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Solving Certain Cubic Equations:
An Introduction to the Birch and 

Swinnerton-Dyer Conjecture

William Stein
http://modular.fas.harvard.edu/sums

February 28, 2004 at Brown SUMS

Read the title.  Point out that the slides are available on that web page.

My talk is about a beautiful area of pure mathematics.  This area has applications to 
secure communications and physics, but I will only try to convey the intrinsic beauty 
and excitement of the area, rather than convince you of its applicability to everyday 
life.
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Two Types of Equations
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Differential Algebraic
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There are two major types of equations that one encounters in standard 
undergraduate mathematics course. Differential and algebraic.  The left side of the 
slide contains one of the simplest differential equations.  The graphed solution is 
e^x, which is the unique solution up to a nonzero scalar.   The right hand equation is 
an algebraic equation, which asks for the solutions to a quadratic.  The graph is of 
the function f(x) = x^2-3x+2, and the two points 1 and 2 where f(x)=0 are shown in 
red.  
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Pythagorean 
Theorem

Pythagoras
lived approx 569-475 B.C.

The Pythagorean theorem asserts that if a, b, and c are the sides of a right triangle 
with hypotenuse c, then a^2 + b^2 = c^2. Pythagoras (and others before him) were 
interested in systematically finding solutions to the equation a^2+b^2=c^2, with a, b, 
c, all integers. 
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Babylonians

1800-1600 B.C.

The painting on the upper right is “Artist's conception of the thriving city state of 
Babylon 
(circa 7th Century B.C.), including the Hanging Gardens.” The photo on the lower 
right is from modern Babylon: “Its ruins are found 90 km south of modern Baghdad 
in Iraq.”

The big tablet illustrates the Pythagorean theorem with a=b=1 and c=sqrt(2).   
Notice that if we view the lengths of the four short sides of the small triangles as 1, 
then the are of the big square is twice the are of a 1x1 square (pick up a small 
triangle and move it to the other side.  Thus the area of the square made from all 
four small triangles is 2, so that square must have side length sqrt(2).  Note that 
1^2+1^2 = (sqrt(2))^2.   The number sqrt(2) arises very naturally, but is **shudder** 
irrational.  One can prove that sqrt(2) is not a quotient of two integers. 
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Pythagorean Triples

Triples of whole numbers a, b, c such that
2 2 2a b c+ =

This tablet is Plimpton 322, a BABYLONIAN tablet from 1900-1600BC.  (It’s 
supposed to be at Columbia University.)  The second and third columns list integers 
a and c such that a and c are the side lengths of the base and hypotenuse of a right 
triangle with integer side lengths.   Thus if b=sqrt(c^2-a^2), then (a,b,c) is a 
Pythagorean triple.  The first row contains a=119 and c=169=13^2, so b=120.  The 
other rows also contain rather large triples.

The picture in the upper right is mainly to add color to the slide.  It is a Ziggurat, 
which was a “house of god” built by the Babylonians from around 2200BC to 
500BC, and there are about 25 left today.  

The left side of the slide lists all the Pythagorean triples so that a,b,c all have at 
most two digits.

Question: How can we systematically enumerate Pythagorean triples?
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Enumerating Pythagorean Triples
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Line of Slope t

This slide illustrates a method to enumerate all of the Pythagorean triples.  The red 
circle is a circle about the origin of radius 1.   It is defined by the equation 
x^2+y^2=1, so any point (x,y) on the circle satisfies x^2+y^2=1.  The blue line has 
slope t, and is defined by the equation y=tx+t=t(x+1).  Using elementary algebra, 
one sees that if t is a rational number, then the intersection point (x,y) has rational 
coordinates.   By clearing denominators we obtain a Pythagorean triple, and (up to 
scaling) one can show that every Pythagorean can be obtained in this way.  So 
finding the rational solutions to x^2+y^2=1, or what’s the same, the integral 
solutions to a^2+b^2=c^2 is reasonably straightforward:  there are infinitely many 
and they are parameterized by the rational slopes t.
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If                then

is a Pythagorean triple.

Enumerating Pythagorean Triples

rt
s
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We can solve explicitly for x and y in terms of t.  The first upper-right equation gives 
the equation of the blue line.  We then solve for x and y in terms of t by solving the 
two equations y=t*(x+1) and x^2+y^2=1 for x and y.  (subst first into second for y 
and get equation in x and t, then solve for x using algebra).

Finally, at the bottom of the slide I’ve listed the correspondence very explicitly.  If t 
is a rational number r/s in lowest terms, then the displayed formulas define a 
(primitive) Pythagorean triple.
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Integer and Rational Solutions

Mathematicians have long been interested in solving equations in the integers or 
rational numbers.  The contents of most of Diophantus’s works were totally lost, but 
a version of this one remains, and it has many interesting questions that boil down 
to “what are the rational solutions to an algebraic equation in two variables.” The 
picture on the right is of Andrew Wiles looking at a copy of this very book, along 
with a zoom of the book.  Fermat wrote in the margin of his copy of Diophantus his 
famous assertion that x^n+y^n=1 has no rational solutions besides those with 
|x|=|y|=1.  Wiles proved the conjecture in 1995. 
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Cubic Equations & 
Elliptic Curves

Cubic algebraic equations in two unknowns x and y.

A great book
on elliptic 

curves by Joe 
Silverman3 33 4 5 0x y+ + =

2 3y x ax b= + +

3 3 1x y+ =

The simplest class of equations in 2 variables are the linear and quadratic 
equations.  Solving linear equations in two variables is straightforward (back 
substitute).  The circle trick for enumerating Pythagorean triples works well in 
general for enumerating the solutions to a quadratic equation in two variables.  The 
next more complicated equation in 2 variables is a cubic equation.  The first cubic 
equation on the slide is the Fermat equation for exponent 3 – Fermat’s famous 
conjecture is the assertion that this equation has no solutions (besides the obvious 
ones with x or y pm 1).   The second equation is an example of a cubic equation 
that has no rational solutions at all (not even “at infinity”)--- it is an open problem to 
give an algorithm that can decide whether any given cubic equation in 2 variables 
has a rational solution.  Any cubic equation that has some rational solution (possibly 
“at infinity”) can be put in the third from y^2=x^3+ax+b.  Such curves are called 
elliptic curves.  Their graphs are definitely not ellipses (which are graphs of 
quadratic equations).  The name “elliptic” arises because these curves appear 
naturally when trying to understand integration formulas for arc lengths of ellipses. 
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The Secant Process

2 3y y x x+ = −

( 1,0) & (0, 1) give (2, 3)− − −

Recall that before given the point (-1,0) on the circle of radius 1, we found all other 
rational solutions by drawing a line through (-1,0) and finding the other point of 
intersection.  Fermat introduced a similar process for elliptic curves.  If we have 
TWO points on an elliptic curve, both with rational coordinates, we obtain a third 
point with rational coordinates by drawing the line they determine and finding the 
third point of intersection. (It sucks that I switched colors from blue-red to red-blue!)  
In the example on the left, the blue curve is the graph of y^2+y=x^3-x “when is the 
product of two consecutive numbers equal to the product of three consecutive 
numbers?”, and there are two “obvious” rational solutions (-1,0) and (0,-1).  Using 
the secant process of Fermat we find the less-obvious solution (2,-3).   
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The Tangent Process

If we had only noticed (0,0), we could use instead the TANGENT PROCESS to find 
a new point (1,-1).   We can repeat this tangent process again with (1,-1) to obtain 
(2,-3).  Again, repeating yields (21/25, -56/125).  There sure seem to be a lot of 
points.  Are there infinitely many?  Or, will the tangent process eventually stop 
giving new points?!  Notice the new points are huge, and we would have to draw a 
very large graph (or use a very small scale) to see them.  It’s amazing to so 
effortlessly find huge non-obvious examples of rational numbers such that the 
product of two consecutive equals the product of three consecutive (where 
consecutive, means adding 1 each time). 

The drawings on the right of Fermat are  of some French magistrate.  Nobody 
knows for sure what Fermat really looked like, but maybe he looked something like 
the guy pictured on the right. 
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Mordell’s
Theorem

The rational solutions 
of a cubic equation 
are all obtainable 
from a finite number 
of solutions, using a 
combination of the 
secant and tangent 
processes.

1888-1972

Mordell proved that given any cubic equation in two variables, there exists a finite 
number of solutions such that each solution on the cubic can be obtained from that 
finite number by iteration of the secant and tangent processes applied to those 
points.   Mordell did not give a method to find such a “finite basis” of starting 
solutions, and in fact, there is no PROVABLY correct algorithm known even today 
for doing this!  It is an open problem. 
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The Simplest Solution Can 
Be Huge

M. Stoll

It was a deep theorem (which is a special case of a much more general theorem 
that I will discuss later) that the rather simple looking equation y^2=x^3+7823 has 
infinitely many solutions, but many years passed and nobody was able to write one 
down explicitly.  For every other curve of the form y^2=x^3+d, with d<10000, such a 
solution had been written down when the general theory predicted it would be there.   
I suggested finding one to high school student Jen Balakrishnan as a Westinghouse 
project; she didn’t find one, but did some cool stuff anyways.   Finally, in 2002,
Michael Stoll found the simplest solution, which is quite large. Every solution can 
be obtained from this one (and from (x,-y)) by using the secant and tangent 
process.

The photo is from a short video clip I shot of Michael Stoll and his son when I visited 
them in Bonn, Germany in 2000. 

Stoll found the solution by doing a “4-descent”.  He found another curve F=0 which 
maps to y^2=x^3+7823 by a map of degree 4.  Then he found a smaller point on the 
curve F=0 and mapped that small point to the point above.   This method of descent 
goes from more complicated points to less complicated points, which are easier to 
find by a brute force search, and conjecturally (but not yet provably!) it should 
always succeed in finding points. 

This same point should also be find-able using an analytic method due to Benedict 
Gross and Don Zagier, but in practice it wasn’t because of complexity issues. 
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Central Question

EDSAC in Cambridge, England

Birch and Swinnerton-Dyer

How many solutions are 
needed to generate all 
solutions to a cubic equation?

In the 1960s Birch and Swinnerton-Dyer set up computations on EDSAC (pictured 
below, but maybe the version B-SD used was a little more “modern”?), to try to find 
a conjecture about how many points are needed to generate all solutions to a cubic 
equation.  Mordell’s theorem ensures that only finitely many are needed, but says 
nothing about the actual number in particular cases.   

These EDSAC photos are genuine and come from the EDSAC simulator web page.

EDSAC: “The EDSAC was the world's first stored-program computer to operate a 
regular computing service. Designed and built  at Cambridge University, England, 
the EDSAC performed its first calculation on 6th May 1949.” (from EDSAC simulator 
web page)

The picture in the upper right is a picture I took of Birch and Swinnerton-Dyer in 
Utrecht in 1999. 



15

More EDSAC Photos

Electronic Delay Storage 
Automatic Computer

Construction and key punching.   

TELL Swinnerton-Dyer operating system story?  SD is the guy in the photo in the 
upper right.
I ate dinner with him and others at “high table” at Trinity College, Cambridge.  It was 
dark and very formal, and there were servants.  Lots of tradition and nice suits.  
After dinner we went to the formal smoke room, where these posh old professors 
chewed fine tobacco and drank wine.  It was all quite surreal for a young graduate 
student.  I sat next to Swinnerton-Dyer and he started telling me stories about his 
young days as a computer wiz.  He told me that when EDSAC was completed they 
needed a better operating system.  He learned how the machine worked, wrote an 
operating system, they loaded it, and it worked the first time. Presumably this made 
him favored by the computing staff, which might be part of why he got extensive 
computer time to do computations with elliptic curves. 

EDSAC, Electronic Delay Storage Automatic Computer, was built by Maurice 
Wilkes and colleagues at the University of Cambridge Mathematics Lab, and came 
into use in May 1949. It was a very well-engineered machine, and Wilkes designed 
it to be a productive tool for mathematicians from the start. It used mercury delay 
line tanks for main store (512 words of 36 bits) and half megacycle/S serial bit rate. 
Input and output on paper tape, easy program load, nice rememberable machine 
order-code. See Resurrection issue 2 for some of Wilkes' design decisions.
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Conjectures Proliferated

Conjectures Concerning Elliptic Curves
By B.J. Birch

“The subject of this lecture is rather a special one.  I want to describe some 
computations undertaken by myself and Swinnerton-Dyer on EDSAC, by 
which we have calculated the zeta-functions of certain elliptic curves.  As a 
result of these computations we have found an analogue for an elliptic 
curve of the Tamagawa number of an algebraic group; and conjectures 
(due to ourselves, due to Tate, and due to others) have proliferated.  […] 
though the associated theory is both abstract and technically complicated, 
the objects about which I intend to talk are usually simply defined and often 
machine computable; experimentally we have detected certain relations 
between different invariants, but we have been unable to approach proofs 
of these relations, which must lie very deep.”

Read the above excerpt paper by Birch, from the 1960s.   

I took the photo of Birch during lunch in the middle of a long hike in Oberwolfach, 
Germany. 
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Mazur’s Theorem
For any two rational 
a, b, there are at 
most 15 rational 
solutions (x,y) to 

with finite order.

2 3y x ax b= + +

In the 1970s Barry Mazur wrote a huge paper that answered a pressing question, 
which I mentioned earlier.  How do you know if the tangent process will eventually 
cycle around or keep producing large and larger points?  Either possibility can and 
does occur, but how do you know in a particular case?  Mazur showed that if you 
get at least 16 distinct points by iterating the tangent process, then the tangent 
process will never cycle around on itself, and you will always get new points.   This 
is an extremely deep theorem, and the method of proof opened many doors.   

The picture on the right is one I took of Mazur outside his Harvard office.  The 
boxed theorem is the statement of this theorem from the paper “Modular Curves 
and the Eisenstein Ideal” in which it appears.   For those who know group theory:  
The set of solutions to a cubic equation (plus one extra “0” element) form an abelian
group.  Mazur’s theorem then gives an explicit list of the possible torsion subgroups 
of this group.
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Solutions Modulo p

A prime number is a whole number divisible only 
by itself and 1.  The first few primes are

2,3,5,7,11,13,17,19,23,29,31,37,...p =
We say that (x,y), with x,y integers, is a solution modulo p to

if p is a factor of the integer

This idea generalizes to any cubic equation.

2 3y y x x+ = −

2 3( )y y x x+ − −

To describe the conjecture of Birch and Swinnerton-Dyer about how many solutions 
are needed to generate all solutions, we do something rather sneaky and strange.  
We count the number of solutions modulo p for lots of primes p. This is a general 
trick in number theory --- to understand something “over Q”, try to understand it 
really well modulo lots of primes.

Note that we just consider pairs (x,y) of integers. 

The graph in the upper right corner is of the solutions modulo 7 to y^2+y=x^3-x.  
This is the graph of the equation mod 7.  [Check some of the points.]
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Counting Solutions

Notice that there are 8 solutions and 8 is close to 7. 
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The Error Term

It is a general fact about cubic curves that the number of solutions mod p is very 
close to p, it is 
at most 2*sqrt(p) from p.  

This is Hasse’s theorem from about 1933, and was proved in response to a 
challenge by Davenport. 
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More Primes

( ) ( )N p p A p= +

( ) number of soln'sN p =

Continuing: (13) 2,  (17) 0,  (19) 0,  (23) -2, (29) -6,  (31) 4,  ....A A A A A A= = = = = =

In this slide we list the error (the amount that you have to add to p to get the 
number of points) for primes 2,3,5,7, and 11.
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Cryptographic Application

Commercial Plug: The set of solutions modulo p to an elliptic curve equation (along 
with one extra point “at infinity”) forms a finite abelian group on which the “discrete 
logarithm problem” appears to usually be very difficult.  Such groups are immensely 
useful in cryptography.   The books listed on this slide are about using elliptic 
curves over finite fields to build cryptosystems, for example, for securing bank 
transactions, or e-commerce.  
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Guess
If a cubic curve has infinitely many 
solutions, then probably N(p) is 
larger than p, for many primes p.

Thus maybe the product of terms

will tend to 0 as M gets larger. Swinnerton-Dyer

0.010…100000
0.013…10000
0.021…1000
0.032…100
0.083…10

M

The guess that Birch and Swinnerton-Dyer made was that if E has infinitely many 
solutions, then N(p) will be “big” on average, which should mean “bigger than p”, 
hence the partial products of p/N(p) will probably tend to 0 as M gets large.   Thus 
maybe we can decide if a cubic equation has infinitely many solutions by counting 
points and forming these products. 

The table on the right lists the partial products for various M for y^2+y=x^3-x.  The 
same numbers for the Fermat cubic, which has finitely many solutions, are M=10: 
0.432,  M=100, 0.425…, M=1000, 0.383;  M=10000, 0.4738…;  M=100000, 0.3714,  
these are small, but do not seem to be tending to 0.  
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A Differentiable Function

More precisely, Birch and 
Swinnerton-Dyer defined a 
differentiable function 
such that formally:

Swinnerton-Dyer

( )Ef x

Birch and Swinnerton-Dyer defined a function attached to the cubic curve.  The 
function is analytic on the entire complex plane (a fact not known until 2000 work of 
Breuil, Conrad, Diamond, Taylor, and WILES).  It is given by a formula on some 
right half plane, and if you plug 1 into that formula you get our product.  In fact, it’s 
not known whether the product really converges, and it is known that if it does 
converge, it doesn’t converge to the value of the Birch-Swinnerton-Dyer function at 
1.   Nonetheless, the guess is that the behavior of f at 1 should be intimately related 
to how many solutions are needed to generate all solutions on E.
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The Birch and Swinnerton-Dyer 
Conjecture

The order of vanishing of 

at 1 is the number of solutions 
required to generate all solutions 
(we automatically include finite 
order solutions, which are trivial 
to find).   
CMI: $1000000 for a proof!

Bryan Birch

The conjecture of Birch and Swinnerton-Dyer is that the order of vanishing of f at 1 
is the number of solutions needed to generate.

This is a one million dollar Clay Math Inst. Prize problem.  -- THE problem for 
arithmetic geometry.

Emphasize that we throw in the torsion points for free, since they are easy to 
compute.  
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Birch and Swinnerton-Dyer

This is another picture I took of Birch and Swinnerton-Dyer in Utrecht. 
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The graph of           vanishes to order r.( )
rEf x

Graphs of ( )Ef x

These are graphs of four function f_E(x).  The curve E_r has group of rational points 
minimally generated by r elements.  Note that the order of vanishing of the 
corresponding functions appear to match up with the expectation of Birch and 
Swinnerton-Dyer. 

The equations of the curves are [0,0,0,0,1],  [0,0,1,-1,0], [0,1,1,-2,0],  [0,0,1,-7,6]
Green: E0
Blue: E1
Light blue: E2
Purple: E3



28

Examples of              that appear to 
vanish to order 4 

( )Ef x

These are some graphs of the L-series attached to curves that require 4 generators.  
It is an OPEN PROBLEM to prove that f_E(s) really vanishes to order 4 for any 
curve --- we only know the function vanishes to order at least 2, and that f’’(1) = 
0.000000….
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Congruent Number Problem
Open Problem: Decide whether an integer n is the 
area of a right triangle with rational side lengths.

Fact: Yes, precisely when the cubic equation

has infinitely many solutions 

2 3 2y x n x= −
,x y∈

1 1 3 4 6
2 2

A b h= × = × =
6

Application:
The congruent number problem has been an open problem for about a thousand 
years, at least.  It asks for an algorithm to decide, with a finite amount of 
computation, whether a given integer is the area of a right triangle with rational side 
lengths.

The congruent number problem looks at first like it has nothing to do with cubic 
equations.  However, some algebraic manipulation shows that it does.
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Connection with BSD Conjecture

Theorem (Tunnell): The Birch 
and Swinnerton-Dyer conjecture 
implies that there is a simple 
algorithm that decides whether or 
not a given integer n is a 
congruent number.

See Koblitz for more details.

And, Jerrold Tunnell proved that if the Birch and Swinnerton-Dyer conjecture is true, 
then there is a simple algorithm for deciding whether or not an integer n is a 
congruent number.  Nonetheless, still not enough of the conjecture is known, and 
the congruent number problem remains a tantalizing open problem. I would not be 
surprised if this 1000 year old problem is solved in the next decade.  In fact, it has 
already been solved for many classes of integers n, because of deep theorems of 
Benedict Gross, Don Zagier, Victor Kolyvagin, and others. 
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Gross-Zagier
Theorem

Benedict Gross

Don ZagierWhen the order of vanishing of
at 1 is exactly 1, then there is

a nontorsion point on E.
( )Ef x

Subsequent work showed that this implies
that the Birch and Swinnerton-Dyer conjecture
is true when             has order of 
vanishing 1 at 1.

( )Ef x

The Gross-Zagier theorem says that the conjecture of Birch and Swinnerton-Dyer is 
true when the order of vanishing is exactly 1.   That is, if the function vanishes to 
order exactly 1, then one solution can be used to generate them all.  This is the 
case for our example curve y^2+y=x^3-x.



32

Kolyvagin’s Theorem

Theorem. If fE(1) is nonzero then there are 
only finitely many solutions to E.

Kolyvagin’s theorem asserts that the conjecture is true when f vanishes to order 0, 
i.e, when f(1) is nonzero.  

Very little is known when f vanishes to order 2 or higher.  Also, not a single example 
is known where we can prove that f really does vanishes to order bigger than 3 
(though it appears to). 

Kolyvagin’s an intense Russian mathematician. I snapped this photo of him recently 
after I spoke at CUNY and he went to dinner with us. 
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Thank You
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of          )( )Ef x

Thank everyone.  Mention that in fact there is a GROUP LAW on the points on a 
cubic, which leads to much beautiful algebraic structure, only hinted at in this 
lecture (explain diagram).  


