
June 11: What is on the Horizon

Sage: What is on the Horizon?
William Stein

June 2009

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

1 of 21 6/11/09 7:29 AM

Outline of Talk
Background: about Sage1.
Ports: to Solaris, Windows, OS X 64-bit; also SPD2.
The Sage Notebook: rewrite core to better support embedding in web pages, test
framework, better architecture, and LaTeX integration

3.

Symbolic Calculus: switch to Pynac; implement symbolic algorithms in Pynac/Sage4.
2d and 3d Graphics: add more features and support5.
Statistics: create a natural, clean, native interface to stats functionality6.
Arithmetic: many optimizations across the spectrum7.
Number Theory: quaternion algebras, quadratic forms, modular forms, descent on elliptic
curves, Heegner points, L-functions

8.

Funding: status report9.

Background

about Sage

Mission Statement: Create a viable free open source alternative to Magma, Maple,
Mathematica, and Matlab.

... Sage is to the Ma*'s somewhat like Linux is to MS Windows or Firefox is to IE or Opera.

I started the Sage project in January 2005.
Over 140 contributors since then.
Structure of Sage: large distribution of math software + large new Python library to tie it

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

2 of 21 6/11/09 7:29 AM

all together
About 5000 downloads per month.
Support mailing list has 1220 subscribers.
Sage is 100% open source -- you can see or change anything you want.
All code that goes into Sage's Python library is thoroughly peer reviewed.

Quick Demo -- Basic arithmetic

2 + 3

 5
2^3

 8
2/3

 2/3

Magma interface

E = magma('EllipticCurve([1..5])'); E

 Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5over Rational Field

E.Rank()

 1

Same calculation completely in Sage (doesn't use Magma or anything else not in Sage!)

E = EllipticCurve([1..5]); E

 Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5over Rational Field

E.rank()

 1
plot(E,plot_points=500,thickness=2)

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

3 of 21 6/11/09 7:29 AM

A 3d Plot

u, v = var('u,v')
k = 1.2; k_2 = 1.2; a = 1.5
f = (k^u*(1+cos(v))*cos(u), k^u*(1+cos(v))*sin(u), k^u*sin(v)-a*k_2^u)
parametric_plot3d(f, (u,0,6*pi), (v,0,2*pi), plot_points=[100,100],
texture=(0,0.5,0), viewer='tachyon')

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

4 of 21 6/11/09 7:29 AM

Ports

to Solaris, Windows, OS X 64-bit; also SPD

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

5 of 21 6/11/09 7:29 AM

Solaris: Various people have worked off and on very hard to port Sage to Solaris since late
2005! Finally, after years of work (especially by Michael Abshoff), the 32-bit port of Sage to
Solaris 10 (both Sparc and x86) is nearly done! This involved everything from replacing CLISP
by ECL to fixing bugs all over the place. Sun Microsystems also expressed strong interest in
this work, and just donating a high-end sparc machine to the project.

Solaris 64-bit: The port of Sage to 64-bit Solaris has not been attempted yet.

 OS X 64-bit: The port of Sage to 64-bit OS X is now also almost done.

Advantages of 64-bit: you can use far more RAM; many basic arithmetic operations are over
twice as fast, which impacts high level algorithms. GMP on OS X 64-bit has much better
assembly level optimizations than on 32-bit:

 32-bit OS X:

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

6 of 21 6/11/09 7:29 AM

sage: time n = factorial(10^6)
CPU times: user 2.02 s, sys: 0.14 s, total: 2.16 s

age: time f = ZZ['x'].random_element(degree=100000)^2
CPU times: user 0.38 s, sys: 0.10 s, total: 0.48 s

sage: time set_random_seed(0); a=random_matrix(ZZ,300).det()
CPU times: user 0.74 s, sys: 0.08 s, total: 0.82 s

 64-bit OS X (same computer):

sage: time n = factorial(10^6)
CPU times: user 0.79 s, sys: 0.10 s, total: 0.89 s

sage: time f = ZZ['x'].random_element(degree=100000)^2
CPU times: user 0.16 s, sys: 0.04 s, total: 0.19 s

sage: time set_random_seed(0); a=random_matrix(ZZ,300).det()
CPU times: user 0.62 s, sys: 0.04 s, total: 0.66 s

Microsoft Windows:

Windows users currently use VMware or http://sagenb.org.
Overall Sage download stats since Feb 15 (thanks to Harald Schilly):

 1. microsoft_windows 5,661 <--- =vmware, by
far the most popular !!

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

7 of 21 6/11/09 7:29 AM

 2. linux/32bit 3,077
 3. src 1,964
 4. apple_osx/intel 1,404
 5. linux/64bit 1,070
 6. apple_osx/powerpc 372
 7. linux/atom 122
 8. apple_osx/ppc 98
 9. solaris 15
 10. linux/itanium 14

Total.............................. 13797 (or just under
5000/month)

I started a "fully native" port of Sage to Windows in mid-February 2009. It is a new project
and is growing organically just like Sage-for-UNIX did. See http://windows.sagemath.org and
my talk on Tuesday.

Currently includes: bzip2, cython, docutils, freetype, ipython, lapack, libpng, matplotlib,
mercurial, m4ri, moin, mpir, networkx, ntl (as WinNTL), numpy, scipy, pycrypto,
pyreadline, python, pywin32, scons, setuptools, sphinx (with dependencies: jinja2,
pygments), sqlalchemy, sqlite, sympy, twisted, wexpect, zlib, zodb (with dependencies:
zope.interface, zope.proxy, zope.testing, zconfig, and zdaemon).
MS Visual Studio 2008: Everything builds from scratch on Windows XP or Windows
Vista using MSVC 2008 (and mingw's fortran).
Contributors so far: Dan Shumow, Blair Sutton, and me. Some help from Tom Boothby,
Chris Gorecki, William Cauchois.
Microsoft Research funding this.
Next hard step: get the notebook with preparser ported, which will provide a viable
alternative to all the other existing Windows scientific Python distros (Enthought Tool
Suite, Python(x,y), etc.).
REvolution: they released a full native (64-bit) version of R for Windows, which might be
helpful

SPD = Source Python Distribution

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

8 of 21 6/11/09 7:29 AM

Project that Ondrej Certik started that is basically a "lightweight Sage distribution for
numerical computation".
http://code.google.com/p/spdproject/
Superb way to make the work we've done with Sage available to a wider range of users.
Will provide "for free" numerous fixes back to Sage.
I'm excited about this project.

The Sage Notebook

rewrite to better support embedding in web pages, test framework, better
architecture, and LaTeX integration

Sage lite: Mike Hansen and I recently split the notebook off from Sage, but we need to get
this patch into Sage (ASAP): See trac #5789. It is currently bit rotting.
Another major rewrite: Mike Hansen has been experimenting with rewriting some of the
core of the notebook to use a general web framework.
Testing: We need a better automatic testing system.
LaTeX: Users love the LaTeX support provided by the Sage notebook. It just needs more
polish (John Palmierri)
Embeded interacts: ability to easily and robustly embed interacts in any random web
page. I need this for the modular forms and L-functions database project. (Mike Hansen
working on this.)

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

9 of 21 6/11/09 7:29 AM

@interact
def f(a_invariants=input_box([1..5]), p=slider(prime_range(1000),
default=389)):
 try:
 E = EllipticCurve(GF(p), a_invariants)
 except:
 print "Invalid curve"; return
 show(E)
 print "p = %s"%p
 show(E.change_ring(GF(p)).plot(),xmin=0,ymin=0)

a_invariants [1, 2, 3, 4, 5]

p

y 89x

p = 659

2 = x3 + 3 + 1

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

10 of 21 6/11/09 7:29 AM

Symbolic Calculus

switched to Pynac; implement symbolic algorithms in Pynac/Sage

In any technical field, not understanding and controlling ones core tools has the danger of
leading to second-rate results. That is a concern with Sage, due to wrapping Maxima.

The pure Python/Maxima hybrid implementation in Sage < 4.0 was too slow and
inflexible.

1.

Burcin suggested somehow using Ginac, and with a few weeks very hard work, I found a
way to completely strip Ginac's CLN (all basic arithmetic types) dependency and replace it
by Python objects.

2.

Ginac is a mature, healthy, lively project, with regular releases, a native Windows version,
etc. The code is easy to read and adapt. It is a solid foundation on which to build.

3.

Burcin, me, Mike Hansen, Robert Bradshaw, and Nick Alexander -- all worked to
switch Sage to use Pynac. We finished this for Sage-4.0.

4.

(but it is a fine library on which to build a CAS)

var('x,theta')
f = sin(x)*cos(2*x) + log(x) - theta*x^3
f

 -theta*x^3 + sin(x)*cos(2*x) + log(x)
show(f.taylor(x,1,2))

show(f.integrate(x))

expand(f^3)

-theta^3*x^9 + 3*theta^2*x^6*sin(x)*cos(2*x) + 3*theta^2*x^6*log(x)
- 3*theta*x^3*sin(x)^2*cos(2*x)^2 -

À (5) (2
2

1
(x)À 1 2 sin (1) cos (2) + 4 sin (2) cos (1) + 6 Ò + 1 À (x)À 1 sin (1) sin (2)À cos (1) cos (2) + 3 Ò À 1

À x
4

1
Ò 4 + x ln (x)À xÀ

6

1
cos (3)x +

2

1
cos (x)

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

11 of 21 6/11/09 7:29 AM

6*theta*x^3*log(x)*sin(x)*cos(2*x) - 3*theta*x^3*log(x)^2 +
sin(x)^3*cos(2*x)^3 + 3*log(x)*sin(x)^2*cos(2*x)^2 +
3*log(x)^2*sin(x)*cos(2*x) + log(x)^3

Where To?

Low level symbolic arithmetic: All basic symbolic manipulation will switch to using the
Pynac C++ library (=Ginac with Python data types) as soon as possible. This is
potentially dramatically (100s of times) faster than what we get from Maxima, and is far
easier for us to improve and extend.
Reduce (or eliminate) the Maxima depedency: All other symbolic calculus functionality
will be implemented via Cython/C++/Sympy/Sage with the eventual goal to completely
eliminate the dependency on Maxima: In each case, the goal will be to rethink the
implementations using modern ideas, tools, libraries, etc. This will lead to interesting new
results, speedups, etc.:

Equality testing (using interval arithmetic -- mostly done by Robert Bradshaw)
Solving equations for a variable
Taylor expansion (sympy does a lot already)
Symbolic integration (implement numerous heuristics, plus a heuristic Riesch)
Factorization (via Singular, etc.)
Formal infinite sums (Burcin's Ph.d. thesis)

2d and 3d Graphics

add more features and support

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

12 of 21 6/11/09 7:29 AM

3d Plotting

implicit_plot3d: Carl Witty and Bill Cauchois recently implemented this, thus filling in a
glaring gap in Sage's 3d plotting functionality (compared to Maple and Mathematica).
doctests: Bill Cauchois greatly improved doctest coverage, though much still remains to
do here
Mathematica's 3d plotting still has numerous options than Sage's doesn't -- this needs to
be fixed via hard work
Jmol -- isn't as rock solid as we wish it were (Bill Cauchois is doing a summer project to
write a new java applet for doing 3d software rendering).
Resize -- given jQuery, being able to drag and resize a 3d plot would be easy to implement,
but nobody has got around to it.
Tick marks -- currently no control over axes labels or tick marks in 3d plots
Interaction -- make it easy for people to manipulate elements of 3d plots, select points,
etc., and have this interact with Sage.

var('x,y,z')
implicit_plot3d(cos(x)*sin(y) + cos(y)*sin(z) + cos(z)*sin(x),
 (x,-2*pi,2*pi),(y,-2*pi,2*pi),(z,-2*pi,2*pi),
color='red', viewer='tachyon')

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

13 of 21 6/11/09 7:29 AM

2d Plotting

refactoring -- Mike Hansen has (and is still) refactoring the code to make it much cleaner
and easier to work with
doctesting -- Karl-Dieter Crisman recently greatly improved the doctest coverage of 2d
plotting
tick marks -- currently poor control over axes labels or tick marks in 2d plots
interactivity in the browser (!) -- massive recent interest in FLOT, Canvas, Network
Plotting in Javascript, etc., to make the 2d graphics in the Sage notebook far more
interactive and flexible. This is the main next thrust for plotting.

@interact
def _(n=(10..500)):
 r = random
 show(sum(circle((r(),r()),r()/10,fill=True,rgbcolor=
(r(),r(),r()),alpha=0.5) for _ in range(n)),
 aspect_ratio=1,frame=True,gridlines=True)

n

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

14 of 21 6/11/09 7:29 AM

Statistics

create a natural, clean, native interface to stats functionality

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

15 of 21 6/11/09 7:29 AM

Sage Includes Tons of Statistical Functionality:

R -- R is included in Sage, along with the rpy C library interface and a pexpect interface to
R (this was a major Sage-3.0 goal a year ago).
scipy.stats -- Scipy's stats functionality is in Sage
finance.TimeSeries -- highly optimized statistics (in the context of time series, but much
more generally useful).

BUT, there is no nice friendly natural Sage interface to statistics. E.g.,

sage: stat.mean([pi, e, sqrt(2)])
(pi + e + sqrt(2))/3

sage: stats.standard_deviation(...)
sage: d = stats.data([pi, e, sqrt(2)])
sage: d.mean()
...

It is important that something like this be designed and implemented soon, since not having such
functionality is a major shortcoming of Sage. Somebody needs to:

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

16 of 21 6/11/09 7:29 AM

Math software stats survey: Make a survey of the statistics functionality and user
interface (API) for each of MATLAB, Maple, and Mathematica. In particular, what special
features or ideas do these CAS's have about how statistics and powerful mathematics
software (including computer algebra) can be combined?

1.

Stats software survey: Similarly, survey the leading commercial statistics programs (e.g.,
SAS, Stata, etc.). What kind of data analysis features are most popular and important in
those programs (e.g., which are the features their intro tutorials cover).

2.

Textbooks: Look at standard textbooks in statistics and see what functionality is needed to
do those problems.

3.

Sage Enhancement Proposal (SEP): Design a rough interface for Sage (classes,
functions, plotting capabilities, etc.), and post this for comment to Sage-devel. Always
keep workflow in mind in the design (since I think that's how stats uses work -- they have
data that goes in, pictures, analysis, then results that get plotted for papers, etc.)

4.

Prototype: Do a quick proof-of-concept implementation in pure Python, possibly calling
out to R/scipy.stats/etc. for anything at all difficult to implement, so this can get done
quickly.

5.

Feedback/optimize: Get the code from 4 into Sage, get feedback from users, and
optimize. Optimization may include creating new Cython bindings to R, improving
scipy.stats, etc.

6.

Andrew Hou -- a UW undergraduate -- will likely work on this project with me next quarter, but
it would be great to have something going before then.

import scipy.stats

scipy.stats.mean?

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

17 of 21 6/11/09 7:29 AM

Arithmetic

many optimizations across the spectrum

Integer arithmetic -- eMPIRe: Sage has switched to eMPIRe, which is a fork of the GMP
project. I expect eMPIRe to soon be across the board superior to GMP.
Polynomial arithmtic in Z[x] -- FLINT: Sage has switched from NTL to FLINT for
polynomial arithmetic in Z[x]. Unfortunately, number fields still use NTL -- so number
field elements have to be totally rewritten to use FLINT. Using FLINT provides major
speedups. It's also getting used more and more in code directly as a library, since it is very
easy to use from Cython. (E.g., massively easier than PARI because FLINT is well
designed, and easier than NTL, since FLINT is in C instead of C++.)
Multivariate polynomial arithmetic -- libSingular:

libSingular has been a little painful sometimes from a porting perspective, but it
seems the bugs are ironed out now.

1.

They now support native arithmetic (and Groebner basis!) over Z and Z/nZ (not just
Q), and we'll get that into Sage ASAP.

2.

An exciting idea on the horizon is to make it so Singular can work with any Sage
base ring (via PyObject*'s). This would remove the limitation on the size of the base
field.

3.

Quaternion algebras -- Jon Bober and I completely rewrote them from scratch so that
now basic arithmetic is very fast, over Q and number fields.

Number Theory

quaternion algebras, quadratic forms, modular forms, descent on elliptic
curves, Heegner points, L-functions

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

18 of 21 6/11/09 7:29 AM

Quaternion Algebras -- Sage now has an algorithm for computing the right ideal classes
in an order in a quaternion algebra over Q. The code is much much faster than Magma
(or anything else available -- which is nothing).

Critical to algorithms for computing with modular forms and modular abelian
varieties.

1.

Mainly work of me, Gonzalo Tornaria, Alia Hamieh, and Jon Bober. 2.
Sage does not have the analogue of this over number fields (L. Dembele's interest),
which Magma has (due mainly to John Voight), but we need to implement it and
make our implementation much faster than the one in Magma. Needed for Hilbert
modular forms...

3.

Quadratic forms: Jon Hanke's extensive quadratic forms code is now in Sage, and it
provides a huge boost in functionality. This was years in the making. Jon is also rapidly
improving the quality of this code.
Modular forms: Craig Citro, David Loeffler, John Cremona, and I have all been putting a
lot of effort into improving all the modular forms functionality in Sage. E.g., David
Loeffler has recently filled in gaps all over the place, pushed functionality in new
directions, found very subtle bugs, etc. There is still much left to do, e.g., computing
weight 1 forms, half integral weight forms, forms on other groups, emuch better code for
working with congruence subgroups (Kurth's Farey symbols package).
2-descent: Robert Miller just implemented 2-descent for rational elliptic curves with an
isogeny. A huge surprise is that his code -- which combines all the latest idea and
algorithms in novel ways seems to be blazingly fast, totally blowing away everything (e.g.,
both mwrank and Magma) by orders of magnitude. This will appear in Sage soon.
3-descent: Robert is also working on implementing at least computation of 3-Selmer
groups.

B = BrandtModule(19,5)
B.right_ideals()

(Fractional ideal (2 + 10*j, 2*i + 12*j + 2*k, 20*j, 4*k),
Fractional ideal (2 + 10*j + 4*k, 2*i + 12*j + 6*k, 40*j, 8*k),
Fractional ideal (2 + 30*j + 4*k, 2*i + 12*j + 2*k, 40*j, 8*k),
Fractional ideal (2 + 30*j + 4*k, 2*i + 52*j + 2*k, 80*j, 16*k),
Fractional ideal (2 + 30*j + 20*k, 2*i + 52*j + 2*k, 160*j, 32*k),
Fractional ideal (2 + 50*j + 4*k, 2*i + 52*j + 14*k, 80*j, 16*k),
Fractional ideal (2 + 50*j + 12*k, 2*i + 12*j + 14*k, 80*j, 16*k),
Fractional ideal (2 + 130*j + 20*k, 2*i + 52*j + 30*k, 160*j, 32*k),
Fractional ideal (2 + 2*i + 2*j + 2*k, 4*i + 4*j, 20*j + 4*k, 8*k),
Fractional ideal (2 + 2*i + 22*j + 14*k, 4*i + 4*j + 8*k, 40*j +
8*k, 16*k))

B.quaternion_algebra()

 Quaternion Algebra (-1, -19) with base ring Rational Field
ModularForms(Gamma1(13),2,prec=12).basis()

[
q - 4*q^3 - q^4 + 3*q^5 + 6*q^6 - 3*q^8 + q^9 - 6*q^10 + O(q^12),
q^2 - 2*q^3 - q^4 + 2*q^5 + 2*q^6 - 2*q^8 + q^9 - 3*q^10 + O(q^12),
1 + 21060/19*q^11 + O(q^12),
q + 11709/19*q^11 + O(q^12),

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

19 of 21 6/11/09 7:29 AM

q^2 + 262*q^11 + O(q^12),
q^3 + 918/19*q^11 + O(q^12),
q^4 - 882/19*q^11 + O(q^12),
q^5 - 1287/19*q^11 + O(q^12),
q^6 - 1080/19*q^11 + O(q^12),
q^7 - 675/19*q^11 + O(q^12),
q^8 - 360/19*q^11 + O(q^12),
q^9 - 153/19*q^11 + O(q^12),
q^10 - 54/19*q^11 + O(q^12)
]

Funding

status report

Sage has received funding from: NSF, DoD, Microsoft, Google, HIMR, UW, Clay, IPAM,
PIMS, and private donations

Current funding: Microsoft (5K), NSF (the Sage postdoc, my FRG grant), UW (startup, RRF)

MAGMA PROJECT: I estimate Sage currently reimplements about 80% of Magma's
functionality. Much of the remaining 20% could be filled in by the same people who wrote the
code in Magma with additional funding. Example: quaternion algebras over number fields --
John Voight would love to reimplement his algorithms in Sage, if he had funding. Also, Robert
Bradshaw could implement a parser for the Magma language.

PEOPLE: Carl Witty, Jason Moxham, and Mike Hansen: three absolutely brilliantly
highly qualified programers, who are passionate about working on Sage. They would all love to
work fulltime on Sage (for a very reasonable price), but mostly can't because of lack of funding.

Example -- Carl Witty: For example, Carl Witty is Chief Science Officer of Newton Labs in
Renton, WA, but he finds his day job boring in comparison to Sage. He would like to finish

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

20 of 21 6/11/09 7:29 AM

writing a superb implementation of Cylindrical Algebraic Decomposition for Sage. Cylindrical
algebraic decomposition is an algorithm for finding descriptions of semi-algebraic sets, i.e., the
real solution sets of systems of multivariate polynomial equalities and inequalities.
Mathematica uses CAD for exactly solving many problems for polynomials or systems of
polynomials over the reals, including finding solution sets, finding maxima or minima, quantifier
elimination, etc. For example, all of Minimize, Maximize, Reduce, FullSimplify, and
SparseArray indirectly use CAD when operating on systems of real polynomial equations (or
certain trigonometric equations that can be automatically transformed into polynomials) and no
simpler algorithm is available.

Conclusion: Sage has huge momentum, and there is no question Sage is going to continue its
dramatic growth.

Funding to hire Carl Witty, Jason Moxham, and Mike Hansen on a fulltime basis would
make a tremendous difference in how quickly Sage improves.

Funding to support mathematicians to reimplement the other 20% of missing functionality
from Magma would make Sage a fully viable alternative to Magma.

Sage Worksheet: June 11: What is on the Horizon http://localhost:8000/home/admin/180/print

21 of 21 6/11/09 7:29 AM

