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Abstract

I will begin by introducing the Birch and Swinnerton-Dyer conjecture in the context
of abelian varieties attached to modular forms, and discuss some of the main results
about it. I will then introduce Mazur’s notion of visibility of Shafarevich-Tate groups
and explain some of the basic facts and theorems. Cremona, Mazur, Agashe, and myself
carried out large computations about visibility for modular abelian varieties of level N
in J0(N). These computations addressed the following question: If A is a modular
abelian variety of level N , how much of the Shafarevich-Tate group X(A) is modular
of level N , i.e., visible in J0(N). The results of these computations suggest that often
much of the Shafarevich-Tate group is not modular of level N . It is then natural to
ask if every element of X(A) is modular of level M , for some multiple M = NR, and
if so, what can one say about the set of such M? I will finish the talk with some new
data and a conjecture about this last question, which is still very much open.

1 Modular Abelian Varieties

Let N be a positive integer and consider the congruence subgroup

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) such that N | c

}

.

(Almost everything in this talk also makes sense with Γ0(N) replaced by Γ1(N).) The
modular curve

X0(N) = Γ0(N) \ ({z ∈ C : Im(z) > 0} ∪ Q ∪ {∞})

is a Riemann surface that is the set of complex points of an algebraic curve over Q. We
will not use that

X0(N)(C) = { isomorphism classes of (E, C) } ∪ { cusps } .

Our primary interest is the Jacobian

J0(N) = Jac(X0(N))

which is an abelian variety over Q of dimension equal to the genus of X0(N). The points
on the Jacobian parametrize, in a natural way, the divisor classes of degree 0 on X0(N).

Let S2(Γ0(N)) be the cusp forms of weight 2 for Γ0(N). This is the finite-dimensional
complex vector space of holomorphic functions on the upper half plane such that

f(z)dz = f(γ(z))d(γ(z))
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for all γ ∈ Γ0(N), and which “vanish at the cusps”. The map f(z) 7→ f(z)dz induces

S2(Γ0(N)) ∼= H0(X0(N)C, Ω1)

so S2(Γ0(N)) has dimension the genus of X0(N).
The Hecke algebra is a commutative ring

T = Z[T1, T2, T3, . . .]

which acts on S2(Γ0(N)) and J0(N). A newform

f =
∞

∑

n=1

anqn ∈ S2(Γ0(N))

is an eigenvector for every element of T normalized so a1 = 1, which does not “come from”
any lower level. Attached to f there is an ideal

If = AnnT(f) = Ker(T → Z[a1, a2, . . .]),

and (following Shimura) to this ideal we attach an abelian variety Af and an L-function
L(Af , s).

Let

Af = J0(N)[If ]0 =





⋂

ϕ∈If

Ker(ϕ)





0

be the connected component of the intersections of the kernels of elements of If . Then Af

has dimension [Kf : Q] = [Q(a1, a2, . . .) : Q)], and is define over Q.
Let

L(Af , s) =
d

∏

i=1

L(fi, s)

where d = [Kf : Q] and the fi are the Galois conjugates of f . Also,

L(f, s) =
∞

∑

n=1

an

ns
.

Hecke proved that L(f, s) is entire and satisfies a functional equation.
The abelian varieties Af are a rich class of abelian varieties. The elliptic curves over Q

are all isogenous to some Af (the Wiles-Breuil-Conrad-Diamond-Taylor modularity theo-
rem).

2 The Birch and Swinnerton-Dyer Conjecture

2.1 Conjecture

Conjecture 2.1 (Birch and Swinnerton-Dyer).

1. rankAf (Q) = ords=1 L(Af , s)

2.
L(r)(Af , 1)

r!
=

∏

cp · ΩAf
· RegAf

·#X(Af )

#Af (Q)tor · #A∨
f (Q)tor

.
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Remarks: Part of the conjecture is that X(Af ) is finite. There is also a conjecture for
arbitrary abelian varieties over global fields. Clay Math Problem: $1000000 prize for proof
of (1) in case dim(Af ) = 1

Here:

• cp is the Tamagawa number at the prime p, and the product is over the prime divisors
of N .

• ΩAf
is the canonical Néron measure of Af (R).

• RegAf
is the regulator (absolute value of Néron-Tate canonical height pairing matrix).

• Af (Q)tor is the torsion subgroup of Af (Q).

• X(Af ) is the Shafarevich-Tate group.

2.2 Evidence

• Rubin: results in CM Case

• Kolyvagin, Logachev, Gross-Zagier, et al.: If ords=1 L(f, s) = 0 or 1, then (1) true
and X(Af ) finite.

• Cremona: Compute X(Af )? (=conjectural order) for tens of thousands of Af of
dimension 1 and get approximate square order. (Theorem of Cassels: if E an elliptic
curve and X(E) finite then order a perfect square. Note that the analogue for abelian
varieties is false; for exampe, I’ve constructed examples for each odd prime p < 25000
of abelian varieties A of dimension p − 1 such that X(A) = p · n2.)

In this talk I will focus on Af of possibly large dimension with L(Af , 1) 6= 0, since
computation of RegAf

is difficult (impossible?) when one can’t even reasonably hope to
write down Af explicitly with equations.

3 Visibility of Shafarevich-Tate Groups

3.1 Definitions

It is easy to write down a point on an elliptic curve E. You simply write down a pair
of rational numbers, which are a solution to a Weierstrass equation. In contrast, imagine
describing explicitly an element of X(E) of order 2003. The most direct way would be to
give a genus one curve (with principal homogeneous space structure), embedded in P3 of
degree at least 2003 (!), hence very complicated.

The idea of visibility of Shafarevich-Tate groups was introduced by Barry Mazur around
1998 to unify various constructions of elements of Shafarevich-Tate groups.

Definition 3.1 (Shafarevich-Tate Group).

X(A) = Ker

(

H1(K, A) →
⊕

v

H1(Kv, A)

)

.
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Here H1(K, A) is the first Galois cohomology, which can be interpreted geometrically
as the Weil-Chatalet group

WC(A/K) = { principal homogenous spaces X for A }/ ∼ .

Then X(A) is the subgroup of locally trivial classes of homogenous spaces. For example

3x3 + 4y3 + 5z3 = 0 ∈ X(x3 + y3 + 60z3 = 0)[3].

Fix an inclusion i : A ↪→ B of abelian varieties and let π : B → C be the quotient of B
by the image of A, so we have an exact sequence

0 → A → B → C → 0

of abelian varieties.

Definition 3.2 (Visible Subgroup).

Visi(H
1(K, A)) = Ker

(

H1(K, A) → H1(K, B)
)

= Coker(B(K) → C(K))

and
Visi(X(A)) = Ker(X(A) → X(B)).

1. The visible subgroup is finite because B(K) is finitely generated and Visi(H
1(K, A))

is torsion.

2. If c ∈ Visi(H
1(K, A)), then c is also “visible” in the sense that if c is the image of a

point x ∈ C(K), and if X = π−1(x) ⊂ B, then [X] ∈ WC(A) corresponds to c.

3. The visibile subgroups depends on the choice of embedding i : A ↪→ B. I’ve also
considered defining VisB(H1(K, A)) to be the subgroup generated by all visible sub-
groups with respect to all embeddings A → B, but I’m not sure what properties this
definition has.

3.2 Theorems

“Everything is visible somewhere.”

Theorem 3.3 (Stein). If c ∈ H1(K, A) then there exists B = ResL/K(AL) such that

i : A ↪→ B and c ∈ Visi(H
1(K, A)). (Here L is such that resL/K(c) = 0.)

“Visibility construction.”

Theorem 3.4 (Agashe-Stein). Suppose A, B ⊂ C over Q, that A + B = C, that A ∩ B
is finite. Suppose N is divisible by all bad primes for C, and p is a prime such that

• B[p] ⊂ A

• p - 2 · N · #B(Q)tor · #(C/B)(Q)tor ·
∏

p|N

cA,p · cB,p.

If A has rank 0, then there is a natural inclusion

B(Q)/pB(Q) ↪→ VisC(X(A)).

(And certain generalizations...)
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3.3 Example

Example 3.5. For N = 389, take B the (first ever) rank 2 elliptic curve, and A the 20-
dimensional rank 0 factor.

B

²²

A // J0(389)

Gives
(Z/5Z)2 ∼= B(Q)/5B(Q) ↪→ X(A).

Part 2 of the Birch and Swinnerton-Dyer conjecture predicts that

X(A) = 52 · 2?,

so this gives evidence.

4 Visibility in Modular Jacobians

Suppose now A = Af ⊂ J0(N) is attached to a newform.

Definition 4.1 (Modular of level M). An element c ∈ X(A)[p] is modular of level M
if c ∈ Visp

M (X(A)), where Visp
M (X(A)) is the subgroup generated by all kernels of maps

X(A)[p∞] → X(J0(M))[p∞] induced by homomorphisms A → J0(M) of degree coprime
to p.

Note that M must be a multiple of N .

Question 4.2 (Mazur). Suppose E ⊂ J0(N) is an elliptic curve of conductor N . How
much of X(E) is modular of level N?

Answer: In examples, surprisingly much. Expect not all visible, since

VisN (X(E)) ⊂ X(E)[modular degree],

and modular degree annihilates symmetric square Selmer group (work of Flach).

4.1 Data and Experiments

• Cremona-Mazur: There are 52 elliptic curves E ⊂ J0(N) with N < 5500 such
that p | #X(E)?. Cremona-Mazur show that for 43 of these that X(E) “probably”
is modular of level N , and for 3 that it is definitely not: N = 2849, 4343, 5389.
(“Probably” was made “provably” in many cases in subsequent work.)

• Agashe-Stein: Same question as Cremona-Mazur for Af ⊂ J0(N) of any dimension.
Using results of my Ph.D. thesis, MAGMA packages, etc. I computed a divisor and
multiple of #X(Af )? for the following:

– 10360 abelian varieties Af ⊂ J0(N) with L(Af , 1) 6= 0.

– Found 168 with #X(Af )? definitely divisible by an odd prime.

5



– For 39 of these, prove that all #X(Af )odd
? elements are modular of level N ,

and 106 probably are. This gives strong evidence for the BSD conjecture, and a
sense that maybe something further is going on.

– Of these 168, at least 62 have odd conjectural X that is definitely not modular
of level N . Big mystery? Where is this X modular? Is it modular at all? Is it
even there?? (Perhaps a good place to look for counterexample to BSD.)

5 Visibility at Higher Level

Definition 5.1. Let c ∈ X(Af ). The modularity levels of c are the set of integers

N (c) = {M : c ∈ VisM (X(Af ))}.

Conjecture 5.2 (Stein). For any c ∈ X(Af ) we have

N (c) 6= ∅,

i.e., every element of X(Af ) is modular.

Motivation: This is a working hypothesis that makes computing with modular abelian
varieties easier. Also, if there were a common level at which all of X(Af ) were modular,
then X(Af ) would be finite, and conversely (assuming the conjecture).

5.1 Ribet Level Raising

Suppose that f =
∑

anqn ∈ S2(Γ0(N)) is a newform and p is a nonzero prime ideal of
Z[a1, a2, . . .] such that Af [p] is irreducible. If

a` + ` + 1 ≡ 0 (mod p)

then there exists an `-newform g ∈ S2(Γ0(N`)) such that i(Af [p]) = Ag[p] for an appropriate
i : J0(N) → J0(N`) of degree coprime to char(p) and the sign of the functional equations
for L(f, s) and L(g, s) are the same.

If we instead require that a`− (`+1) ≡ 0 (mod p) then there is such a g, but the sign of
the functional equation changes, and the new Tamagawa numbers of Ag at ` will (or tends
to be?) divisible by p.

5.2 Evidence for Conjecture

I defined a precise notion of “probably modular” motivated by Theorem 3.4 and what I can
compute. In many cases I could do extra work and actually prove modularity; however, at
this stage it is more interesting to gather data to see what is going on, in order to have a
sense for what to conjecture.

Mazur proved that everything in X(E)[3], for E an elliptic curve, is visible in an abelian
surface, which, together with the modularity theorem, might imply modularity of X(E)[3]
at higher level. Same for 2, proved by me and by a different method by Thomas Klenke.

6 Some Tables

The first two pages of tables below give some of the data that I computed about visibility
of Shafarevich-Tate groups at level N . The third table gives the new data about visibility
at higher level.
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Nontrivial Odd Parts of Shafarevich-Tate Groups
A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis

389E∗ 20 52 = 5 389A 1 [202] 52

433D∗ 16 72 = 7·111 433A 1 [142] 72

446F∗ 8 112 = 11·359353 446B 1 [112] 112

551H 18 32 = 169 NONE

563E∗ 31 132 = 13 563A 1 [262] 132

571D∗ 2 32 = 32 ·127 571B 1 [32] 32

655D∗ 13 34 = 32 ·9799079 655A 1 [362] 34

681B 1 32 = 3·125 681C 1 [32] −
707G∗ 15 132 = 13·800077 707A 1 [132] 132

709C∗ 30 112 = 11 709A 1 [222] 112

718F∗ 7 72 = 7·5371523 718B 1 [72] 72

767F 23 32 = 1 NONE

794G∗ 12 112 = 11·34986189 794A 1 [112] −
817E∗ 15 72 = 7·79 817A 1 [72] −
959D 24 32 = 583673 NONE
997H∗ 42 34 = 32 997B 1 [122] 32

997C 1 [242] 32

1001F 3 32 = 32 ·1269 1001C 1 [32] −
91A 1 [32] −

1001L 7 72 = 7·2029789 1001C 1 [72] −
1041E 4 52 = 52 ·13589 1041B 2 [52] −
1041J 13 54 = 53 ·21120929983 1041B 2 [54] −
1058D 1 52 = 5·483 1058C 1 [52] −
1061D 46 1512 = 151·10919 1061B 2 [223022] −
1070M 7 3·52 32 ·52 3·5·1720261 1070A 1 [152] −
1077J 15 34 = 32 ·1227767047943 1077A 1 [92] −
1091C 62 72 = 1 NONE
1094F∗ 13 112 = 112 ·172446773 1094A 1 [112] 112

1102K 4 32 = 32 ·31009 1102A 1 [32] −
1126F∗ 11 112 = 11·13990352759 1126A 1 [112] 112

1137C 14 34 = 32 ·64082807 1137A 1 [92] −
1141I 22 72 = 7·528921 1141A 1 [142] −
1147H 23 52 = 5·729 1147A 1 [102] −
1171D∗ 53 112 = 11·81 1171A 1 [442] 112

1246B 1 52 = 5·81 1246C 1 [52] −
1247D 32 32 = 32 ·2399 43A 1 [362] −
1283C 62 52 = 5·2419 NONE
1337E 33 32 = 71 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32 ·2224523985405 NONE

1363F 25 312 = 31·34889 1363B 2 [22622] −
1429B 64 52 = 1 NONE
1443G 5 72 = 72 ·18525 1443C 1 [71141] −
1446N 7 32 = 3·17459029 1446A 1 [122] −
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Nontrivial Odd Parts of Shafarevich-Tate Groups
A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis

1466H∗ 23 132 = 13·25631993723 1466B 1 [262] 132

1477C∗ 24 132 = 13·57037637 1477A 1 [132] 132

1481C 71 132 = 70825 NONE
1483D∗ 67 32 ·52 = 3·5 1483A 1 [602] 32 ·52

1513F 31 3 34 3·759709 NONE
1529D 36 52 = 535641763 NONE
1531D 73 3 32 3 1531A 1 [482] −
1534J 6 3 32 32 ·635931 1534B 1 [62] −
1551G 13 32 = 3·110659885 141A 1 [152] −
1559B 90 112 = 1 NONE
1567D 69 72 ·412 = 7·41 1567B 3 [4411482] −
1570J∗ 6 112 = 11·228651397 1570B 1 [112] 112

1577E 36 3 32 32 ·15 83A 1 [62] −
1589D 35 32 = 6005292627343 NONE
1591F∗ 35 312 = 31·2401 1591A 1 [312] 312

1594J 17 32 = 3·259338050025131 1594A 1 [122] −
1613D∗ 75 52 = 5·19 1613A 1 [202] 52

1615J 13 34 = 32 ·13317421 1615A 1 [91181] −
1621C∗ 70 172 = 17 1621A 1 [342] 172

1627C∗ 73 34 = 32 1627A 1 [362] 34

1631C 37 52 = 6354841131 NONE
1633D 27 36 ·72 = 35 ·7·31375 1633A 3 [64422] −
1634K 12 32 = 3·3311565989 817A 1 [32] −
1639G∗ 34 172 = 17·82355 1639B 1 [342] 172

1641J∗ 24 232 = 23·1491344147471 1641B 1 [232] 232

1642D∗ 14 72 = 7·123398360851 1642A 1 [72] 72

1662K 7 112 = 11·16610917393 1662A 1 [112] −
1664K 1 52 = 5·7 1664N 1 [52] −
1679C 45 112 = 6489 NONE
1689E 28 32 =3·172707180029157365 563A 1 [32] −
1693C 72 13012 = 1301 1693A 3 [2426022] −
1717H∗ 34 132 = 13·345 1717B 1 [262] 132

1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659·151291281 1739C 2 [2213182] −
1745K 33 52 = 5·1971380677489 1745D 1 [202] −
1751C 45 52 = 5·707 103A 2 [5052] −
1781D 44 32 = 61541 NONE
1793G∗ 36 232 = 23·8846589 1793B 1 [232] 232

1799D 44 52 = 201449 NONE
1811D 98 312 = 1 NONE

1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 36 = 1 NONE
1871C 98 192 = 14699 NONE
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Visibility at Higher Level

Af with odd invisible Xan[`] All `-congruent
Ag ⊂ J0(Np)new

with Np ≤ 5000 and
ords=1 L(g, s) ≥ 0
(and higher Np if known)

551, dim 18, ` = 3 p = 2: dim 1, rank 2
p = 3: dim 1, rank 2
p = 5: dim 25, rank 0

767, dim 23, ` = 3 p = 2: dim 1, rank 2
p = 7: dim 1, rank 2
p = 7: dim 52, rank 0

959, dim 24, ` = 3 p = 2: dim 1, rank 2
1091, dim 62, ` = 7 p = 7: dim 2, rank 2
1283, dim 62, ` = 5 p = 3: dim 2, rank 2
1337, dim 33, ` = 3 p = 2: dim 1, rank 2
1339, dim 30, ` = 3 p = 2: dim 1, rank 2
1355, dim 28, ` = 3 p = 2: dim 1, rank 2
1429, dim 64, ` = 5 p = 2: dim 2, rank 2

p = 3: dim 66, rank 0
1481, dim 71, ` = 13 Nothing in range
1513, dim 31, ` = 3 p = 2: dim 1, rank 2
1529, dim 36, ` = 5 p = 7: dim 1, rank 2
1559, dim 90, ` = 11 Nothing in range
1589, dim 35, ` = 3 Nothing in range
1631, dim 37, ` = 5 p = 2: dim 1, rank 2
1679, dim 45, ` = 11 p = 2: dim 2, rank 2
1727, dim 39, ` = 3 p = 2: dim 1, rank 2
2849, dim 1, ` = 3 p = 3: dim 1, rank 2
4343, dim 1, ` = 3 Nothing in range
5389, dim 1, ` = 3 p = 7: dim 1, rank 2

When the second column contains an Ag of rank 2, then X(Af )[`] is “very likely”
to be visible of level M = Np. This is the case for most examples. The “Nothing
in range” note means that the smallest p for which there exists g of even analytic
rank congruent to f is beyond the range of my current tables. The examples of level
2849, 4343, and 5389 are the odd and definitely invisible examples in Cremona and
Mazur’s original paper on visibility.
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