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p-ADIC HEIGHTS OF HEEGNER POINTS

AND Λ-ADIC REGULATORS

JENNIFER S. BALAKRISHNAN, MIRELA ÇIPERIANI, AND WILLIAM STEIN

Abstract. Let E be an elliptic curve defined over Q. The aim of this paper is
to make it possible to compute Heegner L-functions and anticyclotomic Λ-adic
regulators of E, which were studied by Mazur-Rubin and Howard.

We generalize results of Cohen and Watkins and thereby compute Heeg-
ner points of non-fundamental discriminant. We then prove a relationship
between the denominator of a point of E defined over a number field and the
leading coefficient of the minimal polynomial of its x-coordinate. Using this
relationship, we recast earlier work of Mazur, Stein, and Tate to produce effec-
tive algorithms to compute p-adic heights of points of E defined over number
fields. These methods enable us to give the first explicit examples of Heegner

L-functions and anticyclotomic Λ-adic regulators.

Introduction

Let E/Q be an elliptic curve defined over the rationals, p an odd rational prime of
good ordinary reduction, and K/Q an imaginary quadratic extension satisfying the
Heegner hypothesis. We consider the anticyclotomic Zp-extension K∞/K. Denote
by Kn ⊆ K∞ the intermediate extension of degree pn over K. Following Mazur
and Rubin [14] we define the anticyclotomic universal norm module

U = lim
←−
n

E(Kn)⊗ Zp,

where the transition maps are the trace maps. Note that U is a module over
Λ = lim

←−
n

Zp[Gal(Kn/K)]. The complex conjugation τ ∈ Gal(K∞/Q) acts on U and

on Gal(K∞/K): τστ−1 = σ−1 for every σ ∈ Gal(K∞/K). We now consider the
Λ-module U (τ) where U (τ) is equal to U as an abelian group but σ · u := τστ−1(u)
for all σ ∈ Gal(K∞/K). Then we have the cyclotomic p-adic height pairing

h : U ⊗Λ U (τ) → Γcycl ⊗Zp
Λ⊗Zp

Qp,

where Γcycl denotes the Galois group of the cyclotomic Zp-extension Kcycl
∞ /K. We

will, throughout, restrict our attention to the case of the elliptic curves E/Q of
ordinary non-anomalous reduction at p and primes p that do not divide the product
of the Tamagawa numbers. It then follows that the p-adic height pairing takes
values in Γcycl ⊗Zp

Λ. By work of Cornut [5] and Vatsal [21] we know that U is free
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of rank one over Λ. This implies that the image of the cyclotomic p-adic height
pairing is generated by an element R ∈ Γcycl⊗Zp

Λ, the Λ-adic regulator of E. Our
main motivation for this paper was to compute examples of the Λ-adic regulator of
E. In order to do this we use Heegner points under conditions which ensure that
these points give rise to the full module of universal norms, then compute modulo
powers of p the coefficients of the Heegner L-function, which in this case is equal
to the Λ-adic regulator of E (see Section 2).

To explicitly compute coefficients of Heegner L-functions, one needs to compute
p-adic heights of Heegner points of non-fundamental discriminant defined over ring
class fields. We begin by proving a correspondence between such Heegner points
and certain quadratic forms (see Section 1), generalizing various results of Watkins
[22] and Cohen [4, §8.6]. While this correspondence has previously been invoked
in the literature, we have been unable to find an account of its theoretical basis.
We use these results to give algorithms that construct Heegner points in E(Kn), as
well as the full set of conjugates under the action of the Galois group Gal(Kn/K);
see Section 3. Next, since these Heegner points are defined over number fields, we
discuss how to adapt the techniques of Mazur, Stein, and Tate [15] to this situation.
In particular, [15] gives an algorithm to compute the cyclotomic p-adic height of
a rational point P ∈ E(Q) on an elliptic curve E defined over Q, in terms of two
functions: (1) the p-adic sigma function associated to E and (2) the denominator
of P . They also give similar formulas to handle the case when E and the point P
are defined over a number field.

We discuss effective methods to compute cyclotomic p-adic heights, following
[15], when E is defined over Q but the point P is defined over a number field F .
In particular, since our elliptic curve is defined over Q, no generalization of their
p-adic sigma function algorithm is needed. However, the naive generalization of
the denominator algorithm involves the factorization of several ideals in the ring
of integers OF which becomes infeasible as the degree of the number field grows.
In Section 4 we prove that the denominator of P is determined by the leading
coefficient of the minimal polynomial of the x-coordinate of P . This result allows
us to give an algorithm to compute cyclotomic p-adic heights which avoids factoring
and any additional use of the coordinates of P as elements of a number field. We
then simplify it further for the computation of cyclotomic p-adic heights of Heegner
points.

Building on this work, in Section 5 we discuss the computation of p-adic height
pairings of Galois conjugates of Heegner points. With these algorithms in hand, in
Section 6 we provide the first explicit examples of Heegner L-functions and hence
Λ-adic regulators. Conjecture 6 of [14] (which the authors of [14] have retracted;
see [11], page 815) posited, in effect, that the Λ-adic regulator is a constant times
a unit. The examples we obtain provide the first “highly likely” counterexamples
to that conjecture. One common feature of all the Λ-adic regulators that we have
computed is that they have no cyclotomic roots, i.e., they are non-zero at the roots
of (T + 1)p

n − 1 = 0 for every n ∈ N.

Remark 0.1. We do not give explicit bounds on the necessary precision of our
numerical computations, so we do not obtain “provably correct” computational
results. Instead, we apply consistency checks on the results, which suggest that
they are highly likely to be correct. “Highly likely” results are sufficient for our
main goal, which is to numerically investigate a question of Mazur and Rubin about
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Λ-adic regulators to clarify what should be conjectured and proved via theoretical
methods.

1. Heegner points and binary quadratic forms

In this section, we generalize various aspects of Watkins [22], and Cohen [4, §8.6]
to non-fundamental discriminant. Because these basic facts are crucial to the rest
of this paper, we give precise statements with well-defined notation and proofs,
instead of leaving the details to the reader.

Let τ be a quadratic irrational in the complex upper half plane H. Let

fτ = (A,B,C) ←→ Ax2 +Bxy + Cy2

be the associated integral primitive positive definitive binary quadratic form, so
that Aτ2 + Bτ + C = 0 with A > 0 and gcd(A,B,C) = 1. The discriminant
Δ(τ ) is Δ(fτ ) = B2 − 4AC, which is negative. We do not assume that Δ(τ ) is a
fundamental discriminant.

1.1. Heegner points. A Heegner point of level N and discriminant D is a qua-
dratic irrational in the upper half plane such that Δ(τ ) = D = Δ(Nτ ). Let HD

N

be the set of Heegner points of level N and discriminant D. We will assume the
Heegner Hypothesis: the primes dividing N split in Q(

√
D)/Q.

Proposition 1.1. Let τ ∈ H be a quadratic irrational with fτ = (A,B,C) of
discriminant D. Then τ ∈ HD

N if and only if N | A and gcd(A/N,B,CN) = 1.

Proof. First note that τ = −B+
√
D

2A , so Nτ = −NB+N
√
D

2A .

( =⇒ ) Suppose τ ∈ HD
N , so Δ(τ ) = Δ(Nτ ). Writing fNτ = (A′, B′, C ′), we have

Nτ = −B′+
√
D

2A′ = −NB+N
√
D

2A ; equating real and imaginary parts yields A = NA′

and B = B′, so C = B2−D
4A = (B′)2−D

4NA′ = C ′/N . Then gcd(A′, B′, C ′) = 1, which
holds by definition, is equivalent to gcd(A/N,B,CN) = 1.

( ⇐= ) Let A′ = A/N , B′ = B and C ′ = NC. Under our hypothesis, A′, B′, C ′ ∈
Z, A′ is positive, gcd(A′, B′, C ′) = 1, and we have (A/N)(Nτ )2+B(Nτ )+(CN) =
0, hence fNτ = (A′, B′, C ′). Thus Δ(Nτ ) = (B′)2 − 4A′C ′ = B2 − 4(A/N)(NC) =
Δ(τ ), so τ ∈ HD

N . �

Proposition 1.2. The set HD
N is non-empty if and only if D is a square modulo

4N .

Proof. Assuming that HD
N is non-empty we let fτ = (A,B,C) correspond to some

τ ∈ HD
N . By Proposition 1.1, we have N | A, so D = B2 − 4N(A/N)C is a square

modulo 4N .
If D is a square modulo 4N , we have that D = B2 − 4NC for some B,C ∈ Z.

Consider the binary quadratic form (N,B,C). Observe that since gcd(D,N) = 1
we have that gcd(N,B,C) = gcd(1, B, CN) = 1. Then by Proposition 1.1 we know
that the quadratic irrational of the upper half plane τ that corresponds to (N,B,C)
is an element of HD

N . Hence HD
N is non-empty. �

Let τ ∈ H and δ ∈ M2(Q) be a matrix of positive determinant. We know that
δ(τ ) := δ

(
τ
1

)
∈ H and we now analyze the effect of this action on the corresponding

quadratic forms if τ is a quadratic irrational.
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Lemma 1.3. Let γ ∈ M2(Z) be a matrix of positive determinant and fτ = (A,B,C)

for some quadratic irrational τ ∈ H. If m =
(

A B/2
B/2 C

)
is the matrix that corre-

sponds to the quadratic form fτ , then γtmγ is a positive integer multiple n of the
matrix that corresponds to fγ−1(τ), where γt denotes the transpose of γ. Moreover,
n can only be divisible by primes that divide det(γ).

Proof. Let v =
(
γ−1(τ)

1

)
. Then γv =

(
x
y

)
with x/y = γ(γ−1(τ )) = τ ∈ H (so

τ 
= ∞). Then

vt(γtmγ)v = (γv)tm(γv) = (x, y)m

(
x

y

)
= y2(τ, 1)m

(
τ

1

)
= 0.

Consequently, we have that fγ−1(τ) = (A′/n,B′/n,C ′/n) where

(1.1)

(
A′ B′/2

B′/2 C ′

)
= γt

(
A B/2

B/2 C

)
γ

and n = gcd(A′, B′, C ′) since both fτ and fγ−1(τ) are positive definite binary qua-
dratic forms. In particular, n is a positive integer.

Let � be a prime divisor of n = gcd(A′, B′, C ′). If � is odd, then viewing (1.1)
modulo � we find

γtmγ ≡ 0 (mod �).

Then, since gcd(A,B,C) = 1 implies that m 
≡ 0 (mod �), we deduce that � |
det(γ).

If � = 2 � det(γ), then since 2 divides B′ we have that

det

(
A′ B′/2

B′/2 C ′

)
= det(γ)2(AC −B2/4) ∈ Z

and hence (AC − B2/4) ∈ Z2, which then implies that 2 divides B. Consequently,
the matrices in (1.1) lie in M2(Z). By the argument used for odd primes, we see
that 22 cannot divide B′. Hence viewing (1.1) modulo 2 we have that

(1.2)

(
0 1
1 0

)
≡ γt

(
A B/2

B/2 C

)
γ (mod 2).

Since 2 � det(γ), we know that there exists δ ∈ M2(Z) such that γδ ≡ ( 1 0
0 1 ) (mod 2).

Then (1.2) implies that(
A B/2

B/2 C

)
≡ δt

(
0 1
1 0

)
δ ≡

(
0 1
1 0

)
(mod 2),

which is false, since gcd(A,B,C) = 1. This completes the proof of the lemma. �

Lemma 1.4. The set HD
N is closed under the action of Γ0(N).

Proof. Suppose γ−1 ∈ Γ0(N) and τ ∈ HD
N with fτ = (A,B,C). Let τ ′ = γ−1(τ ).

Writing fτ ′ = (A′, B′, C ′), Lemma 1.3 (using that det(γ) = 1) implies that(
A′ B′/2

B′/2 C ′

)
= γt

(
A B/2

B/2 C

)
γ,

so Δ(τ ′) = Δ(τ ) = D (since Δ < 0), again because det(γ) = 1. Observe that since
γ−1 ∈ Γ0(N) we have that

Nτ ′ = Nγ−1(τ ) = γ−1
0 (Nτ )
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for some γ0 ∈ SL2(Z). Hence the same argument applied to Nτ implies that
Δ(Nτ ′) = Δ(Nτ ) = D, so τ ′ ∈ HD

N . �

The above lemma allows us to consider the set Γ0(N)\HD
N which we will analyze

further in §1.3.

1.2. Classes of ideals and binary quadratic forms. Let K be an imaginary
quadratic field and c a positive integer. Let Oc = Z+cOK be the order of conductor
c in OK , the ring of integers of K. The discriminant of Oc is D = c2DK where
DK is the discriminant of OK . We identify fractional ideal classes in Oc with
equivalence classes with respect to the action of SL2(Z) of primitive positive definite
binary quadratic forms of discriminant D via the following inverse bijections (see
[3, Theorem 5.2.8]):

{classes of primitive positive definite binary quadratic forms of discriminant D}�	
{fractional ideal classes in Oc},

ΨFI(A,B,C) = AZ+
−B +

√
D

2
Z,

and

ΨIF (a)(x, y) =
N (xω1 − yω2)

N (a)
,

where N denotes the norm map of K/Q, a = Zω1 +Zω2, and {ω1, ω2} are ordered
so that

ω2σ(ω1)− ω1σ(ω2)√
D

> 0,

with σ denoting the generator of Gal(K/Q).

1.3. Action of Atkin-Lehner involutions and the class group. For each pos-
itive integer q | N with gcd(q,N/q) = 1, define an Atkin-Lehner matrix as follows:
fix any choice u, v ∈ Z such that wq =

( uq v
N q

)
has determinant q. Then wq induces a

well-defined involution Wq(τ ) := wq(τ ) on Γ0(N)\H. The involutions Wq commute
and generate a group W isomorphic to Fν

2 , where ν is the number of prime divisors
of N . We will now show that the group W acts on Γ0(N)\HD

N .

Lemma 1.5. The set Γ0(N)\HD
N is closed under the action of Wq.

Proof. Let τ ∈ HD
N and fτ = (A,B,C). As in Lemma 1.3 we have

wt
q

(
A B/2

B/2 C

)
wq =

(
Aq2u2 +BNqu+ CN2 (2Aquv +Bq2u+BNv + 2CNq)/2

∗ Av2 +Bqv + Cq2

)
,

where this matrix is a multiple of the matrix that corresponds to fw−1
q (τ). Since

q | N | A, we see that q divides each entry of the right hand matrix above (or 2 times
the upper right entry). Since wt

q and wq both have determinant q, it follows that

Δ(w−1
q (τ )) | Δ(τ ). Applying Lemma 1.4, we have Δ(w−1

q (τ )) = Δ(wq(τ )), sinceWq

is an involution of Γ0(N)\H and Γ0(N) preserves Δ. Applying the above argument
with τ replaced by wq(τ ) implies that Δ(τ ) | Δ(wq(τ )). Thus Δ(wq(τ )) = Δ(τ ). It
remains to show that Δ(Nwq(τ )) = Δ(wq(τ )).
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Observe that Nw−1
q (τ ) = σ−1

q (Nτ ) where σq =
(

uq Nv
1 q

)
. As above, we have

that

σt
q

(
A/N B/2
B/2 CN

)
σq =

(
(A/N)q2u2 +Bqu+ CN (2Aquv +Bq2u+BNv + 2CNq)/2

∗ ANv2 +BqNv + CNq2

)
is a multiple of the matrix that corresponds to fNw−1

q (τ). Since det(σq) = q and

q divides all the entries of the above matrix (or 2 times the upper right entry),
it follows that Δ(Nw−1

q (τ )) | Δ(Nτ ) which just as above implies that Δ(Nτ ) |
Δ(Nwq(τ )). Observing that Nwq(τ ) = (q−1σq)(Nτ ), we deduce that

(qσ−1
q )t

(
A/N B/2
B/2 CN

)
(qσ−1

q ) =

(
(A/N)q2 −Bq + CN (−2Aqv +Bq2u+ BNv − 2CNuq)/2

∗ ANv2 −BuqNv + CNu2q2

)

is a multiple of the matrix that corresponds to fNwq(τ). Since det(qσ−1
q ) = q and q

divides each entry of the above matrix we have that Δ(Nwq(τ )) | Δ(Nτ ). It then
follows that

Δ(Nwq(τ )) = Δ(Nτ ) = Δ(τ ) = Δ(wq(τ )).

This proves that wq(τ ) ∈ HD
N . �

Remark 1.6. Observe that in the above proof we have shown that the matrix of

fw−1
q (τ) equals q

−1wt
q(

A B/2
B/2 C )wq.

We will now define the action1 of the ideal class group Cl(Oc) on Γ0(N)\HD
N .

Let τ ∈ HD
N , fτ = (A,B,C), and a ∈ Cl(Oc). Then we define a · τ ∈ Γ0(N)\HD

N as
follows:

(1) First, consider the following class of primitive positive definite binary qua-
dratic forms of discriminant D:

ΨIF (ΨFI(fτ )a
−1).

(2) Since we are assuming the Heegner Hypothesis, we have that gcd(N,D) = 1
and consequently the class ΨIF (ΨFI(fτ )a

−1) contains an element
(A′, B′, C ′) such that gcd(C ′, N) = 1 and B′ ≡ B (mod 2N). It fol-
lows that A′C ′ ≡ AC (mod N) which implies that N |A′. Moreover, if
(A′′, B′′, C ′′) ∈ ΨIF (ΨFI(fτ )a

−1) satisfies the conditions gcd(C ′′, N) = 1
and B′′ ≡ B (mod 2N), then(

A′′ B′′/2
B′′/2 C ′′

)
= γt

(
A′ B′/2

B′/2 C ′

)
γ for some γ ∈ Γ0(N).

(3) Set fa·τ = (A′, B′, C ′) ∈ ΨIF (ΨFI(fτ )a
−1). By the above we know that

a · τ is a uniquely determined element of Γ0(N)\HD
N .

In order to see that we have defined a group action of Cl(Oc) on Γ0(N)\HD
N , we

observe that since

- the map a 
→ (b 
→ ba−1) defines an action of Cl(Oc) on Cl(Oc), and
- ΨFI and ΨIF are inverses of one another,

it follows that

fa·(b·τ) ∈ ΨIF

(
ΨFI(fτ ))(ab)

−1
)

for any a, b ∈ Cl(Oc).

Then by (2) above we have that Oc ·τ ∈ Γ0(N)τ and a·(b·τ ) = (ab)·τ ∈ Γ0(N)\HD
N .

1This choice of the action of Cl(Oc) on Γ0(N)\HD
N is the one that is compatible with the

action of the Galois group on Heegner points when they are viewed as points of an elliptic curve;
see (2.1) and Gross [8, §1.4].
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Lemma 1.7. The actions of W and Cl(Oc) on Γ0(N)\HD
N commute.

Proof. Let τ ∈ HD
N , fτ = (A,B,C), and q a positive integer such that q|N and

gcd(q,N/q) = 1. As in Lemma 1.5 we fix u, v ∈ Z such that uq− vN/q = 1 and set

wq =
( uq v

N q

)
. In addition, we now consider the matrix mq :=

(
1 −v

−N/q uq

)
∈ SL2(Z).

Observe that

mt
qw

t
q

(
A B/2

B/2 C

)
wqmq = q

(
A/q B/2
B/2 Cq

)
.

Using Remark 1.6, we deduce that fw−1
q (τ) is equivalent to (A/q,B,Cq).

Let us now set IB,q := qZ + −B+
√
D

2 Z. Notice that IB,q is an ideal of Oc.

Moreover, since D = B2 − 4AC and gcd(B, q) = 1 we have

ΨFI(fw−1
q (τ)

)IB,q =

(
A/qZ+

−B +
√
D

2
Z

)(
qZ+

−B +
√
D

2
Z

)(1.3)

= AZ+ q
−B +

√
D

2
Z+A/q

−B +
√
D

2
Z+

(
AC +B

−B +
√
D

2

)
Z

= AZ+ q
−B +

√
D

2
Z+A/q

−B +
√
D

2
Z+B

−B +
√
D

2
Z

= AZ+
−B +

√
D

2
Z

= ΨFI(fτ ).

Now let a ∈ Cl(Oc). We want to show that a ·Wq(τ ) = Wq(a · τ ) which, by our
definition of the action of Cl(Oc) on Γ0(N)\HD

N , is equivalent to showing that

ΨFI(fWq(a·τ)) = ΨFI(fWq(τ))a
−1,

where fWq(τ) denotes the equivalence class of fwq(τ) and hence contains fw−1
q (τ) .

Using (1.3) and the commutativity of Cl(Oc) we get

ΨFI(fWq(τ))a
−1 = ΨFI(fτ )I

−1
B,qa

−1 = (ΨFI(fτ )a
−1)I−1

B,q

= ΨFI(fa·τ )I
−1
B,q = ΨFI(fWq(a·τ)).

This completes the proof of the lemma. �

Consider the group G = W × Cl(Oc). The above lemma implies that we have
a well-defined action of G on Γ0(N)\HD

N . We will now define the action of G on
another set.

Let S(D,N) be the set of square roots modulo 2N of D mod 4N , i.e.,

S(D,N) = {b ∈ Z/2NZ : b2 ≡ D (mod 4N)}.

Lemma 1.8. Let b∈S(D,N). For every positive integer q|N such that gcd(q,N/q)
= 1 there exists bq ∈ S(D,N) such that

bq ≡ b (mod 2N/q) and bq ≡ −b (mod 2q).

Proof. Since gcd(2q, 2N/q) = 2 and b ≡ −b (mod 2) we know that there exists
bq ∈ Z/2NZ satisfying the above two conditions and it follows that

b2q ≡ b2 (mod 4N/q) and b2q ≡ b2 (mod 4q).

Hence bq ∈ S(D,N). �
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Then for every integer q > 1 such that q|N and gcd(q,N/q) = 1 the involution
Wq acts on S(D,N) as follows:

Wq · b = bq.

This defines the action of the group W on S(D,N).
We now define the action of W on the set S(D,N)×Cl(Oc). Let q be a positive

integer dividing N such that gcd(q,N) = 1 and (b, J) ∈ S(D,N) × Cl(Oc). Then
we set

Wq · (b, J) = (bq, JI
−1
b,q ),

where Ib,q = qZ+ −b+
√
D

2 Z ∈ Cl(Oc), as in Lemma 1.7. In order to verify that this
is a group action we show that Wq · (Wq · (b, J)) = (b, J). Since

Wq · (Wq · (b, J)) = Wq(bq, JI
−1
b,q ) = (b, JI−1

b,q I
−1
bq,q

),

it suffices to show that (qZ+ −b+
√
D

2 Z)(qZ+
−bq+

√
D

2 Z) is a principal ideal of Oc.

By Lemma 1.8 we have that bq ≡ −b (mod 2q) and hence qZ +
−bq+

√
D

2 Z =

qZ+ b+
√
D

2 Z. Observe that(
qZ+

−b+
√
D

2
Z

)(
qZ+

b+
√
D

2
Z

)
= gcd

(
q2, qb,

b2 −D

4

)
Z+ q

−b+
√
D

2
Z.

Since (D,N) = 1, q|N and b2 ≡ D (mod 4N), it follows that 4q | (b2 − D) and
(b, q) = 1. Consequently, gcd(q2, qb, (b2 −D)/4) = q. Finally, since b and D have
the same parity, it follows that(

qZ+
−b+

√
D

2
Z

)(
qZ+

b+
√
D

2
Z

)
= q

(
Z+

D +
√
D

2
Z

)
= qOc.

We finally define the action of Cl(Oc) on the set S(D,N) × Cl(Oc) as follows.
Let I ∈ Cl(Oc) and (b, J) ∈ S(D,N)× Cl(Oc). We set

I · (b, J) = (b, JI−1).

Since Cl(Oc) is commutative, the actions of W and Cl(Oc) on S(D,N) × Cl(Oc)
commute. Hence the group G = W × Cl(Oc) acts on S(D,N)× Cl(Oc).

Lemma 1.9. The action of G on S(D,N)× Cl(Oc) is simply transitive.

Proof. Since (D,N) = 1, the only element of W that acts trivially on an element b
of S(D,N) is the identity. It is then clear that the action of G on S(D,N)×Cl(Oc)
is free.

Observe that our assumption that all primes dividing N split in Q(
√
D)/Q im-

plies that for every odd prime divisor p of N the equation b2 ≡ D (mod pnp) has
two solutions; here np = ordp(N). Finally, since D is a discriminant, b2 ≡ D
(mod 2n2+2) has a solution. Moreover,

i) if N is odd, then b2 ≡ D (mod 4) has a unique solution b ∈ Z/2Z;
ii) if N is even, then b2 ≡ D (mod 2n2+2) has exactly two solutions b ∈

Z/2n2+1Z.

This proves that the order of G equals the cardinality of the set S(D,N)×Cl(Oc).
Then since the stabilizer of b ∈ S(D,N) is trivial it follows that the action of G on
S(D,N)× Cl(Oc) is simply transitive. �
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Define a map Φ : Γ0(N)\HD
N → S(D,N)× Cl(Oc) by

[τ ] ∈ Γ0(N)\HD
N −→ (B (mod 2N),ΨFI(fτ )).

where fτ = (A,B,C). Observe that the map Φ is well-defined:

• Φ(τ ) ∈ S(D,N)× Cl(Oc) since
- fτ is a primitive positive definite quadratic form of discriminant D,
- B2 − 4AC = D and N |A implies that B ∈ S(D,N);

• Φ(τ ) = Φ(τ ′) for τ ′ = γτ with γ ∈ Γ0(N) because
- by Lemma 1.3 we know that fτ and fτ ′ lie in the same equivalence class
under the action of SL2(Z) which implies that ΨFI(fτ ′) = ΨFI(fτ ),

- if fτ ′ = (A′, B′, C ′), then B ≡ B′ (mod 2N) since(
A B/2

B/2 C

)
= γt

(
A′ B′/2

B′/2 C ′

)
γ

with γ ∈ Γ0(N) and N | A′.

Theorem 1.10. The map Φ : Γ0(N)\HD
N → S(D,N)×Cl(Oc) is an isomorphism

of G-sets.

Proof. We start by showing that Φ is injective. Let τ, τ ′ ∈ HD
N and assume that

Φ(τ ) = Φ(τ ′). It follows that ΨFI(fτ ) = ΨFI(fτ ′) which, by Theorem 5.2.8 of [3],
implies that fτ = (A,B,C) and fτ ′ = (A′, B′, C ′) lie in the same equivalence class
under the action of SL(2,Z) and hence

B′ = 2Aab+B(ad+ bc) + 2Ccd, where

(
a b
c d

)
∈ SL(2,Z).

Observe that since ad− bc = 1 we have that

B′ = 2Aab+B + 2Bbc+ 2Ccd.

Then the assumption that Φ(τ ) = Φ(τ ′) implies that B ≡ B′ (mod 2N) and,
consequently,

Aab+Bbc+ Ccd ≡ 0 (mod N).

Since τ, τ ′ ∈ HD
N , by Proposition 1.1, we know that N |A and N |A′ = (Aa2+Bac+

Cc2). Hence

c(Bb+ Cd) ≡ 0 (mod N) and c(Ba+ Cc) ≡ 0 (mod N).

If N � c, then there exists p a prime divisor of N dividing both Bb+Cd and Ba+Cc.
This implies that p divides C = a(Bb + Cd) − b(Ba + Cc), which in turn implies
that p divides Ba and Bb. Since (a, b) = 1, it follows that p divides B which in
turns contradicts the assumption that (N,D) = 1. Consequently,(

a b
c d

)
∈ Γ0(N),

which proves that Φ is injective.
We will now show that Φ is a G-map. Let τ ∈ Γ0(N)\HD

N , a ∈ Cl(Oc), and
Wq ∈ W . We start by verifying that Φ is a W -map. By Lemma 1.5 and Remark
1.6 we know that fWq(τ) = fw−1

q (τ) = (A′, B′, C ′) where

B′ = 2Auv+Bqu+B(N/q)v+2CN ≡
{
B(N/q)v −Bqu = −B (mod 2q),

Bqu−B(N/q)v = B (mod 2N/q),
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since qu−N/qv = 1. This together with (1.3) implies that

Φ(Wq(τ )) = (B′ (mod 2N),ΨFI(fWq(τ))) = (Bq,ΨFI(fτ )I
−1
B,q) = Wq · Φ(τ ).

In order to see that Φ is a Cl(Oc)-map recall that we have defined a · τ such that

fa·τ = (A′, B′, C ′) ∈ ΨIF (ΨFI(fτ )a
−1) and B′ ≡ B (mod 2N).

It follows that

Φ(a · τ ) = (B (mod 2N),ΨFI(fτ )a
−1) = a · (B (mod 2N),ΨFI(fτ )).

Hence we conclude that Φ is a G-map.
Finally, since by Lemma 1.9 we know that G acts transitively on the codomain

of Φ, it follows that Φ is surjective, and this completes the proof. �

Corollary 1.11. The G-action on Γ0(N)\HD
N is simply transitive.

Proof. This follows immediately by Theorem 1.10 and Lemma 1.9. �

2. Heegner points and universal norms

Let us now consider an elliptic curve E/Q, an imaginary quadratic field K, and
an odd prime p such that

i) the discriminant DK of K is at most −5;
ii) every prime dividing the conductor N of E/Q splits in K/Q;
iii) p does not divide

NDKhKap(ap − 1)

(
ap −

(
DK

p

))∏
�|N

c�,

where hK denotes the class number of K, ap = p + 1 − #E(Fp), (DK

p )

denotes the Legendre symbol, and c� is the Tamagawa number of E at the
prime �.

We will now consider a Heegner point xpn of level N and discriminant p2nDK .
We view xpn as an element of X0(N) = Γ0(N)\H. By Gross [8, §1.4] we know that
xpn ∈ X0(N)(K[pn]), where K[pn] is the ring class field of K of conductor pn, and
the Galois group Gal(K[pn]/K) � Cl(Opn) acts on xpn as follows:

(2.1) a · xpn = Artin(a) (xpn) for all a ∈ Cl(Opn),

where Artin(a) denotes the image of a in Gal(K[pn]/K) under the Artin map.
Using a fixed choice of minimal modular parametrization π : X0(N) → E, we

define
ypn = π(xpn) ∈ E(K[pn]).

We will refer to yn as a Heegner point of conductor pn. Note that the action
of Atkin-Lehner involutions on Heegner points of conductor pn is well-understood
since by [13, Theorem 9.27] we know that π (Wq(xpn)) − εqypn ∈ E(Q)tors where
εq = ±1. Hence, by Corollary 1.11 we know that Heegner points of conductor
pn form a single orbit under the action of Gal(K[pn]/K) up to sign and rational
torsion.

The anticyclotomic Zp-extension K∞ of K lies inside K[p∞] :=
⋃

n K[pn]. De-
note by Kn the unique subfield of K∞ such that Gal(Kn/K) � Z/pnZ. We know
that under our assumption that p � hK we have that Kn ⊆ K[pn+1]. More precisely,

a) K0 = K,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

p-ADIC HEIGHTS OF HEEGNER POINTS AND Λ-ADIC REGULATORS 933

b) for all n ≥ 1 Kn ⊆ K[pn+1] and Kn 
⊆ K[pn],
c) Gal(K[pn+1]/Kn) � Gal(K[p]/K) and its order equals (p− (DK

p )hK .

Then the Heegner points defined over the anticylotomic Zp-extension are

z0 = trK[1]/K(y1) and zn = trK[pn+1]/Kn
(ypn+1) for all n ≥ 1.

We will now list some properties of Heegner points:

• By the work of Gross-Zagier [7], we know that z0 is not torsion if and only
if the analytic rank of E/K, i.e., the order of vanishing of the L-function
L(E/K, s) of E/K, equals 1.

• The complex conjugation τ ∈ Gal(K∞/Q) acts on the Heegner points zn
and by [9, Proposition 5.3], we know that τzn + εσzn ∈ E(Q)tors for some
σ ∈ Gal(Kn/K) where ε is the sign of the functional equation of E/Q.

• By [7, §3.1,§3.3] (see also [12, Lemma 4.2]), the Heegner point zn lies, up
to translation by a rational torsion point of E, in the connected component
of the Néron model of E over Kwn

at all primes wn of Kn that divide the
conductor N (here Kwn

denotes the completion of Kn at wn).
• The points zn are related to one another as n varies. In [17, §3.3, Lemma
2], Perrin-Riou proves that

trK[pn+2]/K[pn+1](xpn+2) = apxpn+1 − xpn for n ≥ 0,

trK[p]/K[1](xp) = bpx1,

where

bp =

{
ap if p is inert,

ap − σ − σ′ for some σ, σ′ ∈ Gal(K[1]/K) if p splits.

Since Gal(K[pn+1]/Kn) � Gal(K[p]/K) for every n ≥ 0, it follows that

trKn+2/Kn+1
(zn+2) = apzn+1 − zn for n ≥ 1;(2.2)

trK2/K1
(z2) =

{
apz1 − apz0 if p is inert,

apz1 − (ap − 2)z0 if p splits;

trK1/K(z1) =

{(
(ap − 1)(ap + 1)− p

)
z0 if p is inert,(

(ap − 1)2 − p
)
z0 if p splits.

We can now see that for every n ≥ 0, we have that trKn+1/Kn
(zn+1) = unzn for

some unit un ∈ Zp[Gal(K∞/K)] if

(2.3) p does not divide (ap − 1)ap

(
ap −

(
DK

p

))
.

More precisely, under the above condition we have

u0 =

{
(ap − 1)(ap + 1)− p if p is inert,

(ap − 1)2 − p if p splits;

u1 =

{
ap − apu

−1
0 trK1/K if p is inert,

ap − (ap − 2)u−1
0 trK1/K if p splits;

un = ap − u−1
n−1 trKn/Kn−1

for n ≥ 2.
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Throughout the paper we assume condition (2.3) which in particular implies that
E has good ordinary non-anomalous reduction at p. Following Mazur and Rubin
[14] we consider the anticyclotomic universal norm module

U = lim
←−
n

E(Kn)⊗ Zp,

where the transition maps are the trace maps. Observe that U is a module over
Λ = lim

←−
n

Zp[Gal(Kn/K)]. We set U (τ) to be equal to U as an abelian group but

σ · u := τστ−1(u) for all σ ∈ Gal(K∞/K). Then the cyclotomic p-adic height
pairing

h : U ⊗Λ Uτ → Γcycl ⊗Zp
Λ⊗Zp

Qp

is τ -Hermitian, i.e.,

h(u⊗ v) = h(u⊗ v)τ = h(τu⊗ τv),

for all universal norms u, v ∈ U . Observe that since p is a prime of ordinary non-
anomalous reduction which does not divide the product of the Tamagawa numbers,
the cyclotomic p-adic height pairing takes values in Γcycl ⊗Zp

Λ.
By work of Cornut [5], Vatsal [21], and Bertolini [2] we know that U is free of

rank one over Λ; see [14, Theorem 4]. This implies that the image of the cyclotomic
p-adic height pairing is generated by the Λ-adic regulator2 R ∈ Γcycl ⊗Zp

Λ. Note
that R is uniquely determined only up to units of Λ. We would like to compute R,
and to do so we use Heegner points.

Heegner points give rise to the Heegner submodule H ⊆ U . Our assumption of
the condition (2.3) implies that the points

c0 = z0 and cn =

(
n−1∏
i=0

ui

)−1

zn for n ≥ 1

are trace compatible and correspond to an element c ∈ H ⊆ U . Mazur and Rubin
define the Heegner L-function

L := h(c⊗ τc) ∈ Γcycl ⊗Zp
Λ.

One can easily see that L = R char(U/H)char(U/H)τ where char(U/H)τ =
τchar(U/H)τ−1.

The cyclotomic character gives rise to Γcycl � 1 + pZ which after composition
with

1

p
logp : 1 + pZ

∼→ Zp

induces the isomorphism Γcycl � Zp. This allows us to identify Γcycl ⊗Zp
Λ with Λ,

view the cyclotomic p-adic height pairing as Λ-valued

h : U ⊗Λ Uτ → Λ,

and the Λ-adic regulator R as well as the Heegner L-function L as elements of Λ.

2Howard [11] defines the Λ-adic regulator to be RΛ ⊗ Qp after identifying Γcycl with Zp and

hence views it as a submodule of Λ⊗ Qp.
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We now identify Λ with Zp[[T ]] by sending a choice of a topological generator of
Gal(K∞/K) to T + 1. Then since

L = lim
←−
n

∑
σ∈Gal(Kn/K)

〈cn, σcn〉Kn
σ,

where 〈 , 〉Kn
: E(Kn)× E(Kn) → Zp denotes the cyclotomic p-adic height pairing

over Kn, we see that the coefficients of the Heegner L-function, under the above
identification, are b0 = 〈c0, c0〉K0

and

bk ≡
∑

k≤i<pn

(
i

k

)
〈cn, σicn〉Kn

(mod pn) for k ≥ 1.

Note that the cyclotomic p-adic height pairings 〈 , 〉Kn
are invariant under the action

of Gal(Kn/K) and are related as follows for n ≥ m:

〈x, y〉
Kn

= [Kn : Km]〈x, y〉
Km

for all x, y ∈ E(Km).

In addition, cyclotomic p-adic heights are related3 to the above p-adic height pair-
ings as follows:

hp,Kn
(x) = −1

2
〈x, x〉

Kn
.

We would like to compute the Λ-adic regulator R of E in cases when it is non-
trivial. In order to do this, we put ourselves in a situation where char(U/H) is
trivial and L is non-trivial by assuming that

• the analytic rank of E/K equals 1,
• the Heegner point z0 is not divisible by p in E(K),
• p divides the cyclotomic p-adic height of z0 over K0.

By [7] the first condition implies that z0 is non-torsion which together with the
second condition implies that char(U/H) is trivial; the third ensures that L is not
a unit.

We will now proceed to describe algorithms to compute Heegner points zn and
cyclotomic p-adic heights hp,Kn

(x) for x ∈ E(Kn). This will then enable us to
compute the p-adic height pairings 〈zn, σzn〉Kn

for σ ∈ Gal(Kn/K) and hence the
coefficients of Heegner L-functions.

3. Algorithm for the Heegner point construction

In this section we will give the algorithm that we use to construct the Heegner
points zn = trK[pn+1]/Kn

(ypn+1) whose p-adic heights we wish to compute. Note
that the assumption that our prime p does not divide hK is used in the following
algorithm.

3This choice of a normalization of the p-adic height follows that of [15].
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For convenience, we point out the relevant tower of fields:

K[p∞]

... K∞

(p±
1)h

k

...
...

K[p3] K3

K[p2]

p

K2

p

(p±
1)h

k

K[p]

p

K1

p

(p±
1)h

k

K = K0

(p±1)hk p

Q

2

Observe that if we fix b0 ∈ S(p2(n+1)DK , N), then Theorem 1.10 implies that
there exists a Heegner point xpn+1 of level N and discriminant p2(n+1)DK such that
Φ(xpn+1) = (b0,Opn+1). Our aim is to compute

zn = trK[pn+1]/Kn
(ypn+1) =

∑
σ∈Gal(K[pn+1]/Kn)

π(σxpn+1).

Since the order of Gal(K[pn+1]/Kn) equals (p − (DK

p ))hK and Gal(K[pn+1]/Kn)

is the maximal subgroup of Gal(K[pn+1]/K) of order prime to p (this is where we
use the assumption that gcd(hK , p) = 1) and Gal(K[pn+1]/K) � Cl(Opn+1), using
(2.1) we have that

zn =
∑

a∈Cl(Opn+1 ), p�ord(a)

π(a · xpn+1)

and the sum has (p− (DK

p ))hK terms. By Theorem 1.10 we know that

Φ(a · xpn+1) = a · Φ(xpn+1) = (b0, a).

Hence we have that

zn =
∑

a∈Cl(Opn+1 ), p�ord(a)

π(Φ−1(b0, a)).

We know that the Heegner point τ ∈ X0(N) of level N and discriminant
p2(n+1)DK corresponds to a class (under the action of Γ0(N)) of binary quadratic
forms fτ = Ax2 +Bxy + Cy2 such that

(i) A,B,C ∈ Z, A > 0, N |A,
(ii) gcd(A,B,C) = gcd(A/N,B,CN) = 1,
(iii) B2 − 4AC = p2(n+1)DK .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

p-ADIC HEIGHTS OF HEEGNER POINTS AND Λ-ADIC REGULATORS 937

Since τ = Ψ−1(b0, a) ∈ X0(N) we have the following additional conditions:

(iv) B ≡ b0 (mod 2N),
(v) ΨIF (a) = fτ .

Finally, since ΨIF is a group isomorphism [3, Theorem 5.2.4 and Theorem 5.2.8]
the set

{Ψ−1(b0, a)|a ∈ Cl(Opn+1), p � ord(a)}
corresponds to the set of τ ∈ X0(N) such that fτ satisfies conditions (i)–(iv) listed
above and p � ord(fτ ).

Algorithm 3.1 (Computing Heegner points zn ∈ E(Kn)).

(1) Fix b0 ∈ S(p2(n+1)DK , N) = {b ∈ Z/2NZ : b2 ≡ p2(n+1)DK (mod 4N)}.
(2) Create a set Qb0 of (p − (DK

p ))hK binary quadratic forms (A,B,C) that

satisfy conditions (i)–(iv) listed above, where p does not divide the order
of the equivalence class (under the action of SL2(Z)) of binary quadratic
forms [(A,B,C)], and any two binary quadratic forms in Qb0 give rise to
distinct equivalence classes.

To create4 the set Qb0 we fix b ∈ Z such that b ≡ b0 (mod 2N). Then
we set A = Na and starting with a = 1, we run incrementally through
a ∈ N prime to p (this condition ensures that the quadratic forms that
we find correspond to ideals that are prime to p and hence to elements of
Cl(Opn+1)). For the current value of a:

- we consider the finite set of primitive integral binary quadratic forms
of discriminant p2(n+1)DK such that A = Na and B = b + 2Ns for
s ∈ {0, . . . , a− 1} such that

B2 −D

4N
= Ns2 + bs+

b2 − p2(n+1)DK

4N
≡ 0 (mod a)

since aC = B2−D
4N and C ∈ Z (note that we restrict s ∈ {0, . . . , a− 1}

since other values of s would not give rise to additional equivalence
classes of quadratic forms);

- we then run incrementally through s ∈ {0, . . . , a − 1} satisfying the
above conditions, consider the corresponding quadratic form, and we
insert it in the set Qb0 if it is not equivalent to any quadratic form that
is already in Qb0 (we use reduced quadratic forms in order to check
whether two quadratic forms lie in the same equivalence class) and its
order is prime to p.

We stop the process of incrementing a when the cardinality of Qb0 reaches
(p− (DK

p ))hK .

(3) Let τf ∈ X0(N) be the Heegner point that corresponds to the form f =
Ax2 + Bxy + Cy2. Compute zn =

∑
f π(τf ) ∈ E(C) for f ∈ Qb0 , with

sufficient numerical precision to satisfy the natural consistency checks of
the following step.

(4) Using lattice basis reduction (LLL), as explained in [18, §2.5] and imple-
mented as the algebraic_dependency command in [19] (which relies on
the algdep command in [20]), algebraically reconstruct the x-coordinate of
zn ∈ E(C) and then one of two possible y-coordinates. Make sure that zn
is defined over a dihedral Galois extension of degree 2pn that is ramified

4This follows an algorithm implemented in Sage by W. Stein and R. Bradshaw.
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exactly at p and the primes dividing the discriminant of K, and verify that
several randomly chosen primes which are inert in K/Q split completely in
Kn/K.

(5) We have now constructed zn or −zn as a point of E(Kn). Since by (3) we
know zn as a point of E(C), we now identify zn ∈ E(Kn).

We will also need to know the set of conjugates of the Heegner point zn ∈ E(Kn):

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)}.
Since Gal(K[pn+1]/K) � Cl(Opn+1) is of order (p− (DK

p ))hKpn and hK is prime to

p, an element a0 ∈ Cl(Opn+1) of order pn corresponds to a generator of Gal(Kn/K).
Hence

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)} =

⎧⎨
⎩

∑
f∈Qb0

π(ai0 · τf ) | 0 ≤ i ≤ pn − 1

⎫⎬
⎭ ,

where b0 is a fixed element of S(p2(n+1)DK , N) and Qb0 is defined as in Step 2
of Algorithm 3.1. Observe that if τ = Ψ−1(b0, a) for some a ∈ Cl(Opn+1), then

ai0 · τ = Ψ−1(b0, aa
−1
0 ) and

ΨIF (aa
−1
0 ) = ΨIF (a)ΨIF (a0)

−1 = fτΨIF (a0)
−1.

Hence we have that

{σzn ∈ E(C) | σ ∈ Gal(Kn/K)} =

⎧⎨
⎩

∑
f∈fi

0Qb0

π(τf ) | 0 ≤ i ≤ pn − 1

⎫⎬
⎭ ,

where

i) f0 is a primitive positive definite binary quadratic form of discriminant
p2(n+1)DK such that ord[f0] = pn,

ii) f i
0Qb0 is a set of (p − (DK

p ))hK binary quadratic forms (A,B,C) which

satisfy conditions (i)–(iv) listed above and [(A,B,C)] = [f i
0f ] for f ∈ Qb0 .

Algorithm 3.2 (Computing the conjugates of the Heegner point zn ∈ E(Kn) as
elements of E(C)).

(1) Fix b0 ∈ S(p2(n+1)DK , N) and create a list of equivalence classes of binary
quadratic forms Qb0 as in Step 2 of Algorithm 3.1.

(2) Find f0 a primitive positive definite binary quadratic form of discriminant
p2(n+1)DK such that ord[f0] = pn.

(3) For each i ∈ {0, . . . , p− 1} compute the set f i
0Qb0 .

(4) Compute
∑

f∈fi
0Qb0

π(τf) ∈ E(C) for i ∈ {0, . . . , pn − 1} and record this

pn-tuple of points of E(C).

4. Computation of p-adic heights

In this section, we begin by using [15] to give an effective algorithm for com-
puting the cyclotomic p-adic height of a non-torsion point P ∈ E(F ), where F is
a finite Galois extension of Q. We then refine this algorithm for the computation
of cyclotomic p-adic heights of Heegner points. To conclude we illustrate this al-
gorithm as well as Algorithm 3.1 by computing p-adic heights of Heegner points in
two concrete examples.
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4.1. An algorithm for computing p-adic heights. Let E be an elliptic curve
defined over Q, F a number field, and P a non-torsion point in E(F ). For every
prime v of F we consider the localization map

resv : E(F ) → E(Fv)

where Fv denotes the completion of F at v. Then we have that

resv(P ) =

(
av(P )

dv(P )2
,
bv(P )

dv(P )3

)
∈ E(Fv),

where av(P ), bv(P ), dv(P ) ∈ OFv
such that gcd(av(P ), dv(P )) = gcd(bv(P ), dv(P ))

= 1 (here OFv
denotes the ring of integers of Fv).

By Mazur-Stein-Tate [15] we know that if the point P ∈ E(F ) reduces

(1) to a non-singular point at all primes of bad reduction, and
(2) to the identity in E(k℘) for all primes ℘ | p, where k℘ is the residue field

of F at ℘,

the cyclotomic p-adic height of P over F is given by the following formula:
(4.1)

hp,F (P ) =
1

p
·

⎛
⎝∑

℘|p
logp

(
NF℘/Qp

(σp(res℘(P )))
)
−
∑
v�p

ordv(dv(P )) · logp(#kv)

⎞
⎠ ,

where σp is the p-adic sigma function of E, σp (res℘(P )) := σp

(
−x(res℘(P ))

y(res℘(P ))

)
, and

kv is the residue field of F at v. This assumes that we are working with a min-
imal model of E/F . By the work of Mazur and Tate [16], we have the following
characterization of the p-adic sigma function:

Theorem 4.1. Let E be an elliptic curve defined over a complete field of residue
characteristic p with good ordinary reduction at p, and x(t) = 1

t2 = . . . ∈ Zp((t)) be
the formal power series that expresses x in terms of the local parameter at t = −x/y
at infinity. There is exactly one odd function σp(t) = t+ · · · ∈ tZp[[t]] and constant
c ∈ Zp that together satisfy the differential equation

(4.2) x(t) + c = − d

ω

(
1

σp

dσp

ω

)
,

where ω is the invariant differential dx/(2y+ a1x+ a3) associated with our chosen
Weierstrass equation for E.

Note that the p-adic sigma function converges only in a neighborhood of the local
parameter t = −x/y at infinity and this is where condition (2) comes in. Thus to
evaluate the p-adic sigma function at a point P ∈ E(F ), one may have to work
with a multiple of P .

If condition (1) holds for P and m an integer such that mP reduces to the
identity in E(k℘) for all primes ℘ | p, we use the formula (4.1) to compute the
p-adic height of mP as follows:

hp,F (mP ) =
1

p
·

⎛
⎝∑

℘|p

logp
(
NF℘/Qp(σp(m res℘(P )))

)
−

∑
v�p

ordv(dv(mP )) · logp(#kv)

⎞
⎠ ,

and then recover the height of P by using the fact that the p-adic height pairing is
a quadratic form. The issue with this process is that the coefficients of mP become
very large and hence the direct computation of dv(mP ) for primes v � p becomes
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yet more difficult. However, since P reduces to a non-singular point at all primes
of bad reduction, by Proposition 1 of [23] we know that

dv(mP ) = resv(fm(P ))dv(P )m
2

,

where fm is the m-th division polynomial of the elliptic curve E/Q. Hence we have

hp,F (mP ) =
1

p
·

⎛
⎝∑

℘|p
logp

(
NF℘/Qp

(σp(m res℘(P )))
)
−

∑
v�p

ordv(fm(P )dv(P )m
2
) · logp(#kv)

⎞
⎠

=
1

p
·

⎛
⎝logp

∏
℘|p

(NF℘/Qp
(σp(m res℘(P )))

NF℘/Qp
(fm(P ))

−m2
∑
v�p

ordv(dv(P )) · logp(#kv)

⎞
⎠

=
1

p
·

⎛
⎝logp

∏
℘|p

(NF℘/Qp
(σp(m res℘(P )))

NF℘/Qp
(fm(P ))

−m2 logp(DF (P ))

⎞
⎠ ,

where DF (P ) :=
∏

v�p(#kv)
ordv(dv(P )). Computing DF (P ) directly involves factor-

ing ideals in the ring of integers of F but the following result allows us to bypass
the factorization process.

Proposition 4.2. Let F be a Galois extension of Q, P ∈ E(F ), b(P ) the prime to
p part of the leading coefficient of the minimal polynomial of the x-coordinate x(P )
over Z and r its degree. Then

DF (P )2 = b(P )[F :Q]/r.

Proof. Since by definition b(P ) and DF (P ) are positive integers prime to p, we will
prove the above equality by analyzing the valuation of b(P ) and DF (P ) at every
rational prime � 
= p.

Let brx
r + · · · + b0 = 0 be the minimal polynomial of x(P ) over Z. Since

brx(P ) ∈ OF , it follows that dv(P ) is a unit at all primes v where br has trivial
valuation. Then the assumption that br = peb(P ) implies that DF (P ) has trivial
valuation at all primes which do not divide b(P ).

We now consider the set {�1, . . . �t} of rational prime divisors of b(P ). Denote
by λi,j the primes of F which divide �i, and Fλi,j

is the localization of F at λi,j .

Recall that resλi,j
x(P ) =

aλi,j
(P )

dλi,j
(P )2 where aλi,j

(P ) and dλi,j
(P ) are coprime λi,j-

adic integers and observe that

DF (P ) =
∏
i,j

NFλi,j
/Q�i

(dλi,j
(P )),

NF/Q(x(P )) = c
∏
i,j

NKλi,j
/Q�i

(resλi,j
x(P )),

where c is an integer with trivial valuation at the primes �i.
We start by considering primes �i that do not divide gcd(br, b0). Then, if the

valuation at λi,j0 of x(P ) is negative then the valuation at λi,j of x(P ) is not
positive for any j (since otherwise �i would divide b0 when it already must divide
br). Hence, since

(b0/br)
[F :Q]/r = c

∏
i,j

NKλi,j
/Q�i

(resλi,j
x(P )),

if �i does not divide gcd(br, b0) then ord�i(DF (P ))2 = ord�i
(
b(P )[F :Q]/r

)
.
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We now consider the valuations of DF (P ) and b(P ) at primes �i which divide
gcd(br, b0). Since F/Q is a Galois extension we have that

(4.3) b−[F :Q]/r
r (brx

r + · · ·+ b0)
[F :Q]/r =

∏
σ∈Gal(F/Q)

(x− σ(x(P ))).

For every σ ∈ Gal(F/Q) we set eσ to be the valuation of x(P ) at σ(λi,1). Viewing
the right hand side of the equation (4.3) over the completion of F at λi,1 we have
that ∏

σ∈Gal(F/Q)

(x− σ(x(P ))) =
∏

σ∈Gal(F/Q)

(x− uσπ
eσ−1 )

where π is a uniformizer of λi,1 and uσ are units. In addition, since the greatest
common divisor of the coefficients of brx

r + · · · + b0 is trivial, the same holds for
(brx

r+ · · ·+b0)
[F :Q]/r. It then follows that the valuation at �i of b(P )−[F :Q]/r equals

the sum of the negative eσ. Since resλi,j
x(P ) =

aλi,j
(P )

dλi,j
(P )2 , the valuation at �i of

DF (P )2 also equals ∑
σ∈Gal(F/Q), eσ<0

eσ.

Hence, the valuations of b[F :Q]/r and DF (P )2 are equal at every prime. This
concludes the proof of the proposition. �

We can now describe the algorithm for computing the p-adic height of P .

Algorithm 4.3 (The p-adic height hp,F (P ) of P ∈ E(F )).

(1) Find the smallest positive integer mo such that moP reduces to a non-
singular point at all primes of bad reduction.

(2) Compute moP .
(3) Compute the minimal polynomial of x(moP ) over Z. Let b(P ) be the prime

to p part of its leading coefficient and r be the degree of this polynomial.
Then set DF (moP ) = b(P )[F :Q]/2r.

(4) Compute the p-adic sigma function σp(t) ∈ Zp[[t]] using the algorithms of
[10, 15].

(5) Compute res℘(moP ) and fm res℘(moP ) for each ℘ | p.
(6) Compute the order of moP in E(k℘) for each ℘ | p; set m to be the least

common multiple of these orders.

(7) Evaluate σp(m res℘(moP )) = σp

(
−x(m res℘(moP ))

y(m res℘(moP ))

)
∈ F℘ for each ℘ | p.

(8) Compute hp,F (P ) as follows:

hp,F (P )=
1

p ·m2
o

⎛
⎝ 1

m2
logp

∏
℘|p

NF℘/Qp
(σp(m res℘(moP )))

NF℘/Qp
(fm(moP ))

− logp (DF (moP ))

⎞
⎠ .

Observe that in the above algorithm mo divides the product of the Tamagawa
numbers, and our choice of m ∈ Z ensures that the point mmoP reduces to the
identity O ∈ E(k℘) for all ℘ | p.

4.2. p-adic heights of Heegner points. We will now focus on the computation
of p-adic heights of Heegner points. In addition to the conditions (i)–(iii) listed in
the beginning of §2 in this section we will also assume that

iv) the elliptic curve E/Q has trivial rational torsion.
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Observe that by §3.1 and §3.3 of [7] (see also Lemma 4.2 of [12]) we know that
the Heegner point zn lies, up to translation by a rational torsion point of E, in the
connected component of E at every bad reduction prime v. Hence, under the above
assumption mo = 1 in the computation of p-adic heights of Heegner points. This
trivializes the first two steps of Algorithm 4.3. Moreover, if E/K has analytic rank
1 and p does not divide z0, the following corollary of Proposition 4.2 will do the
same with the third step.

Corollary 4.4. Let E be an elliptic curve defined over Q of analytic rank 1 over
K, zn a Heegner point in E(Kn), and b(zn) the prime to p part of the leading
coefficient of the minimal polynomial of the x-coordinate of zn over Z. Then

DKn
(zn) = b(zn)

pn−r

where pr is the degree of the minimal polynomial of x(zn)
over Z. Moreover, if p does not divide z0 in E(K), then DKn

(zn) = b(zn).

Proof. Consider the action of complex conjugation τ ∈ Gal(Kn/Q) on the Heegner
point zn ∈ E(Kn). Since the rational torsion E(Q)tors is trivial and the order of
Gal(Kn/K) is odd, there exist σ ∈ Gal(Kn/K) such that τ (σ(zn)) = −ε(σ(zn))
where ε is the sign of the functional equation of E/Q; see the listed properties of

Heegner points in §2. This implies that x(σzn) ∈ K
〈τ〉
n . Observe that [K

〈τ〉
n : Q] =

pn. This implies that the degree of the minimal polynomial of x(zn) over Z equals
pr for some r ≤ n. Then by Proposition 4.2 we have that

DKn
(zn)

2 = b(zn)
(2pn)/pr

=
(
b(zn)

pn−r
)2

.

Then, since DKn
(zn) and b(zn) are positive integers it follows that DKn

(zn) =

b(zn)
pn−r

.
If p does not divide z0 in E(K), then since trKn/K zn is a unit multiple of z0 it

follows that Kn = K(x(σzn), y(σzn)) which, together with the fact that τ (σ(zn)) =

−ε(σ(zn)), impliesK
〈τ〉
n = Q(x(σzn)). Hence, the degree of the minimal polynomial

of x(σzn) = σ(x(zn)) over Z equals pn, and by the above it follows that DKn
(zn) =

b(zn). �

There is one further simplification. In our construction of Heegner points, we
first determine a Heegner point zn as an element of E(C). If our only aim is to
compute the p-adic height hp,Kn

(zn) then DKn
(zn) is determined by the minimal

polynomial of x(zn) over Z, and we do not need to construct the coordinates of
zn as elements of a number field. Since the coordinates of zn are only used as
input for the p-adic sigma function we will only need the coordinates of res℘ zn to
some ℘-adic approximation for all ℘ | p; this can be done cheaply with a Newton
iteration. In fact, we first compute res℘ x(zn) and then solve for res℘ y(zn). Note
that while we need to choose the sign of the y-coordinate, this choice is irrelevant
in the end since the sigma function is known to be odd.

In order to compute res℘ zn for ℘ | p, we must use lattice basis reduction (LLL)
to determine the minimal polynomial of x(zn) over Z. Consider Ln = Q(x(zn)) and
observe that p is totally ramified in Ln/Q. In addition, we also know that Ln/Q
is unramified away from the prime divisors of p ·DK and that all rational primes
which are inert in K/Q split completely in Ln/Q (since both of these conditions
hold for Kn/Q). We use these three properties of Ln/Q as consistency checks in
our computation of the minimal polynomial of x(zn) over Z.
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We will now analyze the fields of definition of res℘ zn for ℘ | p. Let pn be the
unique prime of Ln above p and let Lpn

be the completion of Ln at pn. In addition,
℘n denotes primes of Kn above p and K℘n

is the completion of Kn at ℘n. Observe
that:

(1) If the analytic rank of E/Q is 1, then τσzn = σzn for some σ ∈ Gal(Kn/K)
which in turn implies that zn ∈ E(Ln).

(2) If the analytic rank of E/Q is 0 and p splits in K/Q, then there are exactly
two primes ℘n, ℘′

n of Kn above p and pnOKn
= ℘n℘

′
n. Hence K℘n

=
K℘′

n
= Lpn

and res℘n
zn, res℘′

n
zn ∈ E(Lpn

). Moreover, since τσzn = −σzn
for some σ ∈ Gal(Kn/K), we have that res℘′

n
σzn = − res℘n

σzn.

Consequently, in both of the above cases setting m to be the order of respn
(zn) in

E(Fp), since the residue field of Ln at pn equals Fp, we find that

logp
∏
℘n|p

NK℘n/Qp
(σp(m res℘n

(zn)))

NK℘n/Qp
(fm res℘n

(zn))
= 2 logp

(
NLpn/Qp

(
σp(m respn

(zn))

fm(respn
(zn))

))
.

While in the above cases all our computations are over extensions of degree pn, this
is no longer possible in the following case:

(3) if the analytic rank of E/Q is 0 and p is inert in K/Q, then there is a unique
prime ℘n of Kn above p and K℘n

= Lpn
[
√
DK ]. While x(res℘n

(zn)) ∈ Lpn
,

since τzn = −σzn for some σ ∈ Gal(Kn/K), it follows that y(res℘n
(zn)) ∈

K℘n
\ Lpn

.

To summarize, in order to compute p-adic heights of Heegner points we use the
following modified versions of Algorithm 4.3:

Algorithm 4.5 (The p-adic height hp,Kn
(zn) of a Heegner point zn ∈ E(Kn)).

Assume one of the following conditions holds:

• the analytic rank of E/Q equals 1, or
• the analytic rank of E/Q is 0 and p splits in K/Q.

(1) Compute x(zn) ∈ C using the first three steps of Algorithm 3.1.
(2) Use lattice basis reduction (LLL) to find the minimal polynomial of x(zn)

over Z. As a consistency check, we verify that the corresponding extension
of Ln/Q is unramified away from the prime divisors of p ·DK , p is totally
ramified in Ln/Q, and that several randomly chosen primes which are inert
in K/Q split completely in Ln/Q.

(3) Compute DKn
(zn); see Corollary 4.4.

(4) Compute the p-adic sigma function σp(t) ∈ Zp[[t]].
(5) p-adically construct respn

(zn) ∈ E(Lpn
).

(6) Compute m, the order of respn
(zn) in E(Fp).

(7) Compute m respn
(zn) ∈ E(Lpn

) and fm(respn
(zn)) ∈ Lpn

.
(8) Recover

hp,Kn
(zn) =

1

p

(
2

m2
logp NLpn/Qp

(
σp(m respn

(zn))

fm(respn
(zn))

)
− logp(DKn

(zn))

)
.

Algorithm 4.6 (The p-adic height hp,Kn
(zn) of a Heegner point zn ∈ E(Kn)).

Assume that the analytic rank of E/Q is 0 and p is inert in K/Q.

Complete steps (1)–(4) as in Algorithm 4.5.
(5) p-adically construct res℘n

x(zn) ∈ E(Lpn
) and then res℘n

y(zn) ∈ E(K℘n
).
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(6) Compute m, the order of res℘n
(zn) ∈ E(Fp2).

(7) Compute m res℘n
(zn) ∈ E(K℘n

) and fm(respn
(zn)) ∈ K℘n

.
(8) Recover

hp,Kn
(zn) =

1

p

(
1

m2
logp

(
NK℘n/Qp

(σp(m res℘n
(zn)))

NLpn/Qp
(fm(respn

(zn)))
2

)
− logp(DKn

(zn))

)
.

4.3. Examples. We now illustrate the algorithms developed in §3 and §4.2 by
going through the steps in one explicit example5 and listing the results of another.
Throughout this paper we refer to elliptic curves by a version of their Cremona
labels [6]; see the Appendix for the equations of the specific curves we use.

Example 4.7. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K =
Q(

√
−14). Note that conditions (i)-(iii) listed at the beginning of §2 as well as

condition (iv) of §4.2 hold. In addition, we have that E/K has analytic rank 1, K
has class number hK = 4, and the prime p = 5 splits in K/Q.

Using Sage we compute the Heegner point z0 ∈ E(K) and its 5-adic height:

h5,K(z0) = 5 + 3 · 52 + 53 + 54 + 2 · 55 + 57 +O(58).

Hence, 5 does not divide z0 in E(K), and this is an example where the Heegner
L-function of E is non-trivial and equal to the Λ-adic regulator R of E; see §2.
We are interested in computing the coefficients of the Heegner L-function, and as
a first step we will compute a Heegner point z1 and its 5-adic height h5,K1

(z1).
We will now use the first three steps of Algorithm 3.1 to approximate the coor-

dinate of the Heegner point z1 ∈ E(C). Fix b0 = 32 ∈ S(54 · (−4 · 14), 57). Since
hK = 4 and p = 5 splits in K/Q, we create a list of 16 = hK(p − 1) equivalence
classes of binary quadratic forms of order prime to 5 which satisfy conditions (i)-(iv)
of Section 3:

f1(x, y) = 741x2 + 146xy + 19y2 ord(f1) = 8,

f2(x, y) = 1311x2 + 2426xy + 1129y2 ord(f2) = 2,

f3(x, y) = 1482x2 + 1628xy + 453y2 ord(f3) = 8,

f4(x, y) = 2622x2 + 5048xy + 2433y2 ord(f4) = 2,

f5(x, y) = 4503x2 + 32xy + 2y2 ord(f5) = 2,

f6(x, y) = 4617x2 + 5390xy + 1575y2 ord(f6) = 4,

f7(x, y) = 5187x2 + 4592xy + 1018y2 ord(f7) = 8,

f8(x, y) = 9006x2 + 32xy + y2 ord(f8) = 1,

f9(x, y) = 9234x2 + 14624xy + 5791y2 ord(f9) = 4,

f10(x, y) = 10089x2 + 7100xy + 1250y2 ord(f10) = 4,

f11(x, y) = 10374x2 + 4592xy + 509y2 ord(f11) = 8,

f12(x, y) = 12141x2 + 15308xy + 4826y2 ord(f12) = 8,

f13(x, y) = 20178x2 + 7100xy + 625y2 ord(f13) = 4,

5We emphasize again that all computational results in this paper assume that certain non-
exact, non-proven numerical computation of points gave correct answers; see Remark 0.1.
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f14(x, y) = 23883x2 + 7556xy + 598y2 ord(f14) = 8,

f15(x, y) = 83163x2 + 70028xy + 14742y2 ord(f15) = 8,

f16(x, y) = 166269x2 + 175022xy + 46059y2 ord(f16) = 8.

Then we compute

z1 =
16∑
i=1

π(τfi) ∈ E(C).

Numerically6, we have that

z1≈(0.649281815494878+0.730235331103786i,−1.54792819990164+0.894427675896415i).

We will now use Algorithm 4.5 to compute the p-adic height of z1. Using LLL, we
find7 that the best degree 5 relation satisfied by the x-coordinate of the numerical
approximation to z1 above is

528126361x5−1204116445x4+172671870x3+1926267530x2−2409168275x+1066099823.

We will now assume that the above polynomial is the minimal polynomial of x(z1),
which is highly likely due to consistency checks described in the second step of
Algorithm 4.5. Then by Corollary 4.4 we have that

DK1
(z1) = 528126361.

We compute σ5(t) ∈ Z5[[t]]. Then p-adically construct resp1
(z1) ∈ E(Lp1

).
Since resp1

(z1) reduces to (2, 3) ∈ E(F5) which has order 9, we set m = 9. We now
compute 9 resp1

(z1) ∈ E(Lp1
), f9(resp1

x(z1)) ∈ Lp1
, and evaluate

σ5(9 resp1
(z1)) = σ5

(
−x(resp1

(z1))

y(resp1
(z1))

)
∈ Lp1

.

Then we find that

NLp1
/Q5

(σ5(9 resp1(z1))) = 5 + 3 · 52 + 4 · 54 + 4 · 55 + 2 · 56 + 2 · 58 + 4 · 59 +O(510),

NLp1
/Q5

(f9(resp1 x(z1))) = 2 · 5 + 2 · 52 + 53 + 54 + 2 · 55 + 3 · 56 + 4 · 57

+ 2 · 58 + 2 · 59 +O(510).

Finally, putting this all together yields

hp,K1
(z1) =

1

5

(
2

92
logp

(
NLp1

/Q5
(σ5(9 resp1

(z1)))
)

− 2

92
logp

(
NLp1

/Q5
(f9(resp1

x(z1)))
)
− logp(DK1

(z1))

)
= 3 + 2 · 5 + 52 + 4 · 55 + 2 · 56 +O(57).

Example 4.8. Let E/Q be the rank 1 elliptic curve “331a1”, p = 7 and K =
Q(

√
−2). Note that conditions (i)–(iii) listed at the beginning of §2 as well as

condition (iv) of §4.2 hold. In addition, we have that E/K has analytic rank 1, K
has class number hK = 1, and p = 7 is inert in K/Q.

Using Sage we compute the Heegner point z0 ∈ E(K) and its 7-adic height:

h7,K(z0) = 6 · 7 + 3 · 72 + 4 · 73 + 74 + 2 · 75 + 2 · 76 + 4 · 77 +O(78).

6In our actual calculation, we used 2000 bits of precision.
7This is only “likely” to be the best since LLL is not guaranteed to give the best answer; we

will suppress mention of this issue in future computations.
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Hence, 7 does not divide z0 in E(K) and this is another example where we wish to
compute the coefficients of the Heegner L-function (see §6). As a first step we use
Algorithm 4.5 to compute the 7-adic height of z1 and find that

h7,K1
(z1) = 4 + 3 · 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 + 2 · 77 +O(78).

Remark 4.9. As a double check on our implementation of the height algorithms,

one can compute hp,F (P )− hp,F (nP )
n2 for several n ∈ N and verify that the result is

p-adically small. We have completed this check for n = 2 in all the examples that
appear in this article.

5. Computing p-adic height pairings of Heegner points

In this section, we give an algorithm to compute the p-adic height pairing

〈zn, σzn〉Kn
for σ ∈ Gal(Kn/K),

and then illustrate it in an example. We continue to assume conditions (i)–(iii)
listed at the beginning of §2 as well as condition (iv) of §4.2. Recall that ε denotes
the sign of the functional equation of E/Q. Then since hp,Kn

(x) = − 1
2 〈x, x〉Kn

and
hp,Kn

(σzn) = hp,Kn
(zn) for every σ ∈ Gal(Kn/K), we have that

〈zn, σzn〉Kn
= hp,Kn

(zn) + hp,Kn
(−εσzn)− hp,Kn

(zn − εσzn)

= 2hp,Kn
(zn)− hp,Kn

(zn − εσzn).

It remains to discuss the auxiliary computation of hp,Kn
(zn − εσzn).

We know that there exist σ0 ∈ Gal(Kn/K) such that τσ0zn = −εσ0zn. It then
follows that

(5.1) τσ0(σzn − εσ−1zn) = σ0(−εσ−1zn + σzn),

and hence (σzn− εσ−1zn) ∈ E(Ln) for every σ ∈ Gal(Kn/K), where [Ln : Q] = pn.
This allows us to compute the height of (σzn − εσ−1zn) by using Algorithm 4.5
independently of the analytic rank of E/Q, simply replacing zn by (σzn− εσ−1zn).

Observe that the assumption that E has trivial rational torsion implies that
both σzn and σ−1zn reduce to non-singular points at all bad primes, hence so
does (σzn − εσ−1zn) and, consequently, in its p-adic height computation mo =
1. In addition, by (5.1) we know that the degree of the minimal polynomial of
x(σzn − εσ−1zn) divides p

n and hence Proposition 4.2 implies that

DKn

(
σzn − εσ−1zn

)
= b

(
σzn − εσ−1zn

)pn−r

,

where pr is the degree of the minimal polynomial of x
(
σzn − εσ−1zn

)
over Z and

b
(
σzn − εσ−1zn

)
is the prime to p part of its leading coefficient. Moreover, since

trKn/K zn is a unit multiple of z0, if the analytic rank of E/Q equals 1 and p does
not divide z0 in E(K) it follows that

DKn

(
σzn − εσ−1zn

)
= b

(
σzn − εσ−1zn

)
.

Algorithm 5.1 (The pairings 〈zn, σzn〉 for all σ ∈ Gal(Kn/K)).

(1) Depending on the analytic rank of E/Q and the behavior of p inK/Q we use
the appropriate algorithm of §4.2 to compute a Heegner point zn ∈ E(C)
and its p-adic height hp,Kn

(zn).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

p-ADIC HEIGHTS OF HEEGNER POINTS AND Λ-ADIC REGULATORS 947

(2) Use Algorithm 3.2 to compute the conjugates of zn as points in E(C). This
fixes an ordering of the conjugates of zn:

(zn, σ0zn, . . . , σ
pn−1
0 zn) ∈ E(C)p

n

where σ0 ∈ Gal(Kn/K) is an element of order pn that is now fixed.

(3) We can then compute σj
0zn − εσpn−j

0 zn ∈ E(C) for any j ∈ {1, . . . , (pn −
1)/2}.

(4) Use Algorithm 4.5 to compute hp,Kn
(σj

0zn − εσ−j
0 zn).

(5) This gives

〈σj
0zn, σ

−j
0 zn〉Kn

= 2hp,Kn
(zn)− hp,Kn

(σj
0zn − εσ−j

0 zn).

(6) Since 〈zn, σ2j
0 zn〉Kn

= 〈σj
0zn, σ

−j
0 zn〉Kn

and pi is odd, this gives us all pair-

ings 〈zn, σj
0zn〉.

Example 5.2. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K =
Q(

√
−2). We will use Algorithm 5.1 to compute a Heegner point z1 and the 5-adic

pairings:

〈z1, σz1〉K1
for all σ ∈ Gal(K1/K).

Conditions (i)–(iii) listed at the beginning of §2 as well as condition (iv) of §4.2
hold. Using Sage we compute the Heegner point z0 ∈ E(K) and its 5-adic height:

h5,K(z0) = 5 + 3 · 52 + 53 + 54 + 2 · 55 + 57 +O(58).

Hence, p does not divide z0 in E(K), and we proceed to compute z1 ∈ E(C) and its
5-adic height following Algorithm 4.5. Through the first three steps of Algorithm
3.1 we approximate the coordinate of the Heegner point z1 ∈ E(C):

z1 ≈ (1.09134357351891,−0.919649689611060).

Then we use this point to find

h5,K1
(z1) = 2 + 2 · 5 + 2 · 52 + 54 + 4 · 55 + 4 · 56 + 3 · 57 +O(58).

Following Algorithm 3.2 we compute the 5-tuple of the conjugates of z1 as points
in E(C):

(z1, σz1, σ
2z1, σ

3z1, σ
4z1) ∈ E(C)5

where σ ∈ Gal(K1/K) denotes the element of order 5 that is now fixed.
Since ε = −1 we proceed to compute

σz1 + σ4z1 ≈ (1.28240225474401− 0.182500350994469i,

− 0.761690770112933 + 0.117006496908598i)

+ (1.28240225474401 + 0.182500350994469i,

− 0.761690770112933− 0.117006496908598i)

≈ (−1.15375650323736,−1.80020432012303),

σ2z1 + σ3z1 ≈ (1.67723875767367− 0.0866463691344989i,

− 1.39041234698688 + 0.149731706982934i)

+ (1.67723875767367 + 0.0866463691344989i,

− 1.39041234698688− 0.149731706982934i)

≈ (0.631776964264686,−1.41622745195929),

and then use Algorithm 4.5 to compute the 5-adic heights of these points.
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We compute the minimal polynomial of the x-coordinate of σz1 + σ4z1:

575045004169216x5 + 1883069884256000x4 + 2633285660453540x3

+ 2747042174769680x2 + 2325461580346885x+ 909442872123731,

which gives

DK1
(σz1 + σ4z1) = 575045004169216.

Since the point (σz1 + σ4z1) has order 3 in E(F5), we have that m = 3 and

h5,K1
(σz1 + σ4z1) =

1

5

(
1

32
log5

(
NLp1

/Q5

(
σ5(3 resp1

(σz1 + σ4z1))

f3(x(resp1
(σz1 + σ4z1)))

)2
)

− log5(DK1
(σz1 + σ4z1))

)
= 1 + 5 + 52 + 2 · 53 + 54 + 4 · 57 + 58 + 59 + O(510).

Repeating the computation for σ2z1 + σ3z1, we first compute the minimal poly-
nomial of the x-coordinate of (σ2z1 + σ3z1):

258022025068096x5 + 852975284094800x4 + 587418614311065x3 − 166184992922095x2

+ 75604423293285x− 291423856921639,

which gives

DK1
(σ2z1 + σ3z1) = 258022025068096.

As the point σ2z1 + σ3z1 has again order 3 in E(F5), we have m = 3 and

h5,K1(σ
2z1 + σ3z1) =

1

5

(
1

32
log5

(
NLp1

/Q5

(
σ5(3 resp1(σ

2z1 + σ3z1))

f3(x(resp1(σ
2z1 + σ3z1)))

)2
)

− log5(DK1(σ
2z1 + σ3z1))

)
= 4 · 53 + 3 · 54 + 2 · 55 + 3 · 56 + 2 · 57 + 2 · 58 + 3 · 59 +O(510).

To finish the computation, we note that

〈z1, z1〉K1
= −2h5,K1(z1)

〈z1, σz1〉K1
= 〈σ2z1, σ

3z1〉K1

= 2h5,K1(z1)− h5,K1(σ
2z1 + σ3z1)

= 4 + 4 · 5 + 4 · 52 + 53 + 3 · 54 + 56 + 2 · 58 +O(510)

〈z1, σ2z1〉K1
= 〈z1, σ3z1〉K1

〈z1, σ3z1〉K1
= 〈σz1, σ4z1〉K1

= 2h5,K1(z1)− h5,K1(σ
4z1 + σz1)

= 3 + 3 · 5 + 3 · 52 + 3 · 53 + 3 · 55 + 4 · 56 + 3 · 57 + 2 · 58 + 2 · 59 +O(510)

〈z1, σ4z1〉K1
= 〈z1, σz1〉K1

.

Observe that as a numerical check, we can compute the sum of these pairings to
obtain the following:

〈z1, z1〉K1
+〈z1, σz1〉K1

+· · ·+〈z1, σ4z1〉K1
=2·5+2·52+54+4·55+56+2·59+O(510).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

p-ADIC HEIGHTS OF HEEGNER POINTS AND Λ-ADIC REGULATORS 949

Using (2.2) we see that trK1/K(z1) = 3z0, and since z0 ∈ E(Q), Sage tells us that

〈z0, z0〉Q = 4 · 5 + 52 + 3 · 53 + 3 · 54 + 2 · 55 + 4 · 56 + 3 · 57 + 2 · 58 + 4 · 59 +O(510).

This allows us see, numerically, that

〈trK1/K(z1), trK1/K(z1)〉K1
= 5〈z1, trK1/K(z1)〉K1

= 2 · 52 + 2 · 53 + 55 + 4 · 56 + 57 +O(510)

= [K1 : Q]〈3z0, 3z0〉Q,
which also tests consistency with the existing Sage implementation of p-adic heights
of rational points on elliptic curves.

6. Λ-adic regulators

In this section we compute coefficients of Λ-adic regulators of several elliptic
curves E/Q. In all these examples z0 is not divisible by p in E(K) and the valuation
of hp,K(z0) is strictly positive. Hence, we know that the Heegner L-function L
equals the Λ-adic regulator R up to a unit and they are non-trivial. Recall from §2
that the coefficients of the Heegner L-function are

b0 = 〈c0, c0〉K0
,

bk ≡
∑

k≤i<pn

(
i

k

)
〈cn, σicn〉Kn

(mod pn) for k ≥ 1,

where c0 = z0, c1 = u−1
0 z1, and c2 = (u0u1)

−1z2. Observe that since 〈cn, σicn〉 =
〈cnσpn−icn〉, it follows that

b1 ≡ 0 (mod pn) for all n,

and hence b1 = 0. Consequently, in order to get any further information about the
Heegner L-function we will need to compute b2 (mod pn) and perhaps additional
coefficients also.

Observe that one common feature of all the Λ-adic regulators computed below,
is that they are non-zero at the roots of (T + 1)p

n − 1 = 0 for every n ∈ N.

Example 6.1. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K =
Q(

√
−2). Using the computation of h5,K(z0) in Example 5.2, we find that

b0 = 〈c0, c0〉K0
= −2h5,K(c0) = −2h5,K(z0) = 3 ·5+3 ·52+53+2 ·54+4 ·56+2 ·57+O(58).

In Example 5.2, we have also computed

〈z1, σz1〉K1
≡ 4 (mod 5),

〈z1, σ2z1〉K1
≡ 3 (mod 5).

Since p = 5 is inert in K/Q and a5 = −3, we see that u0 = 3 and

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ2z1〉K1
) (mod 5)

≡ 4 (mod 5).

Then we have that R(T ) = L(T ) ≡ 4T 2 modulo (T 3, 5) and hence R equals the
product of a unit and a distinguished polynomial of degree 2 in Z5[[T ]].
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Example 6.2. Let E/Q be the rank 1 elliptic curve “57a1”, p = 5, and K =
Q(

√
−14), as in Example 4.7. We have that b0 = −2h5,K(z0) ≡ 0 (mod 5) and

〈z1, σz1〉K1
= 3 · 5 + 52 + 54 + 2 · 55 +O(56),

〈z1, σ2z1〉K1
= 3 + 3 · 5 + 2 · 52 + 53 + 3 · 54 + 2 · 55 +O(56).

Then since p = 5 splits in K/Q and a5 = −3, we see that u0 = 11 and

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ2z1〉K1
) (mod 5)

≡ 2 (mod 5).

This implies that R(T ) = L(T ) ≡ 2T 2 modulo (T 3, 5) and R is the product of a
unit and a distinguished polynomial of degree 2 in Z5[[T ]].

Example 6.3. Let E/Q be the rank 1 elliptic curve “331a1”, p = 7, and K =
Q(

√
−2). We compute

b0 = 〈c0, c0〉K0
= 2 · 7 + 6 · 72 + 4 · 73 + 3 · 74 + 2 · 75 + 2 · 76 + 5 · 77 +O(78).

For σ ∈ Gal(K1/K) the element of order p fixed in Step 2 of Algorithm 5.1 we then
find

〈z1, σz1〉K1
= 2 + 2 · 7 + 2 · 72 + 73 + 6 · 75 + 2 · 76 + 2 · 77 +O(78),

〈z1, σ2z1〉K1
= 2 · 7 + 6 · 72 + 5 · 73 + 3 · 74 + 2 · 76 + 77 +O(78),

〈z1, σ3z1〉K1
= 2 + 7 + 3 · 72 + 5 · 73 + 3 · 74 + 2 · 75 + 4 · 76 + 6 · 77 +O(78).

Moreover, since 7 is inert in K/Q and a7 = 2, we have u0 = −4 and

b2 ≡ u−2
0 (〈z1, σz1〉K1

+ 4〈z1, σ2z1〉K1
+ 2〈z1, σ3z1〉K1

) (mod 7)

≡ 3 (mod 7).

Hence, R(T ) = L(T ) ≡ 3T 2 modulo (T 3, 7) and the Λ-adic regulator R is the
product of a unit and a distinguished polynomial of degree 2 in Z7[[T ]].

In the following three examples we will have that p = 3, p splits in K/Q, and
ap = −1. Consequently, we find that u0 = 1, u−1

1 ≡ 5 + 6σ + 6σ2 (mod 9), and
hence

〈c2, σic2〉K2
≡ 〈5z2 + 6σz2 + 6σ2z2, 5σ

iz2 + 6σi+1z2 + 6σi+2z2〉K2
(mod 9)

≡ 3〈z2, σi−2z2〉K2
+ 3〈z2, σi−1z2〉K2

+ 7〈z2, σiz2〉K2
+ 3〈z2, σi+1z2〉K2

+ 3〈z2, σi+2z2〉K2
(mod 9).

Example 6.4. Let E/Q be the rank 1 elliptic curve “203b1”, p = 3, and K =
Q(

√
−5). We compute 3-adic heights and the 3-adic sigma function for elliptic

curves over Q using the methods in [1]. We find that the first coefficient of the
Heegner L-function is

b0 = 〈c0, c0〉K0
= 32 + 33 + 35 +O(38).

Then for σ ∈ Gal(K1/K) the element of order p fixed in Step 2 of Algorithm 5.1
we compute

〈z1, z1〉K1
= 2 + 2 · 3 + 2 · 32 + 33 + 34 +O(38),

〈z1, σz1〉K1
= 2 + 3 + 33 + 2 · 34 + 35 + 36 + 37 +O(38),

〈z1, σ2z1〉K1
= 〈z1, σz1〉K1

.
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Note that this gives b2 ≡ u−2
0 〈z1, σz1〉K1

≡ 2 (mod 3).

In this example R(T ) ≡ 2T 2 modulo (T 3, 3) and it is again the product of a
unit and a distinguished polynomial of degree 2 in Z3[[T ]]. However, while in the
previous examples b0 has valuation 1 which implies that R is irreducible, in this
case b0 has valuation 2 and the computed data does not imply that R is irreducible
but it does show that R is squarefree.

Example 6.5. Let E/Q be the rank 1 elliptic curve “185b1”, p = 3, and K =
Q(

√
−11). First, we have

b0 = 〈c0, c0〉K0
= 2 · 3 + 32 + 33 + 35 + 2 · 36 + 37 +O(38).

For σ ∈ Gal(K1/K) the element of order p fixed in Step 2 of Algorithm 5.1 we
have:

〈z1, z1〉K1
= 2 · 3 + 2 · 32 + 34 + 2 · 36 + 37 +O(38),

〈z1, σz1〉K1
= 32 + 34 +O(38),

〈z1, σ2z1〉K1
= 〈z1, σz1〉K1

.

So we see that we have b2 ≡ 0 (mod 3). Thus we now compute b3 (mod 9). For
σ ∈ Gal(K2/K) the element of order p2 fixed in Step 2 of Algorithm 5.1 we have:

〈z2, z2〉K2
= 1 + 3 + 33 + 2 · 34 + 2 · 35 +O(37),

〈z2, σz2〉K2
= 1 + 3 + 32 + 2 · 33 + 34 + 35 +O(37),

〈z2, σ2z2〉K2
= 2 + 3 + 2 · 33 + 2 · 34 + 2 · 35 +O(37),

〈z2, σ3z2〉K2
= 1 + 2 · 32 + 2 · 33 + 34 +O(37),

〈z2, σ4z2〉K2
= 32 + 33 + 34 + 2 · 35 +O(37),

〈z2, σ5z2〉K2
= 〈z2, σ4z2〉K2

,

〈z2, σ6z2〉K2
= 〈z2, σ3z2〉K2

,

〈z2, σ7z2〉K2
= 〈z2, σ2z2〉K2

,

〈z2, σ8z2〉K2
= 〈z2, σz2〉K2

.

Consequently, we find that

〈c2, σc2〉K2
≡ 7 (mod 9),

〈c2, σ2c2〉K2
≡ 8 (mod 9),

〈c2, σ3c2〉K2
≡ 7 (mod 9),

〈c2, σ4c2〉K2
≡ 3 (mod 9),

which gives b2 ≡ 6 (mod 9) and

b3 ≡ 2〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 3〈c2, σ3c2〉K2
+ 5〈c2, σ4c2〉K2

(mod 9)

≡ 6 (mod 9).

So, we must now compute b4 (mod 9). We find that

b4 ≡ 7〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 6〈c2, σ4c2〉K2

(mod 9)

≡ 2 (mod 9).
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Hence, R(T ) = L(T ) ≡ 6 + 6T 2 + 6T 3 + 2T 4 modulo (T 5, 9) and in this case the
regulator R is the product of a unit and a distinguished polynomial of degree 4 in
Z3[[T ]].

Example 6.6. Let E/Q be the rank 1 elliptic curve “325b1”, p = 3, and K =
Q(

√
−14). First, we have

b0 = 〈c0, c0〉K0
= 3 + 33 + 2 · 34 + 2 · 35 +O(38).

For σ ∈ Gal(K1/K) the element of order p fixed in Step 2 of Algorithm 5.1:

〈z1, z1〉K1
= 2 · 3 + 32 + 2 · 34 + 2 · 36 + 2 · 37 +O(38),

〈z1, σz1〉K1
= 3 + 2 · 32 + 33 + 34 + 2 · 35 +O(38),

〈z1, σ2z1〉K1
= 〈z1, σz1〉.

So we see that we have b2 ≡ 0 (mod 3). Thus we go to the next coefficient; for
σ ∈ Gal(K2/K) the element of order p2 fixed in Step 2 of Algorithm 5.1 we have:

〈z2, z2〉K2
= 2 + 3 + 2 · 32 + 33 + 2 · 34 + 2 · 35 + 36 +O(38),

〈z2, σz2〉K2
= 1 + 2 · 3 + 2 · 34 + 2 · 35 + 36 + 37 +O(38),

〈z2, σ2z2〉K2
= 1 + 2 · 32 + 33 + 2 · 36 + 37 +O(38),

〈z2, σ3z2〉K2
= 2 + 3 + 32 + 2 · 34 + 2 · 35 + 37 +O(38),

〈z2, σ4z2〉K2
= 1 + 3 + 2 · 33 + 35 + 36 +O(38),

〈z2, σ5z2〉K2
= 〈z2, σ4z2〉K2

,

〈z2, σ6z2〉K2
= 〈z2, σ3z2〉K2

,

〈z2, σ7z2〉K2
= 〈z2, σ2z2〉K2

,

〈z2, σ8z2〉K2
= 〈z2, σz2〉K2

.

Consequently, we find that

〈c2, σc2〉K2
≡ 4 (mod 9),

〈c2, σ2c2〉K2
≡ 7 (mod 9),

〈c2, σ3c2〉K2
≡ 2 (mod 9),

〈c2, σ4c2〉K2
≡ 1 (mod 9),

which gives b2 ≡ 3 (mod 9) and

b3 ≡ 2〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 3〈c2, σ3c2〉K2
+ 5〈c2, σ4c2〉K2

(mod 9)

≡ 3 (mod 9).

We continue to compute successive bi (mod 9) until we find one which is not
divisible by 3:

b4 ≡ 7〈c2, σc2〉K2
+ 8〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 6〈c2, σ4c2〉K2

(mod 9)

≡ 3 (mod 9).

b5 ≡ 2〈c2, σc2〉K2
+ 3〈c2, σ2c2〉K2

+ 6〈c2, σ3c2〉K2
+ 〈c2, σ4c2〉K2

(mod 9)

≡ 6 (mod 9),

b6 ≡ 〈c2, σc2〉K2
+ 7〈c2, σ2c2〉K2

+ 〈c2, σ3c2〉K2
(mod 9)

≡ 1 (mod 9).
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Hence, R(T ) = L(T ) ≡ 3 + 3T 2 + 3T 3 + 3T 4 + 6T 5 + T 6 modulo (T 7, 9) and we
have now found an example where the Λ-adic regulator R is the product of a unit
and a distinguished polynomial of degree 6 in Z3[[T ]].

Appendix: elliptic curves and their Cremona labels

Label Equation
57a1 y2 + y = x3 − x2 − 2x+ 2
185b1 y2 + y = x3 − x2 − 5x+ 6
203b1 y2 + xy + y = x3 + x2 − 2
325b1 y2 + y = x3 − x2 − 3x+ 3
331a1 y2 + xy = x3 − 5x+ 4
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[17] Bernadette Perrin-Riou, Fonctions L p-adiques, théorie d’Iwasawa et points de Heegner
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