cyclic of order divisible by pn. For
the second group, apply the above argument to the quadratic twist of E with trace of
Frobenius −a`, and note that pn also divides gcd(−a`, `+ 1).

For any prime ` - c that is inert in K, let λ be a prime ideal over ` in the ring of
integers of the ring class field Kc. Define

zc,σ,` = [Pc,σ] (mod λ) ∈ E(F`2)⊗ (Z/pnZ), (5.6)

which is well defined, independent of the choice of λ. See [Ste10, Prop. 5.4] for the proof
that zc,σ,` is well defined; the reason is that changing λ corresponds to acting on [Pc,σ]
by an automorphism, which does nothing since [Pc,σ] is Gal(Kc/K)-equivariant. Also,
note that by Lemma 5.5, if ran(E/Q) + t is odd, then zc,σ,` ∈ E(F`)⊗ (Z/pnZ); if it is
even, then zc,σ,` ∈ (E(F`2)⊗ (Z/pnZ))−, where the − is for the action of the involution
Frob`.

5.4 Consequences of nontriviality of the elements

We continue with the same notation and running assumptions as above. The first
lemma below links verifying that zc,σ,` 6= 0 to verifying Kolyvagin’s Conjecture A [Kol91,
pg. 255] (see Conjecture 1.1 above).

Lemma 5.10. Suppose c is a squarefree product of inert primes q with pn | gcd(aq, q+1).
If zc,σ,` 6= 0, then τc,pn 6= 0.

Proof. The nonzero element zc,σ,` is the image of [Pc,σ] under the homomorphism

E(Kc)⊗ (Z/pnZ) −→ E(F`2)⊗ (Z/pnZ)

induced by reduction modulo a choice of prime ideal λ over `. Thus if zc,σ,` 6= 0, then
[Pc,σ] 6= 0, so τc,pn = δ([Pc,σ]) 6= 0, since δ is injective.
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Theorem 5.11. Suppose ran(E/Q) = 2 and that there exists inert primes c, ` (as above)
such that zc,σ,` 6= 0. Then

rankE(Q) ≤ 2

with equality if and only if X(E/Q)(p) is finite. If rankE(Q) = 2, then X(E/Q)[p] = 0.

Proof. If zc,σ,` 6= 0 then by Lemma 5.10, the Kolyvagin cohomology class τc,p ∈
H1(K,E[p]) is nonzero, so Kolyvagin’s Conjecture A [Kol91, pg. 255] is true. The
desired conclusion then follows from [Ste10, Thm 4.2] (which is mainly a restatement
of the main theorem of [Kol91]).

For example, suppose E is a curve with ran(E) = rank(E(Q)) = 2, that X(E/Q)[2] =
0 and that ρE,p is surjective for all odd primes p. If we could somehow prove that
for every prime p, there is a c with zc,σ,` 6= 0, then Theorem 5.11 would imply that
X(E/Q) = 0. This would be an extremely deep result, since at present it is an open
problem to prove unconditionally that the set of all pairs

{(E, p) : X(E/Q)(p) is finite and rank(E) ≥ 2}

is infinite!

6 The Action of Galois and Reduction of Heegner
Points Modulo `

In this section, we prove a result (Theorem 6.6) that is crucial to giving a variant of
Kolyvagin’s derived points construction directly in characteristic `, which is the main
input to Algorithm 2.1. Note that the results in this section are on the level of the
modular curve X0(N), and make no reference to a specific choice of elliptic curve over
Q of conductor N , so they are equally useful in studying modular abelian varieties.

Theorem 6.6 below asserts that there is a compatible action of Gal(Kc/K1) on two
objects. Everything in the current paragraph will be made precise in Section 6.1 below.
Let N be a positive integer and K a quadratic imaginary field such that each prime
dividing N splits in K. Fix a choice of Heegner point x1 ∈ X0(N)(K1). For any
square-free product c of primes that are inert in K, consider the support S of the
divisor Tc(x1) ∈ Div(X0(N)), where Tc is the cth Hecke operator. The Galois group
Gal(Kc/K1) acts transitively on S. Fix an inert prime ` - c and a choice of prime λ of Z
over `. Let E1 be the reduction mod λ of the enhanced elliptic curve corresponding to
x1, and consider the Eichler order R = End(E1). Also, as explained in Proposition 6.2,
use class field theory to identify Gal(Kc/K1) with (OK/cOK)×/(Z/cZ)×. For x ∈ S,
represent x (mod λ) by a right ideal class in R. Then Theorem 6.6 below asserts that
the action of Gal(Kc/K1) on S is compatible with the action of (OK/cOK)×/(Z/cZ)×

on the set of right ideals of R/cR of index c2. This result is somewhat complicated to
state and prove, but we are amply compensated with an alternative interpretation of
Kolyvagin’s derived points construction.

In Section 6.1 we state our main result, then in Section 6.2 we prove it by deriv-
ing certain transformation rules for right ideals. We emphasize that in the arguments
below, c is an arbitrary squarefree product of inert primes, and K is allowed to have
arbitrary class number.

Remark 6.1. Reduction and the Galois action is also considered in [Cor02, §3.3], but
via an adelic formulation that is less explicit and amenable to computation.
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6.1 Notation and statement of theorem

In Section 6.1.1 we explain how Galois and Hecke operators act on higher Heegner
points. In order to see the reduction of these points modulo `, in Section 6.1.2 we
introduce enhanced supersingular elliptic curves, and describe how they relate to points
on modular curves. In Section 6.1.3, we explain how the Hecke operators act on divisors
on enhanced curves, which will be used later in the proof of our main theorem. Finally,
in Section 6.1.4 we precisely state the main theorem of this section, which is critical in
reinterpreting Kolyvagin’s derived classes operator in characteristic `.

6.1.1 Galois and Hecke actions on Heegner points

Let N , K, c, and Kc be as above, and let D = disc(OK). Let Oc = Z+cOK be the order
of conductor c. Let n be a choice of ideal in OK with OK/n ∼= Z/NZ, and let nc = n∩Oc.
As in [Gro84], for any order O (of conductor coprime to N) and any fractional O-
ideals m and a, let (O,m, [a]) denote the Heegner point (C/a,m−1a/a) ∈ X0(N), with
endomorphism ring the order O. In particular, let

xc = (Oc, nc, [Oc]) ∈ X0(N)(Kc).

The elements of (OK/cOK)×/(Z/cZ)× are in bijection with the lines through the
origin in the plane OK/cOK ≈ (Z/cZ)2. These lines are in bijection with the sublattices
of OK of index c. The aforementioned sublattices are fractional Oc = Z + cOK ideals,
and each one represents an element of the kernel of the natural map Cl(Oc)→ Cl(OK).

Proposition 6.2. We have a commutative diagram of abelian groups:

1 // Gal(Kc/K1) //

∼=
��

Gal(Kc/K) //

∼=θ

��

Gal(K1/K) //

∼=
��

1

1 // (OK/cOK)×/(Z/cZ)× // Cl(Oc) // Cl(OK) // 1,

where the rightmost two vertical isomorphisms are induced by the Artin reciprocity map
of class field theory, and the bottom row involves the bijections mentioned above.

Proof. This is standard; see, e.g., [Gro91, §3].

As explained in [Gro84, §4, (4.2)], for [b] ∈ Cl(Oc), we have

(Oc, nc, a)θ(b) = (Oc, nc, ab−1).

Also [Gro84, §6], we have

Tc(x1) = Tc((OK , n,OK)) =
∑

b⊂OK

(Oc, nc, b) ∈ Div(X0(N)), (6.1)

where the sum is over sublattices b ⊂ OK of index c.

Remark 6.3. We emphasize: the b are not ideals of OK , but merely ideals of Oc! If
they were ideals of OK , they would have norm c = #(OK/b), but c is a product of
distinct inert primes, so there are no ideals of OK of norm c.
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6.1.2 Enhanced supersingular elliptic curves in characteristic `

We consider enhanced elliptic curves E = (E,C), where E is an elliptic curve and C ⊂ E
is a cyclic subgroup of order N . The terminology enhanced elliptic curves is used in
[Rib90a, §3].

Recall that we fixed above an inert prime ` - c and a prime λ of Z over `. The set
X0(N)(F`2)ss of supersingular points on the mod λ reduction of X0(N) is the set of
isomorphism classes of enhanced elliptic curves E = (E,C), where E is a supersingular
elliptic curve over F`2 and C ⊂ E is a cyclic subgroup of order N .

Let [E1] = x1 ∈ X0(N)(K1), so E1 is a representative enhanced elliptic curve
corresponding to the Heegner point x1. Since n is an OK-ideal, we have OK = End(E1),
so we obtain an inclusion

OK = End(E1) ↪→ End(E1). (6.2)

Remark 6.4. To see that Equation (6.2) is injective, note that by [ST68, Lem. 2],

reduction modulo the prime λ of Z induces an isomorphism E1[pn]
∼=−−→ E1[pn] for any

prime power pn with p 6= ` and p a prime of good reduction for E1 (the lemma only
asserts the map is surjective, but it is a map between finite groups of the same order,
hence is an isomorphism). If ϕ ∈ End(E1) acts as 0 on E1, then it acts as 0 on E1[p∞],
hence acts as 0 on E1[p∞], hence is 0 (since endomorphisms have finite degree).

The following lemma implies that

[E1] ∈ X0(N)(F`2)ss.

Lemma 6.5. Suppose F is an elliptic curve defined over an extension M of K and that
F has CM by an order O of K. Suppose that ` ∈ Z is a prime that is inert in K such
that ` - [OK : O]. Let λ be a prime of M lying over ` and assume F has good reduction
at λ, and let k be residue field modulo λ. Then the reduction Fk of F modulo λ is a
supersingular elliptic curve.

Proof. This is well known (see [Lan87, Ch. 10, §4, Thm. 10, Case 1] and [Sil94, Exercise
2.30]), but for the convenience of the reader we give a more conceptual proof than the
ones cited above. It follows from the definition of Fk in terms of Néron models that O
acts (functorially) on Fk. Moreover, because ` - [OK : O], the `-torsion subgroup Fk[`] =
Fk(F`)[`] is a vector space over the finite field OK/(`) ≈ F`2 . Thus d = dimF`

Fk[`] is
even. Since Fk is an elliptic curve over a finite field of characteristic `, we have d ≤ 1,
so d = 0, hence Fk is supersingular.

We view X0(N)(F`2)ss as explained in [Rib90a, §3], especially [Rib90a, Rmk. 3.5,
pg 441], which builds on work of Deuring and Shimura. The endomorphism ring R =
End(E1) is an Eichler order of level N in the (unique up to isomorphism) rational
quaternion algebra B ramified at ` and ∞. We have a bijection

X0(N)(F`2)ss
∼=−−−−−→ { right fractional ideal classes in R }, (6.3)

where two (nonzero) fractional right R-ideals I, J ⊂ B are equivalent if there exists
α ∈ B such that αI = J . For any enhanced elliptic curve F, endow Hom(E1,F) with
the structure of right R-module as follows: for ϕ ∈ Hom(E1,F) and r ∈ R we put
ϕ.r = ϕ ◦ r. This bijection sends [F] to the class of a right R-ideal that is isomorphic
as a right R-module to the right R-module Hom(E1,F). Also, we see that the right
R-module Hom(E1,F) is isomorphic to some right R-ideal I as follows. By [Mes86,
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§2.4, pg. 223] or [Rib90a, Lem. 3.17], there exists an isogeny ψ : F → E1. Using such
an isogeny, we obtain an embedding

Hom(E1,F) ↪→ End(E1) = R

given by ϕ 7→ ψ ◦ ϕ, and the right ideal I is the image of Hom(E1,F) under this
embedding. Making a different choice of isogeny ψ replaces I by an equivalent right
ideal.

6.1.3 Action of Hecke operators on supersingular divisors

The Hecke operators Tn act on Div(X0(N)(F`2)ss), as explained in [Rib90a, pg. 443–
445], and this action translates to an action on the free abelian group on the right
R-ideal classes via the bijection (6.3) above, as explained in, e.g., [Koh01, §3.2]. For n
any integer coprime to `N , we have

Tn([I]) =
∑
J⊂I

[J ], (6.4)

where the sum is over right R ideals J ⊂ I with I/J ≈ (Z/nZ)2. We apply (6.4) to
obtain a more explicit description of the image of the unit ideal (which corresponds to
the reduction of x1) under the Hecke operator Tc. Let

R = R⊗ (Z/cZ) ∼= R/cR.

Since c is coprime to N and coprime to the unique finite prime ` that ramifies in B, we
have R⊗ Zc ≈M2(Zc), hence

R ≈M2(Z/cZ) ∼=
⊕

primes p|c

M2(Fp).

For any right ideal I ⊂ R, let Ĩ denote the inverse image of I in R under the natural
surjection R→ R. The right ideals of R correspond to the right ideals of R that contain
cR, so the Hecke operator Tc acts on the unit ideal R via

Tc([R]) =
∑

right ideals I⊂R
with R/I ≈ (Z/cZ)2

[Ĩ]. (6.5)

More generally, for any right R-ideal J with [R : J ] coprime to c, we have

Tc([J ]) =
∑

right ideals I⊂R
with R/I ≈ (Z/cZ)2

[Ĩ ∩ J ].

6.1.4 Statement of the main theorem

As in the diagram of Proposition 6.2 above, let [a] ∈ ker(Cl(Oc)→ Cl(OK)) be an ideal
class, and let [α] ∈ (OK/cOK)×/(Z/cZ)× be the corresponding element, so α ∈ OK .
By replacing a by an equivalent ideal, we may assume that a = Zα + cOK . Suppose
[b] ∈ ker(Cl(Oc)→ Cl(OK)) is another ideal class, with corresponding element [β], and
let θ[b] ∈ Gal(Kc/K1) be the corresponding automorphism. Let Ib ⊂ R be a right ideal
such that

(Oc, nc, b) 7→ [Ĩb] (6.6)
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under composition of reduction modulo λ with the equivalence (6.3) above. There is
such a right ideal Ib because (Oc, nc, b) is in the support of Tc(x1), and [Ĩb] is in the
support of Tc(x1 (mod λ)) (see Equation (6.1)).

The group Gal(Kc/K1) does not act naturally on

X0(N)(F`2)ss = X0(N)(OKc
/λ)ss,

since `OK splits as a product of many primes (of which λ is one of them); of course, the
“useless” decomposition subgroup of Gal(Kc/K1) associated to λ (which has order 1!)
does naturally act. However, as we will now see, Gal(Kc/K1) acts naturally on a subset
of the right ideals of R. The challenge is that we need to compute what happens if we
take xc ∈ X0(N)(Kc), act by Galois, then map the result to X0(N)(F`2), and we can
do this explicitly by instead considering the action of Gal(Kc/K1) on index c2 ideals in
R.

Equation (6.2) asserts that given our choice of λ there is an inclusion OK ↪→ R,
which we fix and use to define a right action of Gal(Kc/K1) on certain right ideals in
R. For α ∈ OK , let α denote the image of α in R. If σ ∈ Gal(Kc/K1) corresponds to
[α] ∈ (OK/cOK)×/(Z/cZ)×, make σ act on the right on the set of right ideals I of R
with R/I ≈ (Z/cZ)2 by Iσ = α−1I. Finally, we state the main result of this section,
which asserts that the natural right action of Gal(Kc/K1) on the support of Tc(x1) in
Div(X0(N)/Kc) is compatible with the right action of Gal(Kc/K1) that we just defined.
We will prove this theorem in Section 6.2 below.

Theorem 6.6. Let σ ∈ Gal(Kc/K1), [b] ∈ ker(Cl(Oc) → Cl(OK)), and let [Ĩb] corre-
spond to (Oc, nc, b) (mod λ) as in Equation 6.6 above. Then

(Oc, nc, b)σ (mod λ) = [Ĩσb ].

6.2 Proof of Theorem 6.6

This section is devoted to giving a proof of Theorem 6.6. When c = 1 the relevant
objects all have cardinality 1 and the statement is trivial, so for the rest of this section
we assume that c > 1. The strategy of the proof is to reinterpret the ideal Ib as the right
annihilator of a certain left ideal, and observe that this left ideal behaves sensibly under
the action of Galois. (The proof is long because we are not sneaking any important
details under the rug.)

We may assume that the representative fractional ideal b is a sublattice of OK of
index c. Let E1 be the enhanced elliptic curve corresponding to the triple (OK , n, [OK ])
and let Eb be the enhanced elliptic curve corresponding to the triple (Oc, nc, [b]). Let
ψb : Eb → E1 be the isogeny of degree c given by the map C/b → C/OK that is

multiplication by 1 on tangent spaces. The complementary (or dual) isogeny ψ̂b : E1 →
Eb is then given by the map C/OK → C/b induced by multiplication by c on C. As
in Section 6.1.2, we use ψb (mod λ) to define a specific R-ideal Ib ⊂ R = End(E1)
that corresponds to [Eb] ∈ X0(N)(F`2)ss. More precisely, the ideal Ib is the image of
Hom(E1,Eb) in R via the map ϑ 7→ ψb ◦ ϑ, i.e.,

Ib = {ψb ◦ ϑ : ϑ : E1 → Eb} ⊂ R = End(E1).

The following lemma follows immediately from the definitions given in Section 6.1:

Lemma 6.7. Under our fixed choices of maps and prime λ, we have

[Eb] (mod λ) ←→ [Ib],

where Ib is defined as above.
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Proposition 6.10 below characterizes Ib as an annihilator of a left R-ideal, which will
be easier to work with. Let

Jb = {ϕ ∈ R : ϕ(ker(ψ̂b)) = 0},

which is a left R-ideal. Thus Jb is the left ideal of all endomorphisms of E1 that factor

through the homomorphism ψ̂b : E1 → Eb:

Eb

  
E1

ψ̂b

>>

ϕ∈Jb
// E1

We will use the following lemma to compute the quotient abelian group R/Jb.

Lemma 6.8. The natural map R→ End(E1[c]) is surjective.

Proof. It suffices to prove that for each prime p | c, the map

ϕ : R⊗ Fp → End(E1[p]) (6.7)

is surjective. Since R is an Eichler order of level N , N is coprime to c and p | c, we
have R⊗Fp = End(E1)⊗Fp. Also, since p 6= `, we have End(E1[p]) ≈ End(Fp⊕Fp) ∼=
M2(Fp), and since E1 is a supersingular elliptic curve, dimFp(R⊗Fp) = rankZR = 4, so

by a dimension count it suffices to prove that ϕ is injective. Suppose f = f⊗1 ∈ R⊗Fp
is a nonzero element of ker(ϕ), with f ∈ End(E1). Then f acts as 0 on E1[p], so f
factors through multiplication by p, which means that there exists g ∈ End(E1) with
f = pg. But then f = pg ⊗ 1 = g ⊗ p = g ⊗ 0 = 0, a contradiction. We conclude that ϕ
is injective, hence surjective.

Lemma 6.9. We have R/Jb ≈ (Z/cZ)2, where we view both sides as quotients of
additive abelian groups.

Proof. We prove this lemma by using Lemma 6.8 to reinterpret the assertion as a state-
ment in M2(Z/cZ), then use linear algebra modulo prime divisors of c to count di-

mensions. The kernel D = ker(ψ̂b) ⊂ E1[c] is a cyclic group of order c. Let J be
the left annihilator in End(E1[c]) ≈ M2(Z/cZ) of D. For each prime p | c, we have
End(E1[p]) ≈ M2(Fp), and the factor of D in E1[p] is of order p. The left annihilator
in M2(Fp) of a 1-dimensional subspace of (Fp)2 has Fp-dimension 2, since it is the 2-
dimensional Fp-vector space of matrices whose rows are both a multiple of v, where v
has dot product 0 with a basis for our 1-dimensional subspace. Putting these factors
for each p together, we see that J is free of rank 2 over Z/cZ.

Since c kills ker(ψ̂b), we see that cR ⊂ Jb. We thus have an isomorphism of abelian
groups

R/Jb →M2(Z/cZ)/J.

It is surjective because of Lemma 6.8. It is injective because Jb is defined to be those
endomorphisms that kill the subgroup D of E1[c], which is a condition we can check in
End(E1[c]). The lemma thus follows.

Next we use the left R-ideal Jb to define a right R-ideal:

I ′b = {ϕ ∈ R : Jbϕ ⊂ cR}.
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Proposition 6.10. We have
Ib = I ′b

Proof. The strategy of the proof is to show that Ib ⊂ I ′b, then observe that both Ib and
I ′b have the same index in R, so they must be equal.

To see that the inclusion Ib ⊂ I ′b hold is a straightforward calculation using the
definitions, as follows. An element ϕ ∈ Ib is by definition of the form ϕ = ψb ◦ϑ, where
ϑ : E1 → Eb and ψb : Eb → E1, as above. Suppose δ ∈ Jb, so δ ∈ End(E1) and

δ(ker(ψ̂b)) = 0, hence δ = δ′ ◦ ψ̂b for some δ′ : Eb → E1. Thus

δ ◦ ϕ = (δ′ ◦ ψ̂b) ◦ (ψb ◦ ϑ) = δ′ ◦ [c] ◦ ϑ ∈ cR,

which proves that Ib ⊂ I ′b.
We next prove that [R : I ′b] = c2, as an application of Lemma 6.9. We have c ∈ I ′b,

so cR ⊂ I ′b ⊂ R, hence I ′b is completely determined by an ideal I
′
b ⊂ R = R⊗ (Z/cZ) ≈

M2(Z/cZ). The ideal I
′
b is the right annihilator of the left ideal Jb ⊂ R. For each prime

p | c, Lemma 6.9 implies that the right annihilator mod p of Jb, i.e., the image of I ′b in
R⊗ Fp ∼= M2(Fp), is proper and nontrivial. We conclude that [R : I ′b] = c2.

Finally we observe that [R : Ib] = c2. In light of Equation (6.5), the ideal Ib is
one of the ideals that appears in the sum in the definition of the Hecke operator Tc, so
[R : Ib] = c2. Since [R : I ′b] = c2 and Ib ⊂ I ′b, it follows that Ib = I ′b, which proves the
proposition.

Suppose [α] ∈ (OK/cOK)×/(Z/cZ)× with α ∈ OK , and let a ⊂ OK be the cor-
responding fractional Oc-ideal (as in Section 6.1.4). Let Jα = Ja. Proposition 6.12
below asserts that the natural right action of (OK/cOK)×/(Z/cZ)× on the left ideals
in R is compatible with the natural right action of (OK/cOK)×/(Z/cZ)× on sublattices
a ⊂ OK of index c. Note the inverse that appears, which makes a left action into a right
action (the group acting is abelian, so we are being slightly pedantic in emphasizing
this). First we prove a lemma about an action on certain kernels.

Lemma 6.11. Suppose [α], [β] ∈ (OK/cOK)×/(Z/cZ)× with α, β ∈ OK . Then

ker(ψ̂αβ) = α ker(ψ̂β).

Proof. As above, let a ⊂ OK be the lattice of index c corresponding to [α]. Also, recall

from page 15 that the map ψ̂α : E1 → Ea is given over the complex numbers by the
map C/OK → C/a induced by multiplication by the integer c on C. We have

E1[c] =

(
1

c
OK
)
/OK ∼= OK/cOK (6.8)

and the lattice a defines a rank 1 subspace of OK/cOK . The isomorphism (6.8) identifies

ker(ψ̂α) ⊂ E1[c] with the image of a inOK/cOK . If b corresponds to [β], then αb = [αβ],
so in terms of this presentation of E1[c], the claimed equality of the lemma follows.

Note that since [α] ∈ (OK/cOK)×/(Z/cZ)×, the image α ∈ R = R⊗ (Z/cZ) of α is
invertible.

Proposition 6.12. Let α, β be as above, let J be a left R-ideal, and let J denote its
image in R. Then

Jαβ = Jβ · α−1,
where α is the image of α in R.
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Proof. The reduction modulo λ map E1[c] to E1[c] is an isomorphism since ` - cN (see

Remark 6.4), so reducing both sides of Lemma 6.11 modulo λ, we see that ker(ψ̂αβ) =

α ker(ψ̂β). Thus

Jαβ ={ϕ ∈ R : ϕ(ker(ψ̂αβ)) = 0}

={ϕ ∈ R : ϕ(α(ker(ψ̂β))) = 0}

={ϕ ∈ R : (ϕα)(ker(ψ̂β)) = 0}
={ϕ ∈ R : ϕα ∈ Jβ} = R ∩ (Jβ · α−1) ⊂ Jβ · α−1.

We thus have an inclusion of (equivalent) fractional left R-ideals

Jαβ ⊂ Jβ · α−1.

Taking the image of both ideals in R gives an inclusion

Jαβ ⊂ Jβ · α−1 ⊂ R.

Right multiplication by an invertible element in R is a bijection, so [R : Jβ · α−1] =
[R : Jβ ] = c2, by Lemma 6.9. Since [R : Jαβ ] = c2, again by Lemma 6.9, it follows that
Jαβ = Jβ · α−1, as claimed.

Proof of Theorem 6.6. We have a, b ⊂ OK two lattices of index c and corresponding
classes

[α], [β] ∈ (OK/cOK)×/(Z/cZ)×.

Let σ ∈ Gal(Kc/K1) be the automorphism corresponding to a ∈ Cl(Oc). Let g ⊂ OK be
the lattice of index c corresponding to the class [α−1β] = [α]−1[β] ∈ (OK/cOK)×/(Z/cZ)×,
so Iα−1β = Ig. Then, under reduction modulo λ, we have

(Oc, nc, b)σ = (Oc, nc, a−1b) 7−→ [Iα−1β ].

For any left or right ideal I of R, let I be the image of I in R = R ⊗ (Z/cZ). By
Proposition 6.10 the right ideal Ib is the right annihilator of the left ideal Jb, and this
is true for any b. By Proposition 6.12, we have that Iα−1β is the right annihilator of

the left ideal Jα−1β = Jβ · α. We thus have

α−1 · Iβ = α−1 · {ϕ ∈ R : Jβ · ϕ = 0}
= {α−1 · ϕ ∈ R : Jβ · ϕ = 0}
= {ϕ ∈ R : Jβ · αϕ = 0}
= {ϕ ∈ R : Jα−1β · ϕ = 0} = Iα−1β ,

where in the third equality we replace ϕ by αϕ, using that multiplication by α defines
a bijection R→ R. The displayed equality proves the theorem.
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7 Reduction of Derived Classes

Let E be an elliptic curve over Q, and let Pc,σ be as in Equation (5.4) of Section 5. In
this section, we apply the general results of Section 6 to give an algorithm to compute
the reduction zc,σ,` ∈ E(F`2)⊗ (Z/pZ) (see Equation 5.6) when p is an odd prime and
E[p] is absolutely irreducible. We will apply this algorithm in Section 8 to verify that
[Pc,σ] 6= 0, in specific examples. It is of interest to verify that [Pc,σ] 6= 0 in specific
examples since, as was mentioned in Section 1, this was until now not known in even a
single case for a curve E of rank ≥ 2.

We continue to assume that E and K satisfy the Heegner hypothesis. The goal of
this section is to give an algorithm that we can use (in some specific examples) to verify
that [Pc,σ] 6= 0 for some c. To do this, we consider the reduction map

r` : E(Kc)⊗ (Z/pnZ)→ E(F`2)⊗ (Z/pnZ), (7.1)

given by reducing points modulo a fixed choice of prime λ over `, where ` - c is a
prime that is inert in K, just as at the end of Section 5. If we find one prime ` such
that zc,σ,` = r`([Pc,σ]) 6= 0, we conclude that [Pc,σ] 6= 0, as desired. We will thus be
concerned primarily with computing whether or not zc,σ,` is 0 in the case when n = 1.

Remark 7.1. Assume that X(E/Q)[p] = 0, that ran(E/Q) = rank(E(Q)) = 2, and
that we have shown that [Pc,σ] 6= 0 for some prime c. Then there is an alternative
approach to compute the line spanned by Pc′,σ′ for any inert prime c′. Jared Weinstein
and the author learned about this idea from Karl Rubin after we implemented and
ran the main algorithm of this paper, and wanted to better understand the data we
obtained. The algorithm builds on [How04] and the Mazur-Rubin theory of Kolyvagin
systems [MR04]. This is the subject of the forthcoming paper [SW10], and we have also
used this algorithm as a double check on the calculations in Section 8. Quick summary:
an easy calculation shows that the line has to be in the kernel of rc; moreover, and this
is deeper, rc fails to have maximal rank if and only if [Pc] = 0.

In Section 7.1 we explain how to compute the reduction map from Heegner points in
characteristic 0 to supersingular points in characteristic ` as an application of Deuring’s
lifting theorem and explicit computation with ternary quadratic forms. Section 7.2 con-
tains the promised reinterpretation of Kolyvagin’s derived classes construction directly
on the divisor group of supersingular points, and Section 7.3 explicitly links this con-
struction with reduction of derived classes from characteristic 0. Section 7.4 refines a
crucial surjectivity result that Cornut used in proving Mazur’s conjecture, which is also
extremely important to our algorithm. Finally, Section 7.5 proves a multiplicity one
theorem, which ensures that we have a general algorithm, rather than just a procedure
that happens to work in every case we try.

7.1 Explicit computation of the reduction map using quaternion
algebras

Let ` be a prime that is inert in K, as above. Following [Ste09, Piz80], let B = B`,∞
be the unique (up to isomorphism) quaternion algebra ramified at ` and ∞, and fix an
Eichler order R of level N in B.

The group of Atkin-Lehner operators of level N has order 2ν , where ν is the number
of prime divisors of N . As discussed in Remark 4.1 above, the Heegner point x1 is only
well defined up to the choice of an ideal n of OK with OK/n ∼= Z/NZ, and there are 2ν
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choices for n. We temporarily write x1,n for the choice of Heegner point x1 associated
to the ideal n.

The prime ` is inert in K, so by Lemma 6.5, each of the points x1,n defines a point on
X0(N)(K1) that reduces to a supersingular point in X0(N)(F`2)ss. Moreover, we have
the bijection of Equation 6.3 between X0(N)(F`2)ss and a certain set of right R-ideal
classes. In terms of this bijection, we compute some x1 ∈ X0(N)(F`2)ss corresponding
to a choice of n as follows. First, we enumerate all right ideal classes [I] using standard
algorithms, e.g., if N is odd by applying the Hecke operator T2 repeatedly, starting with
the unit ideal, and using theta series to check equivalence (see, e.g., [Piz80, Prop. 1.18]).
Then we apply Theorem 7.2 below to find an I such that OK embeds in RI .

Let I be a fractional right R-ideal, and consider the left order

RI = {x ∈ B : xI ⊂ I}

associated to I. We use the Deuring lifting theorem to give an algorithm to compute
x1.

Theorem 7.2 (Deuring). The bijection of Equation (6.3) induces a bijection

{x1,n ∈ X0(N)(F`2)ss : ideals n with OK/n ∼= Z/NZ}
∼=−−→ {[I] : OK embeds in RI}.

Proof. See [GZ85, Prop. 2.7] (see also [JK10, §2] for a generalization in which OK is
replaced by Oc).

To compute a choice of x1 thus reduces to giving an algorithm to decide whether or
not OK embeds in RI . As in [Gro87, pg. 172], let GI ≈ Z3 be the trace zero elements
in 2RI + Z, and let qI : GI → Q be the normalized ternary quadratic form got by
restricting the reduced norm on B to GI .

Lemma 7.3. There is an embedding of OK into RI if and only if the quadratic form
qI represents the absolute value |DK | of the discriminant of OK .

Proof. This follows from [Gro87, Prop. 12.9] (see also [JK10, Lem. 4.1]).

To compute x1 we compute the quadratic form qI for a representative I for each
right ideal class in turn, and decide whether or not it represents |DK |. When we find
one that does, we declare that our representative element is x1 = x1,n, which is well
defined up to the choice of ideal n. In general (e.g., when the class number of K is
bigger than 1), our current formula unfortunately requires computing all x1,n for all n
(see Theorem 7.8).

7.2 Kolyvagin’s derived classes construction in terms of quater-
nion algebras

Let I be a right ideal in our fixed choice of Eichler order R of level N such that I
corresponds to x1,n, computed as above.

Lemma 7.4. By replacing I by an equivalent ideal, we can arrange that I ⊗ (Z/cZ) =
R⊗ (Z/cZ).

Proof. For any prime r - N`, the graph of the Hecke operator Tr is connected (see
[Mes86, §2.4, pg. 223] or [Rib90a, Lem. 3.17]). If we choose r also coprime to c, then
enumerate the right ideals of R by computing the action of Tr, starting with the unit
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ideal, we will cover all the right ideal classes of R; in particular, there is an ideal I ′

equivalent to I obtained via this procedure. From the formula of Equation (6.4) for the
action of Hecke operators, we see that [R : I ′] is a power of r. Thus I ′ ⊗ (Z/cZ) =
R⊗ (Z/cZ), as claimed.

Next we compute a choice of homomorphism

s : R�M2(Z/cZ). (7.2)

This can be done individually for each prime divisor of c, and the maps assembled
together to give s. For example, for each prime divisor q | c, one could consider the
algebra R ⊗ (Z/qZ) and apply [Voi, §4] to find an explicit isomorphism R ⊗ (Z/qZ)→
M2(Z/qZ).

Let q be any prime that is inert in K. Suppose the image of α ∈ OK generates the
cyclic group

(OK/qOK)×/(Z/qZ)×

of order q + 1. Using a fixed choice of embedding of OK into the left order of I from
above (which exists by Theorem 7.2), we view α as an element of B. Let α be the
canonical image of α in M2(Z/qZ) = R/qR using the splitting s of (7.2).

For each i = 0, . . . , q, let

J i = {B ∈M2(Z/qZ) : (1, 0)αiB = 0} ⊂ R/qR.

Suppose [M ] is a right ideal class of R, and (as in Lemma 7.4) choose a representative
right ideal M ⊂ R such that q - [R : M ], so s defines a map M � R. For each i, let Ji
be the inverse image of J i in M . Define

Dq,α([M ]) =

q∑
i=1

i[Ji].

Extending linearly, we define an endomorphism

Dq,α ∈ End(Div(X0(N)(F`2)ss)).

Remark 7.5. We make two remarks about the above operator:

1. The map Dq,α is explicitly computable; it is closely related to computing the
Hecke operator Tq, since Tq([M ]) =

∑q
i=0[Ji] is almost the same as Dq,α([M ]),

except without the coefficient in the enumeration of the Ji’s.

2. The maps Dq,α typically do not commute with the Hecke operators or with each
other.

Next write c = p1 · · · pt, let σ = (σ1, . . . , σt) with σi ∈ Gal(Kc/Kc/pi) be choices of
generators, and let α = (α1, . . . , αt) with αi ∈ OK be the corresponding elements via
the map of Equation 4.1 above. Define

Dc,α =

t∏
i=1

Dpi,αi ∈ End(Div(X0(N)(F`2)ss)).
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7.3 Reduction of Kolyvagin’s derived points

Let f ∈ S2(Γ0(N)) be a newform, let If ⊂ T be the annihilator of f in the Hecke algebra
associated to J0(N), let Af = J0(N)/IfJ0(N) be the corresponding modular abelian
variety with modular parametrization πf : J0(N)→ Af and let

ψf : Div(X0(N)ssF`2
)→ Af (F`2)

be the homomorphism that sends each supersingular point x to πf (x−∞), where πf is
the reduction modulo λ of πf . By [BCDT01], our elliptic curve E is isogeneous to some
Af for a newform f ∈ S2(Γ0(N)) where N is the conductor of E.

Theorem 7.6. We have the following in Af (F`2)⊗ (Z/pnZ):

[πf (Dc,σ(yc))] = [ψf (Dc,α([I]))].

Proof. This follows from Theorem 6.6.

Let
I = {[I] : OK ↪→ RI}

be the set of all right ideal classes of R whose left order admits an embedding of OK .
For each such [I], let nI be half the number of primitive representatives of |DK | by the
ternary quadratic form qI . Let H be the Gal(Q/K)-orbit of the set of all Heegner points
x1,n ∈ X0(N)(K1) for all ideals n ⊂ OK with OK/n ∼= Z/NZ.

Lemma 7.7. For each [I] ∈ I, the number of elements of H reducing to the point of
X0(N)(F`2) corresponding to [I] is equal to nI .

Proof. By [JK10, §2] there is a one-to-one correspondence between the Heegner points
x1,n reducing to [I] and R×I conjugacy classes of embeddings OK ↪→ RI . By [JK10,
Prop. 4.2] there is a (#R×I /2)-to-1 correspondence between embeddings OK ↪→ RI and
primitive representations of |D| by qI . Thus every pair of primitive representations of |D|
by qI corresponds to #R×I embeddings, so half the number of primitive representatives
is the number of R×I conjugacy classes of embeddings.

Theorem 7.8. Let ν be the number of distinct prime divisors of N . We have the
following in Af (F`2)⊗ (Z/pnZ):

πf ([Pc,σ]) = 2−ν ·
∑
[I]∈I

nI · [ψf (Dc,α([I]))] (7.3)

Proof. This follows by combining Lemma 7.7 and Theorem 7.6, and noting that H is
a disjoint union of [K1 : K] Atkin-Lehner orbits, each of size 2ν . Thus in computing
the sum on the right of (7.3) we are computing TrK1/K(Dc,σ(yc)) separately 2ν times,
hence we divide out this extra factor of 2ν , which is harmless since p is odd.

We still have not explained how to explicitly compute the map ψf , so Theorem 7.8
does not yet yield an algorithm. In Section 7.4 we will establish that ψf is surjective after
tensoring with Z/pZ, and in Section 7.5 we give conditions under which ψf is uniquely
determined up to scalars by being Hecke equivariant (“multiplicity one”), which means
we can compute ψf up to a scalar. Alternatively, as mentioned in Remark 2.3, we can
sometimes instead avoid computing ψf at all if we know ψf is surjective by instead
verifying that the T-span of

∑
nIDc,α([I]) is all of X ⊗ Fp.
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7.4 Map from the supersingular module to an optimal abelian
variety quotient

Let ` be an inert prime that does not divide the level N , and let k = F`2 ≈ OK/`OK ,
which is a finite field of order `2. The Hecke algebra T acts via correspondences on many
objects attached to the modular curves X0(N) and X1(N), e.g., via endomorphisms on
the Jacobian J0(N) and also on

X = Div(X0(N)(k)ss) and X0 = Div0(X0(N)(k)ss). (7.4)

Also, T acts on the Shimura subgroup Σ = ker(J0(N) → J1(N)). We say that a T-
module M is Eisenstein (in the sense of [Maz77]) if for any prime p - N , the operator
Tp − (1 + p) annihilates M . For example, [Rib88, Thm. 1] asserts that Σ is Eisenstein.

Let J = J0(N)k, and consider the natural T-module homomorphism

X → J(k) (7.5)

that sends a divisor D ∈ X to the equivalence class of the degree zero divisor D −
deg(D)∞ in the Jacobian.

Proposition 7.9 (Ribet). The cokernel S of the induced map

X0 → J(k) (7.6)

is the Cartier dual Σ∨ of Σ, and the T-module Σ∨ is Eisenstein.

Proof. The following argument is due to Ribet (see [Rib10]). Let F be the `th power
Frobenius endomorphism of J and let V be its dual. We have J(k) = J [1 − F 2]. This
kernel is Cartier dual to J [1− V 2], since it is obtained by dualizing the following exact
sequence (see [Mum70, §15, pg. 143] and [Mil86, §11]):

0→ J [1− F 2]→ J
1−F 2

−−−→ J → 0.

Ribet proved in 1983 (see [Pra95, Prop. 3.6]) that the subgroup J [1− V 2] contains
the reduction modulo ` of the Shimura subgroup Σ of J , and S is the annihilator of Σ
in the natural perfect pairing between J [1− F 2] and J [1− V 2]. The content of [Pra95,
Prop. 3.6] is that the supersingular group is “as large as possible” in the sense that it
is the full annihilator.

In the pairing between J [1 − F 2] and J [1 − V 2], there is the standard formula
〈Tx, y〉 = 〈x, T †y〉, where the dagger refers to the Rosati involution of End(J) and T
is a Hecke operator. The Hecke operators Tn with n coprime to N are self dual with
respect to the Rosati involution.

To see that the group J [1 − F 2]/S is Eisenstein in the sense that Tp = 1 + p on
this quotient for p prime to N , let η be the difference Tp − (1 + p), which is self dual
with respect to the Rosati involution, since Tp is self dual and multiplication by the
integer (1 + p) is also self dual. For x ∈ J [1− F 2], we want to show that η(x) is in the
supersingular divisor class group; by [Pra95, Prop. 3.6], as mentioned above, this is the
same as showing that 〈η(x), y〉 = 0 for all y ∈ Σ. However, η annihilates Σ (see [Rib88,
Thm. 1]), so

〈η(x), y〉 = 〈x, η(y)〉 = 0.
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The following proposition is a refinement of [Cor02, Prop. 4.4]. An optimal quotient
A of J0(N) is any quotient of J0(N) by an abelian subvarieties (see [CS01, §3] for
the basic properties of optimal quotients). For example, the abelian varieties Af of
Section 7.3 above are, up to isogeny, the simple optimal quotients of J0(N) that satisfy
the hypothesis of Proposition 7.10 below.

Proposition 7.10. Let A be any abelian variety optimal quotient of J0(N) such that
ker(J0(N)→ A) is Hecke stable, let m be a non-Eisenstein maximal ideal of T, and let
X0 be as in Equation (7.6). Then the natural map

X0 → A(k)⊗T (T/m) (7.7)

is surjective. In particular, if A[m] is irreducible, then (7.7) is surjective.

Proof. As above, let S be the image of X0 in J(k), and let SA be the image of S in A(k).
Also, let Q = A(k)/SA. In light of Proposition 7.9, we have a commutative diagram of
T-modules with exact rows

0 // S //

��

J(k) //

��

Σ∨ //

��

0

0 // SA // A(k) // Q // 0.

Since A is an optimal quotient of J0(N), there is an abelian variety B such that we
have an exact sequence 0→ B → J0(N)→ A→ 0 of abelian varieties over Q with good
reduction at ` (since ` - N). This sequences reduces to an exact sequence 0 → Bk →
J → Ak → 0 over k by [BLR90, §7.5, Thm. 4] (we have “e < p− 1”, since p = ` is odd
and e = 1). Lang’s theorem (see [Lan56] or [Ser88, §VI.4]) implies that H1(k,Bk) = 0,
so J(k) → A(k) is surjective. The snake lemma then implies that the vertical map
Σ∨ → Q is surjective.

If Σ∨ ⊗T (T/m) ∼= Σ∨/mΣ∨ is nonzero then I = AnnT(Σ∨/mΣ∨) equals m since
m is maximal. Every ηq = Tq − (q + 1) for q - N is in I, since Σ∨ is Eisenstein by
Proposition 7.9. But some ηq 6∈ m, since m is non-Eisenstein, a contradiction. Thus
Σ∨ ⊗T (T/m) = 0, so upon tensoring the rightmost vertical surjection of the above
diagram with T/m, we conclude that Q⊗T (T/m) = 0. Tensoring the bottom row over
T with T/I and using that tensor product is right exact again then implies that (7.7)
is surjective.

Since m is a maximal ideal such that A[m] is irreducible (which implies by definition
that A[m] 6= 0), there is a prime q - N such that ηq = Tq − (1 + q) does not act as 0 on
A[m], since otherwise A[m] would have semisimplification the reducible representation
1⊕χ, where χ is the cyclotomic character. Thus m is non-Eisenstein, and the first part
of the proposition proves the second claim.

7.5 Multiplicity one theorem

The results of this section may be viewed as a partial generalization of [Rib99, Theo-
rem. 2.3] and [Eme02, Thm. 4.2, Thm. 4.6] to more general levels. In particular, we
prove under mild hypothesis that the multiplicity of a certain submodule of the T-module
Div(X0(N)ssF`2

) ⊗ Fp is 1. Our proof proceeds by finding a natural injective map from

this submodule into J0(N`)[p], and observing that the image lies in a 1-dimensional
subspace, as a consequence of a general multiplicity one result for J1(N`). For any
positive integer N , let T(N) denote the ring of Hecke operators acting on S2(Γ0(N)).
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Let N be a positive integer and ` a prime that does divide N , and let X =
Div(X0(N)ssF`2

), as in Equation (7.4). Let f =
∑
anq

n ∈ S2(Γ0(N)) be a newform

of level N and let m0 be a maximal ideal of T(N) such that the following three condi-
tions simultaneously hold:

1. m0 has odd residue characteristic p,

2. a`, `+ 1 ∈ m0, and

3. the 2-dimensional mod p Galois representation ρ attached to m0 is absolutely
irreducible.

By Ribet’s level raising theorem (see [Rib90b]), for each choice of ±1, there is a
maximal ideal m in the Hecke algebra T = T(N`) such that ρm ≈ ρ and T` ± 1 ∈ m.
Letting J = J0(N`), as explained in [RS01, §3.3], we have

J [m] ∼=
t⊕
i=1

ρ, (7.8)

for some integer t ≥ 1 called the multiplicity of m. That t ≥ 1 follows from an argument
of Mazur, as explained in [RS01, §3.3].

Proposition 7.11. We have dimT/m Hom(X,µp)[m] ≤ t.

Proof. The proof is inspired by [Rib94, Prop. 7.7], though that argument takes place in
the midst of a proof by contradiction.

Let G` ≈ Gal(Q`/Q`) be the decomposition subgroup of Gal(Q/Q) associated to
our fixed choice of prime λ of Z over `, and let I` ⊂ G` be the inertia subgroup. Let
k = F`, and let Jk be the special fiber of the Néron model of J at k. By [ST68, Lem. 2],
we have Jk[m] ∼= J [m]I` , and because ρ is unramified at `, we have J [m]I` = J [m], so
Jk[m] ∼= J [m].

Let Φ be the component group of Jk. As explained in [CS01, §4], we have a diagram
with an exact row and exact column, where T is the toric part of J0

k and B is an abelian
variety:

0

T

0 J0
k Jk Φ 0

B

0

Moreover, X0 ∼= Hom(T,Gm), so T ∼= Hom(X0,Gm) and T [p] = Hom(X0, µp).
Hence

Hom(X0, µp)[m] = T [m] ↪→ J0
k [m] ⊂ Jk[m] ∼= J [m]. (7.9)

The representation ρ arises from level N , so is unramified at `. The characteristic
polynomial of ρ(Frob`) is x2 − a`x+ `. Our hypothesis 2 on a` and `+ 1 imply that

x2 − a`x+ ` = x2 − 1 ∈ Fp[x].
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Since x2 − 1 = (x − 1)(x + 1) and p is odd, we have a decomposition of T[D]-modules
J [m] ∼= J [m]+⊕J [m]− and (7.8) implies that the two summands have dimension t. Here
we are using that J [m] = ⊕ρ; if V is the space underlying ρ, then V has dimension 2
and the characteristic polynomial of Frob` on V is (x− 1)(x+ 1), so V + and V − each
have dimension 1.

By [Rib90a, Prop. 3.7–3.8], the action of Frob` on X0 is via −T`. Since T` ± 1 ∈ m
(for some choice of sign), the action of Frob` on the T[D]-module Hom(X0, µp)[m] is
by ±` (because Frob` acts on µp by `th powering). Since ` + 1 ∈ m0, we have ` ≡ ±1
(mod p), so we conclude that Frob` acts on Hom(X0, µp)[m] as either +1 or −1. Thus
the sequence of inclusions of Equation (7.9) sends Hom(X0, µp)[m] to a submodule of
J [m]± for one choice of sign, from which we conclude that

dimT/m Hom(X0, µp)[m] ≤ dimT/m J [m]± = t.

Lemma 7.12. We have X/mX ∼= X0/mX0. (In fact, this lemma is true for any
non-Eisenstein maximal ideal m.)

Proof. It follows from the explicit description of Hecke operators (see Section 6.1.3) that

we have an exact sequence 0→ X0 → X
deg−−→ Z→ 0, where T acts on Z by Tr = r + 1

for r a prime coprime to N`. Tensoring this exact sequence over T with T/m yields an
exact sequence

TorT1 (Z,T/m)→ X/mX → X0/mX0 → Z⊗T (T/m)→ 0.

Since m is non-Eisenstein, Z⊗T (T/m) = 0 and

TorT1 (Z,T/m) = TorT1 (T/m,Z) = Z[m] = 0.

Recall that m is any maximal ideal of level N` arising from level raising, as explained
above (7.8) at the beginning of this section.

Proposition 7.13. We have dimT/m Hom(X,µp)[m] ≥ 1.

Proof. Let A = Af be the optimal quotient of J0(N) attached to f , let k = F`2 , and let
T = T(N). Consider the T[Frob`]-module M = A(k)⊗ T/m0. Proposition 7.10 implies
that the T-module homomorphism

X0 →M ∼= M+ ⊕M−

is surjective. Projection onto a one-dimensional T/m0-subspace of each of M+ and M−

defines a nonzero element of Hom(X0, µp)[m] for each of the two possible choices of m.
Note that Frob2

` = 1 on A[m] by hypothesis, so A[m](k) = A[m](k). Here we also use
that dimT/mA[m] ≥ 1 (see [RS01, §3.3]).

It is elementary that every element of Hom(X,µp)[m] factors through X/mX and
likewise for X0, so by Lemma 7.12 we have

Hom(X,µp)[m] ∼= Hom(X/mX,µp)[m] ∼= Hom(X0/mX0, µp)[m] ∼= Hom(X0, µp)[m].
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Theorem 7.14. If p - N , then dimT/m Hom(X,µp)[m] = 1.

Proof. In light of the above two propositions, it suffices to show that t = 1, where
t is the multiplicity in Equation (7.8). Let f be a cuspidal eigenform in S2(Γ0(N`))
such that AnnT(f) ⊂ m, and view f as an element of S2(Γ1(N`)). Let m1 be the
inverse image of m in T1 = T1(N`) under the natural map T1 → T. Since p > 2 and
p - N`, [Edi92, Th. 9.2, part 1] implies that dimT1/m1

J1(N`)[m1] = 2. The inclusion
J0(N`) → J1(N`) has kernel the Shimura subgroup, which is Eisenstein (by [Rib88,
Thm. 1]), so J0(N`)[m] ↪→ J1(N`)[m1]. Since t ≥ 1, this inclusion implies that t = 1.

8 Implementation and Data

We implemented in Sage1 algorithms based on the above results, and used them to
compute zc,σ,` for 10 different rank 2 curves, and various primes `, primes q = 3, 5, 7,
discriminants D of class number 1, and primes c, as in Table 8.1. Let r` be the reduction
map from Equation (7.1). We choose the pairs (E, `) so that r` is surjective and if `1
and `2 are the first two primes for a given elliptic curve E, then ker(r`1)∩ ker(r`2) = 0.
For each pair (E, `) in the table, we considered all fundamental discriminants D ≤ −5
such that K = Q(

√
D) has class number 1, satisfies the Heegner hypothesis for E, has

ords=1 L(ED, s) ≤ 1, and for which ` is inert. The restriction to class number 1 is not
essential.

8.1 Tables

Table 8.1: Rank 2 curves, discriminants, and primes for which we computed zc,σ,`.

E D p `

389a1 -7 3 5
389a1 -7 3 17
389a1 -7 3 41
389a1 -7 5 19
389a1 -11 3 17
389a1 -11 3 41
389a1 -11 5 19
389a1 -19 3 41
389a1 -67 3 5
389a1 -67 3 41
433a1 -8 5 79
433a1 -8 5 199
433a1 -11 3 17
433a1 -11 3 41
433a1 -11 5 79

E D p `

563a1 -8 3 23
563a1 -163 3 17
563a1 -163 3 23
571b1 -7 3 47
571b1 -7 7 97
571b1 -7 7 167
571b1 -8 3 47
571b1 -8 5 29
571b1 -8 5 149
571b1 -8 7 167
571b1 -19 5 29
571b1 -19 7 97
571b1 -19 7 167
571b1 -67 3 11
571b1 -67 7 97

E D p `

643a1 -8 3 29
643a1 -11 3 29
643a1 -19 3 29
643a1 -43 3 29
643a1 -67 3 11
655a1 -19 3 29
681c1 -8 3 23
709a1 -7 3 5
709a1 -7 3 47
709a1 -43 3 5
709a1 -67 3 5
709a1 -163 3 5
718b1 -7 3 5
997c1 -19 3 41
997c1 -67 3 41

1All computations in this section can be done in Version 4.6.1 using the free open source software
Sage [S+11]. Our implementation was peer reviewed by John Cremona for inclusion in Sage. Some
relevant output files from running the computation can be found at http://wstein.org/home/wstein/

db/kolyconj/. All computations were done under Linux (Ubuntu and Redhat) on several NSF-funded
Sun Fire X4450 servers with 24 2.6Ghz cores and 128GB RAM each, at University of Washington and
University of Georgia, and the computations took a few weeks CPU time.
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We refer to elliptic curves using Cremona’s notation (see [Crea]). Table 8.1 has columns
E, D, p, `. Each row has the property that E has rank 2, ` is inert in the field K =
Q(
√
D), andK satisfies the Heegner hypothesis for E. Also, we have p | gcd(`+1, a`(E)).

We selected these examples because the Z-rank of Div(X0(N)ssF`2
) is relatively small (the

dimensions are in Table 8.2).
The Tamagawa numbers of all of our curves are 1 or 2, and in all cases ρE,p is

surjective (see Proposition 8.1).
Table 8.2 contains data about the points zc,σ,`. The columns labeled E, D, p,

and ` correspond exactly to the entries in Table 8.2. The column labeled dim gives
the dimension of Div(X0(N)ssF`2

); this dimension directly impacts the runtime of our

implementation. The column labeled max c contains the largest c such that we managed
to compute zc,σ,`. The columns labeled “= 0” and “6= 0” are a count of how many zc,σ,`
are 0 and not 0 among those we computed; note that for each c, ` we compute zc,σ,` for
only one choice of generator σ (see below for how we chose σ), since other choices of
σ would yield a nonzero scalar multiple, hence we often just write zc,`. The columns
labeled zc,` = 0 and zc,` 6= 0 give the first few c such that zc,` is zero or nonzero,
respectively.

A consistency check on Table 8.2 comes from the rows labeled (389a1,−7, 3, 17) and
(389a1,−7, 3, 41), since the reduction maps

E(Q)→ E(F`)⊗ (Z/3Z)

have the same kernel for ` = 17 and 41. Hence the zc,17 6= if and only if zc,41 6= 0, which
was indeed the case in the range of our computations.

In every single case in Table 8.2 we find at least one c such that zc,` 6= 0, so Conjec-
ture 1.1 is true in these cases.

One initially surprising numerical observation we made is that the classes τc,p appear
to not be equidistributed in the most naive possible sense. For example, in our compu-
tations with p = 3, the 0 subspace occurs about twice as much as any other subspace.
Once we know that one class is nonzero, the exact asymptotic distribution of all classes
can then be determined as an application of work of Mazur-Rubin, B. Howard [How04],
and the Chebotarev density theorem. See the forthcoming paper [SW10]. As mentioned
in Remark 7.1 above, this also leads to an alternate way to compute τc,p up to scaling.
This provided an convincing double check on the correctness of our tables.

Tables 8.3–8.4 provide further details about the distribution of elements of

Sel(p)(E/Q) ∼= (Z/pZ)2

coming from this construction. The first 5 columns labeled E, D, p, `1 and `2 specify an
elliptic curve, fundamental discriminant D, a prime p and two primes `1 and `2, chosen
from the data summarized in Table 8.2. As mentioned above, the primes `1 and `2 are
chosen so that the intersection of the two reduction maps to E(F`i)⊗ (Z/pZ) is 0. Since
the Selmer group has dimension 2 and in our implementation we chose the generator
σ ∈ Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)× to be

√
D + n with n ≥ 1 minimal, where

D = disc(K). This allows us to deduce the subspace spanned by τc,p in Sel(p)(E/Q)

with respect to some unknown basis for Sel(p)(E/Q). The column labeled τc,p gives the
normalized generator for this subspace. The next column, labeled # gives the number
of c such that τc,p spans the given subspace, and the last column gives the first few such
primes c.

28



Table 8.2: Data about zc,σ,`.

E D q ` dim max c = 0 6= 0 c with zc,` = 0 c with zc,` 6= 0

389a1 -7 3 5 130 19031 152 121 17, 173, 227, 269 41, 59, 83, 587

389a1 -7 3 17 520 14657 122 92 41, 83, 173, 227 5, 59, 503, 587

389a1 -7 3 41 1300 11681 102 74 17, 83, 173, 227 5, 59, 503, 587

389a1 -7 5 19 586 28229 32 67 349, 509, 769, 2539 419, 929, 1049, 1399

389a1 -11 3 17 520 14717 116 101 29, 41, 83, 107 233, 263, 347, 479

389a1 -11 3 41 1300 14879 117 104 17, 29, 83, 107 233, 263, 347, 479

389a1 -11 5 19 586 22189 24 60 239, 569, 1759, 1999 149, 349, 359, 769

389a1 -19 3 41 1300 14699 132 98 29, 53, 107, 227 59, 113, 173, 449

389a1 -67 3 5 130 23663 170 147 41, 113, 281, 347 53, 233, 599, 653

389a1 -67 3 41 1300 15473 129 82 53, 113, 281, 587 5, 233, 347, 503

433a1 -8 5 79 2822 15199 19 30 1319, 2269, 2549, 3079 199, 389, 1039, 1669

433a1 -8 5 199 7162 11149 14 26 1319, 1879, 2269, 2549 79, 389, 1039, 1669

433a1 -11 3 17 580 12473 91 88 131, 239, 293, 359 41, 83, 107, 197

433a1 -11 3 41 1448 11579 82 84 239, 281, 293, 359 17, 83, 107, 131

433a1 -11 5 79 2822 15329 12 37 1889, 2309, 3079, 4759 409, 1289, 1319, 1669

563a1 -8 3 23 1034 14813 113 109 197, 263, 311, 383 47, 173, 191, 269

563a1 -163 3 17 752 15887 123 93 137, 293, 311, 887 23, 59, 191, 269

563a1 -163 3 23 1034 15149 114 92 137, 311, 521, 569 17, 59, 191, 269

571b1 -7 7 97 4576 12011 15 32 167, 503, 937, 1511 349, 839, 881, 1063

571b1 -7 7 167 7914 9547 16 16 97, 503, 937, 1063 349, 839, 881, 1483

571b1 -8 5 149 7056 11159 5 43 29, 1319, 2239, 7639 79, 229, 349, 359

571b1 -8 7 167 7914 12109 8 13 1063, 1861, 2141, 2309 349, 503, 839, 1511

571b1 -19 5 29 1336 15259 16 33 79, 1709, 2179, 2339 439, 829, 1229, 1319

571b1 -19 7 97 4576 13789 9 23 2309, 2953, 4157, 7349 167, 839, 1063, 1511

571b1 -19 7 167 7914 10639 9 13 97, 1063, 1861, 2141 839, 1511, 1931, 3989

571b1 -67 3 11 478 16889 129 108 239, 281, 353, 521 191, 233, 251, 311

571b1 -67 7 97 4576 12641 9 14 503, 2239, 4157, 4507 937, 1063, 1861, 2309

643a1 -8 3 29 1504 12527 104 82 47, 71, 149, 173 167, 263, 359, 431

643a1 -11 3 29 1504 12953 91 93 83, 131, 149, 197 167, 173, 263, 359

643a1 -19 3 29 1504 12143 107 86 89, 293, 509, 641 71, 113, 167, 173

643a1 -43 3 29 1504 12647 102 83 89, 131, 137, 149 71, 113, 503, 521

643a1 -67 3 11 538 14753 115 104 113, 137, 191, 251 197, 311, 353, 443

655a1 -19 3 29 1848 12149 96 77 59, 89, 113, 167 53, 179, 227, 257

681c1 -8 3 23 1672 11909 101 81 29, 47, 167, 263 191, 317, 479, 557

709a1 -7 3 5 238 16061 131 107 47, 257, 269, 419 59, 83, 227, 353

709a1 -7 3 47 2724 9833 92 56 257, 269, 419, 503 5, 59, 83, 227

709a1 -43 3 5 238 16319 131 118 149, 233, 389, 503 137, 179, 227, 257

709a1 -67 3 5 238 16301 133 109 179, 197, 233, 353 137, 239, 281, 503

709a1 -163 3 5 238 16883 138 107 233, 239, 353, 479 59, 137, 149, 257

718b1 -7 3 5 360 15137 122 100 41, 47, 131, 167 101, 251, 353, 839

997c1 -19 3 41 3328 8297 66 63 179, 227, 269, 449 113, 173, 383, 677

997c1 -67 3 41 3328 8231 76 61 179, 191, 311, 347 113, 197, 383, 647
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Table 8.3: Data about normalized elements τc,p ∈ Sel(q)(E/Q) (part 1 of 2)

E D q `1 `2 τc,p # at most first 10 primes c

389a1 −7 3 5 17 (0, 0) 87 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181
(0, 1) 30 503, 773, 1049, 1193, 1487, 2897, 3359, 4157, 5333, 5843
(1, 0) 35 41, 83, 857, 1151, 1553, 1637, 1907, 2141, 2393, 2441
(1, 1) 34 59, 587, 941, 1307, 1571, 1721, 2273, 2399, 3407, 3797
(1, 2) 27 1091, 1217, 1931, 2579, 3191, 3779, 4493, 5477, 6011, 6173

389a1 −7 3 5 41 (0, 0) 75 17, 173, 227, 269, 479, 509, 761, 797, 929, 1013
(0, 1) 25 503, 773, 1049, 1193, 1487, 2897, 3359, 4157, 5333, 5843
(1, 0) 27 83, 857, 1151, 1553, 1637, 1907, 2141, 2393, 2441, 2477
(1, 1) 29 59, 587, 941, 1307, 1571, 1721, 2273, 2399, 3407, 3797
(1, 2) 19 1091, 1217, 1931, 2579, 3191, 3779, 4493, 5477, 6011, 6173

389a1 −67 3 5 41 (0, 0) 95 113, 281, 587, 857, 1013, 1049, 1187, 1481, 1571, 1583
(0, 1) 25 347, 503, 683, 929, 1319, 1487, 2129, 2687, 3947, 4157
(1, 0) 34 53, 653, 1151, 1553, 1907, 2207, 2393, 2417, 2423, 3167
(1, 1) 26 233, 599, 1181, 1217, 1409, 2657, 3779, 4019, 5387, 5477
(1, 2) 30 941, 1307, 1709, 1721, 2339, 2549, 2909, 3467, 3797, 3821

433a1 −8 5 79 199 (0, 0) 11 1319, 2269, 2549, 3079, 3319, 4349, 4759, 4799, 6949, 7879
(0, 1) 3 6719, 8389, 8669
(1, 0) 3 1879, 4549, 6679
(1, 1) 4 1669, 2879, 5119, 5399
(1, 2) 3 5839, 6029, 9949
(1, 3) 6 2239, 3389, 4079, 5639, 7589, 11149
(1, 4) 9 389, 1039, 2309, 2749, 4789, 6599, 7669, 9349, 9679

433a1 −11 3 17 41 (0, 0) 63 239, 293, 359, 503, 563, 659, 761, 821, 1097, 1217
(0, 1) 21 131, 677, 1031, 1427, 1601, 1979, 2129, 2213, 3797, 4451
(1, 0) 19 281, 479, 857, 1019, 1949, 2207, 2309, 2609, 4421, 5147
(1, 1) 36 83, 107, 701, 941, 953, 1091, 1223, 1667, 1913, 2087
(1, 2) 26 197, 263, 431, 887, 2741, 2837, 3137, 3209, 3659, 3803

563a1 −163 3 17 23 (0, 0) 88 137, 311, 887, 929, 953, 1217, 1223, 1367, 1583, 1733
(0, 1) 28 293, 983, 1433, 1553, 2213, 2843, 3923, 4397, 4691, 5927
(1, 0) 26 521, 569, 587, 863, 1289, 1427, 1637, 3167, 3863, 4481
(1, 1) 31 59, 269, 353, 509, 977, 1709, 1979, 2399, 2801, 3413
(1, 2) 32 191, 317, 761, 827, 1283, 1409, 1871, 3779, 3911, 4049
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Table 8.4: Data about normalized elements τc,p ∈ Sel(q)(E/Q) (part 2 of 2)

E D q `1 `2 τc,p # at most first 10 primes c

571b1 −7 7 97 167 (0, 0) 9 503, 937, 1511, 3989, 4157, 4507, 6691, 7349, 9421
(0, 1) 2 2239, 7489
(1, 0) 6 1063, 1861, 2141, 2309, 5039, 8581
(1, 1) 2 349, 9547
(1, 2) 2 5417, 6131
(1, 3) 4 881, 1931, 2099, 5683
(1, 4) 2 839, 1483
(1, 5) 2 3163, 6229
(1, 6) 2 2953, 6719

571b1 −19 7 97 167 (0, 0) 4 2309, 2953, 4157, 7349
(0, 1) 1 7489
(1, 0) 4 1063, 1861, 2141, 8581
(1, 1) 2 3989, 10639
(1, 2) 3 5417, 6131, 9883
(1, 3) 2 1931, 5683
(1, 4) 2 839, 1511
(1, 5) 1 6691
(1, 6) 2 6719, 10331

709a1 −7 3 5 47 (0, 0) 62 257, 269, 419, 593, 839, 857, 881, 929, 971, 1433
(0, 1) 17 479, 1091, 1319, 1553, 2243, 4049, 4259, 4289, 4973, 5519
(1, 0) 30 503, 647, 677, 1049, 1151, 1181, 1301, 1613, 1697, 2267
(1, 1) 16 353, 521, 563, 1097, 1427, 1637, 1949, 2579, 2621, 2687
(1, 2) 22 59, 83, 227, 773, 983, 1259, 2897, 2939, 3779, 4721
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Table 8.5: Data about non-scaled elements τc,p ∈ Sel(q)(E/Q) (part 1 of 2)

E D q `1 `2 τc,p # at most first 13 primes c

389a1 −7 3 5 17 (0, 0) 87 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181, 1319, 1511, 1601
(0, 1) 15 1487, 2897, 3359, 4157, 5843, 6317, 6653, 6803, 7229, 7901, 8237, 9551, 10559
(0, 2) 15 503, 773, 1049, 1193, 5333, 6971, 8069, 9371, 9623, 10457, 11483, 11681, 13151
(1, 0) 21 41, 83, 857, 1553, 1637, 2393, 2441, 2477, 3167, 4217, 6053, 6221, 7103
(1, 1) 16 1307, 1571, 1721, 2399, 3407, 4091, 4721, 5171, 6389, 6977, 7451, 8501, 8627
(1, 2) 17 1217, 3191, 3779, 5477, 6011, 6173, 6947, 8363, 8951, 9173, 9929, 11087, 11927
(2, 0) 14 1151, 1907, 2141, 3461, 3617, 6257, 7019, 7727, 10463, 10589, 11171, 12101, 12983
(2, 1) 10 1091, 1931, 2579, 4493, 8039, 10163, 10433, 13313, 13331, 14621
(2, 2) 18 59, 587, 941, 2273, 3797, 4457, 4751, 4973, 5309, 6569, 7817, 8111, 8123

389a1 −7 3 5 41 (0, 0) 75 17, 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181, 1319, 1511
(0, 1) 13 1487, 2897, 3359, 4157, 5843, 6317, 6653, 6803, 7229, 7901, 8237, 9551, 10559
(0, 2) 12 503, 773, 1049, 1193, 5333, 6971, 8069, 9371, 9623, 10457, 11483, 11681
(1, 0) 16 83, 857, 1553, 1637, 2393, 2441, 2477, 3167, 4217, 6053, 6221, 7103, 8573
(1, 1) 14 1307, 1571, 1721, 2399, 3407, 4091, 4721, 5171, 6389, 6977, 7451, 8501, 8627
(1, 2) 12 1217, 3191, 3779, 5477, 6011, 6173, 6947, 8363, 8951, 9173, 9929, 11087
(2, 0) 11 1151, 1907, 2141, 3461, 3617, 6257, 7019, 7727, 10463, 10589, 11171
(2, 1) 7 1091, 1931, 2579, 4493, 8039, 10163, 10433
(2, 2) 15 59, 587, 941, 2273, 3797, 4457, 4751, 4973, 5309, 6569, 7817, 8111, 8123

389a1 −67 3 5 41 (0, 0) 95 113, 281, 587, 857, 1013, 1049, 1187, 1481, 1571, 1583, 1811, 1889, 2531
(0, 1) 10 347, 503, 683, 929, 1487, 4157, 5639, 13649, 14051, 14969
(0, 2) 15 1319, 2129, 2687, 3947, 4583, 4673, 5867, 6551, 6653, 7109, 8807, 9371, 10259
(1, 0) 16 53, 1151, 1553, 2417, 2423, 3167, 3461, 5279, 5741, 7583, 8741, 8819, 9521
(1, 1) 13 233, 1217, 2657, 3779, 5387, 7649, 7757, 8039, 9041, 10973, 12659, 14879, 15053
(1, 2) 12 1721, 3467, 3821, 5171, 5231, 6143, 10331, 13613, 14033, 14321, 14669, 14717
(2, 0) 18 653, 1907, 2207, 2393, 3617, 4229, 4253, 4937, 5471, 6221, 7019, 7547, 7643
(2, 1) 18 941, 1307, 1709, 2339, 2549, 2909, 3797, 4463, 5237, 6779, 7481, 8627, 8849
(2, 2) 13 599, 1181, 1409, 4019, 5477, 7331, 8093, 8243, 11087, 11489, 12263, 12671, 15083

433a1 −8 5 79 199 (0, 0) 11 1319, 2269, 2549, 3079, 3319, 4349, 4759, 4799, 6949, 7879, 11069
(0, 1) 1 8669
(0, 2) 0
(0, 3) 0
(0, 4) 2 6719, 8389
(1, 0) 2 1879, 6679
(1, 1) 2 1669, 5119
(1, 2) 1 6029
(1, 3) 0
(1, 4) 2 389, 2749
(2, 0) 1 4549
(2, 1) 2 3389, 11149
(2, 2) 0
(2, 3) 1 6599
(2, 4) 1 9949
(3, 0) 0
(3, 1) 1 5839
(3, 2) 6 1039, 2309, 4789, 7669, 9349, 9679
(3, 3) 1 2879
(3, 4) 1 5639
(4, 0) 0
(4, 1) 0
(4, 2) 3 2239, 4079, 7589
(4, 3) 0
(4, 4) 1 5399
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Table 8.6: Data about non-scaled elements τc,p ∈ Sel(q)(E/Q) (part 2 of 2)

E D q `1 `2 τc,p # at most first 13 primes c

433a1 −11 3 17 41 (0, 0) 63 239, 293, 359, 503, 563, 659, 761, 821, 1097, 1217, 1319, 1487, 1613
(0, 1) 11 131, 677, 1031, 1979, 2213, 3797, 4451, 5939, 9437, 9473, 11483
(0, 2) 10 1427, 1601, 2129, 4517, 5189, 5507, 5711, 5741, 9257, 10247
(1, 0) 13 281, 479, 857, 1949, 2207, 2309, 2609, 4421, 5147, 5297, 5519, 10067, 10691
(1, 1) 19 107, 701, 941, 1091, 2087, 2969, 3119, 3527, 4133, 4583, 5279, 5309, 7127
(1, 2) 17 197, 431, 887, 2741, 2837, 3209, 3659, 3803, 4241, 4253, 4523, 6701, 7229
(2, 0) 6 1019, 5231, 5639, 7211, 9467, 10457
(2, 1) 9 263, 3137, 6269, 6299, 7829, 8147, 8861, 9941, 10589
(2, 2) 17 83, 953, 1223, 1667, 1913, 2459, 2591, 3533, 4157, 6113, 6221, 6761, 7487

563a1 −163 3 17 23 (0, 0) 88 137, 311, 887, 929, 953, 1217, 1223, 1367, 1583, 1733, 1811, 1907, 2243
(0, 1) 15 983, 2843, 4397, 5927, 6389, 6869, 7949, 8093, 8363, 8669, 8753, 11159, 11489
(0, 2) 13 293, 1433, 1553, 2213, 3923, 4691, 7673, 8273, 11069, 11243, 12569, 14699, 15149
(1, 0) 12 521, 587, 1637, 4583, 5507, 6449, 8429, 11969, 12161, 12959, 13649, 13907
(1, 1) 12 59, 353, 977, 1979, 2399, 2801, 3413, 4217, 4241, 6701, 10289, 10709
(1, 2) 14 191, 761, 827, 3911, 4391, 6863, 8111, 9419, 9491, 9521, 10133, 12491, 13751
(2, 0) 14 569, 863, 1289, 1427, 3167, 3863, 4481, 4793, 4799, 6323, 6983, 7703, 10067
(2, 1) 18 317, 1283, 1409, 1871, 3779, 4049, 4673, 5783, 6143, 6317, 6971, 9341, 9803
(2, 2) 19 269, 509, 1709, 3617, 4283, 4721, 6551, 7727, 9371, 9887, 10301, 10391, 12497

709a1 −7 3 5 47 (0, 0) 62 257, 269, 419, 593, 839, 857, 881, 929, 971, 1433, 1487, 1511, 1571
(0, 1) 7 479, 1091, 4259, 5519, 6299, 6359, 7481
(0, 2) 10 1319, 1553, 2243, 4049, 4289, 4973, 5843, 5927, 6053, 6803
(1, 0) 16 647, 1049, 1151, 1181, 1697, 2957, 3449, 4283, 4637, 5879, 6047, 7187, 7229
(1, 1) 10 353, 563, 1097, 1427, 1637, 2621, 2687, 3191, 5897, 6221
(1, 2) 7 59, 227, 1259, 4721, 4919, 7829, 7937
(2, 0) 14 503, 677, 1301, 1613, 2267, 2693, 2903, 3491, 3671, 4217, 5393, 8627, 9467
(2, 1) 15 83, 773, 983, 2897, 2939, 3779, 4751, 5381, 6173, 6317, 6737, 6977, 8123
(2, 2) 6 521, 1949, 2579, 3659, 6011, 7649
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8.2 Appendix: remarks about surjectivity of Galois representa-
tions

In order to pass from [Pc,σ] to τc,pn ∈ H1(K,E[pn]) in Section 5.2, we assumed that p
is an odd prime such that

ρE,p : Gal(Q/Q)→ GL2(Zp)

is surjective. If we assume that E does not have CM (as will be the case for our
examples), the p-adic representation ρE,p : GQ → GL2(Zp) is surjective for all but
finitely many p. Moreover, we can compute all primes p such that ρE,p is not surjective,
as explained in [GJP+09, §2.1] and implemented in Sage (see also forthcoming work of
A. Sutherland [Sut09]). For example, we have the following proposition:

Proposition 8.1. If E is a rank 2 elliptic curve with conductor < 1058, then ρE,p is
surjective for all odd primes p.

Proof. Using the algorithm of [GJP+09, §2.1] as implemented in [S+11] shows that the
mod-p representations ρE,p : GQ → GL2(Fp) are surjective for all rank 2 curves E of
conductor < 1058 and all primes p. As explained in [GJP+09, §2.1], this implies that
the p-adic representation ρE,p is surjective for p ≥ 5.

It remains to deal with p = 3. For p = 3 we use the method of [Elk06], namely that
it is enough to check that j(E)− f(x) has no rational zero, where f(x) is the function

f(x) =
37 · (x2 − 1)3 · (x6 + 3x5 + 6x4 + x3 − 3x2 + 12x+ 16)3 · (2x3 + 3x2 − 3x− 5)

(x3 − 3x− 1)9

of degree 27 from [Elk06, pg. 5]. Elkies remarks (see [Elk10]) that there is a minus sign
in the formula in [Elk06, pg. 5] that does not belong, as we verify by trying the integral
specializations tabulated on [Elk06, pg. 7], and also by factoring f − 1728. Doing this
computation for our curves yields the claimed result.

Remark 8.2. Andrew Sutherland used the techniques of [Sut09] to show [Sut10] that
“the rank 2 elliptic curves with conductor less than 1058 all have surjective Galois images
in GL2(Z/16Z).” We thus also expect that ρE,2 is surjective for all rank 2 curves with
conductor less than 1058.

Remark 8.3. The rank 2 curve 1058c1 has a rational 3 isogeny.

9 Related Projects

There are several future projects that are suggested by this paper, and we briefly sketch
some of the most promising ones here.

We can do the same computations as we do here, but for modular abelian varieties
Af attached to newforms with ords=1 L(f, s) ≥ 2. There is a table of such abelian
varieties in [AS05]. For example, we carried out this computation for the modular
abelian variety 1061b of dimension 2 and indeed verified the natural higher dimensional
analogue of Kolyvagin’s conjecture for this abelian variety (for p = 3). Note that
Kolyvagin appears to have never explicitly made such a conjecture, though of course
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he considers modular abelian varieties in [KL89]. We could also use our method to
show that X(Af/Q)[p] = 0 for a particular Af , even when ordL(f, s) ≤ 1. This
may require extending Kolyvagin’s structure theorem to abelian varieties, or otherwise
making results of [KL89] more explicit.

We could verify Conjecture 1.1 for the rank 3 elliptic curve of conductor 5077, and
possibly some other rank 3 curves. Indeed, Jennifer Balakrishnan and the author have
verified Conjecture 1.1 at least for 5077a for p = 3.

It would be of interest to generalize Algorithm 2.1 to treat the case pn with n > 1
or the case when ρE,p is reducible. We could also consider an example such as the rank
2 curve 916c1 and p = 3 in which p divides a Tamagawa number.

Since we are doing explicit computation, it would also be interesting to closely
investigate the case p = 2; this is particularly exciting when ran(E/Q) = 2, since, after
a harmless trace (as in Remark 5.7), we find that the points yc, for c prime, are defined

over real quadratic extensions of Q, and define explicit elements of Sel(2)(E/Q) that
define globally trivial [2]-coverings X → E. For example, if we take E to be 389a,
K = Q(

√
−7) and c = 3, then y3 is defined over a cyclic degree 4 extension K3 of K;

the trace z3 of y3 to the quadratic subfield of K3 is defined over the real quadratic field
Q(
√

21); it is the point

z3 =

(
−131

84
,

1091

3528

√
21− 1

2

)
.

Also, we find that 0 6= τ3,2 = δ((0, 0)) ∈ Sel(2)(E/Q). Is there any connection between
these Heegner points over real quadratic fields and Stark-Heegner points?

Much of the work of Kolyvagin and Gross-Zagier has been generalized to totally real
fields by Zhang and his students. Likewise, it would be of interest to see to what extent
the results of this paper generalize to totally real fields.

It would also be of interest to investigate rank 2 curves E for which ED exhibits
some unusual behavior, e.g., nontrivial odd X or rank ≥ 3. For example, for E the
curve 389a of rank 2, and K = Q(

√
−264), which has class number 8, the twist ED

has rank 3, so Kolyvagin’s structure theorem implies that [Pc,σ] = 0 for all prime c, and
it would be interesting to (a) computationally observe this, and (b) find a c that is a
product of primes for which [Pc,σ] 6= 0. Similarly, if we take K = Q(

√
−667), then K

has class number 4 and 5 | #X(ED/Q); thus we expect that [Pc,5] = 0 for all prime c.
Again it would beinteresting to observe this computationally, and find a prime c such
that [Pc,52 ] 6= 0.

As a challenge, we could attempt to verify Conjecture 1.1 for the rank 4 elliptic
curve of conductor 234446 given by the equation y2 + xy = x3 − x2 − 79x+ 289. This
computation is at the edge of feasible, so it will require very sophisticated linear algebra
or some other new idea.
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