
JPL09 - intro to sage

Introduction to Sage
William Stein

Project Goal: Create a free open source viable alternative to Maple, Mathematica, and Matlab.

Sage is free and open source (GPL-compatible) and is developed by an international team of over 150
people. Over 1200 people are subscribed to the mailing lists, there are over 60 messages a day, and
around 5,000 downloads per month. Sage packages the functionality of nearly 100 open source
packages.

I started the Sage project in 2005, and have directed development since then (from Harvard, then San
Diego, then Seattle).

This workshop will have three parts:

Introduction to Sage1.
2D Graphics2.
3D Graphics3.

Introduction to Sage

Sage Worksheet: JPL09 - intro to sage http://localhost:8000/home/admin/200/print

1 of 5 7/1/09 12:47 PM

Entering, Editing, and Evaluating Input
I want you to really learn a lot about using Sage during the next two hours. Thus please please input
and try out as many of the examples in the worksheets as you possibly can. To make this easier, we'll
now go over the basics of entering and evaluating code with Sage.

To evaluate code in the Sage Notebook type the code into an input cell and press shift-enter or click the
evaluate link. Try it now with a simple expression (e.g., 2 + 2). The first time you evaluate cell takes
longer than subsequent times since a process starts.

2 + 2

Create new input cells by clicking on the blue line that appears between cells. Try it now.

You can go back and edit any cell by clicking in it (or using the keyboard to move up or down). Go
back and change your 2+2 above to 3 + 3 and re-evaluate it.

You can also edit this text right here by double clicking on it, which will bring up the TinyMCE
Javascript text editor. You can even put embedded mathematics like this just like with
LaTeX.

You can also easily make interactive widgets as illustrated below. Try clicking on the sliders to illustrate
multiplication below. Also, you can try changing the slider ranges to something different by editing the
input cell (make sure to also change xmax,ymax).

@interact
def f(n=(1..15), m=(1..15)):

sin(x) À y3

Sage Worksheet: JPL09 - intro to sage http://localhost:8000/home/admin/200/print

2 of 5 7/1/09 12:47 PM

 print "n * m =", n*m, " =", factor(n*m)
 P = polygon([(0,0),(0,n),(m,n),(m,0)])
 P.show(aspect_ratio=1,gridlines='minor',figsize=[3,3],xmax=14,ymax=14)

n
m
n * m = 1 = 1

If you mess everything up, click on Action -> Restart Worksheet at the top of the screen to reset all the
variable names and restart everything. You can also click "Undo" in the upper right to revert the
worksheet to a previously saved state.

The Programming Language of Sage (Python)
The programming language of Sage is Python. Visit the Python website if you don't already know
about Python. "Python is a dynamic object-oriented programming language that can be used for many
kinds of software development. It offers strong support for integration with other languages and tools,
comes with extensive standard libraries, and can be learned in a few days. Many Python programmers
report substantial productivity gains and feel the language encourages the development of higher quality,
more maintainable code."

Sage Worksheet: JPL09 - intro to sage http://localhost:8000/home/admin/200/print

3 of 5 7/1/09 12:47 PM

an example of some Python code:
for n in range(10):
 if n%2 == 1:
 print n, n*n

Sage applies a small number of preparser rules to Python to avoid a few embarassing issues. To
evaluate a cell without these rules, put %python Python at the top of the cell.

In pure python we have "2/3" is 0 and "2^3" is 1, because of C integer semantics. In Sage things are
saner.

%python
2/3

%python
2^3

2/3

2^3

preparse('2/3')

Sage also has high precision floating point numbers:

1.239023904820394802949023490239023092834092349023232229302920922

preparse('1.239023904820394802949023490239023092834092349023232229302920922')

N(sqrt(2),300)

How to Get Context-Sensitive Help and Search the
Documentation

Sage Worksheet: JPL09 - intro to sage http://localhost:8000/home/admin/200/print

4 of 5 7/1/09 12:47 PM

You find out what functions you can call on an object X by typing X.<tab key>.

X = 2009

Type X. then press the tab key.

X.

Once you have selected a function, say factor, type X.factor(<tab key> to get help and examples of
how to use that function. Try this now with X.factor.

To get fulltext searchable help and a more extensive tutorial, click the "Help" link in the upper right,
then click on Fast Static Versions of the Documentation.

Try browsing and searching the documentation now. Especially, find the 2d graphics section of the
reference manual.

If you need live help from a person, "operators are standing by". Just click on Help, then "Help via
Internet Chat (IRC)". This brings you to the Sage chat room where you can often get help. You may
have to switch to the #sage-devel room, which is more popular.

Sage Worksheet: JPL09 - intro to sage http://localhost:8000/home/admin/200/print

5 of 5 7/1/09 12:47 PM

