next up previous
Next: Method that Always Works Up: Factoring Primes in Rings Previous: Introduction

A Method that Usually Works

Suppose $ \alpha\in\O _K$ is such that $ K=\mathbb{Q}(\alpha)$, and let $ g(x)$ be the minimal polynomial of $ \alpha$. Then $ \mathbb{Z}[\alpha]\subset \O _K$, and we have a diagram of schemes

$\displaystyle \xymatrix{
{(??)\, }\ar@{^(->}[r]\ar[d] &{\Spec(\O_K)}\ar[d] \\
...
...]/g(x))\\
{\Spec(\mathbb{Z}/p\mathbb{Z})\,}\ar@{^(->}[r]&{\Spec(\mathbb{Z})}
}$

where $ \overline{g} = \prod_i \overline{g}_i^{e_i}$ is the factorization of the image of $ g$ in $ (\mathbb{Z}/p\mathbb{Z})[x]$.

The cover $ \Spec(\mathbb{Z}[\alpha])\rightarrow \Spec(\mathbb{Z})$ is easy to understand because it is defined by the single equation $ g(x)$. To give a maximal ideal $ \mathfrak{p}$ of $ \mathbb{Z}[\alpha]$ such that $ f(\mathfrak{p}) = p\mathbb{Z}$ is the same as giving a homomorphism $ \mathbb{Z}[x]/(g) \rightarrow \overline{\mathbb{F}}_p$, which is in turn the same as giving a root of $ g$ in $ \overline{\mathbb{F}}_p$ (an allowed place where $ x$ can go). If the index of $ \mathbb{Z}[\alpha]$ in $ \O _K$ is coprime to $ p$, then the primes $ \mathfrak{p}_i$ in the factorization of $ p\O _K$ don't decompose further going from $ \mathbb{Z}[\alpha]$ to $ \O _K$, so we are done (the homomorphisms $ \mathbb{Z}[\alpha]\rightarrow \overline{\mathbb{F}}_p$ are in bijection with the homomorphisms $ \O _K\rightarrow \overline{\mathbb{F}}_p$). We formalize this in the following theorem:

Theorem 2.1   Let $ g(x)$ denote the minimal polynomial of $ \alpha$ over  $ \mathbb{Q}$. Let $ p$ be a prime number that does not divide $ [\O _K:\mathbb{Z}[\alpha]]$. Suppose that

$\displaystyle \overline{g} = \prod_{i=1}^t \overline{g}_i^{e_i} \in (\mathbb{Z}/p\mathbb{Z})[x]
$

with the $ \overline{g}_i$ distinct monic irreducible polynomials. Let $ \mathfrak{p}_i = (p,g_i(\alpha))
$ with $ g_i\in\mathbb{Z}[x]$ any polynomial whose image is $ \overline{g}_i$ in $ (\mathbb{Z}/p\mathbb{Z})[X]$. Then

$\displaystyle p\O _K = \prod_{i=1}^t \mathfrak{p}_i^{e_i}.
$

Geometrically,

$\displaystyle f^{-1}(p\mathbb{Z}) = \{\mathfrak{p}_1,\mathfrak{p}_2,\ldots, \mathfrak{p}_t\},
$

(with multiplicities $ e_i$).


next up previous
Next: Method that Always Works Up: Factoring Primes in Rings Previous: Introduction
William A Stein 2002-03-08