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The paper contains some applications of explicit cohomology classes (which
the author has constructed earlier using Heegner points) to the theory of
Selmer groups of a modular elliptic curve. Moreover, some generalizations of
Selmer groups are considered.

The case when the Heegner point over the imaginary quadratic field has
infinite order was studied in the work [1]. In fact, the theory of [1] is valid
under a more general assumption which is, hypothetically, always true and
discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the
Selmer groups and of our explicit cohomology classes, and formulate some
of our results. The second part is essentially based on the work [1] and
requires some familiarity with it. The second part contains proofs of results
for ` ∈ B(E) (see below for notations), formulations of corresponding results
for ` 6∈ B(E), and some global consequences of these results.

1 Selmer groups and explicit cohomology classes

Let E be an elliptic curve over the field of rational numbers Q. For an
arbitrary abelian group A and a natural number M we let AM denote the
maximal M -torsion subgroup of A. We use the abbreviation A/M = A/MA.
Let EM = E(Q)M . If R is some extension of Q, then the exact sequence
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0→ EM → E(R)→ E(R)→ 0 induces the exact sequence

0→ E(R)/M → H1(R,EM)→ H1(R,E)M → 0. (1.1)

If L/R is a Galois extension, thenG(L/R) denotes its Galois group, H1(R,A) :=
H1(G(R/R), A) for a G(R/R)-module A, H1(R,E) := H1(R,E(R)).

Now let R be a finite extension of Q. For a place v of R, we let R(v) denote
the corresponding completion of R, for x ∈ H1(R,EM), x(v) denotes its nat-
ural image in H1(R(v), EM). The Selmer group S(R,EM) ⊂ H1(R,EM),
by definition, consists of all elements x such that for all places v of R,
x(v) ∈ E(R(v))/M . We recall that the Shafarevich-Tate group X(R,E)
is ker(H1(R,E)→

∏
vH

1(R(v), E)), so (1.1) induces the exact sequence:

0→ E(R)/M → S(R,EM)→X(R,E)M → 0.

By the weak Mordell-Weil theorem, the Selmer group S(K,EM) is finite,
by the Mordell-Weil theorem, E(R) ∼= F × ZrankE(R), where F ∼= E(R)tor is
finite, 0 ≤ rankE(R) ∈ Z.

It is conjectured that X(R,E) is finite. Only recently Rubin and the
author proved this conjecture in some cases. I shall give some examples
below.

We suppose further that E is modular. Let N be the conductor of E, γ :
X0(N)→ E be a modular parametrization. Here X0(N) is the modular curve
over Q which parametrizes isomorphism classes of isogenies of elliptic curves
with cyclic kernel of order N . We note that, according to the Taniyama-
Shimura-Weil conjecture, every elliptic curve over Q is modular.

We now define explicit cohomology classes, we start from the definition
of Heegner points. Let K = Q(

√
D) be a field of discriminant D such that

0 > D ≡ � (mod 4N), D 6= −3,−4. We fix an ideal i1 of the ring of
integers O1 of K such that O1/i1 ∼= Z/NZ (such an ideal exists because of
the conditions on D). If λ ∈ N, let Kλ be the ring class field of K of conductor
λ. It is a finite abelian extension of K. In particular, K1 is the maximal
abelian unramified extension of K. If (λ,N) = 1, we let Oλ = Z + λO1,
iλ = i1 ∩ Oλ, zλ will be the point of X0(N) rational over Kλ corresponding
to the class of the isogeny C/Oλ → C/i−1

λ (here i−1
λ ⊃ Oλ is the inverse of iλ

in the group of proper Oλ-ideals). We set yλ = γ(zλ) ∈ E(Kλ), P1 ∈ E(K) is
the norm of y1 from K1 to K. The points yλ, P1 are called Heegner points.

Let O be End(E), Q = O⊗Q. Let ` be a rational prime, T = lim←−E`n be

the Tate-module and Ô = O⊗Z`. We let B(E) denote the set of odd rational
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primes which do not divide the discriminant of O and for which the natural
representation ρ : G(Q/Q) → AutO T is surjective. It is known (from the
theory of complex multiplication and Serre’s theory, resp.) that almost all
(all but a finite number of) primes belong to B(E). For example, if O = Z
and N is squarefree, then ` ≥ 11 belongs to B(E) according to a theorem of
Mazur.

In my paper “Euler systems” I proved that rankE(K) = 1 and X(K,E)
is finite when P1 has infinite order. Then, in the paper “On the structure of
Shafarevich-Tate groups” I determined the structure of X(K,E)`∞ for ` ∈
B(E), under the same condition. Moreover, our explicit cohomology classes
give information on the structure of S(K,E`n) under some more general
condition (which, hypothetically, always holds). It will be discussed later,
now we continue with the definition of the cohomology classes.

We fix a prime ` ∈ B(E). Further in the paper we use the notation p or pk,
where k ∈ N, only for rational primes which do not divide N , remain prime
in K and satisfy n(p) := ord`(p+ 1, ap) > 1, where ap = p+ 1− [Ẽ(Z/p)], Ẽ
is the reduction of E modulo p. For natural r we let Λr = {p1, . . . , pr} denote
the set of all products of r distinct such primes. The set Λ0, by definition,
consists only of p0 := 1. We let Λ = ∪r≥0Λ

r. If r > 0, λ ∈ Λr, we let
n(λ) = minp|λ n(p), n(p0) :=∞.

The set T of explicit cohomology classes consists of τλ,n ∈ H1(K,EM),
where λ runs through Λ, 1 ≤ n ≤ n(λ), M = `n. To define these note
that the condition ` ∈ B(E) implies the triviality of E(Kλ)`∞ . So, by
a spectral sequence, the restriction homomorphism res : H1(K,EM) →
H1(Kλ, EM)G(Kλ/K) is an isomorphism and τλ,n is uniquely defined by the
value res(τλ,n) which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If
1 < λ ∈ N, then the natural homomorphism G(Kλ/K1) →

∏
p|λG(Kp/K1)

is an isomorphism and we also have G(Kλ/Kλ/p)→ G(Kp/K1) ∼= Z/(p+ 1).
For each p, fix a generator tp ∈ G(Kp/K1) and let tp also denote the

corresponding generator ofG(Kλ/Kλ/p). Let Ip = −
∑p

j=1 jt
j
p, Iλ =

∏
p|λ Ip ∈

Z[G(Kλ/K1)]. Let K be the composite of Kλ′ when λ′ runs through the set
Λ. We let Jλ =

∑
g where g runs through a fixed set of representatives of

G(K/K) modulo G(K/K1), g is the restriction of g to Kλ, so {g} is a set of
representatives of G(Kλ/K) modulo G(Kλ/K1). Let Pλ = JλIλyλ ∈ E(Kλ).
Then

res(τλ,n) = Pλ (mod ME(Kλ)).
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Now we formulate some of our results on the invariants of S(K,EM), see
Theorems 2.1 and 2.2 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes
of finite abelian `-groups and the set of sequences of nonnegative integers
{ni} such that i ≥ 1, ni ≥ ni+1, ni = 0 for all sufficiently large i. Concretely,
{ni} ↔ class of

∑
i Z/`ni . For a group A we let Inv(A) denote the sequence

of invariants of class A, we call it the sequence of invariants of A.
Let L(E, s) be the canonical L-function of E over Q, g = ords=1 L(E, s),

ε = (−1)g−1.
If G is a group of order 2 with generator σ and A is a Z`[G]-module, then

for ν ∈ {0, 1} we let Aν denote the submodule (1−(−1)νεσ)A. Then A is the
direct sum of A0 and A1 and σ acts on Aν via multiplication by (−1)ν−1ε.

Let SM = S(K,EM), G = G(K/Q). We are interested in the sequence
Inv(SνM). For the formulation of the results we need some more notations.

Letm′(λ) be the maximal nonnegative integer such that Pλ ∈ `m
′(λ)E(Kλ).

We let m(λ) = m′(λ) if m′(λ) < n(λ), m(λ) = ∞ otherwise. Let mr =
minm(λ) when λ runs through Λr. In particular, `m0 is the maximal power
of ` which divides P1, so m0 < ∞ ⇐⇒ P1 has infinite order. Let
m = minr≥0mr.

The condition m < ∞ is equivalent to the condition T 6= {0}. It is the
generalization of the condition that P1 has infinite order.

Conjecture 1.1. T 6= {0}.

Assume for the following that Conjecture 1.1 is true (for the field K and
the prime `). Let f be the minimal r such that mr < ∞. In particular,
f = 0 ⇐⇒ P1 has infinite order.

We let (r) = 1 if r is odd, (r) = 0 if r is even. We have

Theorem 1.2. Sppose Conjecture 1.1 is true. Then the inequality mr ≥
mr+1 holds for r ≥ 0. Let n > mf , c = f + ν, where ν ∈ {0, 1} as usual.
Then

Inv(S
(c)
M ) = . . . . . .︸ ︷︷ ︸

c values

,mc −mc+1,mc −mc+1, . . . ,

mc+2k −mc+2k+1,mc+2k −mc+2k+1, . . . ,

where k = 0, 1, . . . . Moreover, . . . . . .︸ ︷︷ ︸
c values

= n, . . . , n if ν = 1.
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Theorem 1.2 is a special case of of Theorems 2.1 and 2.2, see Section 2.
For further results on the ordinary Selmer groups see the Sect. 2 after the
proof of Theorem 2.2.

2 An application of the theore [1]

We use the notations and definitions from [1] with those already defined here.
First we note that all wordings and proofs in the basic text of [1, Sects.

1–4] remain valid in the following situation provided one changes notations
as is to be explained. We can use instead of the condition m(1) < ∞ (or
equivalently, that the Heegner point P1 has infinite order) the weaker con-
dition that there exists λ0 ∈ Λu, where u ≥ 0, such that 2m(λ0) < n(λ0).
Then we let p0 be some such λ0 to be fixed throughout, and redefine Λr

to be set of products of the form p0p1 . . . pr with distinct primes p1, . . . , pr
that do not divide p0. We let Aν denote (1 − (−1)ν+uεσ)A, where ν = 0 or
1, as usual. then consider X = Sp0,p0,n(p0)−m(p0)/(Z`τp0,n(p0)) (see Sect. 2 of
[1] for the definition of Sλ,δ,n). In the case p0 = 1, S1,1,∞ = lim−→S1,1,n and
S1,1,n = S1,n = SM is the ordinary Selmer group of E over K of level M = `n.

The notations n, n′, n′′ are used only for natural numbers ≤ n(p0). Of
course, the definitions in [1] must now be adapted to these new notations.
For example mr = mr(p0). Instead of the grop S1,n, the group Sp0,p0,n must
be used.

In the sequence (24) the group (E(K)/M)ν must be replaced by the group
Z/M ′τp0,n′ , where n′ = n + m0. To use (38) with the isomorphism βν3 it is
necessary to require that 3m(p0) < n(p0). When p0 = 1 we return to the
original setup.

Now generalize this further: We fix p0 for which we require only that
the sequence {mr} becomes eventually finite, mr < ∞ for some r ≥ 0. Or,
equivalently, we require that {τλ,n} 6= {0} (λ runs throught the set Λ). Then
we let f denote the minimal r such that mr < ∞ and if p0 > 1 we require
moreover that θmf < m(p0), where θ = 2 or 3 (as may be needed).

If A is a finite Z`-module, then, for j ≥ 1, {invj(A)} denotes the sequence
of invariants of A (see Section 1 above). Finally, (i) denotes the representative
of i (mod 2) in the set {0, 1}.

The following is a generalization of Theorem 1.2 in [1].

Theorem 2.1. Suppose Conjecture 1.1 is true. Let r > f , n > mf , n′ =
n + mf . Then the set Ωr

n′ is nonempty. Moreover, for all ω ∈ Ωr−1
n′ , there
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exists pr such that the sequence (ω, pr) ∈ Ωr
n′. Let ω ∈ Ωr

n′. Then, for
1 ≤ j ≤ r,

#ϕ(c)
pj ,n

(mod Φ
(c)
ω(j−1),n) = m(j,(c))−1 −m(j,(c)) = invj(S

(c)
p0,p0,n

).

Proof. The proof duplicates the proof of Theorem 1 of [1] (the case f =
0) if we note that ∀k ≥ f, ∃λ ∈ Λk such that m(λ) = m and #T νλ,n =
invk+1(S

ν
p0,p0,n

) for ν = 0 and ν = 1. This is a consequence of the analog of
[1, Proposition 8] (proved analogously) where condition 3) is replaced by the
condition #ϕαq,n′ (mod Φα

δ,n′) = #Tαδ,n.

Furthermore, we get

Theorem 2.2. Suppose Conjecture 1.1 is true. Then ∃p0p1 . . . p2f+1 ∈ Λ2f+1
n′

such that for 1 ≤ i ≤ f + 1, ord` ψpf+1,n′(ηi) = mf , where ηi = τp0pi...pi+f−1,n′
.

Then the subgroup of S
(f+1)
p0,p0,n generated by ηi is isomorphic to the group∑f+1

i=1 Z/M . In particular, for 1 ≤ j ≤ f + 1 we have that invj(S
(f+1)
p0,p0,n) = n.

Proof. Let η′1 = p0p
′
1 . . . p

′
f ∈ Λf

mf+1 is such that m(η′1) = mf . By means of

[1, Proposition 8] we can, by induction, replace p′1, . . . , p
′
f by p1, . . . , pf such

that η1 = p0 . . . pf ∈ Λf
n′ and m(η1) = mf (this step is trivial when f = 0).

Then we again use [1, Proposition 8] (which is true for r = k as well, see
the proof) and by induction find a suitable ηi. Because of [1, Proposition
1] and (for f > 0) the condition τλ,n′ = 0 ∀λ ∈ Λf−1

n′ it then follows that

ηi ∈ S(f+1)
p0,p0,n (we recall that complex conjugation acts on τλ,n′ as multiplication

by (−1)rε if λ ∈ Λr
n′). We set Rij = ϕpf+j ,n′(ηi) for 1 ≤ i, j ≤ f + 1. Then

Rij = 0 for j < i because (see [1, Sect. 1]) ψp(τλ,n′) = 0 when p | λ. We
have Rii ∈ `mf (Z/M)∗. If

∑
αiηi = 0, then by applying to this identity the

characters ψpf+j for j = 1, . . . , f + 1 we obtain that αi ≡ 0 (mod M).

Hence Theorems 2.1 and 2.2 fully determine the sequence of invariants
for S

(f+1)
p0,p0,n.

Further, we suppose that p0 = 1 and {τλ,n} 6= {0}. The group Sν =
lim−→Sν`n is isomorphic to a direct sum of (Q`/Z`)

rν and a finite group X ν . The
group Sν`n coincides with the maximal `n-torsion subgroup of Sν and with the
Selmer group of level `n for Eν over Q. Here Eν is E if (−1)ν+1ε = 1, and Eν

is the form of E over K otherwise. A priori, rank Eν(Q) ≤ rν , and equality
is equivalent to the statement that X(Q, Eν)`∞ is a finite group, which will
then be isomorphic to X ν . We have
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Theorem 2.3. Suppose Conjecture 1.1 is true. Then r(f+1) = f+1, r(f) ≤ f ,
and f − r(f) is even. For j ≥ 1 + ν + f , invj−r(c)(X (c)) = m(j,(c))−1 −m(j,(c)).

Proof. Because of Theorems 2.1 and 2.2 it is enough to explain why f−r(f) is
even. From Theorem 2.1 we have that the (parity of nonzero invariants X (f)

with index ≥ f + 1− r(f)) is even, but the common parity of nonzero invari-
ants of X (f) is even because of the existence of a non-degenerate alternating
Cassels form on X (f). Hence f − r(f) is even.

Let gν = ords=1 L(Eν , s). We recall that according to the conjecture
of Birch and Swinnerton-Dyer, gν = rankEν(Q). Since (−1)g

ν
= −ε or ε

according as Eν = E or Eν = form of E over K, we have from Theorem 2.3:

Theorem 2.4. Suppose Conjecture 1.1 is true. Then rν − gν is even for
ν = 0 and ν = 1.

If f andm are known, then we have an algorithm (see the beginning of this
section, and Sect. 4 of [1]) for computing some n′ and q = pf+1 . . . p2f+1 ∈
Λf+1
n′ such that n′ > 3m(q), minrmr(q) = m, with a parametrization of

Y = S
(f+1)
q,q,n , where n = n′ −m(q), by finite linear combinations of elements

of {τλ,n′}. Moreover, such a procedure can be combined with the selection of

p0 . . . pf (p0 = 1) such that p0 . . . p2f+1 ∈ Λ2f+1
n′ and ord`Rii = ord`(m(ηi)) =

n′−n for 1 ≤ i ≤ f + 1. Then (see the proof of Theorem 2.2) the group L ⊂
S

(f+1)
M ∩ Y ∼= X (f+1). The parametrization for Y induces a parametrization

forW and, as a consequence, we obtain its complete structure. In particular,
we have algorithm for computing the sequence of invariants of X (f+1).

By using Proposition 9 of [1] (with the condition n > m0 replaced by
n > mr−1) we have that for p1 . . . pj ∈ Λj

n with m(p1 . . . pj) = m < n, the

characters ϕ
(j)
p1,n, . . . , ϕ

(j)
pj ,n generate Hom(S

(j)
M ,Z/M). So we can apply this

to the effective solution of the problem when a principal homogenous space
over E has a rational point, in the same vein as at the end of [1] for the case
f = 0.

We recall that we considered ` ∈ B(E) [see Sect. 1 for the definition of
B(E)]. For ` 6∈ B(E) the theory in [1] and above holds with modifications in
the manner of [2]. Let ` now be an arbitrary rational prime. In particular,
τλ,n ∈ H1(K,EM) is defined for all λ ∈ Λn+k0

1, where `k0/2E(K)`∞ = 0, K
the composite of Kλ for all λ ∈ Λ [k0 = 0 for ` ∈ B(E)].

1In [3] τλ,n is defined for all λ ∈ Λn as in the case ` ∈ B(E).
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We let UM ⊂ E(K)/M,H, S ⊂ H denote respectively the groups

E(K)tor/M, lim−→H1(K,EM), lim−→S(K,EM).

We have the exact sequence

0→ UM → H1(K,EM)→ HM → E(K)M → 0

and we identify the group H1(K,EM)/UM with its image in HM . We recall
that, for ` ∈ B(E), E(K)`∞ = 0 and we identified H1(K,EM), S(K,EM)
with HM , SM , respectively. We let τ ′λ,n be the image of τλ,n in HM , and for
n ≥ 1, k ≥ k0, r ≥ 0, V r

n,k is the subgroup of HM generated by τ ′λ,n when λ
runs through Λr

n+k. We say that {τλ,n} is a strong nonzero system if ∃r ≥ 0
such that

∀k ≥ k0 ∃n|V r
n,k 6= 0. (2.1)

There exists k(r) ≥ k0 such that the condition (2.1) is equivalent to the
condition that ∃n|V r

n,k(r) 6= 0. We know that, for ` ∈ B(E), k(r) = 0 satisfies
this property. We now formulate

Conjecture 2.5. For all `, {τλ,n} is a strong nonzero system.

For ` ∈ B(E), this is equivalent to the statement that {τλ,n} 6= {0}.

Conjecture 2.6. m 6= 0 for only a finite set of primes in B(E).

If A is a Z[1, σ]-module and ν ∈ {0, 1}, then

Aν := {b ∈ A | σb = (−1)ν+1εb}.

Let SD = `nS, so SDν ∼= (Q`/Z`)
rν . Let ` ∈ B(E). Because of the

relation `kτ ′λ,n+k = τ ′λ,n (which is true for an arbitrary `) and the relation

`mf+1X (f+1) = 0, it then follows that V f
n,mf+1

⊂ SD
(f+1)
M . From Theorem 2.2

we have that ∀k ≥ mf , V
f
n,k = `mfSD(f+1). For arbitrary `, ∃k1, k2 such that

for k ≥ k1,
`k2SD

(f+1)
M ⊂ V f

n,k ⊂ SD
(f+1)
M .

Interpolating the siutation of the case f = 0 we formulate

Conjecture 2.7. There exist ν ∈ {0, 1} and a subgroup V ⊂ (E(K)/E(K)tor)
ν

such that 1 ≤ rankV ≡ ν (mod 2) and for all sufficiently large k and all n,
one has V a

n,k = V (mod M(E(K)/E(K)tor)), where a = rankV − 1.
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Conjecture 2.8. The union ∀` of Conjecture 2.7 with a universal V (inde-
pendent of `) is true.

We note that such V is uniquely determined (by the usual description of
a lattice over Z by its completions) if it exists.

It is clear that 2V ⊂ Eν(Q)/Eν(Q)tor.
For the following implications we use the arguments above with the The-

orems 2.1–2.4 (with a natural modification for ` 6∈ B(E)).
First, Conjecture 2.7 implies that {τλ,n} is a strong nonzero system with

f = a (for the last statement we use Propositions 1, 2, and 5 of [1]),
rankEν(Q) = rankV , r1−ν < rankV , X(Q, Eν)`∞ is finite. Moreover,
if ` ∈ B(E), then V ⊗ Z` = `mf (Eν(Q) ⊗ Z`), #X(Q, Eν)`∞ | `2mf ,
`mfX(Q, Eν)`∞ = 0, rankEν(Q) ≡ gν ≡ ν (mod 2), r1−ν ≡ g1−ν ≡ 1 − ν
(mod 2).

Conjecture 2.7 is equivalent to the statement: {τλ,n} is a strong nonzero
system and X(Q, E(f+1))`∞ is finite.

We note that ∃k3, which is zero for ` ∈ B(E), such that if the condition
from Conjecture 2.7 holds with some k′ ≥ k3 then it holds for all k ≥ k′.

From Conjecture 2.8 we have, with the union of the consequences from
Conjecture 2.7 for all `, that Conjecture 2.6 holds and X(Q, Eν) is finite.
Conjecture 2.8 is equivalent to the statement: Conjectures 2.5 and 2.6 hold,
f + 1 is independent of `, X(Q, E(f+1)) is finite; for only a finite set of
` ∈ B(E), invf+1−r1−ν X 1−ν 6= 0. In particular, Conjecture 2.8 holds when
Conjectures 2.5 and 2.6 hold and X(K,E) is finite.

Of course, for the case that the Heegner point P1 has infinite order (f = 0)
Conjecture 2.8 holds with ν = 1, V = ZP1 (mod E(K)tor).

Recall that g = ords=1 L(E, s). It is known that there exists an imaginary
quadratic field K such that g0 + g1 − g = 1 or 0 according as g is even or
odd. For g ≤ 1 it is known that rankE(Q) = g and X(Q, E) is finite. Let
g > 1 and for K as above g = gν

′
. Then ords=1 L(E,K, s) = gν

′
+ g1−ν′ > 1,

so P1 has finite order by the formula of Gross and Zagier. Suppose that
for K, Conjecture 2.7 holds for some `. Then ν = ν ′ because otherwise
g1−ν′ = f + 1 > 1 but g1−ν′ ≤ 1. So we have for E = Eν all consequences
of the Conjecture 2.7 (see above), in particular, that rankE(Q) = rankV
and X(Q, E)`∞ is finite. If Conjecture 2.8 holds for K, we also have that
X(Q, E) is finite and rank E(Q) ≡ g (mod 2). Of course, rankE(Q) = g if
the quality g = rankV holds.
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