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The paper contains some applications of explicit cohomology classes (which
the author has constructed earlier using Heegner points) to the theory of
Selmer groups of a modular elliptic curve. Moreover, some generalizations of
Selmer groups are considered.

The case when the Heegner point over the imaginary quadratic field has
infinite order was studied in the work [1]. In fact, the theory of [1] is valid
under a more general assumption which is, hypothetically, always true and
discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the
Selmer groups and of our explicit cohomology classes, and formulate some
of our results. The second part is essentially based on the work [1] and
requires some familiarity with it. The second part contains proofs of results
for ¢ € B(E) (see below for notations), formulations of corresponding results
for ¢ ¢ B(E), and some global consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers Q. For an
arbitrary abelian group A and a natural number M we let A,; denote the
maximal M-torsion subgroup of A. We use the abbreviation A/M = A/M A.
Let Ey = E(Q)y. If R is some extension of Q, then the exact sequence
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0 — Ey — E(R) — E(R) — 0 induces the exact sequence
0— E(R)/M — H (R, Ey) — H'(R,E)y — 0. (1.1)

If L/ R is a Galois extension, then G(L/R) denotes its Galois group, H*(R, A) :=
HY(G(R/R), A) for a G(R/R)-module A, H'(R, E) := H'(R, E(R)).

Now let R be a finite extension of Q. For a place v of R, we let R(v) denote
the corresponding completion of R, for # € H'(R, Eyf), z(v) denotes its nat-
ural image in H'(R(v), Ear). The Selmer group S(R, Ey) C HY (R, Ey),
by definition, consists of all elements x such that for all places v of R,
z(v) € E(R(v))/M. We recall that the Shafarevich-Tate group II(R, F)
is ker(H'(R, E) — [], H(R(v), E)), so (1.1) induces the exact sequence:

By the weak Mordell-Weil theorem, the Selmer group S(K, F)) is finite,
by the Mordell-Weil theorem, F(R) = F x Z*E(R) where F & E(R), is
finite, 0 < rank E(R) € Z.

It is conjectured that III(R, E) is finite. Only recently Rubin and the
author proved this conjecture in some cases. I shall give some examples
below.

We suppose further that E is modular. Let N be the conductor of F, v :
Xo(N) — E be amodular parametrization. Here X((/V) is the modular curve
over (Q which parametrizes isomorphism classes of isogenies of elliptic curves
with cyclic kernel of order N. We note that, according to the Taniyama-
Shimura-Weil conjecture, every elliptic curve over Q is modular.

We now define explicit cohomology classes, we start from the definition
of Heegner points. Let K = Q(v/D) be a field of discriminant D such that
0 > D = 0O (mod 4N), D # —3,—4. We fix an ideal i; of the ring of
integers Oy of K such that O,/i; = Z/NZ (such an ideal exists because of
the conditions on D). If A € N, let K, be the ring class field of K of conductor
A. It is a finite abelian extension of K. In particular, K; is the maximal
abelian unramified extension of K. If (A\,N) = 1, we let O\ = Z + \Oy,
ix = i1 N Oy, z) will be the point of Xo(N) rational over K corresponding
to the class of the isogeny C/Oy — C/iy! (here iy' D O, is the inverse of iy
in the group of proper Oy-ideals). We set y) = v(z)) € E(K)), P, € E(K) is
the norm of y; from K; to K. The points y,, P; are called Heegner points.

Let O be End(F), Q@ = O®Q. Let ¢ be a rational prime, T' = lim Eyn be

the Tate-module and O = O®Z,. We let B(E) denote the set of odd rational
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primes which do not divide the discriminant of O and for which the natural
representation p : G(Q/Q) — Aute T is surjective. It is known (from the
theory of complex multiplication and Serre’s theory, resp.) that almost all
(all but a finite number of) primes belong to B(E). For example, if O = Z
and N is squarefree, then £ > 11 belongs to B(F) according to a theorem of
Mazur.

In my paper “Euler systems” I proved that rank F(K) = 1 and HI( K, E)
is finite when P; has infinite order. Then, in the paper “On the structure of
Shafarevich-Tate groups” I determined the structure of I (K, E)s for ¢ €
B(FE), under the same condition. Moreover, our explicit cohomology classes
give information on the structure of S(K, Em) under some more general
condition (which, hypothetically, always holds). It will be discussed later,
now we continue with the definition of the cohomology classes.

We fix a prime ¢ € B(F). Further in the paper we use the notation p or py,
where k£ € N, only for rational primes which do not divide /N, remain prime
in K and satisfy n(p) := ordy(p + 1,a,) > 1, where a, = p+ 1 — [E(Z/p)], E
is the reduction of £ modulo p. For natural r we let A" = {py,...,p,} denote
the set of all products of r distinct such primes. The set AY, by definition,
consists only of py := 1. We let A = U,5oA". If r > 0, A € A", we let
n(A) = miny\ n(p), n(po) := oo.

The set T of explicit cohomology classes consists of 7y, € H' (K, Ey),
where A runs through A, 1 < n < n(\), M = ¢". To define these note
that the condition ¢ € B(FE) implies the triviality of E(K))e<. So, by
a spectral sequence, the restriction homomorphism res : HY(K, Ey) —
HY(Ky, Ey) 93K is an isomorphism and 7y, is uniquely defined by the
value res(7y,) which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If
1 < A €N, then the natural homomorphism G(K,/K1) — [, G(K,/ K1)
is an isomorphism and we also have G(K,/Ky/,) — G(K,/K1) = Z/(p+1).

For each p, fix a generator t, € G(K,/K;) and let ¢, also denote the
corresponding generator of G(Ky/Kyyp). Let I, = =378, jt, =T, I, €
Z|G(K,/Ky)]. Let K be the composite of Ky when X' runs through the set
A. We let Jy, = > g where g runs through a fixed set of representatives of
G(K/K) modulo G(K/K}), g is the restriction of g to K, so {g} is a set of
representatives of G(K,/K) modulo G(K,/K1). Let Py = Jy,y, € E(K)).
Then

res(7y,) = P (mod ME(K))).



Now we formulate some of our results on the invariants of S(K, Eyy), see
Theorems 2.1 and 2.2 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes
of finite abelian /-groups and the set of sequences of nonnegative integers
{n;} such that i > 1, n; > n;yq1, n; = 0 for all sufficiently large i. Concretely,
{n;} < class of >, Z /™. For a group A we let Inv(A) denote the sequence
of invariants of class A, we call it the sequence of invariants of A.

Let L(F,s) be the canonical L-function of F over Q, g = ords—; L(F, s),
e=(—1)9""

If G is a group of order 2 with generator o and A is a Z,[G]-module, then
for v € {0,1} we let A” denote the submodule (1—(—1)"eo)A. Then A is the
direct sum of A° and A' and o acts on A” via multiplication by (—1)""'e.

Let Sy = S(K, Ey), G = G(K/Q). We are interested in the sequence
Inv(S%,). For the formulation of the results we need some more notations.

Let m/(\) be the maximal nonnegative integer such that Py € ¢™ M E(Ky).
We let m(A) = m/(A) if m'(A) < n(A), m(A\) = oo otherwise. Let m, =
minm(\) when A runs through A”. In particular, /™ is the maximal power
of ¢ which divides P, so mg < oo <= P; has infinite order. Let
m = Mmin,>g M.

The condition m < oo is equivalent to the condition 7" # {0}. It is the
generalization of the condition that P; has infinite order.

Conjecture 1.1. T # {0}.

Assume for the following that Conjecture 1.1 is true (for the field K and
the prime ¢). Let f be the minimal r such that m, < oco. In particular,
f =0 <= P, has infinite order.

We let (r) =11if r is odd, (r) = 0 if r is even. We have

Theorem 1.2. Sppose Conjecture 1.1 is true. Then the inequality m, >
my41 holds for v > 0. Let n > my, ¢ = f 4+ v, where v € {0,1} as usual.
Then

(e)y _
Inv(Sy/) =, JMe — Miea1, Me — Metty - -y
cvalues

Meyok — Meq2k+15 Met2k — Metr2k41,5 - - -

where k =0,1,.... Moreover, ....., =n,...,nifvr=1.
=

cvalues



Theorem 1.2 is a special case of of Theorems 2.1 and 2.2, see Section 2.
For further results on the ordinary Selmer groups see the Sect. 2 after the
proof of Theorem 2.2.

2 An application of the theore [1]

We use the notations and definitions from [1] with those already defined here.

First we note that all wordings and proofs in the basic text of [1, Sects.
1-4] remain valid in the following situation provided one changes notations
as is to be explained. We can use instead of the condition m(1) < oo (or
equivalently, that the Heegner point P, has infinite order) the weaker con-
dition that there exists A\g € A", where u > 0, such that 2m(X\y) < n(\).
Then we let py be some such A\g to be fixed throughout, and redefine A"
to be set of products of the form pgp; ...p, with distinct primes py,...,p,
that do not divide py. We let A denote (1 — (—1)"*"eo)A, where v = 0 or
1, as usual. then consider X = S, pono)—m(po)/ (ZeTpo (o)) (s€€ Sect. 2 of
[1] for the definition of S)s,). In the case py = 1, Si100 = lim 571, and
S1.1,n = S1,n = S is the ordinary Selmer group of E over K of level M = (™.

The notations n,n/,n” are used only for natural numbers < n(py). Of
course, the definitions in [1] must now be adapted to these new notations.
For example m, = m,(po). Instead of the grop S ,, the group Sy, . must
be used.

In the sequence (24) the group (E(K)/M )" must be replaced by the group
Z/M'Tpy nr, where n’ = n + mg. To use (38) with the isomorphism % it is
necessary to require that 3m(py) < n(pg). When py = 1 we return to the
original setup.

Now generalize this further: We fix py for which we require only that
the sequence {m,} becomes eventually finite, m, < oo for some r > 0. Or,
equivalently, we require that {7, ,,} # {0} (A runs throught the set A). Then
we let f denote the minimal r such that m, < oo and if py > 1 we require
moreover that Om; < m(py), where § = 2 or 3 (as may be needed).

If A is a finite Z,-module, then, for j > 1, {inv;(A)} denotes the sequence
of invariants of A (see Section 1 above). Finally, (i) denotes the representative
of i (mod 2) in the set {0,1}.

The following is a generalization of Theorem 1.2 in [1].

Theorem 2.1. Suppose Conjecture 1.1 is true. Let r > f, n > my, n' =
n +my. Then the set ), is nonempty. Moreover, for all w € Q7L there

n'
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exists p, such that the sequence (w,p,) € Qr,. Let w € Q,. Then, for
1<j<r,
c (c) _ o c
#ol, (mod @51 ) = m -1 — M) = V(ST )

Proof. The proof duplicates the proof of Theorem 1 of [1] (the case f =
0) if we note that V& > f, I\ € A* such that m(\) = m and #Ty, =
invgy1(Sy, o) for v =0 and v = 1. This is a consequence of the analog of
[1, Proposition 8] (proved analogously) where condition 3) is replaced by the
condition #p3 , (mod ®F,,) = #T5,. O

Furthermore, we get

Theorem 2.2. Suppose Conjecture 1.1 is true. Then Ipop; ... pass1 € Aifﬂ

such that for 1 <i < f+1, ordy wpf+1,n/(77i) = my, where n; = TPt Pig j—1mt -

Then the subgroup of S%;;?n generated by mn; is isomorphic to the group

{;1 Z/M. In particular, for 1 < j < f+ 1 we have that invj(S}(,{;;,)n) =n.

Proof. Let my = popy ... P}y € Af;fﬂ is such that m(n}) = my. By means of
[1, Proposition 8] we can, by induction, replace pi,...,p’ by pi,...,pys such
that 1 = po...ps € AL, and m(n;) = my (this step is trivial when f = 0).
Then we again use [1, Proposition 8] (which is true for r = k as well, see
the proof) and by induction find a suitable 7;. Because of [1, Proposition
1] and (for f > 0) the condition 7,,, = 0 VA € Af;f ' it then follows that
n; € S,(,g }L,; )n (we recall that complex conjugation acts on 7y, as multiplication
by (=1)"eif X € A})). We set Rij = ¢p,, w(n;) for 1 <i,j < f+ 1. Then
R;; = 0 for j < i because (see [1, Sect. 1]) ¢, (Tr,7) = 0 when p | A. We
have Ry € ™1 (Z/M)*. If > a;m; = 0, then by applying to this identity the
characters v, for j=1,..., f + 1 we obtain that a; = 0 (mod M). O

Hence Theorems 2.1 and 2.2 fully determine the sequence of invariants
for Sy o

Further, we suppose that pp = 1 and {7,,} # {0}. The group S =
lim 57, is isomorphic to a direct sum of (Q,/ Z¢)" and a finite group X”. The
group Sy, coincides with the maximal ¢"-torsion subgroup of S and with the
Selmer group of level £ for E” over Q. Here E¥ is £ if (—1)"*te = 1, and E”
is the form of E over K otherwise. A priori, rank E¥(Q) < r¥, and equality
is equivalent to the statement that III(Q, £”),~ is a finite group, which will
then be isomorphic to X¥. We have



Theorem 2.3. Suppose Conjecture 1.1 is true. ThenrU+) = f41, () < f,

and f —rY) is even. For j >1+v+ f, ian_T«c)(X(C)) = M () =1 — M(j(c))-

Proof. Because of Theorems 2.1 and 2.2 it is enough to explain why f—r{/) is
even. From Theorem 2.1 we have that the (parity of nonzero invariants X'(/)
with index > f +1 —r)) is even, but the common parity of nonzero invari-
ants of X is even because of the existence of a non-degenerate alternating
Cassels form on X). Hence f — ) is even. m

Let ¢g¥ = ords—; L(EY,s). We recall that according to the conjecture
of Birch and Swinnerton-Dyer, ¢* = rank E”(Q). Since (—1)9" = —¢ or €
according as E¥ = F or KV = form of E over K, we have from Theorem 2.3:

Theorem 2.4. Suppose Conjecture 1.1 is true. Then r” — g” is even for
v=0andv=1.

If f and m are known, then we have an algorithm (see the beginning of this
section, and Sect. 4 of [1]) for computing some n’ and ¢ = ppiq...paj+1 €
ALY such that n’ > 3m(q), min,m,(q) = m, with a parametrization of
Y = S,gf;j;} ), where n = n’ — m(q), by finite linear combinations of elements
of {7y }. Moreover, such a procedure can be combined with the selection of
Po-..pr(po = 1) such that py...posp1 € Aif“ and ordy R;; = ordy(m(n;)) =
n'—nfor 1 <i < f+1. Then (see the proof of Theorem 2.2) the group £ C
S](\jurl) NY = XU+, The parametrization for ) induces a parametrization
for YW and, as a consequence, we obtain its complete structure. In particular,
we have algorithm for computing the sequence of invariants of X+,

By using Proposition 9 of [1] (with the condition n > mg replaced by
n > my,_1) we have that for p;...p; € AJ with m(p;...p;) = m < n, the
characters gpg),n, e ,gpg),n generate Hom(S](\?,Z/M). So we can apply this
to the effective solution of the problem when a principal homogenous space
over E has a rational point, in the same vein as at the end of [1] for the case
f=0.

We recall that we considered ¢ € B(FE) [see Sect. 1 for the definition of
B(E)]. For { ¢ B(F) the theory in [1] and above holds with modifications in
the manner of [2]. Let ¢ now be an arbitrary rational prime. In particular,
Tan € HY (K, Ey) is defined for all A € A,,4x,", where (P2E(K)e = 0, K
the composite of K, for all A € A [ky = 0 for ¢ € B(E)].

n [3] 73, is defined for all A\ € A,, as in the case ¢ € B(E).



We let Uy C E(K)/M, H,S C H denote respectively the groups
E(K)tor/Ma h_n)lHl(KvEM)v h_H}S(KaEM)
We have the exact sequence
0— Uy — H(K,Ey) — Hy — E(K)y — 0

and we identify the group H'(K, Ey;)/Uy with its image in Hy;. We recall
that, for £ € B(FE), E(K)i~ = 0 and we identified H' (K, Ey;), S(K, Ep)
with Hyy, Sy, respectively. We let 73 | be the image of 7, in Hyy, and for
n>1, k> ko r>0,Vy, is the subgroup of Hys generated by 73 , when A
runs through A7 ... We say that {7an} is a strong nonzero system if 3r > 0
such that

Vk >k 3n|V,, #0. (2.1)

There exists k(r) > ko such that the condition (2.1) is equivalent to the
condition that In|V", ) # 0. We know that, for ¢ € B(E), k(r) = 0 satisfies
this property. We now formulate

Conjecture 2.5. For all {, {7»,} is a strong nonzero system.

For ¢ € B(E), this is equivalent to the statement that {7, ,} # {0}.
Conjecture 2.6. m # 0 for only a finite set of primes in B(E).

If Ais a Z[1,o]-module and v € {0,1}, then

AV ={be A | ob=(-1)""eb}.

Let SD = ('S, so SD” = (Qu/Z,)"". Let { € B(FE). Because of the

relation ¢%7§ , , = 74, (which is true for an arbitrary ¢) and the relation
(ms XU+ = (it then follows that V/ C SD%H). From Theorem 2.2

n,mg41

we have that Vk > my, Vn{k = (™ SDUHY | For arbitrary ¢, 3ky, ko such that
for k > kq,
2 f+1 f+1
gD c vl c sDYTY.

Interpolating the siutation of the case f = 0 we formulate

Conjecture 2.7. There existv € {0,1} and a subgroup V' C (E(K)/E(K )tor)”
such that 1 < rankV = v (mod 2) and for all sufficiently large k and all n,
one has Vi) =V (mod M(E(K)/E(K))), where a =rankV — 1.
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Conjecture 2.8. The union ¥{ of Conjecture 2.7 with a universal V' (inde-
pendent of £) is true.

We note that such V' is uniquely determined (by the usual description of
a lattice over Z by its completions) if it exists.

It is clear that 2V C E¥(Q)/E"(Q)or-

For the following implications we use the arguments above with the The-
orems 2.1-2.4 (with a natural modification for ¢ & B(FE)).

First, Conjecture 2.7 implies that {7y, } is a strong nonzero system with
f = a (for the last statement we use Propositions 1, 2, and 5 of [1]),
rank £(Q) = rankV, '™ < rankV, II(Q, E")s~ is finite. Moreover,
if ¢/ € B(E), then V ® Z, = (™ (E"(Q) ® Z;), #UI(Q, E")4 | £>™,
(MiI(Q, EY )ge = 0, rtank BY(Q) = ¢ = v (mod 2), r'™V =gtV =1 —v
(mod 2).

Conjecture 2.7 is equivalent to the statement: {7, ,} is a strong nonzero
system and II(Q, EU*Y) e is finite.

We note that 3k;, which is zero for ¢ € B(FE), such that if the condition
from Conjecture 2.7 holds with some &’ > k3 then it holds for all £ > £’

From Conjecture 2.8 we have, with the union of the consequences from
Conjecture 2.7 for all ¢, that Conjecture 2.6 holds and III(Q, £) is finite.
Conjecture 2.8 is equivalent to the statement: Conjectures 2.5 and 2.6 hold,
f + 1 is independent of ¢, III(Q, EY*V) is finite; for only a finite set of
{ € B(E), invyiq1_m-» X' # 0. In particular, Conjecture 2.8 holds when
Conjectures 2.5 and 2.6 hold and III(K, E) is finite.

Of course, for the case that the Heegner point P; has infinite order (f = 0)
Conjecture 2.8 holds with v =1, V = ZP, (mod E(K )or)-

Recall that g = ords—1 L(F, s). It is known that there exists an imaginary
quadratic field K such that ¢° + ¢g' — g = 1 or 0 according as g is even or
odd. For g <1 it is known that rank £(Q) = ¢g and III(Q, F) is finite. Let
g > 1 and for K as above g = g*". Then ord,_; L(E, K,s) = ¢g*' + ¢ > 1,
so P, has finite order by the formula of Gross and Zagier. Suppose that
for K, Conjecture 2.7 holds for some ¢. Then v = v/ because otherwise
g = f+1>1but g7 < 1. So we have for E = E all consequences
of the Conjecture 2.7 (see above), in particular, that rank £(Q) = rank V'
and II(Q, E)~ is finite. If Conjecture 2.8 holds for K, we also have that
HI(Q, E) is finite and rank E(Q) = ¢ (mod 2). Of course, rank F(Q) = g if
the quality g = rank V' holds.
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