On the structure of Selmer groups*

V. A. Kolyvagin
Steklov Mathematical Institute, Vavilova 42, SU-117966 Moscow, GSP-1, USSR

Received June 29, 1990; in revised form April 15, 1991

The paper contains some applications of explicit cohomology classes (which the author has constructed earlier using Heegner points) to the theory of Selmer groups of a modular elliptic curve. Moreover, some generalizations of Selmer groups are considered.

The case when the Heegner point over the imaginary quadratic field has infinite order was studied in the work [1]. In fact, the theory of [1] is valid under a more general assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the Selmer groups and of our explicit cohomology classes, and formulate some of our results. The second part is essentially based on the work [1] and requires some familiarity with it. The second part contains proofs of results for $\ell \in B(E)$ (see below for notations), formulations of corresponding results for $\ell \notin B(E)$, and some global consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers \mathbb{Q}. For an arbitrary abelian group A and a natural number M we let A_{M} denote the maximal M-torsion subgroup of A. We use the abbreviation $A / M=A / M A$. Let $E_{M}=E(\overline{\mathbb{Q}})_{M}$. If R is some extension of \mathbb{Q}, then the exact sequence

[^0]$0 \rightarrow E_{M} \rightarrow E(\bar{R}) \rightarrow E(\bar{R}) \rightarrow 0$ induces the exact sequence
\[

$$
\begin{equation*}
0 \rightarrow E(R) / M \rightarrow H^{1}\left(R, E_{M}\right) \rightarrow H^{1}(R, E)_{M} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

\]

If L / R is a Galois extension, then $G(L / R)$ denotes its Galois group, $H^{1}(R, A):=$ $H^{1}(G(\bar{R} / R), A)$ for a $G(\bar{R} / R)$-module $A, H^{1}(R, E):=H^{1}(R, E(\bar{R}))$.

Now let R be a finite extension of \mathbb{Q}. For a place v of R, we let $R(v)$ denote the corresponding completion of R, for $x \in H^{1}\left(R, E_{M}\right), x(v)$ denotes its natural image in $H^{1}\left(R(v), E_{M}\right)$. The Selmer group $S\left(R, E_{M}\right) \subset H^{1}\left(R, E_{M}\right)$, by definition, consists of all elements x such that for all places v of R, $x(v) \in E(R(v)) / M$. We recall that the Shafarevich-Tate group $\amalg(R, E)$ is $\operatorname{ker}\left(H^{1}(R, E) \rightarrow \prod_{v} H^{1}(R(v), E)\right)$, so (1.1) induces the exact sequence:

$$
0 \rightarrow E(R) / M \rightarrow S\left(R, E_{M}\right) \rightarrow \amalg(R, E)_{M} \rightarrow 0
$$

By the weak Mordell-Weil theorem, the Selmer group $S\left(K, E_{M}\right)$ is finite, by the Mordell-Weil theorem, $E(R) \cong F \times \mathbb{Z}^{\text {rank } E(R)}$, where $F \cong E(R)_{\text {tor }}$ is finite, $0 \leq \operatorname{rank} E(R) \in \mathbb{Z}$.

It is conjectured that $\amalg(R, E)$ is finite. Only recently Rubin and the author proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E, γ : $X_{0}(N) \rightarrow E$ be a modular parametrization. Here $X_{0}(N)$ is the modular curve over \mathbb{Q} which parametrizes isomorphism classes of isogenies of elliptic curves with cyclic kernel of order N. We note that, according to the Taniyama-Shimura-Weil conjecture, every elliptic curve over \mathbb{Q} is modular.

We now define explicit cohomology classes, we start from the definition of Heegner points. Let $K=\mathbb{Q}(\sqrt{D})$ be a field of discriminant D such that $0>D \equiv \square(\bmod 4 N), D \neq-3,-4$. We fix an ideal i_{1} of the ring of integers O_{1} of K such that $O_{1} / i_{1} \cong \mathbb{Z} / N \mathbb{Z}$ (such an ideal exists because of the conditions on $D)$. If $\lambda \in \mathbb{N}$, let K_{λ} be the ring class field of K of conductor λ. It is a finite abelian extension of K. In particular, K_{1} is the maximal abelian unramified extension of K. If $(\lambda, N)=1$, we let $O_{\lambda}=\mathbb{Z}+\lambda O_{1}$, $i_{\lambda}=i_{1} \cap O_{\lambda}, z_{\lambda}$ will be the point of $X_{0}(N)$ rational over K_{λ} corresponding to the class of the isogeny $\mathbb{C} / O_{\lambda} \rightarrow \mathbb{C} / i_{\lambda}^{-1}$ (here $i_{\lambda}^{-1} \supset O_{\lambda}$ is the inverse of i_{λ} in the group of proper O_{λ}-ideals). We set $y_{\lambda}=\gamma\left(z_{\lambda}\right) \in E\left(K_{\lambda}\right), P_{1} \in E(K)$ is the norm of y_{1} from K_{1} to K. The points y_{λ}, P_{1} are called Heegner points.

Let \mathcal{O} be $\operatorname{End}(E), Q=\mathcal{O} \otimes \mathbb{Q}$. Let ℓ be a rational prime, $T=\lim _{\leftrightarrows} E_{\ell^{n}}$ be the Tate-module and $\hat{\mathcal{O}}=\mathcal{O} \otimes \mathbb{Z}_{\ell}$. We let $B(E)$ denote the set of odd rational
primes which do not divide the discriminant of \mathcal{O} and for which the natural representation $\rho: G(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow$ Aut $_{\mathcal{O}} T$ is surjective. It is known (from the theory of complex multiplication and Serre's theory, resp.) that almost all (all but a finite number of) primes belong to $B(E)$. For example, if $\mathcal{O}=\mathbb{Z}$ and N is squarefree, then $\ell \geq 11$ belongs to $B(E)$ according to a theorem of Mazur.

In my paper "Euler systems" I proved that rank $E(K)=1$ and $\amalg(K, E)$ is finite when P_{1} has infinite order. Then, in the paper "On the structure of Shafarevich-Tate groups" I determined the structure of $\amalg(K, E)_{\ell \infty}$ for $\ell \in$ $B(E)$, under the same condition. Moreover, our explicit cohomology classes give information on the structure of $S\left(K, E_{\ell^{n}}\right)$ under some more general condition (which, hypothetically, always holds). It will be discussed later, now we continue with the definition of the cohomology classes.

We fix a prime $\ell \in B(E)$. Further in the paper we use the notation p or p_{k}, where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K and satisfy $n(p):=\operatorname{ord}_{\ell}\left(p+1, a_{p}\right)>1$, where $a_{p}=p+1-[\tilde{E}(\mathbb{Z} / p)], \tilde{E}$ is the reduction of E modulo p. For natural r we let $\Lambda^{r}=\left\{p_{1}, \ldots, p_{r}\right\}$ denote the set of all products of r distinct such primes. The set Λ^{0}, by definition, consists only of $p_{0}:=1$. We let $\Lambda=\cup_{r \geq 0} \Lambda^{r}$. If $r>0, \lambda \in \Lambda^{r}$, we let $n(\lambda)=\min _{p \mid \lambda} n(p), n\left(p_{0}\right):=\infty$.

The set T of explicit cohomology classes consists of $\tau_{\lambda, n} \in H^{1}\left(K, E_{M}\right)$, where λ runs through $\Lambda, 1 \leq n \leq n(\lambda), M=\ell^{n}$. To define these note that the condition $\ell \in B(E)$ implies the triviality of $E\left(K_{\lambda}\right)_{\ell \infty}$. So, by a spectral sequence, the restriction homomorphism res : $H^{1}\left(K, E_{M}\right) \rightarrow$ $H^{1}\left(K_{\lambda}, E_{M}\right)^{G\left(K_{\lambda} / K\right)}$ is an isomorphism and $\tau_{\lambda, n}$ is uniquely defined by the value $\operatorname{res}\left(\tau_{\lambda, n}\right)$ which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If $1<\lambda \in \mathbb{N}$, then the natural homomorphism $G\left(K_{\lambda} / K_{1}\right) \rightarrow \prod_{p \mid \lambda} G\left(K_{p} / K_{1}\right)$ is an isomorphism and we also have $G\left(K_{\lambda} / K_{\lambda / p}\right) \rightarrow G\left(K_{p} / K_{1}\right) \cong \mathbb{Z} /(p+1)$.

For each p, fix a generator $t_{p} \in G\left(K_{p} / K_{1}\right)$ and let t_{p} also denote the corresponding generator of $G\left(K_{\lambda} / K_{\lambda / p}\right)$. Let $I_{p}=-\sum_{j=1}^{p} j t_{p}^{j}, I_{\lambda}=\prod_{p \mid \lambda} I_{p} \in$ $\mathbb{Z}\left[G\left(K_{\lambda} / K_{1}\right)\right]$. Let \mathbb{K} be the composite of $K_{\lambda^{\prime}}$ when λ^{\prime} runs through the set Λ. We let $J_{\lambda}=\sum \bar{g}$ where g runs through a fixed set of representatives of $G(\mathbb{K} / K)$ modulo $G\left(\mathbb{K} / K_{1}\right), \bar{g}$ is the restriction of g to K_{λ}, so $\{\bar{g}\}$ is a set of representatives of $G\left(K_{\lambda} / K\right)$ modulo $G\left(K_{\lambda} / K_{1}\right)$. Let $P_{\lambda}=J_{\lambda} I_{\lambda} y_{\lambda} \in E\left(K_{\lambda}\right)$. Then

$$
\operatorname{res}\left(\tau_{\lambda, n}\right)=P_{\lambda} \quad\left(\bmod M E\left(K_{\lambda}\right)\right)
$$

Now we formulate some of our results on the invariants of $S\left(K, E_{M}\right)$, see Theorems 2.1 and 2.2 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes of finite abelian ℓ-groups and the set of sequences of nonnegative integers $\left\{n_{i}\right\}$ such that $i \geq 1, n_{i} \geq n_{i+1}, n_{i}=0$ for all sufficiently large i. Concretely, $\left\{n_{i}\right\} \leftrightarrow$ class of $\sum_{i} \mathbb{Z} / \ell^{n_{i}}$. For a group A we let $\operatorname{Inv}(A)$ denote the sequence of invariants of class A, we call it the sequence of invariants of A.

Let $L(E, s)$ be the canonical L-function of E over $\mathbb{Q}, g=\operatorname{ord}_{s=1} L(E, s)$, $\varepsilon=(-1)^{g-1}$.

If G is a group of order 2 with generator σ and A is a $\mathbb{Z}_{\ell}[G]$-module, then for $\nu \in\{0,1\}$ we let A^{ν} denote the submodule $\left(1-(-1)^{\nu} \epsilon \sigma\right) A$. Then A is the direct sum of A^{0} and A^{1} and σ acts on A^{ν} via multiplication by $(-1)^{\nu-1} \epsilon$.

Let $S_{M}=S\left(K, E_{M}\right), G=G(K / \mathbb{Q})$. We are interested in the sequence $\operatorname{Inv}\left(S_{M}^{\nu}\right)$. For the formulation of the results we need some more notations.

Let $m^{\prime}(\lambda)$ be the maximal nonnegative integer such that $P_{\lambda} \in \ell^{m^{\prime}(\lambda)} E\left(K_{\lambda}\right)$. We let $m(\lambda)=m^{\prime}(\lambda)$ if $m^{\prime}(\lambda)<n(\lambda), m(\lambda)=\infty$ otherwise. Let $m_{r}=$ $\min m(\lambda)$ when λ runs through Λ^{r}. In particular, $\ell^{m_{0}}$ is the maximal power of ℓ which divides P_{1}, so $m_{0}<\infty \quad \Longleftrightarrow \quad P_{1}$ has infinite order. Let $m=\min _{r \geq 0} m_{r}$.

The condition $m<\infty$ is equivalent to the condition $T \neq\{0\}$. It is the generalization of the condition that P_{1} has infinite order.

Conjecture 1.1. $T \neq\{0\}$.
Assume for the following that Conjecture 1.1 is true (for the field K and the prime ℓ). Let f be the minimal r such that $m_{r}<\infty$. In particular, $f=0 \Longleftrightarrow P_{1}$ has infinite order.

We let $(r)=1$ if r is odd, $(r)=0$ if r is even. We have
Theorem 1.2. Sppose Conjecture 1.1 is true. Then the inequality $m_{r} \geq$ m_{r+1} holds for $r \geq 0$. Let $n>m_{f}, c=f+\nu$, where $\nu \in\{0,1\}$ as usual. Then

$$
\begin{aligned}
\operatorname{Inv}\left(S_{M}^{(c)}\right)= & \underbrace{\ldots \ldots}_{c \text { values }}, m_{c}-m_{c+1}, m_{c}-m_{c+1}, \ldots, \\
& m_{c+2 k}-m_{c+2 k+1}, m_{c+2 k}-m_{c+2 k+1}, \ldots,
\end{aligned}
$$

where $k=0,1, \ldots$ Moreover, $\underbrace{\ldots \ldots}_{\text {c values }}=n, \ldots, n$ if $\nu=1$.

Theorem 1.2 is a special case of of Theorems 2.1 and 2.2, see Section 2. For further results on the ordinary Selmer groups see the Sect. 2 after the proof of Theorem 2.2.

2 An application of the theore [1]

We use the notations and definitions from [1] with those already defined here.
First we note that all wordings and proofs in the basic text of [1, Sects. 1-4] remain valid in the following situation provided one changes notations as is to be explained. We can use instead of the condition $m(1)<\infty$ (or equivalently, that the Heegner point P_{1} has infinite order) the weaker condition that there exists $\lambda_{0} \in \Lambda^{u}$, where $u \geq 0$, such that $2 m\left(\lambda_{0}\right)<n\left(\lambda_{0}\right)$. Then we let p_{0} be some such λ_{0} to be fixed throughout, and redefine Λ^{r} to be set of products of the form $p_{0} p_{1} \ldots p_{r}$ with distinct primes p_{1}, \ldots, p_{r} that do not divide p_{0}. We let A^{ν} denote $\left(1-(-1)^{\nu+u} \epsilon \sigma\right) A$, where $\nu=0$ or 1, as usual. then consider $X=S_{p_{0}, p_{0}, n\left(p_{0}\right)-m\left(p_{0}\right)} /\left(\mathbb{Z}_{\ell} \tau_{p_{0}, n\left(p_{0}\right)}\right)$ (see Sect. 2 of [1] for the definition of $S_{\lambda, \delta, n}$). In the case $p_{0}=1, S_{1,1, \infty}=\lim _{1,1, n}$ and $S_{1,1, n}=S_{1, n}=S_{M}$ is the ordinary Selmer group of E over K of level $M=\ell^{n}$.

The notations $n, n^{\prime}, n^{\prime \prime}$ are used only for natural numbers $\leq n\left(p_{0}\right)$. Of course, the definitions in [1] must now be adapted to these new notations. For example $m_{r}=m_{r}\left(p_{0}\right)$. Instead of the grop $S_{1, n}$, the group $S_{p_{0}, p_{0}, n}$ must be used.

In the sequence (24) the group $(E(K) / M)^{\nu}$ must be replaced by the group $\mathbb{Z} / M^{\prime} \tau_{p_{0}, n^{\prime}}$, where $n^{\prime}=n+m_{0}$. To use (38) with the isomorphism β_{3}^{ν} it is necessary to require that $3 m\left(p_{0}\right)<n\left(p_{0}\right)$. When $p_{0}=1$ we return to the original setup.

Now generalize this further: We fix p_{0} for which we require only that the sequence $\left\{m_{r}\right\}$ becomes eventually finite, $m_{r}<\infty$ for some $r \geq 0$. Or, equivalently, we require that $\left\{\tau_{\lambda, n}\right\} \neq\{0\}$ (λ runs throught the set Λ). Then we let f denote the minimal r such that $m_{r}<\infty$ and if $p_{0}>1$ we require moreover that $\theta m_{f}<m\left(p_{0}\right)$, where $\theta=2$ or 3 (as may be needed).

If A is a finite \mathbb{Z}_{ℓ}-module, then, for $j \geq 1,\left\{\operatorname{inv}_{j}(A)\right\}$ denotes the sequence of invariants of A (see Section 1 above). Finally, (i) denotes the representative of $i(\bmod 2)$ in the set $\{0,1\}$.

The following is a generalization of Theorem 1.2 in [1].
Theorem 2.1. Suppose Conjecture 1.1 is true. Let $r>f, n>m_{f}, n^{\prime}=$ $n+m_{f}$. Then the set $\Omega_{n^{\prime}}^{r}$ is nonempty. Moreover, for all $\omega \in \Omega_{n^{\prime}}^{r-1}$, there
exists p_{r} such that the sequence $\left(\omega, p_{r}\right) \in \Omega_{n^{\prime}}^{r}$. Let $\omega \in \Omega_{n^{\prime}}^{r}$. Then, for $1 \leq j \leq r$,

$$
\# \varphi_{p_{j}, n}^{(c)} \quad\left(\bmod \Phi_{\omega(j-1), n}^{(c)}\right)=m_{(j,(c))-1}-m_{(j,(c))}=\operatorname{inv}_{j}\left(S_{p_{0}, p_{0}, n}^{(c)}\right)
$$

Proof. The proof duplicates the proof of Theorem 1 of [1] (the case $f=$ $0)$ if we note that $\forall k \geq f, \exists \lambda \in \Lambda^{k}$ such that $m(\lambda)=m$ and $\# T_{\lambda, n}^{\nu}=$ $\operatorname{inv}_{k+1}\left(S_{p_{0}, p_{0}, n}^{\nu}\right)$ for $\nu=0$ and $\nu=1$. This is a consequence of the analog of [1, Proposition 8] (proved analogously) where condition 3) is replaced by the condition $\# \varphi_{q, n^{\prime}}^{\alpha}\left(\bmod \Phi_{\delta, n^{\prime}}^{\alpha}\right)=\# T_{\delta, n}^{\alpha}$.

Furthermore, we get
Theorem 2.2. Suppose Conjecture 1.1 is true. Then $\exists p_{0} p_{1} \ldots p_{2 f+1} \in \Lambda_{n^{\prime}}^{2 f+1}$ such that for $1 \leq i \leq f+1$, ord $\psi_{\ell} \psi_{p_{f+1}, n^{\prime}}\left(\eta_{i}\right)=m_{f}$, where $\eta_{i}=\tau_{p_{0} p_{i} \ldots p_{i+f-1, n^{\prime}}}$. Then the subgroup of $S_{p_{0}, p_{0}, n}^{(f+1)}$ generated by η_{i} is isomorphic to the group $\sum_{i=1}^{f+1} \mathbb{Z} / M$. In particular, for $1 \leq j \leq f+1$ we have that $\operatorname{inv}_{j}\left(S_{p_{0}, p_{0}, n}^{(f+1)}\right)=n$.
Proof. Let $\eta_{1}^{\prime}=p_{0} p_{1}^{\prime} \ldots p_{f}^{\prime} \in \Lambda_{m_{f}+1}^{f}$ is such that $m\left(\eta_{1}^{\prime}\right)=m_{f}$. By means of [1, Proposition 8] we can, by induction, replace $p_{1}^{\prime}, \ldots, p_{f}^{\prime}$ by p_{1}, \ldots, p_{f} such that $\eta_{1}=p_{0} \ldots p_{f} \in \Lambda_{n^{\prime}}^{f}$ and $m\left(\eta_{1}\right)=m_{f}$ (this step is trivial when $f=0$). Then we again use [1, Proposition 8] (which is true for $r=k$ as well, see the proof) and by induction find a suitable η_{i}. Because of $[1$, Proposition 1] and (for $f>0$) the condition $\tau_{\lambda, n^{\prime}}=0 \quad \forall \lambda \in \Lambda_{n^{\prime}}^{f-1}$ it then follows that $\eta_{i} \in S_{p_{0}, p_{0}, n}^{(f+1)}$ (we recall that complex conjugation acts on $\tau_{\lambda, n^{\prime}}$ as multiplication by $(-1)^{r} \epsilon$ if $\left.\lambda \in \Lambda_{n^{\prime}}^{r}\right)$. We set $R_{i j}=\varphi_{p_{f+j}, n^{\prime}}\left(\eta_{i}\right)$ for $1 \leq i, j \leq f+1$. Then $R_{i j}=0$ for $j<i$ because (see [1, Sect. 1]) $\psi_{p}\left(\tau_{\lambda, n^{\prime}}\right)=0$ when $p \mid \lambda$. We have $R_{i i} \in \ell^{m_{f}}(\mathbb{Z} / M)^{*}$. If $\sum \alpha_{i} \eta_{i}=0$, then by applying to this identity the characters $\psi_{p_{f+j}}$ for $j=1, \ldots, f+1$ we obtain that $\alpha_{i} \equiv 0(\bmod M)$.

Hence Theorems 2.1 and 2.2 fully determine the sequence of invariants for $S_{p_{0}, p_{0}, n}^{(f+1)}$.

Further, we suppose that $p_{0}=1$ and $\left\{\tau_{\lambda, n}\right\} \neq\{0\}$. The group $S^{\nu}=$ $\xrightarrow{\lim } S_{\ell^{n}}^{\nu}$ is isomorphic to a direct sum of $\left(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)^{r^{\nu}}$ and a finite group \mathcal{X}^{ν}. The group $S_{\ell^{n}}^{\nu}$ coincides with the maximal ℓ^{n}-torsion subgroup of S^{ν} and with the Selmer group of level ℓ^{n} for E^{ν} over \mathbb{Q}. Here E^{ν} is E if $(-1)^{\nu+1} \epsilon=1$, and E^{ν} is the form of E over K otherwise. A priori, rank $E^{\nu}(\mathbb{Q}) \leq r^{\nu}$, and equality is equivalent to the statement that $\amalg\left(\mathbb{Q}, E^{\nu}\right)_{\ell^{\infty}}$ is a finite group, which will then be isomorphic to \mathcal{X}^{ν}. We have

Theorem 2.3. Suppose Conjecture 1.1 is true. Then $r^{(f+1)}=f+1, r^{(f)} \leq f$, and $f-r^{(f)}$ is even. For $j \geq 1+\nu+f$, $\operatorname{inv}_{j-r^{(c)}}\left(\mathcal{X}^{(c)}\right)=m_{(j,(c))-1}-m_{(j,(c))}$.

Proof. Because of Theorems 2.1 and 2.2 it is enough to explain why $f-r^{(f)}$ is even. From Theorem 2.1 we have that the (parity of nonzero invariants $\mathcal{X}^{(f)}$ with index $\geq f+1-r^{(f)}$) is even, but the common parity of nonzero invariants of $\mathcal{X}^{(f)}$ is even because of the existence of a non-degenerate alternating Cassels form on $\mathcal{X}^{(f)}$. Hence $f-r^{(f)}$ is even.

Let $g^{\nu}=\operatorname{ord}_{s=1} L\left(E^{\nu}, s\right)$. We recall that according to the conjecture of Birch and Swinnerton-Dyer, $g^{\nu}=\operatorname{rank} E^{\nu}(\mathbb{Q})$. Since $(-1)^{g^{\nu}}=-\epsilon$ or ϵ according as $E^{\nu}=E$ or $E^{\nu}=$ form of E over K, we have from Theorem 2.3:

Theorem 2.4. Suppose Conjecture 1.1 is true. Then $r^{\nu}-g^{\nu}$ is even for $\nu=0$ and $\nu=1$.

If f and m are known, then we have an algorithm (see the beginning of this section, and Sect. 4 of [1]) for computing some n^{\prime} and $q=p_{f+1} \ldots p_{2 f+1} \in$ $\Lambda_{n^{\prime}}^{f+1}$ such that $n^{\prime}>3 m(q), \min _{r} m_{r}(q)=m$, with a parametrization of $\mathcal{Y}=S_{q, q, n}^{(f+1)}$, where $n=n^{\prime}-m(q)$, by finite linear combinations of elements of $\left\{\tau_{\lambda, n^{\prime}}\right\}$. Moreover, such a procedure can be combined with the selection of $p_{0} \ldots p_{f}\left(p_{0}=1\right)$ such that $p_{0} \ldots p_{2 f+1} \in \Lambda_{n^{\prime}}^{2 f+1}$ and $\operatorname{ord}_{\ell} R_{i i}=\operatorname{ord}_{\ell}\left(m\left(\eta_{i}\right)\right)=$ $n^{\prime}-n$ for $1 \leq i \leq f+1$. Then (see the proof of Theorem 2.2) the group $\mathcal{L} \subset$ $S_{M}^{(f+1)} \cap \mathcal{Y} \cong \mathcal{X}^{(f+1)}$. The parametrization for \mathcal{Y} induces a parametrization for \mathcal{W} and, as a consequence, we obtain its complete structure. In particular, we have algorithm for computing the sequence of invariants of $\mathcal{X}^{(f+1)}$.

By using Proposition 9 of [1] (with the condition $n>m_{0}$ replaced by $\left.n>m_{r-1}\right)$ we have that for $p_{1} \ldots p_{j} \in \Lambda_{n}^{j}$ with $m\left(p_{1} \ldots p_{j}\right)=m<n$, the characters $\varphi_{p_{1}, n}^{(j)}, \ldots, \varphi_{p_{j}, n}^{(j)}$ generate $\operatorname{Hom}\left(S_{M}^{(j)}, \mathbb{Z} / M\right)$. So we can apply this to the effective solution of the problem when a principal homogenous space over E has a rational point, in the same vein as at the end of [1] for the case $f=0$.

We recall that we considered $\ell \in B(E)$ [see Sect. 1 for the definition of $B(E)]$. For $\ell \notin B(E)$ the theory in [1] and above holds with modifications in the manner of [2]. Let ℓ now be an arbitrary rational prime. In particular, $\tau_{\lambda, n} \in H^{1}\left(K, E_{M}\right)$ is defined for all $\lambda \in \Lambda_{n+k_{0}}{ }^{1}$, where $\ell^{k_{0} / 2} E(\mathbb{K})_{\ell \infty}=0, \mathbb{K}$ the composite of K_{λ} for all $\lambda \in \Lambda\left[k_{0}=0\right.$ for $\left.\ell \in B(E)\right]$.

[^1]We let $U_{M} \subset E(K) / M, H, S \subset H$ denote respectively the groups

$$
E(K)_{\text {tor }} / M, \quad \xrightarrow{\lim } H^{1}\left(K, E_{M}\right), \quad \underline{\lim } S\left(K, E_{M}\right) .
$$

We have the exact sequence

$$
0 \rightarrow U_{M} \rightarrow H^{1}\left(K, E_{M}\right) \rightarrow H_{M} \rightarrow E(K)_{M} \rightarrow 0
$$

and we identify the group $H^{1}\left(K, E_{M}\right) / U_{M}$ with its image in H_{M}. We recall that, for $\ell \in B(E), E(K)_{\ell \infty}=0$ and we identified $H^{1}\left(K, E_{M}\right), S\left(K, E_{M}\right)$ with H_{M}, S_{M}, respectively. We let $\tau_{\lambda, n}^{\prime}$ be the image of $\tau_{\lambda, n}$ in H_{M}, and for $n \geq 1, k \geq k_{0}, r \geq 0, V_{n, k}^{r}$ is the subgroup of H_{M} generated by $\tau_{\lambda, n}^{\prime}$ when λ runs through Λ_{n+k}^{r}. We say that $\left\{\tau_{\lambda, n}\right\}$ is a strong nonzero system if $\exists r \geq 0$ such that

$$
\begin{equation*}
\forall k \geq k_{0} \quad \exists n \mid V_{n, k}^{r} \neq 0 \tag{2.1}
\end{equation*}
$$

There exists $k(r) \geq k_{0}$ such that the condition (2.1) is equivalent to the condition that $\exists n \mid V_{n, k(r)}^{r} \neq 0$. We know that, for $\ell \in B(E), k(r)=0$ satisfies this property. We now formulate

Conjecture 2.5. For all $\ell,\left\{\tau_{\lambda, n}\right\}$ is a strong nonzero system.
For $\ell \in B(E)$, this is equivalent to the statement that $\left\{\tau_{\lambda, n}\right\} \neq\{0\}$.
Conjecture 2.6. $m \neq 0$ for only a finite set of primes in $B(E)$.
If A is a $\mathbb{Z}[1, \sigma]$-module and $\nu \in\{0,1\}$, then

$$
A^{\nu}:=\left\{b \in A \quad \mid \quad \sigma b=(-1)^{\nu+1} \epsilon b\right\} .
$$

Let $S D=\ell^{n} S$, so $S D^{\nu} \cong\left(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)^{r^{\nu}}$. Let $\ell \in B(E)$. Because of the relation $\ell^{k} \tau_{\lambda, n+k}^{\prime}=\tau_{\lambda, n}^{\prime}$ (which is true for an arbitrary ℓ) and the relation $\ell^{m_{f+1}} \mathcal{X}^{(f+1)}=0$, it then follows that $V_{n, m_{f+1}}^{f} \subset S D_{M}^{(f+1)}$. From Theorem 2.2 we have that $\forall k \geq m_{f}, V_{n, k}^{f}=\ell^{m_{f}} S D^{(f+1)}$. For arbitrary $\ell, \exists k_{1}, k_{2}$ such that for $k \geq k_{1}$,

$$
\ell^{k_{2}} S D_{M}^{(f+1)} \subset V_{n, k}^{f} \subset S D_{M}^{(f+1)}
$$

Interpolating the siutation of the case $f=0$ we formulate
Conjecture 2.7. There exist $\nu \in\{0,1\}$ and a subgroup $V \subset\left(E(K) / E(K)_{\text {tor }}\right)^{\nu}$ such that $1 \leq \operatorname{rank} V \equiv \nu(\bmod 2)$ and for all sufficiently large k and all n, one has $V_{n, k}^{a}=V\left(\bmod M\left(E(K) / E(K)_{\text {tor }}\right)\right)$, where $a=\operatorname{rank} V-1$.

Conjecture 2.8. The union $\forall \ell$ of Conjecture 2.7 with a universal V (independent of ℓ) is true.

We note that such V is uniquely determined (by the usual description of a lattice over \mathbb{Z} by its completions) if it exists.

It is clear that $2 V \subset E^{\nu}(\mathbb{Q}) / E^{\nu}(\mathbb{Q})_{\text {tor }}$.
For the following implications we use the arguments above with the Theorems 2.1-2.4 (with a natural modification for $\ell \notin B(E)$).

First, Conjecture 2.7 implies that $\left\{\tau_{\lambda, n}\right\}$ is a strong nonzero system with $f=a$ (for the last statement we use Propositions 1, 2, and 5 of [1]), $\operatorname{rank} E^{\nu}(\mathbb{Q})=\operatorname{rank} V, r^{1-\nu}<\operatorname{rank} V, \amalg\left(\mathbb{Q}, E^{\nu}\right)_{\ell^{\infty}}$ is finite. Moreover, if $\ell \in B(E)$, then $V \otimes \mathbb{Z}_{\ell}=\ell^{m_{f}}\left(E^{\nu}(\mathbb{Q}) \otimes \mathbb{Z}_{\ell}\right)$, $\# \amalg\left(\mathbb{Q}, E^{\nu}\right)_{\ell \infty} \mid \ell^{2 m_{f}}$, $\ell^{m_{f}} \amalg\left(\mathbb{Q}, E^{\nu}\right)_{\ell \infty}=0, \operatorname{rank} E^{\nu}(\mathbb{Q}) \equiv g^{\nu} \equiv \nu(\bmod 2), r^{1-\nu} \equiv g^{1-\nu} \equiv 1-\nu$ $(\bmod 2)$.

Conjecture 2.7 is equivalent to the statement: $\left\{\tau_{\lambda, n}\right\}$ is a strong nonzero system and $\amalg\left(\mathbb{Q}, E^{(f+1)}\right)_{\ell \infty}$ is finite.

We note that $\exists k_{3}$, which is zero for $\ell \in B(E)$, such that if the condition from Conjecture 2.7 holds with some $k^{\prime} \geq k_{3}$ then it holds for all $k \geq k^{\prime}$.

From Conjecture 2.8 we have, with the union of the consequences from Conjecture 2.7 for all ℓ, that Conjecture 2.6 holds and $\amalg\left(\mathbb{Q}, E^{\nu}\right)$ is finite. Conjecture 2.8 is equivalent to the statement: Conjectures 2.5 and 2.6 hold, $f+1$ is independent of $\ell, \amalg\left(\mathbb{Q}, E^{(f+1)}\right)$ is finite; for only a finite set of $\ell \in B(E), \operatorname{inv}_{f+1-r^{1-\nu}} \mathcal{X}^{1-\nu} \neq 0$. In particular, Conjecture 2.8 holds when Conjectures 2.5 and 2.6 hold and $\amalg(K, E)$ is finite.

Of course, for the case that the Heegner point P_{1} has infinite order $(f=0)$ Conjecture 2.8 holds with $\nu=1, V=\mathbb{Z} P_{1}\left(\bmod E(K)_{\text {tor }}\right)$.

Recall that $g=\operatorname{ord}_{s=1} L(E, s)$. It is known that there exists an imaginary quadratic field K such that $g^{0}+g^{1}-g=1$ or 0 according as g is even or odd. For $g \leq 1$ it is known that $\operatorname{rank} E(\mathbb{Q})=g$ and $\amalg(\mathbb{Q}, E)$ is finite. Let $g>1$ and for K as above $g=g^{\nu^{\prime}}$. Then $\operatorname{ord}_{s=1} L(E, K, s)=g^{\nu^{\prime}}+g^{1-\nu^{\prime}}>1$, so P_{1} has finite order by the formula of Gross and Zagier. Suppose that for K, Conjecture 2.7 holds for some ℓ. Then $\nu=\nu^{\prime}$ because otherwise $g^{1-\nu^{\prime}}=f+1>1$ but $g^{1-\nu^{\prime}} \leq 1$. So we have for $E=E^{\nu}$ all consequences of the Conjecture 2.7 (see above), in particular, that $\operatorname{rank} E(\mathbb{Q})=\operatorname{rank} V$ and $\amalg(\mathbb{Q}, E)_{\ell \infty}$ is finite. If Conjecture 2.8 holds for K, we also have that $\amalg(\mathbb{Q}, E)$ is finite and $\operatorname{rank} E(\mathbb{Q}) \equiv g(\bmod 2)$. Of course, $\operatorname{rank} E(\mathbb{Q})=g$ if the quality $g=\operatorname{rank} V$ holds.

References

[1] Kolyvagin, V.A.: On the structure of Shafarevich-Tate groups. Proceedings of USA-USSR Symposium on Algebraic Geometry, Chicago, 1989 (Lect. Notes Math. vol. 1479) Berlin Heidelberg New York: Springer 1991
[2] Kolyvagin, V.A.: Euler systems, Birkhäuser volume in honor of Grothendieck. Progr. Math. 87 435-483 (1990)
[3] Kolyvagin, V.A.: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. Proceedings of ICM-90 in Kyoto (to appear)

[^0]: *This paper was partly prepared during my stay at the Max-Planck-Institut für Mathematik in Bonn. I want to express my gratitude for the support and the hospitality provided by this institute.

[^1]: ${ }^{1}$ In [3] $\tau_{\lambda, n}$ is defined for all $\lambda \in \Lambda_{n}$ as in the case $\ell \in B(E)$.

