
Managing 80 Open Source Packages and 5 Million Lines of
Code in Sage

http://www.sagemath.org

Michael Abshoff1

1Department of Mathematics
Technical University of Dortmund, Germany

Seattle, 2008-06-12

http://www.sagemath.org

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

What Is Sage?

5,000,000+ lines of code

80 different units

languages: mainly C, C++, Python,

Cython, Fortran, Lisp

A total of nearly 5 million lines of source code (several hundred person-years).

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

Sage: How and Why?

KISS

a release about every two weeks

“Stone soup“ development model

45,000+ test cases run after each patch merged - we will
hit 100,000+ tests hopefully by the end of the year

no need for a separate development version since all
sources are included

The Sage library is under revision control and changes can
be made and checked in without ever leaving Sage

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

Sage: Deployment and Integration

batteries included, i.e. no need to get the sysadmin to
install any packages

requirements to build Sage on Debian, Ubuntu: “apt-get
install build-essential“, on OSX: Install a current XCode
release

to build: execute “make“ and come back after a while

easily extendable via optional spkgs installed from a central
(in house) server

optimize for your CPU locally or class of
workstations/nodes in a cluster

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

Sage: Playing Well With Others

no outside dependencies for binary besides the usual
suspects, i.e. libc, libm, libstdc++ ...

no file outside the build directory and $DOT SAGE is
written to or read from

many Sage releases can be installed in parallel without
affecting each other

package up the exact build with your changes in a binary
and deploy it to a bunch of machines or throughout the
department

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

Sage: Contributing To Sage

Twisted rule: “Don’t work on anything unless there is a
trac ticket for it“

mandatory patch review

mandatory 100% test coverage

must pass build testing on all supported platforms

Outline

1 What Is Sage?

2 How and Why?

3 Deployment and Integration

4 Playing Well With Others

5 Contributing To Sage

6 Sage Community Resources

Sage: Community Resources

Communicate with the people who wrote the code and/or
know it really well via:

Google Groups

Email

Trac

IRC

	What Is Sage?
	How and Why?
	Deployment and Integration
	Playing Well With Others
	Contributing To Sage
	Sage Community Resources

