On the structure of Selmer groups^{*}

V. A. Kolyvagin

Steklov Mathematical Institute, Vavilova 42, SU-117966 Moscow, GSP-1, USSR Received June 29, 1990; in revised form April 15, 1991

The paper contains some applications of explicit cohomology classes (which the author has constructed earlier using Heegner points) to the theory of Selmer groups of a modular elliptic curve. Moreover, some generalizations of Selmer groups are considered.

The case when the Heegner point over the imaginary quadratic field has infinite order was studied in the work [1]. In fact, the theory of [1] is valid under a more general assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the Selmer groups and of our explicit cohomology classes, and formulate some of our results. The second part is essentially based on the work [1] and requires some familiarity with it. The second part contains proofs of results for $\ell \in B(E)$ (see below for notations), formulations of corresponding results for $\ell \notin B(E)$, and some global consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers \mathbb{Q} . For an arbitrary abelian group A and a natural number M we let A_M denote the maximal M-torsion subgroup of A. We use the abbreviation A/M = A/MA. Let $E_M = E(\overline{\mathbb{Q}})_M$. If R is some extension of \mathbb{Q} , then the exact sequence

^{*}This paper was partly prepared during my stay at the Max-Planck-Institut für Mathematik in Bonn. I want to express my gratitude for the support and the hospitality provided by this institute.

 $0 \to E_M \to E(\overline{R}) \to E(\overline{R}) \to 0$ induces the exact sequence

$$0 \to E(R)/M \to H^1(R, E_M) \to H^1(R, E)_M \to 0.$$
 (1.1)

If L/R is a Galois extension, then G(L/R) denotes its Galois group, $H^1(R, A) := H^1(G(\overline{R}/R), A)$ for a $G(\overline{R}/R)$ -module $A, H^1(R, E) := H^1(R, E(\overline{R})).$

Now let R be a finite extension of \mathbb{Q} . For a place v of R, we let R(v) denote the corresponding completion of R, for $x \in H^1(R, E_M)$, x(v) denotes its natural image in $H^1(R(v), E_M)$. The Selmer group $S(R, E_M) \subset H^1(R, E_M)$, by definition, consists of all elements x such that for all places v of R, $x(v) \in E(R(v))/M$. We recall that the Shafarevich-Tate group III(R, E)is ker $(H^1(R, E) \to \prod_v H^1(R(v), E))$, so (1.1) induces the exact sequence:

$$0 \to E(R)/M \to S(R, E_M) \to \operatorname{III}(R, E)_M \to 0.$$

By the weak Mordell-Weil theorem, the Selmer group $S(K, E_M)$ is finite, by the Mordell-Weil theorem, $E(R) \cong F \times \mathbb{Z}^{\operatorname{rank} E(R)}$, where $F \cong E(R)_{\operatorname{tor}}$ is finite, $0 \leq \operatorname{rank} E(R) \in \mathbb{Z}$.

It is conjectured that $\operatorname{III}(R, E)$ is finite. Only recently Rubin and the author proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E, $\gamma : X_0(N) \to E$ be a modular parametrization. Here $X_0(N)$ is the modular curve over \mathbb{Q} which parametrizes isomorphism classes of isogenies of elliptic curves with cyclic kernel of order N. We note that, according to the Taniyama-Shimura-Weil conjecture, every elliptic curve over \mathbb{Q} is modular.

We now define explicit cohomology classes, we start from the definition of Heegner points. Let $K = \mathbb{Q}(\sqrt{D})$ be a field of discriminant D such that $0 > D \equiv \Box \pmod{4N}$, $D \neq -3, -4$. We fix an ideal i_1 of the ring of integers O_1 of K such that $O_1/i_1 \cong \mathbb{Z}/N\mathbb{Z}$ (such an ideal exists because of the conditions on D). If $\lambda \in \mathbb{N}$, let K_{λ} be the ring class field of K of conductor λ . It is a finite abelian extension of K. In particular, K_1 is the maximal abelian unramified extension of K. If $(\lambda, N) = 1$, we let $O_{\lambda} = \mathbb{Z} + \lambda O_1$, $i_{\lambda} = i_1 \cap O_{\lambda}, z_{\lambda}$ will be the point of $X_0(N)$ rational over K_{λ} corresponding to the class of the isogeny $\mathbb{C}/O_{\lambda} \to \mathbb{C}/i_{\lambda}^{-1}$ (here $i_{\lambda}^{-1} \supset O_{\lambda}$ is the inverse of i_{λ} in the group of proper O_{λ} -ideals). We set $y_{\lambda} = \gamma(z_{\lambda}) \in E(K_{\lambda})$, $P_1 \in E(K)$ is the norm of y_1 from K_1 to K. The points y_{λ} , P_1 are called Heegner points.

Let \mathcal{O} be End(E), $Q = \mathcal{O} \otimes \mathbb{Q}$. Let ℓ be a rational prime, $T = \varprojlim E_{\ell^n}$ be the Tate-module and $\hat{\mathcal{O}} = \mathcal{O} \otimes \mathbb{Z}_{\ell}$. We let B(E) denote the set of odd rational primes which do not divide the discriminant of \mathcal{O} and for which the natural representation $\rho : G(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}_{\mathcal{O}} T$ is surjective. It is known (from the theory of complex multiplication and Serre's theory, resp.) that almost all (all but a finite number of) primes belong to B(E). For example, if $\mathcal{O} = \mathbb{Z}$ and N is squarefree, then $\ell \geq 11$ belongs to B(E) according to a theorem of Mazur.

In my paper "Euler systems" I proved that rank E(K) = 1 and $\operatorname{III}(K, E)$ is finite when P_1 has infinite order. Then, in the paper "On the structure of Shafarevich-Tate groups" I determined the structure of $\operatorname{III}(K, E)_{\ell^{\infty}}$ for $\ell \in B(E)$, under the same condition. Moreover, our explicit cohomology classes give information on the structure of $S(K, E_{\ell^n})$ under some more general condition (which, hypothetically, always holds). It will be discussed later, now we continue with the definition of the cohomology classes.

We fix a prime $\ell \in B(E)$. Further in the paper we use the notation p or p_k , where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K and satisfy $n(p) := \operatorname{ord}_{\ell}(p+1, a_p) > 1$, where $a_p = p+1 - [\tilde{E}(\mathbb{Z}/p)], \tilde{E}$ is the reduction of E modulo p. For natural r we let $\Lambda^r = \{p_1, \ldots, p_r\}$ denote the set of all products of r distinct such primes. The set Λ^0 , by definition, consists only of $p_0 := 1$. We let $\Lambda = \bigcup_{r \ge 0} \Lambda^r$. If $r > 0, \lambda \in \Lambda^r$, we let $n(\lambda) = \min_{p|\lambda} n(p), n(p_0) := \infty$.

The set T of explicit cohomology classes consists of $\tau_{\lambda,n} \in H^1(K, E_M)$, where λ runs through Λ , $1 \leq n \leq n(\lambda)$, $M = \ell^n$. To define these note that the condition $\ell \in B(E)$ implies the triviality of $E(K_{\lambda})_{\ell^{\infty}}$. So, by a spectral sequence, the restriction homomorphism res : $H^1(K, E_M) \to$ $H^1(K_{\lambda}, E_M)^{G(K_{\lambda}/K)}$ is an isomorphism and $\tau_{\lambda,n}$ is uniquely defined by the value res $(\tau_{\lambda,n})$ which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If $1 < \lambda \in \mathbb{N}$, then the natural homomorphism $G(K_{\lambda}/K_1) \to \prod_{p|\lambda} G(K_p/K_1)$ is an isomorphism and we also have $G(K_{\lambda}/K_{\lambda/p}) \to G(K_p/K_1) \cong \mathbb{Z}/(p+1)$.

For each p, fix a generator $t_p \in G(K_p/K_1)$ and let t_p also denote the corresponding generator of $G(K_{\lambda}/K_{\lambda/p})$. Let $I_p = -\sum_{j=1}^p jt_p^j$, $I_{\lambda} = \prod_{p|\lambda} I_p \in \mathbb{Z}[G(K_{\lambda}/K_1)]$. Let \mathbb{K} be the composite of $K_{\lambda'}$ when λ' runs through the set Λ . We let $J_{\lambda} = \sum \overline{g}$ where g runs through a fixed set of representatives of $G(\mathbb{K}/K)$ modulo $G(\mathbb{K}/K_1)$, \overline{g} is the restriction of g to K_{λ} , so $\{\overline{g}\}$ is a set of representatives of $G(K_{\lambda}/K)$ modulo $G(K_{\lambda}/K)$ modulo $G(K_{\lambda}/K_1)$. Let $P_{\lambda} = J_{\lambda}I_{\lambda}y_{\lambda} \in E(K_{\lambda})$. Then

$$\operatorname{res}(\tau_{\lambda,n}) = P_{\lambda} \pmod{ME(K_{\lambda})}$$

Now we formulate some of our results on the invariants of $S(K, E_M)$, see Theorems 2.1 and 2.2 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes of finite abelian ℓ -groups and the set of sequences of nonnegative integers $\{n_i\}$ such that $i \ge 1$, $n_i \ge n_{i+1}$, $n_i = 0$ for all sufficiently large *i*. Concretely, $\{n_i\} \leftrightarrow$ class of $\sum_i \mathbb{Z}/\ell^{n_i}$. For a group *A* we let Inv(A) denote the sequence of invariants of class *A*, we call it the sequence of invariants of *A*.

Let L(E, s) be the canonical *L*-function of *E* over \mathbb{Q} , $g = \operatorname{ord}_{s=1} L(E, s)$, $\varepsilon = (-1)^{g-1}$.

If G is a group of order 2 with generator σ and A is a $\mathbb{Z}_{\ell}[G]$ -module, then for $\nu \in \{0, 1\}$ we let A^{ν} denote the submodule $(1 - (-1)^{\nu} \epsilon \sigma)A$. Then A is the direct sum of A^0 and A^1 and σ acts on A^{ν} via multiplication by $(-1)^{\nu-1}\epsilon$.

Let $S_M = S(K, E_M)$, $G = G(K/\mathbb{Q})$. We are interested in the sequence $Inv(S_M^{\nu})$. For the formulation of the results we need some more notations.

Let $m'(\lambda)$ be the maximal nonnegative integer such that $P_{\lambda} \in \ell^{m'(\lambda)} E(K_{\lambda})$. We let $m(\lambda) = m'(\lambda)$ if $m'(\lambda) < n(\lambda)$, $m(\lambda) = \infty$ otherwise. Let $m_r = \min m(\lambda)$ when λ runs through Λ^r . In particular, ℓ^{m_0} is the maximal power of ℓ which divides P_1 , so $m_0 < \infty \iff P_1$ has infinite order. Let $m = \min_{r>0} m_r$.

The condition $m < \infty$ is equivalent to the condition $T \neq \{0\}$. It is the generalization of the condition that P_1 has infinite order.

Conjecture 1.1. $T \neq \{0\}$.

Assume for the following that Conjecture 1.1 is true (for the field K and the prime ℓ). Let f be the minimal r such that $m_r < \infty$. In particular, $f = 0 \iff P_1$ has infinite order.

We let (r) = 1 if r is odd, (r) = 0 if r is even. We have

Theorem 1.2. Sppose Conjecture 1.1 is true. Then the inequality $m_r \ge m_{r+1}$ holds for $r \ge 0$. Let $n > m_f$, $c = f + \nu$, where $\nu \in \{0, 1\}$ as usual. Then

$$Inv(S_M^{(c)}) = \underbrace{\dots, \dots, m_c}_{c \text{ values}}, m_c - m_{c+1}, m_c - m_{c+1}, \dots, \\ m_{c+2k} - m_{c+2k+1}, m_{c+2k} - m_{c+2k+1}, \dots,$$

where $k = 0, 1, \dots$ Moreover, $\underbrace{\dots}_{c \text{ values}} = n, \dots, n \text{ if } \nu = 1.$

Theorem 1.2 is a special case of of Theorems 2.1 and 2.2, see Section 2. For further results on the ordinary Selmer groups see the Sect. 2 after the proof of Theorem 2.2.

2 An application of the theore [1]

We use the notations and definitions from [1] with those already defined here.

First we note that all wordings and proofs in the basic text of [1, Sects. 1–4] remain valid in the following situation provided one changes notations as is to be explained. We can use instead of the condition $m(1) < \infty$ (or equivalently, that the Heegner point P_1 has infinite order) the weaker condition that there exists $\lambda_0 \in \Lambda^u$, where $u \ge 0$, such that $2m(\lambda_0) < n(\lambda_0)$. Then we let p_0 be some such λ_0 to be fixed throughout, and redefine Λ^r to be set of products of the form $p_0p_1 \dots p_r$ with distinct primes p_1, \dots, p_r that do not divide p_0 . We let A^{ν} denote $(1 - (-1)^{\nu+u} \epsilon \sigma)A$, where $\nu = 0$ or 1, as usual. then consider $X = S_{p_0,p_0,n(p_0)-m(p_0)}/(\mathbb{Z}_\ell \tau_{p_0,n(p_0)})$ (see Sect. 2 of [1] for the definition of $S_{\lambda,\delta,n}$). In the case $p_0 = 1$, $S_{1,1,\infty} = \varinjlim S_{1,1,n}$ and $S_{1,1,n} = S_{1,n} = S_M$ is the ordinary Selmer group of E over K of level $M = \ell^n$.

The notations n, n', n'' are used only for natural numbers $\leq n(p_0)$. Of course, the definitions in [1] must now be adapted to these new notations. For example $m_r = m_r(p_0)$. Instead of the grop $S_{1,n}$, the group $S_{p_0,p_0,n}$ must be used.

In the sequence (24) the group $(E(K)/M)^{\nu}$ must be replaced by the group $\mathbb{Z}/M'\tau_{p_0,n'}$, where $n' = n + m_0$. To use (38) with the isomorphism β_3^{ν} it is necessary to require that $3m(p_0) < n(p_0)$. When $p_0 = 1$ we return to the original setup.

Now generalize this further: We fix p_0 for which we require only that the sequence $\{m_r\}$ becomes eventually finite, $m_r < \infty$ for some $r \ge 0$. Or, equivalently, we require that $\{\tau_{\lambda,n}\} \ne \{0\}$ (λ runs throught the set Λ). Then we let f denote the minimal r such that $m_r < \infty$ and if $p_0 > 1$ we require moreover that $\theta m_f < m(p_0)$, where $\theta = 2$ or 3 (as may be needed).

If A is a finite \mathbb{Z}_{ℓ} -module, then, for $j \geq 1$, $\{\operatorname{inv}_j(A)\}$ denotes the sequence of invariants of A (see Section 1 above). Finally, (i) denotes the representative of $i \pmod{2}$ in the set $\{0, 1\}$.

The following is a generalization of Theorem 1.2 in [1].

Theorem 2.1. Suppose Conjecture 1.1 is true. Let r > f, $n > m_f$, $n' = n + m_f$. Then the set $\Omega_{n'}^r$ is nonempty. Moreover, for all $\omega \in \Omega_{n'}^{r-1}$, there

exists p_r such that the sequence $(\omega, p_r) \in \Omega_{n'}^r$. Let $\omega \in \Omega_{n'}^r$. Then, for $1 \leq j \leq r$,

$$\#\varphi_{p_j,n}^{(c)} \pmod{\Phi_{\omega(j-1),n}^{(c)}} = m_{(j,(c))-1} - m_{(j,(c))} = \operatorname{inv}_j(S_{p_0,p_0,n}^{(c)}).$$

Proof. The proof duplicates the proof of Theorem 1 of [1] (the case f = 0) if we note that $\forall k \geq f$, $\exists \lambda \in \Lambda^k$ such that $m(\lambda) = m$ and $\#T^{\nu}_{\lambda,n} = \operatorname{inv}_{k+1}(S^{\nu}_{p_0,p_0,n})$ for $\nu = 0$ and $\nu = 1$. This is a consequence of the analog of [1, Proposition 8] (proved analogously) where condition 3) is replaced by the condition $\#\varphi^{\alpha}_{q,n'} \pmod{\Phi^{\alpha}_{\delta,n'}} = \#T^{\alpha}_{\delta,n}$.

Furthermore, we get

Theorem 2.2. Suppose Conjecture 1.1 is true. Then $\exists p_0 p_1 \dots p_{2f+1} \in \Lambda_{n'}^{2f+1}$ such that for $1 \leq i \leq f+1$, $\operatorname{ord}_{\ell} \psi_{p_{f+1},n'}(\eta_i) = m_f$, where $\eta_i = \tau_{p_0 p_i \dots p_{i+f-1,n'}}$. Then the subgroup of $S_{p_0,p_0,n}^{(f+1)}$ generated by η_i is isomorphic to the group $\sum_{i=1}^{f+1} \mathbb{Z}/M$. In particular, for $1 \leq j \leq f+1$ we have that $\operatorname{inv}_j(S_{p_0,p_0,n}^{(f+1)}) = n$.

Proof. Let $\eta'_1 = p_0 p'_1 \dots p'_f \in \Lambda^f_{m_f+1}$ is such that $m(\eta'_1) = m_f$. By means of [1, Proposition 8] we can, by induction, replace p'_1, \dots, p'_f by p_1, \dots, p_f such that $\eta_1 = p_0 \dots p_f \in \Lambda^f_{n'}$ and $m(\eta_1) = m_f$ (this step is trivial when f = 0). Then we again use [1, Proposition 8] (which is true for r = k as well, see the proof) and by induction find a suitable η_i . Because of [1, Proposition 1] and (for f > 0) the condition $\tau_{\lambda,n'} = 0 \quad \forall \lambda \in \Lambda^{f-1}_{n'}$ it then follows that $\eta_i \in S^{(f+1)}_{p_0,p_0,n}$ (we recall that complex conjugation acts on $\tau_{\lambda,n'}$ as multiplication by $(-1)^r \epsilon$ if $\lambda \in \Lambda^r_{n'}$). We set $R_{ij} = \varphi_{p_{f+j},n'}(\eta_i)$ for $1 \leq i, j \leq f + 1$. Then $R_{ij} = 0$ for j < i because (see [1, Sect. 1]) $\psi_p(\tau_{\lambda,n'}) = 0$ when $p \mid \lambda$. We have $R_{ii} \in \ell^{m_f}(\mathbb{Z}/M)^*$. If $\sum \alpha_i \eta_i = 0$, then by applying to this identity the characters $\psi_{p_{f+j}}$ for $j = 1, \dots, f + 1$ we obtain that $\alpha_i \equiv 0 \pmod{M}$.

Hence Theorems 2.1 and 2.2 fully determine the sequence of invariants for $S_{p_0,p_0,n}^{(f+1)}$.

Further, we suppose that $p_0 = 1$ and $\{\tau_{\lambda,n}\} \neq \{0\}$. The group $S^{\nu} = \underset{\ell^n}{\lim} S^{\nu}_{\ell^n}$ is isomorphic to a direct sum of $(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{r^{\nu}}$ and a finite group \mathcal{X}^{ν} . The group $S^{\nu}_{\ell^n}$ coincides with the maximal ℓ^n -torsion subgroup of S^{ν} and with the Selmer group of level ℓ^n for E^{ν} over \mathbb{Q} . Here E^{ν} is E if $(-1)^{\nu+1}\epsilon = 1$, and E^{ν} is the form of E over K otherwise. A priori, rank $E^{\nu}(\mathbb{Q}) \leq r^{\nu}$, and equality is equivalent to the statement that $\lim(\mathbb{Q}, E^{\nu})_{\ell^{\infty}}$ is a finite group, which will then be isomorphic to \mathcal{X}^{ν} . We have

Theorem 2.3. Suppose Conjecture 1.1 is true. Then $r^{(f+1)} = f+1$, $r^{(f)} \leq f$, and $f - r^{(f)}$ is even. For $j \geq 1 + \nu + f$, $\operatorname{inv}_{j-r^{(c)}}(\mathcal{X}^{(c)}) = m_{(j,(c))-1} - m_{(j,(c))}$.

Proof. Because of Theorems 2.1 and 2.2 it is enough to explain why $f - r^{(f)}$ is even. From Theorem 2.1 we have that the (parity of nonzero invariants $\mathcal{X}^{(f)}$ with index $\geq f + 1 - r^{(f)}$) is even, but the common parity of nonzero invariants of $\mathcal{X}^{(f)}$ is even because of the existence of a non-degenerate alternating Cassels form on $\mathcal{X}^{(f)}$. Hence $f - r^{(f)}$ is even.

Let $g^{\nu} = \operatorname{ord}_{s=1} L(E^{\nu}, s)$. We recall that according to the conjecture of Birch and Swinnerton-Dyer, $g^{\nu} = \operatorname{rank} E^{\nu}(\mathbb{Q})$. Since $(-1)^{g^{\nu}} = -\epsilon$ or ϵ according as $E^{\nu} = E$ or $E^{\nu} =$ form of E over K, we have from Theorem 2.3:

Theorem 2.4. Suppose Conjecture 1.1 is true. Then $r^{\nu} - g^{\nu}$ is even for $\nu = 0$ and $\nu = 1$.

If f and m are known, then we have an algorithm (see the beginning of this section, and Sect. 4 of [1]) for computing some n' and $q = p_{f+1} \dots p_{2f+1} \in \Lambda_{n'}^{f+1}$ such that n' > 3m(q), $\min_r m_r(q) = m$, with a parametrization of $\mathcal{Y} = S_{q,q,n}^{(f+1)}$, where n = n' - m(q), by finite linear combinations of elements of $\{\tau_{\lambda,n'}\}$. Moreover, such a procedure can be combined with the selection of $p_0 \dots p_f(p_0 = 1)$ such that $p_0 \dots p_{2f+1} \in \Lambda_{n'}^{2f+1}$ and $\operatorname{ord}_{\ell} R_{ii} = \operatorname{ord}_{\ell}(m(\eta_i)) =$ n' - n for $1 \leq i \leq f + 1$. Then (see the proof of Theorem 2.2) the group $\mathcal{L} \subset S_M^{(f+1)} \cap \mathcal{Y} \cong \mathcal{X}^{(f+1)}$. The parametrization for \mathcal{Y} induces a parametrization for \mathcal{W} and, as a consequence, we obtain its complete structure. In particular, we have algorithm for computing the sequence of invariants of $\mathcal{X}^{(f+1)}$.

By using Proposition 9 of [1] (with the condition $n > m_0$ replaced by $n > m_{r-1}$) we have that for $p_1 \dots p_j \in \Lambda_n^j$ with $m(p_1 \dots p_j) = m < n$, the characters $\varphi_{p_1,n}^{(j)}, \dots, \varphi_{p_j,n}^{(j)}$ generate $\operatorname{Hom}(S_M^{(j)}, \mathbb{Z}/M)$. So we can apply this to the effective solution of the problem when a principal homogenous space over E has a rational point, in the same vein as at the end of [1] for the case f = 0.

We recall that we considered $\ell \in B(E)$ [see Sect. 1 for the definition of B(E)]. For $\ell \notin B(E)$ the theory in [1] and above holds with modifications in the manner of [2]. Let ℓ now be an arbitrary rational prime. In particular, $\tau_{\lambda,n} \in H^1(K, E_M)$ is defined for all $\lambda \in \Lambda_{n+k_0}^{-1}$, where $\ell^{k_0/2} E(\mathbb{K})_{\ell^{\infty}} = 0$, \mathbb{K} the composite of K_{λ} for all $\lambda \in \Lambda [k_0 = 0$ for $\ell \in B(E)$].

¹In [3] $\tau_{\lambda,n}$ is defined for all $\lambda \in \Lambda_n$ as in the case $\ell \in B(E)$.

We let $U_M \subset E(K)/M, H, S \subset H$ denote respectively the groups

 $E(K)_{\text{tor}}/M, \qquad \varinjlim H^1(K, E_M), \qquad \varinjlim S(K, E_M).$

We have the exact sequence

$$0 \to U_M \to H^1(K, E_M) \to H_M \to E(K)_M \to 0$$

and we identify the group $H^1(K, E_M)/U_M$ with its image in H_M . We recall that, for $\ell \in B(E)$, $E(K)_{\ell^{\infty}} = 0$ and we identified $H^1(K, E_M)$, $S(K, E_M)$ with H_M , S_M , respectively. We let $\tau'_{\lambda,n}$ be the image of $\tau_{\lambda,n}$ in H_M , and for $n \ge 1, k \ge k_0, r \ge 0, V_{n,k}^r$ is the subgroup of H_M generated by $\tau'_{\lambda,n}$ when λ runs through Λ_{n+k}^r . We say that $\{\tau_{\lambda,n}\}$ is a strong nonzero system if $\exists r \ge 0$ such that

$$\forall k \ge k_0 \quad \exists n | V_{n,k}^r \ne 0. \tag{2.1}$$

There exists $k(r) \geq k_0$ such that the condition (2.1) is equivalent to the condition that $\exists n | V_{n,k(r)}^r \neq 0$. We know that, for $\ell \in B(E)$, k(r) = 0 satisfies this property. We now formulate

Conjecture 2.5. For all ℓ , $\{\tau_{\lambda,n}\}$ is a strong nonzero system.

For $\ell \in B(E)$, this is equivalent to the statement that $\{\tau_{\lambda,n}\} \neq \{0\}$.

Conjecture 2.6. $m \neq 0$ for only a finite set of primes in B(E).

If A is a $\mathbb{Z}[1, \sigma]$ -module and $\nu \in \{0, 1\}$, then

$$A^{\nu} := \{ b \in A \mid \sigma b = (-1)^{\nu+1} \epsilon b \}.$$

Let $SD = \ell^n S$, so $SD^{\nu} \cong (\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{r^{\nu}}$. Let $\ell \in B(E)$. Because of the relation $\ell^k \tau'_{\lambda,n+k} = \tau'_{\lambda,n}$ (which is true for an arbitrary ℓ) and the relation $\ell^{m_{f+1}} \mathcal{X}^{(f+1)} = 0$, it then follows that $V^f_{n,m_{f+1}} \subset SD^{(f+1)}_M$. From Theorem 2.2 we have that $\forall k \ge m_f$, $V^f_{n,k} = \ell^{m_f} SD^{(f+1)}$. For arbitrary ℓ , $\exists k_1, k_2$ such that for $k \ge k_1$,

$$\ell^{k_2} SD_M^{(f+1)} \subset V_{n,k}^f \subset SD_M^{(f+1)}$$

Interpolating the situation of the case f = 0 we formulate

Conjecture 2.7. There exist $\nu \in \{0,1\}$ and a subgroup $V \subset (E(K)/E(K)_{tor})^{\nu}$ such that $1 \leq \operatorname{rank} V \equiv \nu \pmod{2}$ and for all sufficiently large k and all n, one has $V_{n,k}^a = V \pmod{M(E(K)/E(K)_{tor})}$, where $a = \operatorname{rank} V - 1$. **Conjecture 2.8.** The union $\forall \ell$ of Conjecture 2.7 with a universal V (independent of ℓ) is true.

We note that such V is uniquely determined (by the usual description of a lattice over \mathbb{Z} by its completions) if it exists.

It is clear that $2V \subset E^{\nu}(\mathbb{Q})/E^{\nu}(\mathbb{Q})_{\text{tor}}$.

For the following implications we use the arguments above with the Theorems 2.1–2.4 (with a natural modification for $\ell \notin B(E)$).

First, Conjecture 2.7 implies that $\{\tau_{\lambda,n}\}$ is a strong nonzero system with f = a (for the last statement we use Propositions 1, 2, and 5 of [1]), rank $E^{\nu}(\mathbb{Q}) = \operatorname{rank} V, \ r^{1-\nu} < \operatorname{rank} V, \ \operatorname{III}(\mathbb{Q}, E^{\nu})_{\ell^{\infty}}$ is finite. Moreover, if $\ell \in B(E)$, then $V \otimes \mathbb{Z}_{\ell} = \ell^{m_f}(E^{\nu}(\mathbb{Q}) \otimes \mathbb{Z}_{\ell}), \ \#\operatorname{III}(\mathbb{Q}, E^{\nu})_{\ell^{\infty}} \mid \ell^{2m_f}, \ell^{m_f}\operatorname{III}(\mathbb{Q}, E^{\nu})_{\ell^{\infty}} = 0$, rank $E^{\nu}(\mathbb{Q}) \equiv g^{\nu} \equiv \nu \pmod{2}, \ r^{1-\nu} \equiv g^{1-\nu} \equiv 1-\nu \pmod{2}$.

Conjecture 2.7 is equivalent to the statement: $\{\tau_{\lambda,n}\}$ is a strong nonzero system and $\operatorname{III}(\mathbb{Q}, E^{(f+1)})_{\ell^{\infty}}$ is finite.

We note that $\exists k_3$, which is zero for $\ell \in B(E)$, such that if the condition from Conjecture 2.7 holds with some $k' \geq k_3$ then it holds for all $k \geq k'$.

From Conjecture 2.8 we have, with the union of the consequences from Conjecture 2.7 for all ℓ , that Conjecture 2.6 holds and $\operatorname{III}(\mathbb{Q}, E^{\nu})$ is finite. Conjecture 2.8 is equivalent to the statement: Conjectures 2.5 and 2.6 hold, f + 1 is independent of ℓ , $\operatorname{III}(\mathbb{Q}, E^{(f+1)})$ is finite; for only a finite set of $\ell \in B(E)$, $\operatorname{inv}_{f+1-r^{1-\nu}} \mathcal{X}^{1-\nu} \neq 0$. In particular, Conjecture 2.8 holds when Conjectures 2.5 and 2.6 hold and $\operatorname{III}(K, E)$ is finite.

Of course, for the case that the Heegner point P_1 has infinite order (f = 0)Conjecture 2.8 holds with $\nu = 1$, $V = \mathbb{Z}P_1 \pmod{E(K)_{\text{tor}}}$.

Recall that $g = \operatorname{ord}_{s=1} L(E, s)$. It is known that there exists an imaginary quadratic field K such that $g^0 + g^1 - g = 1$ or 0 according as g is even or odd. For $g \leq 1$ it is known that rank $E(\mathbb{Q}) = g$ and $\operatorname{III}(\mathbb{Q}, E)$ is finite. Let g > 1 and for K as above $g = g^{\nu'}$. Then $\operatorname{ord}_{s=1} L(E, K, s) = g^{\nu'} + g^{1-\nu'} > 1$, so P_1 has finite order by the formula of Gross and Zagier. Suppose that for K, Conjecture 2.7 holds for some ℓ . Then $\nu = \nu'$ because otherwise $g^{1-\nu'} = f + 1 > 1$ but $g^{1-\nu'} \leq 1$. So we have for $E = E^{\nu}$ all consequences of the Conjecture 2.7 (see above), in particular, that rank $E(\mathbb{Q}) = \operatorname{rank} V$ and $\operatorname{III}(\mathbb{Q}, E)_{\ell^{\infty}}$ is finite. If Conjecture 2.8 holds for K, we also have that $\operatorname{III}(\mathbb{Q}, E)$ is finite and rank $E(\mathbb{Q}) \equiv g \pmod{2}$. Of course, rank $E(\mathbb{Q}) = g$ if the quality $g = \operatorname{rank} V$ holds.

References

- Kolyvagin, V.A.: On the structure of Shafarevich-Tate groups. Proceedings of USA-USSR Symposium on Algebraic Geometry, Chicago, 1989 (Lect. Notes Math. vol. 1479) Berlin Heidelberg New York: Springer 1991
- [2] Kolyvagin, V.A.: Euler systems, Birkhäuser volume in honor of Grothendieck. Progr. Math. 87 435–483 (1990)
- [3] Kolyvagin, V.A.: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. Proceedings of ICM-90 in Kyoto (to appear)