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Abstract

I will begin by introducing the Birch and Swinnerton-Dyer conjecture in the context
of abelian varieties attached to modular forms, and discuss some of the main results
about it. I will then introduce Mazur’s notion of visibility of Shafarevich-Tate groups
and explain some of the basic facts and theorems. Cremona, Mazur, Agashe, and myself
carried out large computations about visibility for modular abelian varieties of level N
in Jo(IN). These computations addressed the following question: If A is a modular
abelian variety of level N, how much of the Shafarevich-Tate group III(A) is modular
of level N, i.e., visible in Jo(NN). The results of these computations suggest that often
much of the Shafarevich-Tate group is not modular of level N. It is then natural to
ask if every element of IIT(A) is modular of level M, for some multiple M = NR, and
if so, what can one say about the set of such M? I will finish the talk with some new
data and a conjecture about this last question, which is still very much open.

1 Modular Abelian Varieties

Let N be a positive integer and consider the congruence subgroup

To(N) = {(CCL Z) € SLy(Z) such that N | c}.

(Almost everything in this talk also makes sense with I'g(NN) replaced by I';(/N).) The
modular curve
Xo(NV) = To(N) \ ({2 € C : Tm(2) > 0} UQU {o0})

is a Riemann surface that is the set of complex points of an algebraic curve over Q. We
will not use that

Xo(N)(C) = { isomorphism classes of (F,C) } U{ cusps }.
Our primary interest is the Jacobian
Jo(N) = Jac(Xo(N))

which is an abelian variety over Q of dimension equal to the genus of X(/N). The points
on the Jacobian parametrize, in a natural way, the divisor classes of degree 0 on Xy (V).

Let S2(I'o(N)) be the cusp forms of weight 2 for I'g(N). This is the finite-dimensional
complex vector space of holomorphic functions on the upper half plane such that

f(2)dz = f(y(2))d((2))



for all v € T'g(V), and which “vanish at the cusps”. The map f(z) — f(z)dz induces
S2(To(N)) = HY(Xo(N)c, 2')

s0 S2(T'g(NV)) has dimension the genus of Xo(N).
The Hecke algebra is a commutative ring

T=2Z[T\,T,Ts,...

which acts on S2(I'g(N)) and Jo(N). A newform

f = ang" € Sa(To(N))
n=1

is an eigenvector for every element of T normalized so a; = 1, which does not “come from”
any lower level. Attached to f there is an ideal

I+ = Anny(f) = Ker(T — Zlaq, as, .. .]),

and (following Shimura) to this ideal we attach an abelian variety A; and an L-function
L(Ay,s).
Let
0
Ag = Jo(N)[I;]° = | () Ker(e)
wpely

be the connected component of the intersections of the kernels of elements of I;. Then Ay
has dimension [K; : Q] = [Q(a1,a2,...) : Q)], and is define over Q.

Let
d

L(Ap,s) = [ L(fiss)

i=1
where d = [K; : Q] and the f; are the Galois conjugates of f. Also,

[e.o]

L(f,s) = -

n=1

Gn

Hecke proved that L(f, s) is entire and satisfies a functional equation.

The abelian varieties Ay are a rich class of abelian varieties. The elliptic curves over Q
are all isogenous to some Ay (the Wiles-Breuil-Conrad-Diamond-Taylor modularity theo-
rem).

2 The Birch and Swinnerton-Dyer Conjecture

2.1 Conjecture

Conjecture 2.1 (Birch and Swinnerton-Dyer).
1. rank A¢(Q) = ords—1 L(Ay, s)

LI (A1) B [Tep-Qa, - Regy, #I11(Af)

. 7! B #Af(Q)tor . #A}/(Q)tor

2



Remarks: Part of the conjecture is that III(Ay) is finite. There is also a conjecture for
arbitrary abelian varieties over global fields. Clay Math Problem: $1000000 prize for proof
of (1) in case dim(Ay) =1

Here:

® ¢, is the Tamagawa number at the prime p, and the product is over the prime divisors
of N.

e 4, is the canonical Néron measure of A¢(R).

f

Reg4 ;18 the regulator (absolute value of Néron-Tate canonical height pairing matrix).

A¢(Q)tor is the torsion subgroup of A¢(Q).

II(Ay) is the Shafarevich-Tate group.

2.2 Evidence
e Rubin: results in CM Case

e Kolyvagin, Logachev, Gross-Zagier, et al.: If ords—1 L(f,s) = 0 or 1, then (1) true
and ITI(Ay) finite.

e Cremona: Compute III(Af), (=conjectural order) for tens of thousands of A; of
dimension 1 and get approximate square order. (Theorem of Cassels: if E an elliptic
curve and III(F) finite then order a perfect square. Note that the analogue for abelian
varieties is false; for exampe, I’ve constructed examples for each odd prime p < 25000
of abelian varieties A of dimension p — 1 such that III(A) = p - n?.)

In this talk I will focus on Ay of possibly large dimension with L(Af,1) # 0, since
computation of Regy ; is difficult (impossible?) when one can’t even reasonably hope to
write down A explicitly with equations.

3 Visibility of Shafarevich-Tate Groups

3.1 Definitions

It is easy to write down a point on an elliptic curve E. You simply write down a pair
of rational numbers, which are a solution to a Weierstrass equation. In contrast, imagine
describing explicitly an element of III(E) of order 2003. The most direct way would be to
give a genus one curve (with principal homogeneous space structure), embedded in P? of
degree at least 2003 (1), hence very complicated.

The idea of visibility of Shafarevich-Tate groups was introduced by Barry Mazur around
1998 to unify various constructions of elements of Shafarevich-Tate groups.

Definition 3.1 (Shafarevich-Tate Group).

I1(A) = Ker <H1(K, A) — @Hl(KU,A)> .



Here H(K, A) is the first Galois cohomology, which can be interpreted geometrically
as the Weil-Chatalet group

WC(A/K) = { principal homogenous spaces X for A}/ ~ .
Then III(A) is the subgroup of locally trivial classes of homogenous spaces. For example
323 4+ 43 + 523 = 0 e I (2® + o + 6023 = 0)[3].

Fix an inclusion ¢ : A <— B of abelian varieties and let 7 : B — C be the quotient of B
by the image of A, so we have an exact sequence

0-A—-B—-C—0
of abelian varieties.
Definition 3.2 (Visible Subgroup).
Vis;(H' (K, A)) = Ker (H'(K, A) — H' (K, B))
= Coker(B(K) — C(K))
and
Vis; (II(A)) = Ker(III(A) — III(B)).

1. The visible subgroup is finite because B(K) is finitely generated and Vis;(H (K, A))
is torsion.

2. If ¢ € Vis;(H' (K, A)), then c is also “visible” in the sense that if ¢ is the image of a
point z € C(K), and if X = 7~ !(z) C B, then [X] € WC(A) corresponds to c.

3. The visibile subgroups depends on the choice of embedding i : A — B. I've also
considered defining Visp(H! (K, A)) to be the subgroup generated by all visible sub-
groups with respect to all embeddings A — B, but I’m not sure what properties this
definition has.

3.2 Theorems
“Everything is visible somewhere.”

Theorem 3.3 (Stein). If ¢ € HY(K, A) then there evists B = Resp x(AL) such that
i: A< B andc¢€ Vis;(H (K, A)). (Here L is such that resy /i (c) =0.)

“Visibility construction.”

Theorem 3.4 (Agashe-Stein). Suppose A, B C C over Q, that A+ B =C, that AN B
is finite. Suppose N is divisible by all bad primes for C, and p is a prime such that

e Bp|C A
o p12-N-#B(Q)ior - #(C/B)(Qtor - [ [ cap - By
p|N

If A has rank 0, then there is a natural inclusion

B(Q)/pB(Q) — Visc(LII(A)).

(And certain generalizations...)



3.3 Example

Ezample 3.5. For N = 389, take B the (first ever) rank 2 elliptic curve, and A the 20-
dimensional rank 0 factor.
B

|

A—— Jo(389)

Gives

(Z/5Z)? = B(Q)/5B(Q) — LI(A).
Part 2 of the Birch and Swinnerton-Dyer conjecture predicts that
II(A) = 52 - 27,

so this gives evidence.

4 Visibility in Modular Jacobians

Suppose now A = Ay C Jo(N) is attached to a newform.

Definition 4.1 (Modular of level M). An element ¢ € III(A)[p] is modular of level M
if ¢ € Vish,;(III(A4)), where Vish,(III(A)) is the subgroup generated by all kernels of maps
HI(A)[p™] — LI(Jo(M))[p>] induced by homomorphisms A — Jo(M) of degree coprime
to p.

Note that M must be a multiple of N.

Question 4.2 (Mazur). Suppose E C Jp(V) is an elliptic curve of conductor N. How
much of HI(E) is modular of level N7

Answer: In examples, surprisingly much. Expect not all visible, since
Visy (LII(E)) C LUI(F)[modular degree],

and modular degree annihilates symmetric square Selmer group (work of Flach).

4.1 Data and Experiments

e Cremona-Mazur: There are 52 elliptic curves E C Jo(N) with N < 5500 such
that p | #III(E),. Cremona-Mazur show that for 43 of these that III(E) “probably”
is modular of level N, and for 3 that it is definitely not: N = 2849,4343, 5389.
(“Probably” was made “provably” in many cases in subsequent work.)

e Agashe-Stein: Same question as Cremona-Mazur for Ay C Jo(NN) of any dimension.
Using results of my Ph.D. thesis, MAGMA packages, etc. I computed a divisor and
multiple of #III(Ay)- for the following:

— 10360 abelian varieties Ay C Jo(N) with L(Ay,1) # 0.
— Found 168 with #III(Ay)> definitely divisible by an odd prime.



— For 39 of these, prove that all #III(A;)39¢ elements are modular of level N,
and 106 probably are. This gives strong evidence for the BSD conjecture, and a
sense that maybe something further is going on.

— Of these 168, at least 62 have odd conjectural III that is definitely not modular
of level N. Big mystery? Where is this III modular? Is it modular at all? Is it
even there?? (Perhaps a good place to look for counterexample to BSD.)

5 Visibility at Higher Level

Definition 5.1. Let ¢ € II(Ay). The modularity levels of ¢ are the set of integers
N(c) ={M : c € Visy;(III(Af))}.
Conjecture 5.2 (Stein). For any c € III(Ay) we have
N(e) # 0,
i.e., every element of III(Ay) is modular.

Motivation: This is a working hypothesis that makes computing with modular abelian
varieties easier. Also, if there were a common level at which all of ITII(Af) were modular,
then III(Af) would be finite, and conversely (assuming the conjecture).

5.1 Ribet Level Raising

Suppose that f = > a,q” € S2(I'o(N)) is a newform and p is a nonzero prime ideal of
Zlai,as,...] such that A[p] is irreducible. If

ag+¢+1=0 (mod p)

then there exists an f-newform g € So(I'o(IN¥)) such that i(Af[p]) = Agy[p] for an appropriate
i: Jo(N) — Jo(N?) of degree coprime to char(p) and the sign of the functional equations
for L(f,s) and L(g, s) are the same.

If we instead require that a;— (+1) =0 (mod p) then there is such a g, but the sign of
the functional equation changes, and the new Tamagawa numbers of A, at ¢ will (or tends
to be?) divisible by p.

5.2 Evidence for Conjecture

I defined a precise notion of “probably modular” motivated by Theorem 3.4 and what I can
compute. In many cases I could do extra work and actually prove modularity; however, at
this stage it is more interesting to gather data to see what is going on, in order to have a
sense for what to conjecture.

Mazur proved that everything in III(E)[3], for E an elliptic curve, is visible in an abelian
surface, which, together with the modularity theorem, might imply modularity of III(E)[3]
at higher level. Same for 2, proved by me and by a different method by Thomas Klenke.

6 Some Tables

The first two pages of tables below give some of the data that I computed about visibility
of Shafarevich-Tate groups at level N. The third table gives the new data about visibility
at higher level.



Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim S S, moddeg(A)°dd | B dim| AVNBY Vis
389E+ 20 52 = 5 389A 1 [207] 52
433D+ 16 77 = T 433A 1 [14%] 72
446Fx 8§ 112 = 11350353 446B 1 (112 112
551H 18 32 = 169 NONE
563E+ 31 13?2 = 13 563A 1 [26%] 132
571D 2 32 = 32197 571B 1 [32] 32
655D+ 13 34 = 329799079 655A 1 [362] 34
681B 1 32 = 3125 681C 1 [32] —
707Gx 15 132 = 13800077 TO7TA 1 [137] 132
709C+ 30 112 = 11 T09A 1 [222] 112
718Fx 7 72 = 75371523 718B 1 [72] 72
T67F 23 32 = ! NONE
794G+ 12 112 = 1l-saoserso | 794A 1 [11%] -
817E+ 15 72 = 779 817TA 1 [72] -
959D 24 32 = 583673 NONE
997Hx+ 42  3* = 32 997B 1 [12%] 32
997C 1 [24%] 32
1001F 3 32 = 321260 1001C 1 [32] —
91A 1 [32] -
1001L 7 72 72020789 1001C 1 [72] —
1041E 4 52 = 52 13589 1041B 2 [5?] -
1041 13 5% = 5321120020083 | 1041B 2 [54] -
1058D 1 52 = 5-as83 1058C 1 [52] —
1061D 46 1512 = 15110019 1061B 2 | [22302%] —
1070M 7 3-52 32.52 3.5-1m0e1 | 107T0A 1 [157] -
1077J 15 34 = 32.1227767047943 | 10T7TA 1 [92] —
1091C 62 72 = | NONE
1094Fx 13 112 = 1121063 | 1094A 1 112 112
1102K 4 32 = 3231009 1102A 1 [37] —
1126F* 11 112 = 11-1s000852750 | 1126A 1 (112 112
1137C 14 34 = 32 64082807 1137A 1 [92] —
11411 22 72 = 7- 528021 1141A 1 [14%] -
1147H 23 52 = 5729 1147A 1 [10%] -
1171Dx 53 112 = 118 1171A 1 [44%]) 112
1246B 1 52 = 5-81 1246C 1 [52] -
1247D 32 32 = 322309 43A 1 (362 —
1283C 62 52 = 5-2419 NONE
1337E 33 32 = 7 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32.0004523085105 | NONE
1363F 25 31° = 31 -sas89 1363B 2 | [2262?] —
1429B 64 52 = 1 NONE
1443G 5 77 = 7218525 1443C 1 | [7'14}]
1446N 7 32 = 31745902 1446A 1 [12%]




Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim S, S, moddeg(A)°dd B dim| AYNBY Vis
1466Hx* 23 132 = 13-2s631003723 | 1466B 1 [26%] 132
1477C+ 24 132 = 13-s70s7637 1477A 1 [132] 132
1481C 71 13?2 = 70825 NONE
1483Dx 67 32.52 = 3-5 1483A 1 [60%]  32.5%
1513F 31 3 31 3759709 NONE
1529D 36 52 = s3s6a1763 NONE
1531D 73 3 32 3 1531A 1 [482] -
15343 6 3 32 3%.6s50m 1534B 1 [62] -
1551G 13 32 = 3-110659885 141A [157]
1559B 90 112 = 1 NONE
1567D 69 72412 = 7-41 1567B 3 | [4*1148%] —
1570J* 6 112 = 11-22s651307 1570B 1 [112] 112
1577E 36 3 32 3215 83A 1 [62] —
1589D 35 32 = 6005292627343 NONE
1591Fx* 35 312 = 312401 1591A 1 [312] 312
1594 17 32 = 3-250338050025131 | 1594A 1 [122] —
1613Dx 75 5 = 519 1613A 1 [20°] 52
1615J 13 34 = 3213317421 1615A 1 [91181] —
1621Cx 70 172 = 17 1621A 1 [342] 172
1627C+ 73 3% = 32 1627A 1 [362] 34
1631C 37 52 = 6354841131 NONE
1633D 27 35.72 = 35.T.ss1 1633A 3 | [6%42?] -
1634K 12 32 = 33311565989 817A 1 [32] —
1639G+ 34 172 = 1782355 1639B 1 [342] 172
1641Jx 24 232 = 23-u0i3uuman | 1641B 1 [232] 232
1642Dx* 14 72 = T-123398360851 1642A 1 [72] 72
1662K 7 112 = 1l-iec10017303 | 1662A 1 [112] -
1664K 1 5 = 57 1664N 1 [52] -
1679C 45 112 = 6489 NONE
1689E 28 32 = 3-172707180020157365 | B63A 1 [32] —
1693C 72 13012 = 1301 1693A 3 | [2926022] -
1717H+ 34 132 = 13345 1717B 1 [262] 132
1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659-1s12021 | 1739C 2 | [221318%] -
1745K 33 52 = 5-1971380677489 1745D 1 [202] —
1751C 45 5 = 5-707 103A 2 | [5052] -
1781D 44 32 = 61541 NONE
1793G+ 36 232 = 23-ssaeoso 1793B 1 [232] 232
1799D 44 52 = 201449 NONE
1811D 98 312 = ! NONE
1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 3 = ! NONE
1871C 98 192 = 14699 NONE




Visibility at Higher Level

Ay with odd invisible IIL,,[¢]

All ¢-congruent

Ag C JU(Np)neW
with Np < 5000 and
ords—1 L(g,s) > 0

(and higher Np if known)

551, dim 18, ¢/ =3 p = 2: dim 1, rank 2
p = 3: dim 1, rank 2
p = 5: dim 25, rank 0
767, dim 23, (=3 p = 2: dim 1, rank 2
p ="T7: dim 1, rank 2
p = T7: dim 52, rank 0
959, dim 24,/ =3 p = 2: dim 1, rank 2
1091, dim 62, £ =7 p = 7: dim 2, rank 2
1283, dim 62, / =5 p = 3: dim 2, rank 2
1337, dim 33,/ =3 p = 2: dim 1, rank 2
1339, dim 30, ¢/ =3 p = 2: dim 1, rank 2
1355, dim 28, ¢ =3 p = 2: dim 1, rank 2
1429, dim 64, £ =5 p = 2: dim 2, rank 2
p = 3: dim 66, rank 0

1481, dim 71, ¢ =13

Nothing in range

1513, dim 31, / = 3

p = 2: dim 1, rank 2

1529, dim 36, ¢/ =5

p ="T7: dim 1, rank 2

1559, dim 90, ¢ = 11

Nothing in range

1589, dim 35, ( = 3

Nothing in range

1631, dim 37, { = 5

p = 2: dim 1, rank 2

1679, dim 45, { = 11

p = 2: dim 2, rank 2

1727, dim 39, ¢ =3

p = 2: dim 1, rank 2

2849, dim 1, { = 3

p = 3: dim 1, rank 2

4343, dim 1, (=3

Nothing in range

5389, dim 1, / =3

p="T: dim 1, rank 2

When the second column contains an A, of rank 2, then III(Ay)[¢] is “very likely”
to be visible of level M = Np. This is the case for most examples. The “Nothing
in range” note means that the smallest p for which there exists g of even analytic
rank congruent to f is beyond the range of my current tables. The examples of level
2849, 4343, and 5389 are the odd and definitely invisible examples in Cremona and
Mazur’s original paper on visibility.



