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6
Elliptic Curves

We introduce elliptic curves and describe how to put a group structure
on the set of points on an elliptic curve. We then apply elliptic curves to
two cryptographic problems—factoring integers and constructing public-
key cryptosystems. Elliptic curves are believed to provide good security
with smaller key sizes, something that is very useful in many applications,
e.g., if we are going to print an encryption key on a postage stamp, it
is helpful if the key is short! Finally, we consider elliptic curves over the
rational numbers, and briefly survey some of the key ways in which they
arise in number theory.

6.1 The Definition

Definition 6.1.1 (Elliptic Curve). An elliptic curve over a field K is a
curve defined by an equation of the form

P =2+ ax +0,

where a,b € K and —16(4a® + 27b%) # 0.

The condition that —16(4a® + 27b%) # 0 implies that the curve has no
“singular points”, which will be essential for the applications we have in
mind (see Exercise 6.1).
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FIGURE 6.1. The Elliptic Curve y? = 2 + 2 over Z/7Z

In Section 6.2 we will put a natural abelian group structure on the set
E(K)={(z.y) € K x K :y* =2° + az + b} U{O}

of K-rational points on an elliptic curve E over K. Here O may be thought
of as a point on E “at infinity”. In Figure 6.1 we graph y? = 23 + x over
the finite field Z/7Z, and in Figure 6.2 we graph y? = 2% + x over the field
K =R of real numbers.

Remark 6.1.2. If K has characteristic 2 (e.g., K = Z/2Z), then for any
choice of a, b, the quantity —16(4a® + 27b%) € K is 0, so according to Defi-
nition 6.1.1 there are no elliptic curves over K. There is a similar problem
in characteristic 3. If we instead consider equations of the form

y2 + a1y +asy = s + a2x2 + aqx + ag,

we obtain a more general definition of elliptic curves, which correctly allows
for elliptic curves in characteristic 2 and 3; these elliptic curves are popular
in cryptography because arithmetic on them is often easier to efficiently
implement on a computer.

6.2 The Group Structure on an Elliptic Curve
Let E be an elliptic curve over a field K, given by an equation y? =
23 + ax + b. We begin by defining a binary operation + on E(K).

Algorithm 6.2.1 (Elliptic Curve Group Law). Given P, P, € E(K),
this algorithm computes a third point R = P, + P» € E(K).
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FIGURE 6.2. The Elliptic Curve y? = z® + x over R

1.[IsP,=0?7IfPL=0set R=Pyorif P, =0 set R= P and
terminate. Otherwise write (z;,y;) = P;.

2. [Negatives] If z; = 25 and y; = —y2, set R = O and terminate.

3x? 2 if P, =P
3. [Compute A] Set A = (321 +a)/(211) " ) >
y1 — y2)/(x1 — x2) otherwise.
4. [Compute Sum] Then R = (A\* — 21 — 22, —Az3 — V), where v = y; —
Az and 25 = A2 — 21 — x5 is the z-coordinate of R.

Note that in Step 3 if P, = Py, then y; # 0; otherwise, we would have
terminated in the previous step.
We implement this algorithm in Section 7.6.1.

Theorem 6.2.2. The binary operation + defined above endows the set
E(K) with an abelian group structure, in which O is the identity element.

Before discussing why the theorem is true, we reinterpret + geomet-
rically, so that it will be easier for us to visualize. We obtain the sum
P, + P, by finding the third point Ps of intersection between E and the
line L determined by P; and Ps, then reflecting P; about the z-axis. (This
description requires suitable interpretation in cases 1 and 2, and when
P, = P,.) This is illustrated in Figure 6.3, in which (0,2) 4 (1,0) = (3,4)
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on y? = 2% — 5z + 4. To further clarify this geometric interpretation, we
prove the following proposition.

Proposition 6.2.3 (Geometric group law). Suppose P; = (x;,y;), i =
1,2 are distinct point on an elliptic curve y? = z3+ax+b, and that x1 # x2.
Let L be the unique line through Py and P,. Then L intersects the graph
of E at exactly one other point

Q= ()\27£817(£2, /\mg+u),
where A = (y1 — y2)/(x1 — x2) and v = y1 — Azy.

Proof. The line L through Py, P5 is y = y1 + (x — x1)A. Substituting this
into y? = 23 + ax + b we get

(y1 + (x — 21)N)? = 2% + ax +b.

Simplifying we get f(x) = 23 —\222+- .- = 0, where we omit the coefficients
of z and the constant term since they will not be needed. Since P; and P
are in LN E, the polynomial f has x; and x5 as roots. By Proposition 2.5.2,
the polynomial f can have at most three roots. Writing f = [[(z —z;) and
equating terms, we see that z1 4+ x5 + 23 = A2. Thus x5 = A\%> — 21 — 25, as
claimed. Also, from the equation for L we see that y5 = y1 + (z3 — 1)\ =
Az3 + v, which completes the proof. O

To prove Theorem 6.2.2 means to show that + satisfies the three axioms
of an abelian group with O as identity element: existence of inverses, com-
mutativity, and associativity. The existence of inverses follows immediately
from the definition, since (z,y) + (z, —y) = O. Commutativity is also clear
from the definition of group law, since in parts 1-3, the recipe is unchanged
if we swap P; and P»; in part 4 swapping P; and P, does not change the
line determined by P; and P», so by Proposition 6.2.3 it does not change
the sum P1 + PQ.

It is more difficult to prove that + satisfies the associative axiom, i.e.,
that (P + P2) 4+ Ps = Py + (P2 + Ps3). This fact can be understood from at
least three points of view. One is to reinterpret the group law geometrically
(extending Proposition 6.2.3 to all cases), and thus transfer the problem
to a question in plane geometry. This approach is beautifully explained
with exactly the right level of detail in [ST92, §1.2]. Another approach is to
use the formulas that define 4+ to reduce associativity to checking specific
algebraic identities; this is something that would be extremely tedious to do
by hand, but can be done using a computer (also tedious). A third approach
(see e.g. [Sil86] or [Har77]) is to develop a general theory of “divisors on
algebraic curves”, from which associativity of the group law falls out as a
natural corollary. The third approach is the best, because it opens up many
new vistas; however we will not pursue it further because it is beyond the
scope of this book.
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FIGURE 6.3. The Group Law: (1,0) 4 (0,2) = (3,4) on y*> = 2® — 5z + 4

6.3 Integer Factorization Using Elliptic Curves

In 1987, Hendrik Lenstra published the landmark paper [Len87] that intro-
duces and analyzes the Elliptic Curve Method (ECM), which is a powerful
algorithm for factoring integers using elliptic curves. Lenstra’s method is
also described in [ST92, §IV.4], [Dav99, §VIIL.5], and [Coh93, §10.3].

Lenstra’s algorithm is well suited for finding
“medium sized” factors of an integer N, which
today means 10 to 20 decimal digits. The ECM
method is not directly used for factoring RSA chal-
lenge numbers (see Section 1.1.3), but it is used on
auxiliary numbers as a crucial step in the “number
field sieve”, which is the best known algorithm for
hunting for such factorizations. Also, implementa-
tion of ECM typically requires little memory. Lenstra

6.3.1 Pollard’s (p — 1)-Method

Lenstra’s discovery of ECM was inspired by Pollard’s (p—1)-method, which
we describe in this section.
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Definition 6.3.1 (Power smooth). Let B be a positive integer. If n is
a positive integer with prime factorization n = [[p;*, then n is B-power
smooth if p;* < B for all i.

Thus 30 =2-3-5 is B power smooth for B = 5,7, but 150 = 2-3-52 is
not 5-power smooth (it is B = 25-power smooth).

We will use the following algorithm in both the Pollard p — 1 and elliptic
curve factorization methods.

Algorithm 6.3.2 (Least Common Multiple of First B Integers).
Given a positive integer B, this algorithm computes the least common multiple
of the positive integers up to B.

1. [Sieve] Using, e.g., the Sieve of Eratosthenes (Algorithm 1.2.3), compute
a list P of all primes p < B.

2. [Multiply] Compute and output the product HpePpUng(B)J.

Proof. Let m =lem(1,2,...,B). Then
ord,(m) = max({ord,(n) : 1 <n < B}) = ord,(p"),

where p” is the largest power of p that satisfies p” < B. Since p" < B <
P!, we have r = [log,(B)]. O

We implement Algorithm 6.3.2 in Section 7.6.2.

Let N be a positive integer that we wish to factor. We use the Pollard
(p — 1)-method to look for a nontrivial factor of N as follows. First we
choose a positive integer B, usually with at most six digits. Suppose that
there is a prime divisor p of N such that p — 1 is B-power smooth. We try
to find p using the following strategy. If @ > 1 is an integer not divisible
by p then by Theorem 2.1.12,

a1 =1 (mod p).

Let m =1lem(1,2,3,...,B), and observe that our assumption that p — 1 is
B-power smooth implies that p — 1 | m, so

a™=1 (mod p).

Thus
plged(a™ —1,N) > 1.

If ged(a™—1, N) < N also then ged(a™—1, N) is a nontrivial factor of N. If
ged(a™ — 1, N) = N, then ¢™ =1 (mod ¢") for every prime power divisor
q" of N. In this case, repeat the above steps but with a smaller choice of B
or possibly a different choice of a. Also, it is a good idea to check from
the start whether or not IV is not a perfect power M", and if so replace N
by M. We formalize the algorithm as follows:
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Algorithm 6.3.3 (Pollard p — 1 Method). Given a positive integer N
and a bound B, this algorithm attempts to find a nontrivial factor m of N.
(Each prime p | m is likely to have the property that p—1 is B-power smooth.)

1. [Compute lecm] Use Algorithm 6.3.2 to compute m = lem(1,2,..., B).
2. [Initialize] Set a = 2.

3. [Power and gcd] Compute = a™ — 1 (mod N) and g = ged(z, N).
4. [Finished?] If g # 1 or N, output g and terminate.

5. [Try Again?] If a < 10 (say), replace a by a + 1 and go to step 3.

Otherwise terminate.

We implement Algorithm 6.3.3 in Section 7.6.2.

For fixed B, Algorithm 6.3.3 often splits N when N is divisible by a
prime p such that p—1 is B-power smooth. Approximately 15% of primes p
in the interval from 10*® and 10'® + 10000 are such that p — 1 is 10% power-
smooth, so the Pollard method with B = 10° already fails nearly 85% of
the time at finding 15-digit primes in this range (see also Exercise 7.14).
We will not analyze Pollard’s method further, since it was mentioned here
only to set the stage for the elliptic curve factorization method.

The following examples illustrate the Pollard (p — 1)-method.

Ezample 6.3.4. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p — 1 method with B = 5 to split N. We have
m = lem(1,2,3,4,5) = 60; taking a = 2 we have

260 1 =3416 (mod 5917)

and
ged (2% — 1,5917) = ged(3416,5917) = 61,

so 61 is a factor of 5917.

Example 6.3.5. In this example, we replace B by larger integer. Let N =
779167. With B = 5 and a = 2 we have

260 _ 1 =710980 (mod 779167),
and ged(2%0 — 1,779167) = 1. With B = 15, we have
m =lem(1,2,...,15) = 360360,

9360360 _ | = 584876 (mod 779167),

and
ged (2360360 _ 1 N) = 2003,

so 2003 is a nontrivial factor of 779167.
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Ezample 6.3.6. In this example, we replace B by a smaller integer. Let
N = 4331. Suppose B =7, s0 m =lem(1,2,...,7) = 420,

2120 _1=0 (mod 4331),

and ged (2429 —1,4331) = 4331, so we do not obtain a factor of 4331. If we
replace B by 5, Pollard’s method works:

260 1 =1464 (mod 4331),

and ged(2%° — 1,4331) = 61, so we split 4331.
Ezample 6.3.7. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. Suppose B = 15, so m = lem(1,2,...,15) = 360360,

2360360 _ 1 =0 (mod 187),

and ged (2309360 — 1187) = 187, so we do not obtain a factor of 187. If we
replace a = 2 by a = 3, then Pollard’s method works:

3360360 _ 1 =66 (mod 187),
and ged(3%09360 — 1,187) = 11. Thus 187 = 11 - 17.

6.3.2  Motivation for the Elliptic Curve Method

Fix a positive integer B. If N = pq with p and ¢ prime and p—1 and ¢ —1
are not B-power smooth, then the Pollard (p — 1)-method is unlikely to
work. For example, let B = 20 and suppose that N = 59-101 = 5959. Note
that neither 59 — 1 = 229 nor 101 — 1 = 4 - 25 is B-power smooth. With
m =lem(1,2,3,...,20) = 232792560, we have

2m —1=5944 (mod N),

and ged(2™ —1,N) = 1, so we do not find a factor of N.

As remarked above, the problem is that p — 1 is not 20-power smooth for
either p = 59 or p = 101. However, notice that p — 2 = 3 - 19 is 20-power
smooth. Lenstra’s ECM replaces (Z/pZ)*, which has order p — 1, by the
group of points on an elliptic curve F over Z/pZ. It is a theorem that

H#E(Z/pZ)=p+1+s

for some nonnegative integer s < 2,/p (see e.g., [Sil86, §V.1] for a proof).
(Also every value of s subject to this bound occurs, as one can see using
“complex multiplication theory”.) For example, if F is the elliptic curve

P =23+ +54

over Z/59Z then by enumerating points one sees that E(Z/59Z) is cyclic
of order 57. The set of numbers 59 4+ 1 & s for s < 15 contains 14 numbers
that are B-power smooth for B = 20 (see Exercise 7.14). Thus working
with an elliptic curve gives us more flexibility. For example, 60 = 59+1+0
is 5-power smooth and 70 = 59 + 1 4 10 is 7-power smooth.
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FIGURE 6.4. Hendrik Lenstra

6.3.3 Lenstra’s Elliptic Curve Factorization Method

Algorithm 6.3.8 (Elliptic Curve Factorization Method). Given a
positive integer N and a bound B, this algorithm attempts to find a nontrivial
factor m of N. Carry out the following steps:

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lem(1,2,..., B).

2. [Choose Random Elliptic Curve] Choose a random a € Z/NZ such that
4a® +27 € (Z/NZ)*. Then P = (0,1) is a point on the elliptic curve
y*=2% +axr + 1 over Z/NZ.

3. [Compute Multiple] Attempt to compute mP using an elliptic curve
analogue of Algorithm 2.3.7. If at some point we cannot compute a sum
of points because some denominator in step 3 of Algorithm 6.2.1 is not
coprime to N, we compute the ged of this denominator with N. If this
gcd is a nontrivial divisor, output it. If every denominator is coprime
to N, output “Fail”.

We implement Algorithm 6.3.8 in Section 7.6.2.

If Algorithm 6.3.8 fails for one random elliptic curve, there is an option
that is unavailable with Pollard’s (p—1)-method—we may repeat the above
algorithm with a different elliptic curve. With Pollard’s method we always
work with the group (Z/NZ)*, but here we can try many groups E(Z/NZ)
for many curves FE. As mentioned above, the number of points on E over
Z/pZ is of the form p + 1 — ¢ for some ¢ with |t| < 2,/p; Algorithm 6.3.8
thus has a chance if p+ 1 —t is B-power-smooth for some ¢ with [t| < 2,/p.

6.3.4 FEzamples
For simplicity, we use an elliptic curve of the form
y2 =23+ az + 1,

which has the point P = (0, 1) already on it.
We factor N = 5959 using the elliptic curve method. Let

m =lem(1,2,...,20) = 232792560 = 11011110000000100001111100002,
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where x9 means x is written in binary. First we choose a = 1201 at random
and consider y? = 2% 4+ 12012 + 1 over Z/5959Z. Using the formula for
P+P from Algorithm 6.2.1 implemented on a computer (see Section 7.6) we
compute 2t - P =2¢.(0,1) for i € B = {4,5,6,7,8,13,21,22,23, 24,26, 27}.
Then ), p 2¢P = mP. It turns out that during no step of this computation
does a number not coprime to 5959 appear in any denominator, so we do
not split N using a = 1201. Next we try a = 389 and at some stage in
the computation we add P = (2051,5273) and Q = (637,1292). When
computing the group law explicitly we try to compute A\ = (y1 —y2)/(21 —
x9) in (Z/5959Z)*, but fail since x1 —x9 = 1414 and ged (1414, 5959) = 101.
We thus find a nontrivial factor 101 of 5959.

For bigger examples and an implementation of the algorithm, see Sec-
tion 7.6.2.

6.3.5 A Heuristic Fxplanation

Let N be a positive integer and for simplicity of exposition assume that
N = p; - - - p, with the p; distinct primes. It follows from Lemma 2.2.5 that
there is a natural isomorphism

f(Z/NZ)" — (Z/p1Z)" x --- x (Z/pZ)".

When using Pollard’s method, we choose an a € (Z/NZ)*, compute a™,
then compute ged(a™ —1, N). This ged is divisible exactly by the primes p;
such that a™ = 1 (mod p;). To reinterpret Pollard’s method using the
above isomorphism, let (ai,...,a,) = f(a). Then (ai?,...,a™) = f(a™),
and the p; that divide gcd(a™ — 1, N) are exactly the p; such that a]* = 1.
By Theorem 2.1.12, these p; include the primes p; such that p; — 1 is
B-power smooth, where m = lem(1,...,m).

We will not define E(Z/NZ) when N is composite, since this is not
needed for the algorithm (where we assume that N is prime and hope for
a contradiction). However, for the remainder of this paragraph, we pretend
that E(Z/NZ) is meaningful and describe a heuristic connection between
Lenstra and Pollard’s methods. The significant difference between Pollard’s
method and the elliptic curve method is that the isomorphism f is replaced
by an isomorphism (in quotes)

“g: E(Z/NZ) — E(Z/p1Z) x -+ x E(Z/p,Z)"

where E is y?> = 22 + ax + 1, and the a of Pollard’s method is replaced by
P = (0,1). We put the isomorphism in quotes to emphasize that we have
not defined E(Z/NZ). When carrying out the elliptic curve factorization
algorithm, we attempt to compute mP and if some components of f(Q)
are O, for some point @) that appears during the computation, but others
are nonzero, we find a nontrivial factor of V.
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6.4 Elliptic Curve Cryptography

In this section we discuss an analogue of Diffie-Hellman that uses an elliptic
curve instead of (Z/pZ)*. The idea to use elliptic curves in cryptography
was independently proposed by Neil Koblitz and Victor Miller in the mid
1980s. We then discuss the ElGamal elliptic curve cryptosystem.

6.4.1 Elliptic Curve Analogues of Diffie-Hellman

The Diffie-Hellman key exchange from Section 3.1 works well on an elliptic
curve with no serious modification. Michael and Nikita agree on a secret
key as follows:

1. Michael and Nikita agree on a prime p, an elliptic curve E over Z/pZ,
and a point P € E(Z/pZ).
2. Michael secretly chooses a random m and sends mP.

3. Nikita secretly chooses a random n and sends nP.

4. The secret key is nm P, which both Michael and Nikita can compute.

Presumably, an adversary can not compute nmP without solving the dis-
crete logarithm problem (see Problem 3.1.2 and Section 6.4.3 below) in
E(Z/pZ). For well-chosen E, P, and p experience suggests that the discrete
logarithm problem in E(Z/pZ) is much more difficult than the discrete log-
arithm problem in (Z/pZ)* (see Section 6.4.3 for more on the elliptic curve
discrete log problem).

6.4.2 The ElGamal Cryptosystem and Digital Rights
Management

This section is about the ElGamal cryptosystem, which works well on an

elliptic curves. This section draws on a paper by a computer hacker named

Beale Screamer who cracked a “Digital Rights Management” (DRM) sys-

tem.

The elliptic curve used in the DRM is an elliptic curve over the finite
field k = Z/pZ, where

p = 785963102379428822376694789446897396207498568951.
In base 16 the number p is
89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits of e, 7, and /2. The
elliptic curve E is

y? = 2 + 317689081251325503476317476413827693272746955927x
+ 790528966078 78758718120572025718535432100651934.



114 6. Elliptic Curves

We have
#E(k) = 785963102379428822376693024881714957612686157429,
and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,
390157510246556628525279459266514995562533196655).

Our heroes Nikita and Michael share digital music when they are not
out fighting terrorists. When Nikita installed the DRM software on her
computer, it generated a private key

n = 670805031139910513517527207693060456300217054473,

which it hides in bits and pieces of files. In order for Nikita to play Juno
Reactor’s latest hit juno.wma, her web browser contacts a web site that
sells music. After Nikita sends her credit card number, that web site allows
Nikita to download a license file that allows her audio player to unlock and
play juno.wna.

As we will see below, the license file was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
file to unlock juno.wma. However, when she shares both juno.wma and the
license file with Michael, he is frustrated because even with the license his
computer still does not play juno.wma. This is because Michael’s computer
does not know Nikita’s computer’s private key (the integer n above), so
Michael’s computer can not decrypt the license file.

We now describe the ElGamal cryptosystem, which lends itself well to
implementation in the group F(Z/pZ). To illustrate ElGamal, we describe
how Nikita would set up an ElGamal cryptosystem that anyone could use
to encrypt messages for her. Nikita chooses a prime p, an elliptic curve FE
over Z/pZ, and a point B € F(Z/pZ), and publishes p, E, and B. She also
chooses a random integer n, which she keeps secret, and publishes nB. Her
public key is the four-tuple (p, F, B,nB).

Suppose Michael wishes to encrypt a message for Nikita. If the message is
encoded as an element P € E(Z/pZ), Michael computes a random integer r
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and the points rB and P+7(nB) on E(Z/pZ). Then P is encrypted as the
pair (rB, P+r(nB)). To decrypt the encrypted message, Nikita multiplies
rB by her secret key n to find n(rB) = r(nB), then subtracts this from
P + r(nB) to obtain

P=P+r(nB)—r(nB).

We implement this cryptosystem in Section 7.6.3.
Remark 6.4.1. It also make sense to construct an ElGamal cryptosystem
in the group (Z/pZ)*.
Returning out our story, Nikita’s license file is an encrypted message to
her. It contains the pair of points (rB, P 4+ r(nB)), where
rB = (179671003218315746385026655733086044982194424660,
697834385359686368249301282675141830935176314718)

and

P + r(nB) = (137851038548264467372645158093004000343639118915,
110848589228676224057229230223580815024224875699).

When Nikita’s computer plays juno.wma, it loads the secret key
n = 670805031139910513517527207693060456300217054473
into memory and computes

n(rB) = (328901393518732637577115650601768681044040715701,
586947838087815993601350565488788846203887988162).

It then subtracts this from P + r(nB) to obtain

P = (14489646124220757767,
669337780373284096274895136618194604469696830074).

The z-coordinate 14489646124220757767 is the key that unlocks juno.wna.

If Nikita knew the private key n that her computer generated, she could
compute P herself and unlock juno.wma and share her music with Michael.
Beale Screamer found a weakness in the implementation of this system that
allows Nikita to detetermine n, which is not a huge surprise since n is stored
on her computer after all.

6.4.3 The Elliptic Curve Discrete Logarithm Problem

Problem 6.4.2 (Elliptic Curve Discrete Log Problem). Suppose E
is an elliptic curve over Z/pZ and P € E(Z/pZ). Given a multiple Q of P,
the elliptic curve discrete log problem is to find n € Z such that nP = Q.
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For example, let E be the elliptic curve given by y? = 23 + 2 + 1 over
the field Z/7Z. We have

E(Z/72) ={0,(2,2),(0,1),(0,6),(2,5)}.

If P=1(2,2) and Q = (0,6), then 3P = @, so n = 3 is a solution to the
discrete logarithm problem.

If E(Z/pZ) has order p or p£1 or is a product of reasonably small primes,
then there are some methods for attacking the discrete log problem on F,
which are beyond the scope of this book. It is thus important to be able to
compute #E(Z/pZ) efficiently, in order to verify that the elliptic curve one
wishes to use for a cryptosystem doesn’t have any obvious vulnerabilities.
The naive algorithm to compute #E(Z/pZ) is to try each value of x € Z/pZ
and count how often 23 + az + b is a perfect square mod p, but this is of no
use when p is large enough to be useful for cryptography. Fortunately, there
is an algorithm due to Schoof, Elkies, and Atkin for computing #FE(Z/pZ)
efficiently (polynomial time in the number of digits of p), but this algorithm
is beyond the scope of this book.

In Section 3.1.1 we discussed the discrete log problem in (Z/pZ)*. There
are general attacks called “index calculus attacks” on the discrete log prob-
lem in (Z/pZ)* that are slow, but still faster than the known algorithms for
solving the discrete log in a “general” group (one with no extra structure).
For most elliptic curves, there is no known analogue of index calculus at-
tacks on the discrete log problem. At present it appears that given p the
discrete log problem in F(Z/pZ) is much harder than the discrete log prob-
lem in the multiplicative group (Z/pZ)*. This suggests that by using an
elliptic curve-based cryptosystem instead of one based on (Z/pZ)* one gets
equivalent security with much smaller numbers, which is one reason why
building cryptosystems using elliptic curves is attractive to some cryptog-
raphers. For example, Certicom, a company that strongly supports elliptic
curve cryptography, claims:

“[Elliptic curve crypto] devices require less storage, less power,
less memory, and less bandwidth than other systems. This al-
lows you to implement cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, smart
cards, and thin-clients. It also provides a big win in situations
where efficiency is important.”

For an up-to-date list of elliptic curve discrete log challenge problems
that Certicom sponsors, see [Cer]. For example, in April 2004 a specific
cryptosystem was cracked that was based on an elliptic curve over Z/pZ,
where p has 109 bits. The first unsolved challenge problem involves an
elliptic curve over Z/pZ, where p has 131 bits, and the next challenge after
that is one in which p has 163 bits. Certicom claims at [Cer| that the 163-bit
challenge problem is computationally infeasible.



6.5 Elliptic Curves Over the Rational Numbers 117

FIGURE 6.5. Louis J. Mordell

6.5 Elliptic Curves Over the Rational Numbers

Let F be an elliptic curve defined over Q. The following is a deep theorem
about the group F(Q).

Theorem 6.5.1 (Mordell). The group E(Q) is finitely generated. That
is, there are points Py, ..., Ps € E(Q) such that every element of E(Q) is
of the form n1 Py + - -+ + nsPs for integers ny,...ngs € 7.

Mordell’s theorem implies that it makes sense to ask whether or not
we can compute E(Q), where by “compute” we mean find a finite set
Py, ..., Ps of points on E that generate F(Q) as an abelian group. There
is a systematic approach to computing E(Q) called “descent” (see e.g.,
[Cre97, Cre, Sil86]). It is widely believed that descent will always succeeds,
but nobody has yet proved that it does. Proving that descent works for
all curves is one of the central open problem in number theory, and is
closely related to the Birch and Swinnerton-Dyer conjecture (one of the
Clay Math Institute’s million dollar prize problems). The crucial difficulty
amounts to deciding whether or not certain explicitly given curves have any
rational points on them or not (these are curves that have points over R
and modulo n for all n).

The details of using descent to computing F(Q) are beyond the scope
of this book. In several places below we will simply assert that E(Q) has
a certain structure or is generated by certain elements. In each case, we
computed E(Q) using a computer implementation of this method.

6.5.1 The Torsion Subgroup of E(Q) and the Rank

For any abelian group G, let Gy, be the subgroup of elements of finite
order. If E is an elliptic curve over Q, then E(Q)io, is a subgroup of
E(Q), which must be finite because of Theorem 6.5.1 (see Exercise 6.6).
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One can also prove that E(Q)¢o, is finite by showing that there is a prime
p and an injective reduction homomorphism E(Q)or — FE(Z/pZ), then
noting that E(Z/pZ) is finite. For example, if E is y? = 23 — 5z + 4, then
E(Q)tor = {07 (170)} = Z/2Z

The possibilities for E(Q)tor are known.

Theorem 6.5.2 (Mazur, 1976). Let E be an elliptic curve over Q. Then
E(Q)1or is isomorphic to one of the following 15 groups:
Z/nZ forn <10 orn =12,
Z/2 xZ/2n forn < 4.

The quotient F(Q)/E(Q)tor is a finitely generated free abelian group,
0 it is isomorphism to Z" for some integer r, called the rank of E(Q).
For example, using descent one finds that if E is y? = 23 — 52 + 4, then
E(Q)/E(Q)tor is generated by the point (0,2). Thus E(Q) =2 Z x (Z/27Z).

The following is a folklore conjecture, not associated to any particular
mathematician:

Conjecture 6.5.3. There are elliptic curves over Q of arbitrarily large
rank.

The “world record” is the following curve, whose rank is at least 24:

v 4ay +y = 2° — 1200398220369922453035346191911667963 742
+ 504224992484910670010801799168082726759443756222911415116

It was discovered in January 2000 by Roland Martin and William McMillen
of the National Security Agency.

6.5.2 The Congruent Number Problem

Definition 6.5.4 (Congruent Number). We call a nonzero rational
number n a congruent number if +n is the area of a right triangle with
rational side lengths. Equivalently, n is a congruent number if the system
of two equations

a2+ = &2
1
—ab = n
2
has a solution with a,b,c € Q.

For example, 6 is the area of the right triangle with side lengths 3, 4,
and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3/2, 20/3, and
41/6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the integer congruent numbers up to 50:

5,6,7,13,14, 15, 20,21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47.
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Every congruence class modulo 8 except 3 is represented in this list,
which incorrectly suggests that if n =3 (mod 8) then n is not a congruent
number. Though no n < 218 with n = 3 (mod 8) is a congruent number,
n = 219 is a congruent number congruent and 219 = 3 (mod 8).

Deciding whether an integer n is a congruent number can be subtle since
the simplest triangle with area n can be very complicated. For example,
as Zagier pointed out, the number 157 is a congruent number, and the
“simplest” rational right triangle with area 157 has side lengths

_ 6803298487826435051217540 and b — 411340519227716149383203
 411340519227716149383203 ~ 21666555693714761309610

This solution would be difficult to find by a brute force search.

We call congruent numbers “congruent” because of the following proposi-
tion, which asserts that any congruent number is the common “congruence”
between three perfect squares.

Proposition 6.5.5. Suppose n is the area of a right triangle with rational
side lengths a,b,c, with a < b < c. Let A= (¢/2)?. Then

A—n, A, and A+n

are all perfect squares of rational numbers.

Proof. We have

a?+v? = ¢
1
iab = n

Add or subtract 4 times the second equation to the first to get

a?+2ab+0? = A +4n
a+b)? = PZ+4n
(
a+b\? c\?2
= - =+
( 2 > (2) "
= A+n

O

The main motivating open problem related to congruent numbers, is to
give a systematic way to recognize them.

Open Problem 6.5.6. Give an algorithm which, given n, outputs whether
or not n is a congruent number.
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Fortunately, the vast theory developed about elliptic curves has some-
thing to say about the above problem. In order to understand this connec-
tion, we begin with an elementary algebraic proposition that establishes a
link between elliptic curves and the congruent number problem.

Proposition 6.5.7 (Congruent numbers and elliptic curves). Let n
be a rational number. There is a bijection between

A:{(a,b,c)€Q3 : %b:n, a2+b2:c2}

and

B={(z,y) € Q2% : y? =23 —n’x, withy # 0}
given explicitly by the maps

nb 2n2
be) = (-
flabo) = (-2 2)
and
R
’ y oy oy '

The proof of this proposition is not deep, but involves substantial (ele-
mentary) algebra and we will not prove it in this book.
For n # 0, let E,, be the elliptic curve y? = 2% — n?z.

Proposition 6.5.8 (Congruent number criterion). The rational num-
ber n is a congruent number if and only if there is a point P = (x,y) €

E,(Q) with y # 0.

Proof. The number n is a congruent number if and only if the set A from
Proposition 6.5.7 is nonempty. By the proposition A is nonempty if and
only if B is nonempty. O

Example 6.5.9. Let n = 5. Then E,, is 4> = 22 — 25z, and we notice that
(—4,-6) € F,,(Q). We next use the bijection of Proposition 6.5.7 to find
the corresponding right traingle:

(4 (P16 40 25416Y (3 20 41
IR =T T e =6 )T U2 3 6 )

Multiplying through by —1 yields the side lengths of a rational right triangle
with area 5. Are there any others?

Observe that we can apply ¢ to any point in E,(Q) with y # 0. Using
the group law we find that 2(—4, —6) = (1681/144,62279/1728), and

1519 4920 3344161
9(2(—4,6)) = ( ) .

© 4927 15197 747348
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Example 6.5.10. Let n = 1, so E; is defined by y? = 23 — z. Since 1 is not
a congruent number, the elliptic curve E; has no point with y # 0. See
Exercise 6.10.

Example 6.5.9 foreshadows the following theorem.

Theorem 6.5.11 (Infinitely Many Triangles). If n is a congruent
number, then there are infinitely many distinct right triangles with rational
side lengths and area n.

We will not prove this theorem, except to note that one proves it by
showing that E,(Q)ter = {0, (0,0), (n,0), (—n,0)}, so the elements of the
set B in Proposition 6.5.7 all have infinite order, hence B is infinite so A
is infinite.

Tunnell has proved that the Birch and Swinnerton-Dyer (alluded to
above), implies the existence of an elementary way to decide whether or
not an integer n is a congruent number. We state Tunnell’s elementary way
in the form of a conjecture.

Conjecture 6.5.12. Let a, b, c denote integers. If n is an even square-free
integer then n is a congruent number if and only if

#{(a,b,c) €Z3:4a®> + b + 82 = g:cis even}

= #{(a,bm) c4a® +b? +8c% = g tcis odd}.
If n is odd and square free then n is a congruent number if and only if
#{(a,b,c) : 2a® + b* +8c* = n: ¢ is even}

:#{(a,b,c):2a2+62+862:n:cis odd}.

Enough of the Birch and Swinnerton-Dyer conjecture is known to prove
one direction of Conjecture 6.5.12. In particular, it is a very deep theorem
that if we do not have equality of the displayed cardinalities, then n is not
a congruent number. For example, when n =1,

The even more difficult (and still open!) part of Conjecture 6.5.12 is the
converse: If one has equality of the displayed cardinalities, prove that n
is a congruent number. The difficulty in this direction, which appears to
be very deep, is that we must somehow construct (or prove the existence
of) elements of E, (Q). This has been accomplished in some cases do to
groundbreaking work of Gross and Zagier ([GZ86]) but much work remains
to be done.

The excellent book [Kob84] is about congruent numbers and Conjec-
ture 6.5.12, and we encourage the reader to consult it. The Birch and
Swinnerton-Dyer conjecture is a Clay Math Institute million dollar millen-
nium prize problem (see [Cla, Wil00]).
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6. Elliptic Curves
Exercises

Write down an equation y2 = 2% 4+ ax + b over a field K such that
—16(4a3+27b%) = 0. Precisely what goes wrong when trying to endow
the set F(K) = {(z,y) € K x K : y* = 2% + az + b} U {O} with a
group structure?

One rational solution to the equation 32 = x* — 2 is (3,5). Find a
rational solution with « # 3 by drawing the tangent line to (3,5) and
computing the second point of intersection.

Let E be the elliptic curve over the finite field K = Z/5Z defined by
the equation

V=2 +r+1

(a) List all 9 elements of E(K).
(b) What is the structure of E(K), as a product of cyclic groups?

Let E be the elliptic curve defined by the equation y? = 2> + 1. For
each prime p > 5, let N, be the cardinality of the group E(Z/pZ)
of points on this curve having coordinates in Z/pZ. For example, we
have that N5 = 6,N7 = 12,N11 = 12,N13 = 127N17 = 18,N19 =
12,, Nog = 24, and Nog = 30 (you do not have to prove this).

(a) For the set of primes satisfying p = 2 (mod 3), can you see a
pattern for the values of N,7 Make a general conjecture for the
value of N, when p =2 (mod 3).

(b) (*) Prove your conjecture.

Let E be an elliptic curve over the real numbers R. Prove that E(R)
is not a finitely generated abelian group.

(*) Suppose G is a finitely generated abelian group. Prove that the
subgroup Gt of elements of finite order in G is finite.

Suppose 4% = 23 +ax+b with a,b € Q defines an elliptic curve. Show
that there is another equation Y2 = X3 + AX + B with A,B € Z
whose solutions are in bijection with the solutions to y? = x3+az +b.

Suppose a, b, c are relatively prime integers with a? + b> = ¢2. Then
there exist integers z and y with « > y such that ¢ = 22 + y? and
either @ = 22 — y2, b= 2zy or a = 2zy, b = 22 — y2.

(*) Fermat’s Last Theorem for exponent 4 asserts that any solution
to the equation x* 4 y* = 2* with z,y, z € Z satisfies xyz = 0. Prove
of Fermat’s Last Theorem for exponent 4, as follows.
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(a) Show that if the equation 2% + y* = 2% has no integer solutions
with zyz # 0, then Fermat’s Last Theorem for exponent 4 is
true.

(b) Prove that 22 +y* = 2* has no integer solutions with zyz # 0 as
follows. Suppose n? +k* = m? is a solution with m > 0 minimal
amongst all solutions. Show that there exists a solution with m
smaller using Exercise 6.8 (consider two cases).

6.10 (*) Prove that 1 is not a congruent number by showing that the
elliptic curve y? = 23 — x has no rational solutions except (0,1) and
(0,0), as follows:

(a) Write y = 2 and x = %, where p,q,r, s are all positive integers
and ged(p, q) = ged(r,s) = 1. Prove that s | ¢, so ¢ = sk for
some k € Z.

(b) Prove that s = k%, and substitute to see that p? = r3 — rk.

(c) Prove that r is a perfect square by supposing there is a prime ¢
such that ord(r) is odd and analyzing ord, of both sides of
p? =13 —rkt.

6

(d) Write r = m?, and substitute to see that p?> = m5 —m?2k*. Prove

that m | p.

(e) Divide through by m? and deduce a contradiction to Exer-
cise 6.9.



